Chapter 1
Topological Vector Spaces

1.1 Introduction

The main objective of this chapter is to present an outline of the basic tools of
analysis necessary to develop the subsequent chapters. We assume the reader has
a background in linear algebra and elementary real analysis at an undergraduate
level. The main references for this chapter are the excellent books on functional
analysis: Rudin [58], Bachman and Narici [6], and Reed and Simon [52]. All proofs
are developed in details.

1.2 Vector Spaces

We denote by I a scalar field. In practice this is either R or C, the set of real or
complex numbers.

Definition 1.2.1 (Vector Spaces). A vector space over F is a set which we will de-
note by U whose elements are called vectors, for which are defined two operations,
namely, addition denoted by (4) : U x U — U and scalar multiplication denoted by
(1) :Fx U — U, so that the following relations are valid:

.u+v=v+uVYu,ve U,
cu+(v+w)=w+v)+wVu,v,we U,

. there exists a vector denoted by 0 such thatu+ 0 = u, Vu € U,
. foreachu € U, there exists a unique vector denoted by
—usuch that u+ (—u) =0,

o (B-u)y=(a-B) uNVo, eF,uecl,
o-(utv)=a-ut+a-vwwaelF, uvel,
(a+B)u=a-u+p-uVo, eF, ucU,
dru=uVuel.
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4 1 Topological Vector Spaces

Remark 1.2.2. From now on we may drop the dot (-) in scalar multiplications and
denote « - u simply as ctu.

Definition 1.2.3 (Vector Subspace). Let U be a vector space. A set V C U is said
to be a vector subspace of U if V is also a vector space with the same operations as
those of U. If V 2 U, we say that V is a proper subspace of U.

Definition 1.2.4 (Finite-Dimensional Space). A vector space is said to be of finite

dimension if there exists fixed uy,un,...,u, € U such that for each u € U there are
corresponding ¢, ... ., o, € I for which
n
u=y oju;. (1.1)
i=1

Definition 1.2.5 (Topological Spaces). A set U is said to be a topological space if it
is possible to define a collection ¢ of subsets of U called a topology in U, for which
the following properties are valid:

1.U € o,

2.0€o0,

3.ifAcocandBe o, thenANBE o,

4. arbitrary unions of elements in ¢ also belong to .

Any A € o is said to be an open set.

Remark 1.2.6. When necessary, to clarify the notation, we shall denote the vector
space U endowed with the topology ¢ by (U, o).

Definition 1.2.7 (Closed Sets). Let U be a topological space. A set A C U is said to
be closed if U \ A is open. We also denote U\NA=A“={uc U |u g A}.

Remark 1.2.8. For any sets A, B C U we denote
A\B={u€cA|u¢B}.
Also, when the meaning is clear we may denote A\ Bby A — B.

Proposition 1.2.9. For closed sets we have the following properties:

1. U and 0 are closed,
2. if A and B are closed sets, then AUB is closed,
3. arbitrary intersections of closed sets are closed.

Proof.

1. Since 0 is open and U = 0°, by Definition 1.2.7, U is closed. Similarly, since U
isopenand @ = U \ U = U*, 0 is closed.

2. A,B closed implies that A and B¢ are open, and by Definition 1.2.5, A U B¢ is
open, so that ANB = (A°UB*)“ is closed.
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3. Consider A = Ny ¢ A, where L is a collection of indices and A, is closed,
VA € L. We may write A = (U; ;A9 )¢ and since A is open VA € L we have,
by Definition 1.2.5, that A is closed.

Definition 1.2.10 (Closure). Given A C U we define the closure of A, denoted by

A, as the intersection of all closed sets that contain A.

Remark 1.2.11. From Proposition 1.2.9 item 3 we have that A is the smallest closed
set that contains A, in the sense that if C is closed and A C C, then A C C.

Definition 1.2.12 (Interior). Given A C U we define its interior, denoted by A°, as
the union of all open sets contained in A.

Remark 1.2.13. Tt is not difficult to prove that if A is open, then A = A°.

Definition 1.2.14 (Neighborhood). Given uy € U we say that ¥ is a neighborhood
of ug if such a set is open and contains uy. We denote such neighborhoods by 7.

Proposition 1.2.15. If A C U is a set such that for each u € A there exists a neigh-
borhood ¥, > u such that ¥,, C A, then A is open.

Proof. This follows from the fact that A = U,c4 ¥, and any arbitrary union of open
sets is open.

Definition 1.2.16 (Function). Let U and V be two topological spaces. We say that
f:U — V isafunction if f is a collection of pairs (u,v) € U x V such that for each
u € U there exists only one v € V such that (u,v) € f.

Definition 1.2.17 (Continuity at a Point). A function f: U — V is continuous at
u € U if for each neighborhood ¥}y C V of f(u), there exists a neighborhood
¥u C U of usuch that (%) C V().

Definition 1.2.18 (Continuous Function). A function f : U — V is continuous if it
is continuous at each u € U.

Proposition 1.2.19. A function f : U — V is continuous if and only if f~1(¥) is
open for each open V' C V, where

) ={uecU]|flu)er}. (1.2)

Proof. Suppose f~!(7) is open whenever ¥ C V is open. Pick u € U and any
open ¥ such that f(u) € 7. Since u € f~1(¥) and f(f~'(¥)) C ¥, we have that
f is continuous at u € U. Since u € U is arbitrary we have that f is continuous.
Conversely, suppose f is continuous and pick ¥ C V open. If f~1(¥) = 0, we
are done, since @ is open. Thus, suppose u € f -1 (¥), since f is continuous, there
exists 7;, a neighborhood of u such that f(#,) C #. This means ¥, C f~!(#) and
therefore, from Proposition 1.2.15, f -1 (¥) is open.
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Definition 1.2.20. We say that (U, o) is a Hausdorff topological space if, given uy,
up € U, uy # uy, there exists 71, %, € o such that

uy €M, up € ¥ and 1N =0. (1.3)

Definition 1.2.21 (Base). A collection 6’ C o is said to be a base for o if every
element of ¢ may be represented as a union of elements of ¢’.

Definition 1.2.22 (Local Base). A collection & of neighborhoods of a point u € U
is said to be a local base at u if each neighborhood of u contains a member of 6.

Definition 1.2.23 (Topological Vector Space). A vector space endowed with a
topology, denoted by (U, o), is said to be a topological vector space if and only if

1. every single point of U is a closed set,
2. the vector space operations (addition and scalar multiplication) are continuous
with respect to .

More specifically, addition is continuous if given u,v € U and ¥ € o such that
u-+v e Y, then there exists ¥, > u and ¥, > v such that ¥}, + ¥, C ¥ . On the other
hand, scalar multiplication is continuous if given ¢ € F, u € U and ¥ 5 o - u, there
exists 0 > 0 and ¥, © u such that V3 € I satisfying |3 — | < § we have B¥, C V.

Given (U, 0), let us associate with each ug € U and o € F (ot # 0) the functions

Ty, : U — U and My, : U — U defined by

Tuy(u) =up+u (1.4)
and

Moy, (u) =0 - u. (1.5)

The continuity of such functions is a straightforward consequence of the continuity
of vector space operations (addition and scalar multiplication). It is clear that the
respective inverse maps, namely 7, and My 4, are also continuous. So if ¥ is
open, then ug + ¥, that is, (T_,,) " '(¥) = T,,(¥) = uo + 7 is open. By analogy
oY is open. Thus o is completely determined by a local base, so that the term local
base will be understood henceforth as a local base at 0. So to summarize, a local
base of a topological vector space is a collection £2 of neighborhoods of 6, such that
each neighborhood of 8 contains a member of £2.
Now we present some simple results.

Proposition 1.2.24. [f A C U is open, then Yu € A, there exists a neighborhood V'
of 0 such thatu+ 7V C A.

Proof. Justtake ¥ =A —u.

Proposition 1.2.25. Given a topological vector space (U, ©), any element of 6 may
be expressed as a union of translates of members of €2, so that the local base (2
generates the topology ©.
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Proof. Let A C U openandu € A. ¥ = A —u is a neighborhood of 6 and by defi-
nition of local base, there exists a set ¥, C ¥ such that ¥, € . Thus, we may
write

A=Uea(u+7g,)- (1.6)

1.3 Some Properties of Topological Vector Spaces

In this section we study some fundamental properties of topological vector
spaces. We start with the following proposition.

Proposition 1.3.1. Any topological vector space U is a Hausdorf{f space.

Proof. Pick ug,u; € U such that ug # u. Thus ¥ = U \ {u; —up} is an open neigh-
borhood of zero. As 6 + 6 = 0, by the continuity of addition, there exist ¥ and ¥,
neighborhoods of 0 such that

N+ CV (1.7)

define = 1NN (=9)N(—Y3), thus % = —% (symmetric)and % +% CV

and hence

uo+ U +U% Cup+¥ CU\{u} (1.8)
so that
ug+vi+vy £up, Yy, €%, (1.9
or
uy+vy #Fu—vy, Yi,vo €%, (1.10)
and since % = —%
(uo+ )N (w1 +%) = 0. (1.11)

Definition 1.3.2 (Bounded Sets). A set A C U is said to be bounded if to each
neighborhood of zero ¥ there corresponds a number s > 0 such that A C t¥ for
eacht > s.

Definition 1.3.3 (Convex Sets). A set A C U such that
ifu;yeAthen Au+(1—A)ve€A, VA €][0,1], (1.12)

is said to be convex.

Definition 1.3.4 (Locally Convex Spaces). A topological vector space U is said to
be locally convex if there is a local base €2 whose elements are convex.
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Definition 1.3.5 (Balanced Sets). A set A C U is said to be balanced if A C A,
Voo € F such that |or| < 1.

Theorem 1.3.6. In a topological vector space U we have:

1. every neighborhood of zero contains a balanced neighborhood of zero,
2. every convex neighborhood of zero contains a balanced convex neighborhood of
zero.

Proof.

1. Suppose % is a neighborhood of zero. From the continuity of scalar multiplica-
tion, there exist ¥ (neighborhood of zero) and & > 0, such that ¥ C % when-
ever || < 8. Define #' = Uy 5075 thus # C % is a balanced neighborhood
of zero.

2. Suppose % is a convex neighborhood of zero in U. Define

A={na% |aeC, |o| =1}. (1.13)

As 0-0 = 0 (where 6 € U denotes the zero vector) from the continuity of scalar
multiplication there exists 6 > 0 and there is a neighborhood of zero ¥ such that
if |B| < &, then B C % . Define # as the union of all such 3% Thus # is
balanced and o' # = # as || = 1, s0 that # = a# C a% , and hence ¥ C
A, which implies that the interior A° is a neighborhood of zero. Also A° C % .
Since A is an intersection of convex sets, it is convex and so is A°. Now we will
show that A° is balanced and complete the proof. For this, it suffices to prove that
A is balanced. Choose r and 8 such that 0 < r < 1 and |3| = 1. Then

rﬁA:ﬁ‘a‘:lrﬁa% :ﬂ‘a‘:lra%. (1.14)

Since 0% 1is a convex set that contains zero, we obtain roa% C aZ , so that
rBA C A, which completes the proof.

Proposition 1.3.7. Let U be a topological vector space and ¥ a neighborhood of
zero in U. Given u € U, there exists r € RY such that Bu € ¥,V such that |B| < r.

Proof. Observe that u+ ¥ is a neighborhood of 1 - u, and then by the continuity of
scalar multiplication, there exists # neighborhood of u and r > 0 such that

BYW Cu+ 7Y VB suchthat | — 1| <r, (1.15)
so that
Bucut ¥, (1.16)
or

(B—1Nue?, where | —1|<r, (1.17)
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and thus
Bu e ¥ VB such that || < r, (1.18)

which completes the proof.

Corollary 1.3.8. Let ¥ be a neighborhood of zero in U; if {r,} is a sequence such
that r, >0, Vn €N, and lim r, = oo, then U C U;,_ 1, V.
n—soo

Proof. Letu € U,then au € ¥ for any o sufficiently small, from the last proposition
ue é“//. As r, — oo we have that r;, > é for n sufficiently big, so that u € r, /", which
completes the proof.

Proposition 1.3.9. Suppose {8,} is a sequence such that 8, — 0, 6, < 8,1, Vn € N
and V" a bounded neighborhood of zero in U, then {8,V '} is a local base for U.

Proof. Let % be a neighborhood of zero; as ¥ is bounded, there exists fo € R™ such
that ¥ C % for any t > ty. As lim &, = 0, there exists ny € N such that if n > ny,
n—soo

then 6, < %, so that 6, C % ,Vn such that n > ny.

Definition 1.3.10 (Convergence in Topological Vector Spaces). Let U be a topo-
logical vector space. We say {u,} converges to uy € U, if for each neighborhood ¥
of ug, then there exists N € N such that

u, € ¥ ,¥Yn>N.

1.4 Compactness in Topological Vector Spaces

We start this section with the definition of open covering.

Definition 1.4.1 (Open Covering). Given B C U we say that {0, o € A} is a
covering of B if B C UgeaOy. If Oy is open Vo € A, then {0y} is said to be an
open covering of B.

Definition 1.4.2 (Compact Sets). A set B C U is said to be compact if each open
covering of B has a finite subcovering. More explicitly, if B C Ugeca Oy, Where Oy
is open Vo € A, then there exist ¢,...,0, € A such that BC Oy U...U O, for
some n, a finite positive integer.

Proposition 1.4.3. A compact subset of a Hausdorff space is closed.

Proof. LetU be a Hausdorff space and consider A C U, A compact. Given x € A and
y € A€, there exist open sets &, and ﬁ; suchthatx € O,y € 0¥, and O, N ﬁ; =0.1t
is clear that A C Uyep Oy, and since A is compact, we may find {x{,x2,...,x,} such
that A C U!_, O,,. For the selected y € A° we have y € N, 0y and (N, 0y') N
(U, 0,) = 0. Since N_, Oy' is open and y is an arbitrary point of A° we have that
A€ is open, so that A is closed, which completes the proof.

The next result is very useful.
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Theorem 1.4.4. Let {K, o0 € L} be a collection of compact subsets of a Hausdorff
topological vector space U, such that the intersection of every finite subcollection
(of {Ka, o € L}) is nonempty.
Under such hypotheses
NaerKy # 0.

Proof. Fix o € L. Suppose, to obtain contradiction, that

NoerKo = 0.
That is,
Koy N[N ngol{a] 0.
Thus,
Mot Ko © Ky,
so that

KO‘O [ gégﬂKa] ’

Koy C[U 3?2‘%&]

However, K, is compact and K, is open, Vot € L.
Hence, there exist ¢y, ..., 0, € L such that

Koy C UL Ky,
From this we may infer that
Koo N[MiZ1 Koy ] = 0,

which contradicts the hypotheses.
The proof is complete.

Proposition 1.4.5. A closed subset of a compact space U is compact.

Proof. Consider {0y, 0 € L} an open cover of A. Thus {A¢, Oy, o0 € L} is a cover
of U. As U is compact, there exist &, 0, ..., 0, such that AU (U, Oy,) D U, so
that {0, i€ {1,...,n}} covers A, so that A is compact. The proof is complete.

Definition 1.4.6 (Countably Compact Sets). A set A is said to be countably com-
pact if every infinite subset of A has a limit point in A.

Proposition 1.4.7. Every compact subset of a topological space U is countably
compact.

Proof. Let B an infinite subset of A compact and suppose B has no limit point.
Choose {x1,x3,....} C B and define F = {x,x),x3,...}. It is clear that F has no
limit point. Thus, for each n € N, there exist &, open such that &, NF = {x,}.
Also, for each x € A — F, there exist &, such that x € 0, and 0, NF = 0. Thus
{Oy, x€A—F; 0),0,,...} is an open cover of A without a finite subcover, which
contradicts the fact that A is compact.
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1.5 Normed and Metric Spaces

The idea here is to prepare a route for the study of Banach spaces defined below.
We start with the definition of norm.

Definition 1.5.1 (Norm). A vector space U is said to be a normed space, if it is pos-
sible to define a function || - ||y : U — R = [0,4-<0), called a norm, which satisfies
the following properties:

1. |lully >0, ifus06and ||lul|ly =0<u=0,
2. lu+vllu < lullv+|vlv,V u,veU,
3. low|ly = |al||ul|u,Yue U, o € F.

Now we present the definition of metric.

Definition 1.5.2 (Metric Space). A vector space U is said to be a metric space if it
is possible to define a functiond : U x U — R™, called a metric on U, such that

1.0<d(u,v), Yu,ve U,

2.duy) =0 u=yv,
3.d(u,v)=d(v,u), Vu,ve U,

4. d(u,w) <d(u,v)+d(v,w),Yu,v,w € U.

A metric can be defined through a norm, that is,
d(u,v) = |lu—v|u. (1.19)

In this case we say that the metric is induced by the norm.
The set B,(u) = {v € U | d(u,v) < r} is called the open ball with center at u and
radius r. A metric d : U x U — R™ is said to be invariant if

du+wyv+w)=d(u,v),Yu,v,w e U. (1.20)
The following are some basic definitions concerning metric and normed spaces:

Definition 1.5.3 (Convergent Sequences). Given a metric space U, we say that
{un} C U converges to ug € U as n — oo, if for each € > 0, there exists ng € N,
such that if n > ny, then d(uy,uo) < €. In this case we write u, — ug as n — —+-oo.

Definition 1.5.4 (Cauchy Sequence). {u,} C U is said to be a Cauchy sequence if
for each £ > 0 there exists ng € N such that d(uy, un) < €,Ym,n > ny

Definition 1.5.5 (Completeness). A metric space U is said to be complete if each
Cauchy sequence related to d : U x U — R converges to an element of U.

Definition 1.5.6 (Limit Point). Let (U,d) be a metric space and let E C U. We say
that v € U is a limit point of E if for each r > 0 there exists w € B.(v) N E such that

w#£ .
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Definition 1.5.7 (Interior Point, Topology for (U,d)). Let (U,d) be a metric space
and let E C U. We say that u € E is interior point if there exists » > 0 such that
B,(u) C E. We may define a topology for a metric space (U,d) by declaring as
open all set E C U such that all its points are interior. Such a topology is said to be
induced by the metric d.

Definition 1.5.8. Let (U,d) be a metric space. The set o of all open sets, defined
through the last definition, is indeed a topology for (U,d).

Proof.

1. Obviously @ and U are open sets.

2. Assume A and B are open sets and define C = ANB. Let u € C = AN B; thus,
from u € A, there exists r; > 0 such that B, (u) C A. Similarly from u € B there
exists r, > 0 such that B,, (u) C B.

Define r = min{r,r2}. Thus, B,(#) C ANB = C, so that u is an interior point of
C. Since u € C is arbitrary, we may conclude that C is open.

3. Suppose {Aq, & € L} is a collection of open sets. Define E = UgerAg, and we

shall show that E is open.
Choose u € E = Uy Aq. Thus there exists ¢ € L such that u € Ag,. Since Ay,
is open there exists r > 0 such that B,(#) C Ay, C UgerAq = E. Hence u is an
interior point of E, since u € E is arbitrary, we may conclude that £ = Uger Ay
is open.

The proof is complete.

Definition 1.5.9. Let (U,d) be a metric space and let E C U. We define E as the set
of all the limit points of E.

Theorem 1.5.10. Let (U,d) be a metric space and let E C U. Then E is closed if
and only if E' CE.

Proof. Suppose E' C E. Letu € E¢; thus u & E and u ¢ E'. Therefore there exists
r > 0 such that B.(u) NE = 0, so that B,(u) C E¢. Therefore u is an interior point
of E€. Since u € E€ is arbitrary, we may infer that E is open, so that E = (E€)¢ is
closed.

Conversely, suppose that E is closed, that is, E€ is open.

If E' = 0, we are done.

Thus assume E’ # 0 and choose u € E'. Thus, for each r > 0, there exists v €
B,(u) NE such that v # u. Thus B,(u) € E,Vr > 0 so that u is not a interior point
of E€. Since E€ is open, we have that u € E€ so that u € E. We have thus obtained,
u€ENucE' sothat E' CE.

The proof is complete.

Remark 1.5.11. From this last result, we may conclude that in a metric space, E C U
is closed if and only if E' C E.

Definition 1.5.12 (Banach Spaces). A normed vector space U is said to be a Banach
space if each Cauchy sequence related to the metric induced by the norm converges
to an element of U.
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Remark 1.5.13. We say that a topology ¢ is compatible with a metricd ifanyA C o
is represented by unions and/or finite intersections of open balls. In this case we say
thatd : U x U — R™ induces the topology ©.

Definition 1.5.14 (Metrizable Spaces). A topological vector space (U, 0) is said to
be metrizable if ¢ is compatible with some metric d.

Definition 1.5.15 (Normable Spaces). A topological vector space (U, o) is said to
be normable if the induced metric (by this norm) is compatible with ©.

1.6 Compactness in Metric Spaces

Definition 1.6.1 (Diameter of a Set). Let (U,d) be a metric space and A C U. We
define the diameter of A, denoted by diam(A) by

diam(A) = sup{d(u,v) | u,v € A}.

Definition 1.6.2. Let (U,d) be a metric space. We say that {F;} C U is a nested
sequence of sets if
FFOFRLDFD....

Theorem 1.6.3. If (U,d) is a complete metric space, then every nested sequence of
nonempty closed sets {Fy.} such that

i diam(E) —
kidelam( ) =0

has nonempty intersection, that is,
M1 Fi # 0.

Proof. Suppose {F;} is a nested sequence and lim diam(F;) = 0. For each n € N,

k—yoo
select u, € F,. Suppose given € > 0. Since

}gl; diam(F,) =0,
there exists N € N such that if n > N, then
diam(F,) < e.
Thus if m,n > N we have u,,, u, € Fy so that
d(un,um) < €.

Hence {u,} is a Cauchy sequence. Being U complete, there exists u € U such that

Uy, —> U AS N — oo,
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Choose m € N. We have that u,, € F,,,Vn > m, so that
ueFE,=F,.
Since m € N is arbitrary we obtain
u€ My 1Fy.
The proof is complete.

Theorem 1.6.4. Let (U,d) be a metric space. If A C U is compact, then it is closed
and bounded.

Proof. We have already proved that A is closed. Suppose, to obtain contradiction,
that A is not bounded. Thus for each K € N there exists u,v € A such that

d(u,v) > K.
Observe that
AC UueABl(u).
Since A is compact there exists uy,u, ..., u, € A such that
A=C Uzlel(uk).
Define

R =max{d(uj,u;)|i,j€{l,...,n}}.
Choose u,v € A such that
d(u,v) > R+2. (1.21)
Observe that there exist i, j € {1,...,n} such that
u € Bi(u;), v € B (uj).
Thus

d(u,v) < d(u,u;)+d(u,u;)+d(uj,v)
< 2+R, (1.22)
which contradicts (1.21). This completes the proof.

Definition 1.6.5 (Relative Compactness). In a metric space (U,d), aset A C U is
said to be relatively compact if A is compact.

Definition 1.6.6 (¢-Nets). Let (U,d) be a metric space. A set N C U is sat to be a
e-net with respect to a set A C U if for each u € A there exists v € N such that

d(u,v) < e.
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Definition 1.6.7. Let (U,d) be a metric space. A set A C U is said to be totally
bounded if for each € > 0, there exists a finite €-net with respect to A.

Proposition 1.6.8. Let (U,d) be a metric space. If A C U is totally bounded, then it
is bounded.

Proof. Choose u,v € A. Let {uy,...,u,} be the 1-net with respect to A. Define
R =max{d(uj,u;)|i,j€{1,...,n}}.
Observe that there exist i, j € {1,...,n} such that
d(u,u;) <1, d(vu;) < 1.
Thus

d(u,v) < d(u,u;)+d(u,u;)+d(uj,v)
<R42. (1.23)

Since u,v € A are arbitrary, A is bounded.

Theorem 1.6.9. Let (U,d) be a metric space. If from each sequence {u,} C A we
can select a convergent subsequence {uy, }, then A is totally bounded.

Proof. Suppose, to obtain contradiction, that A is not totally bounded. Thus there
exists & > 0 such that there exists no &-net with respect to A. Choose u; € A; hence
{u1} is not a gy-net, that is, there exists u, € A such that

d(uy,up) > &.
Again {uy,uy} is not a g-net for A, so that there exists u3 € A such that
d(uy,uz) > € and d(up,u3) > €.
Proceeding in this fashion we can obtain a sequence {u,} such that
d(un,um) > &, if m# n. (1.24)

Clearly we cannot extract a convergent subsequence of {u,}; otherwise such a sub-
sequence would be Cauchy contradicting (1.24). The proof is complete.

Definition 1.6.10 (Sequentially Compact Sets). Let (U,d) be a metric space. A set
A C U is said to be sequentially compact if for each sequence {u,} C A, there exist
a subsequence {u,, } and u € A such that

Up, — U, as k — oo,

Theorem 1.6.11. A subset A of a metric space (U,d) is compact if and only if it is
sequentially compact.
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Proof. Suppose A is compact. By Proposition 1.4.7 A is countably compact. Let
{u,} C A be a sequence. We have two situations to consider:

1. {u,} has infinitely many equal terms, that is, in this case we have
Upy =Upy = ... = Uy = ... =UEA.

Thus the result follows trivially.

2. {u,} has infinitely many distinct terms. In such a case, being A countably com-
pact, {u, } has alimit point in A, so that there exist a subsequence {u,, } and u € A
such that

Up, — U, as k — oo,

In both cases we may find a subsequence converging to some u € A.

Thus A is sequentially compact.

Conversely suppose A is sequentially compact, and suppose {Gg, o € L} is an
open cover of A. For each u € A define

6(u) = sup{r| B,(u) C Gg, for some & € L}.

First we prove that §(u) > 0,Vu € A. Choose u € A. Since A C UgerGq, there
exists o € L such that u € Go,. Being G, open, there exists 7o > 0 such that
By, (1) C Gg-
Thus,
S6(u) >ry>0.
Now define &y by
0o = inf{6(u) |u e A}.

Therefore, there exists a sequence {u,} C A such that
O (un) — 8 as n — oo.

Since A is sequentially compact, we may obtain a subsequence {uy,, } and uy € A
such that
O(ttn,) — 6o and u,, — uo,

as k — oo. Therefore, we may find K € N such that if k > K, then

(1.25)

We claim that
0 (uo)

6(”’%) Z 4

, if k> Kp.
To prove the claim, suppose

2 € B sy (Un, ), Vk > Ko,
4
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(observe that in particular from (1.25)

Up € BM (I/lnk),Vk > Ko).
T

Since
0 (uo)
2

< 6(1,!()),
there exists some o € L such that

B sy (u0) C Gay.-
2

However, since
S (uo)

d(unu0) < ==, if k> Ko,
we obtain
B 5(ug) (U0) D B sug) (tny), if k > Ko,
2 4
so that 5
6(u”k) > (ZO) ;Vk > K.
Therefore 6( )
. uo
lim & - & > '
kglclo (u”k) 60 = 4
Choose € > 0 such that
& >¢e>0.

From the last theorem since A is sequentially compact, it is totally bounded. For the
€ > 0 chosen above, consider an £-net contained in A (the fact that the £-net may be
chosen contained in A is also a consequence of the last theorem) and denote it by N
that is,

N=A{v,...,v} €A.

Since & > &, there exists
ap,...,0, €L

such that
BS(V[) C G(xi,vi € {1,...,”},

considering that
S(vi) > 8 >e>0,vie{l,...,n}.

For u € A, since N is an €-net we have
u e U Be(vi) CUL Gy,
Since u € U is arbitrary we obtain

A CUL,Gg,.
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Thus
{Goys---,Ga, }

is a finite subcover for A of
{Gy, o € L}.

Hence, A is compact.
The proof is complete.

Theorem 1.6.12. Let (U,d) be a metric space. Thus A C U is relatively compact if
and only if for each sequence in A, we may select a convergent subsequence.

Proof. Suppose A is relatively compact. Thus A is compact so that from the last
theorem, A is sequentially compact.

Thus from each sequence in A we may select a subsequence which converges
to some element of A. In particular, for each sequence in A C A, we may select a
subsequence that converges to some element of A.

Conversely, suppose that for each sequence in A, we may select a convergent sub-
sequence. It suffices to prove that A is sequentially compact. Let {v, } be a sequence
in A. Since A is dense in A, there exists a sequence {u,} C A such that

1
d(un,vn) < e

From the hypothesis we may obtain a subsequence {u,, } and ug € A such that
Uy, — U, a8 k — oo.
Thus,
Vi, —> g €A, as k — oo,

Therefore A is sequentially compact so that it is compact.

Theorem 1.6.13. Let (U,d) be a metric space.

1. If A C U is relatively compact, then it is totally bounded.
2. 1If (U,d) is a complete metric space and A C U is totally bounded, then A is
relatively compact.

Proof.

1. Suppose A C U is relatively compact. From the last theorem, from each sequence
in A, we can extract a convergent subsequence. From Theorem 1.6.9, A is totally
bounded.

2. Let (U,d) be a metric space and let A be a totally bounded subset of U.

Let {uy,} be a sequence in A. Since A is totally bounded for each k € N we find a
g-net where & = 1/k, denoted by N; where

Ny = {vik),vgm,...,vy?}.
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In particular for k = 1 {u,} is contained in the 1-net N;. Thus at least one ball
of radius 1 of N; contains infinitely many points of {u,}. Let us select a subse-

quence {uS,?}keN of this infinite set (which is contained in a ball of radius 1).
Similarly, we may select a subsequence here just partially relabeled {ug)}leN
of {u,%) } which is contained in one of the balls of the %-net. Proceeding in this

fashion for each k € N we may find a subsequence denoted by {us,lf,? }men of the
original sequence contained in a ball of radius 1/k.

Now consider the diagonal sequence denoted by {“r(zi)}keN = {z}. Thus
2 .
d(zn,zm) < o if m,n >k,

thatis, {z;} is a Cauchy sequence, and since (U, d) is complete, there exists u € U
such that
Zx — uas k — oo,

From Theorem 1.6.12, A is relatively compact.

The proof is complete.

1.7 The Arzela—Ascoli Theorem

In this section we present a classical result in analysis, namely the Arzela—Ascoli
theorem.

Definition 1.7.1 (Equicontinuity). Let .% be a collection of complex functions de-
fined on a metric space (U,d). We say that .% is equicontinuous if for each € > 0,
there exists 6 > 0 such that if u,v € U and d(u,v) < 8, then

If(u) — f(v)| < &,Vf € .Z.

Furthermore, we say that .% is point-wise bounded if for each u € U there exists
M(u) € R such that
[f()] <M(u),¥f € 7.

Theorem 1.7.2 (Arzela—Ascoli). Suppose .F is a point-wise bounded equicontinu-
ous collection of complex functions defined on a metric space (U,d). Also suppose
that U has a countable dense subset E. Thus, each sequence {f,} C % has a sub-
sequence that converges uniformly on every compact subset of U.

Proof. Let {u,} be a countable dense set in (U,d). By hypothesis, {f,(u;)} is a
bounded sequence; therefore, it has a convergent subsequence, which is denoted by
{fn, (u1)}. Let us denote

Foe(ur) = fix(ur),Vk € N.
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Thus there exists g; € C such that
fl’k(ul) — &1, as k — oo.

Observe that { f,, (u2)} is also bounded and also it has a convergent subsequence,
which similarly as above we will denote by { /> x(u2)}. Again there exists g, € C
such that

fz)k(ul) — g1, as k — oo,

Fru(u2) — g2, as k — .
Proceeding in this fashion for each m € N we may obtain { fm’k} such that
Fuk(uj) = gj, ask — oo Vj € {1,...,m},

where the set {g1,£2,...,8&m} is obtained as above. Consider the diagonal sequence

{fex}s

and observe that the sequence

{ e (tm) s

is such that
Sei(um) — gm € C, as k — oo, Vm € N.

Therefore we may conclude that from {f,,} we may extract a subsequence also de-
noted by

{fn} = {Jex
which is convergent in
E= {Mn}neN-

Now suppose K C U, being K compact. Suppose given € > 0. From the equiconti-
nuity hypothesis there exists 6 > 0 such that if u,v € U and d(u,v) < & we have

| fog () = fr, (V)] < g,Vk €N.

Observe that
K C UMEKB% (u),

and being K compact we may find {y, ...,y } such that
K C U.Il‘ilBg (ﬁj)
Since E is dense in U, there exists

\Zi EBg(ﬁj)ﬁE,VjE {1,...,M}.
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Fixing j € {1,...,M}, from v; € E we obtain that
lim £y, (v;)
exists as k — eo. Hence there exists Ko; € N such that if k,/ > Ko, then
€
|f”k(vj) _fnz (Vj)l < 5

Pick u € K; thus

ue B%(ﬁ;)
for some j € {1,...,M}, so that
d(u,v;) < 8.
Therefore if
k.1 >max{Ky,,...,Ko, },
then

|f”k (u) —Ju (”)l < |f”k (u) —fue (Vf)l + |f"k (Vf) —Ju (Vf)l
1 (v7) = Sy (1)

& € €
< 8. 1.26
=373737°¢ (1.26)

Since u € K is arbitrary, we conclude that { f;,, } is uniformly Cauchy on K.
The proof is complete.

1.8 Linear Mappings

Given U,V topological vector spaces, a function (mapping) f: U — V, A C U,
and B C V, we define

fA) ={f(u) [ucA}, (1.27)
and the inverse image of B, denoted f~!(B) as

f'(B)={ucU]| f(u) €B}. (1.28)

Definition 1.8.1 (Linear Functions). A function f : U — V is said to be linear if

flou+Bv)=of(u)+Bfv),Yu,veU, a,p €F. (1.29)
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Definition 1.8.2 (Null Space and Range). Given f : U — V, we define the null
space and the range of f, denoted by N(f) and R(f), respectively, as

N(f)={ucU]f(u) =6} (1.30)
and
R(f)={v eV |3ueU suchthat f(u) =v}. (1.31)

Note that if f is linear, then N(f) and R(f) are subspaces of U and V, respectively.

Proposition 1.8.3. Let U,V be topological vector spaces. If f : U — V is linear and
continuous at 0, then it is continuous everywhere.

Proof. Since f is linear, we have f(0) = 0. Since f is continuous at 0, given ¥ C V
a neighborhood of zero, there exists % C U neighborhood of zero, such that

fw)ycy. (1.32)
Thus
v—ueU = fv—u)=fv)—fu) e, (1.33)
or
vEu+u% = fv)eflu)+7v, (1.34)

which means that f is continuous at u. Since u is arbitrary, f is continuous every-
where.

1.9 Linearity and Continuity

Definition 1.9.1 (Bounded Functions). A function f : U — V is said to be bounded
if it maps bounded sets into bounded sets.

Proposition 1.9.2. A set E is bounded if and only if the following condition is sat-
isfied: whenever {u,} C E and {0y} C F are such that o, — 0 as n — e we have
Oty —> 0 as n — oo,

Proof. Suppose E is bounded. Let % be a balanced neighborhood of 6 in U and
then E C 1% for some ¢. For {u,} C E, as &, — 0, there exists N such thatif n > N,
thent < ﬁ. Sincet " E C % and % is balanced, we have that ot,u, € %, ¥n > N,
and thus o,u, — 0. Conversely, if E is not bounded, there is a neighborhood ¥ of
0 and {r,} such that r, — e and E is not contained in r, ¥, that is, we can choose

uy, such that r,, 'u, is notin ¥, ¥n € N, so that {r, 'u,} does not converge to 6.

Proposition 1.9.3. Let f : U — V be a linear function. Consider the following
Statements:
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1. f is continuous,

2. f is bounded,

3. ifup, — 0, then {f(un)} is bounded,
4. ifu, — 0, then f(u,) — 0.

Then,

o 1 implies 2,

o 2 implies 3,

o ifU is metrizable, then 3 implies 4, which implies 1.
Proof.

1. 1 implies 2: Suppose f is continuous, for %" C V neighborhood of zero, there
exists a neighborhood of zero in U, denoted by ¥/, such that

fycw. (1.35)
If E is bounded, there exists fyp € R* such that E C t¥, Vt > 1y, so that
FE)CFeV)=tf(V)CtW, Vt>1, (1.36)
and thus f is bounded.

2. 2 implies 3: Suppose u, — 6 and let % be a neighborhood of zero. Then, there
exists N € N such that if n > N, then u, € ¥ C # where ¥ is a balanced
neighborhood of zero. On the other hand, for n < N, there exists K,, such that
u, € K, 7. Define K = max{1,Kj,...,K,}. Then, u, € K¥,Vn € N and hence
{uy} is bounded. Finally from 2, we have that { f(u,)} is bounded.

3. 3 implies 4: Suppose U is metrizable and let u, — 6. Given K € N, there exists
ng € N such that if n > ng, then d(u,,0) < 2. Define ¥, = 1 if n < n; and
Y =K, if ng <n <ng4 so that

d(Yitn,0) = d(Ku,,0) < Kd(u,,0) < K. (1.37)

Thus since 2 implies 3 we have that {f(ynu,)} is bounded so that, by
Proposition 1.9.2, f(u,) = ¥, ' f (Yattn) — 6 as n — oo,

4. 4 implies 1: suppose 1 fails. Thus there exists a neighborhood of zero # C V
such that f~!(#) contains no neighborhood of zero in U. Particularly, we can
select {uy,} such that u, € By/,(8) and f(u,) notin %" so that { f(uy)} does not
converge to zero. Thus 4 fails.

1.10 Continuity of Operators on Banach Spaces

Let U,V be Banach spaces. We call a function A : U — V an operator.

Proposition 1.10.1. Let U,V be Banach spaces. A linear operator A : U — V is
continuous if and only if there exists K € R" such that

[A@)llv < Kllully,Yu e U.
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Proof. Suppose A is linear and continuous. From Proposition 1.9.3,
if {un} C U is such that u, — 0 then A(u,) — 6. (1.38)

We claim that for each € > 0 there exists 0 > 0 such that if |ul|y < 3, then
JAw)lly <.

Suppose, to obtain contradiction, that the claim is false.

Thus there exists & > 0 such that for each n € N there exists u,, € U such that
lunlle < 5 and A (un)[lv > &o.

Therefore u, — 6 and A(u,) does not converge to 8, which contradicts (1.38).

Thus the claim holds.

In particular, for € = 1, there exists 6 > 0 such that if |lu|ly < O, then
[|A(u)|lv < 1. Thus given an arbitrary not relabeled u € U, u # 0, for

Su
w=—
2| ullu
we have 6||A( )H
u)|lv
[AW)lv = —77— <1,
2||ullu
that is 5
4@y < 240 vy ey,
Defining
2
K==
o

the first part of the proof is complete. Reciprocally, suppose there exists K > 0 such
that
lA()|lv < K||u|lu,YueU.

Hence u, — 6 implies ||A(u,)||y — 6, so that from Proposition 1.9.3, A is continu-
ous.
The proof is complete.

1.11 Some Classical Results on Banach Spaces

In this section we present some important results in Banach spaces. We start with
the following theorem.

Theorem 1.11.1. Let U and V be Banach spaces and let A : U — V be a linear
operator. Then A is bounded if and only if the set C C U has at least one interior
point, where

C=A"{veV||lv <1}
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Proof. Suppose there exists ug € U in the interior of C. Thus, there exists 7 > 0 such
that
Br(up) ={uecU]||u—uo|luv <r}CC.

Fix u € U such that ||u||y < r. Thus, we have

[A@)[lv < [|A(u+uo)lv + [[A(uo)|v-
Observe also that
| (u+uo) —uollv <,

so that u + ug € B,(up) C C and thus
[A(u+uo)llv <1
and hence
[AG)|lv < 1+ [|A(uo)lv, (1.39)

Vu € U such that ||u|ly < r. Fix an arbitrary not relabeled u € U such that u # 6.

From (1.39)
u r

W=
lullu 2

is such that

_ A@) v

-
lAw)llv = Tl 2 < 1+ [|A(uo)|lv,

so that 5
1AGO) v < (1 + [[A(uo)llv) Jully—.

Since u € U is arbitrary, A is bounded.
Reciprocally, suppose A is bounded. Thus

[A(u)|lv < K||ul|u,Yu e U,

for some K > 0. In particular
1
D=quelU] ||u||U§E ccC.

The proof is complete.

Definition 1.11.2. A set S in a metric space U is said to be nowhere dense if S has
an empty interior.

Theorem 1.11.3 (Baire Category Theorem). A complete metric space is never the
union of a countable number of nowhere dense sets.
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Proof. Suppose, to obtain contradiction, that U is a complete metric space and
U == U;OZIAn,

where each A, is nowhere dense. Since A; is nowhere dense, there exist u; € U
which is not in A|; otherwise we would have U = A, which is not possible since
U is open. Furthermore, Af is open, so that we may obtain u; € A and 0 <r; <1
such that

B, =B, (u1)

satisfies
B NA; =0.

Since A, is nowhere dense we have B is not contained in A,. Therefore we may
select up € By \ A, and since B; \ A is open, there exists 0 < r, < 1/2 such that

By =B,,(u2) C B\ A,,
that is,
B,NA; =0.

Proceeding inductively in this fashion, for each n € N, we may obtain u, € B, 1\ A,
such that we may choose an open ball B, = B,, (u,) such that

Bn Canlv

B,NA, =0,
and
0<r, <27

Observe that {uy, } is a Cauchy sequence, considering that if m,n > N, then up, u, €
By, so that
d(up,um) < 2(217N).

Define
u=lim u,.
n—yoo
Since
u, € By,Yn >N,
we get

u€ By CBy_1.

Therefore u is not in Ay_1,VN > 1, which means u is not in U;_ A, = U, a
contradiction.
The proof is complete.

Theorem 1.11.4 (The Principle of Uniform Boundedness). Let U be a Banach
space. Let F be a family of linear bounded operators from U into a normed linear
space V. Suppose for each u € U there exists a K,, € R such that



1.11 Some Classical Results on Banach Spaces 27
IT(u)|lv < Ku,VT € F.
Then, there exists K € R such that
IT)| < KVT € Z.

Proof. Define
B,={ucU||T(u)|y <n VT e .ZF}.

By the hypotheses, given u € U, u € B, for all n is sufficiently big. Thus,
U = U:::IBV!'

Moreover each By, is closed. By the Baire category theorem there exists ny € N such
that B,,, has nonempty interior. That is, there exists ug € U and r > 0 such that

B,(up) C By,.
Thus, fixing an arbitrary 7 € %, we have
IT (w)|lv < no,Yu € B, (up).
Thus if ||ul|y < r then || (u + 1) — uo||v < r, so that
IT (u+uo)[lv < no,

that is,
1T @)lv = [T (uo)[lv < no.

Thus,
IT (w)|lv < 2ng, if ||ul|lv < r. (1.40)

For u € U arbitrary, u # 0, define

ru
w=—
2| ullv
from (1.40) we obtain
T (u)llv
ITW)llv = =57 < 2no,
2| ullu
so that
4
1T ()|l < M,\m ev.
Hence
4I’l()

i< vre g,
r

The proof is complete.
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Theorem 1.11.5 (The Open Mapping Theorem). Let U and V be Banach spaces
and let A : U — V be a bounded onto linear operator. Thus, if O C U is open, then
A(O) is openinV.

Proof. First we will prove that given r > 0, there exists ' > 0 such that

A(B,(9)) D B(0). (1.41)
Here BX (6) denotes a ball in V of radius ' with center in 6. Since A is onto

V =UL1A(nB1(0)).

By the Baire category theorem, there exists np € N such that the closure of
A(noB1(0)) has nonempty interior, so that A(B;(6)) has nonempty interior. We
will show that there exists > 0 such that

5(0) C AT (@)
Observe that there exists yo € V and r; > 0 such that

By (vo) CA(Bi(6)). (1.42)
Define ug € B;(0) which satisfies A(ug) = yo. We claim that

A(B,(6)) > B, (6),
where ry = 1 + ||ug||y. To prove the claim, pick

y € A(B1(9))
thus there exists u € U such that ||u||y < 1 and A(u) = y. Therefore
A(u) = A(u—up~+up) =Au—uo) +A(uo).

But observe that

| —uolly < [Jullu + [|uollu

<1+ uollu
=, (1.43)
so that
A(u—ug) € A(B,,(0)).
This means
y=A(u) € A(uog) +A(Br,(8)),
and hence

A(B1(0)) C A(up) +A(Br,(0)).
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That is, from this and (1.42), we obtain

A(uo) +A(B,,(8)) D A(B1(8)) D By, (vo) = A(uo) +BJ, (),

and therefore
A(B,,(0)) > B, (6).

Since
A(B,(0)) =rA(Bi(0)),

we have, for some not relabeled r; > 0, that
A(B1(6)) D By (6).
Thus it suffices to show that
A(B1(0)) C A(Bx(0)),

to prove (1.41). Lety € A(B1(6)); since A is continuous, we may select u; € By ()
such that

y—A(u) € B ,(8) CA(B2(0)).
Now select up € By /»(8) so that
y—=A(ur) —A(uz) € B, ,(6).
By induction, we may obtain
U, € le,n(9)7
such that

y— Y Aluy) € BY, 1(6).

~.
™M=
L

Define
u= 2 Up,
n=1

we have that u € B(6), so that

Therefore
A(B1(0)) C A(B2(0)).

The proof of (1.41) is complete.
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To finish the proof of this theorem, assume & C U is open. Let vo € A(0). Let
up € O be such that A(ug) = vo. Thus there exists r > 0 such that

Br(uo) CcO.

From (1.41),
A(B,(8)) > BY(8).

for some ¥ > 0. Thus
A(0) D A(up) +A(B-(8)) D vo+BL(0).

This means that vy is an interior point of A(&). Since vy € A(0) is arbitrary, we
may conclude that A(&) is open.
The proof is complete.

Theorem 1.11.6 (The Inverse Mapping Theorem). A continuous linear bijection
of one Banach space onto another has a continuous inverse.

Proof. Let A : U — V satisfying the theorem hypotheses. Since A is open, A~! is
continuous.

Definition 1.11.7 (Graph of a Mapping). Let A : U — V be an operator, where U
and V are normed linear spaces. The graph of A denoted by I'(A) is defined by

I'A) ={(u,v) eUxV|v=A(u)}.

Theorem 1.11.8 (The Closed Graph Theorem). Let U and V be Banach spaces
andlet A : U — V be a linear operator. Then A is bounded if and only if its graph is
closed.

Proof. Suppose I'(A) is closed. Since A is linear, I'(A) is a subspace of U & V. Also,
being I'(A) closed, it is a Banach space with the norm

1, A(u) | = [Juallr + 1A ) [[v-
Consider the continuous mappings
M (u,Au)) = u

and
I A () = A(u).

Observe that IT; is a bijection, so that by the inverse mapping theorem, II;” s
continuous. As
A=ThLoll ",

it follows that A is continuous. The converse is trivial.
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1.12 Hilbert Spaces

At this point we introduce an important class of spaces, namely the Hilbert
spaces.

Definition 1.12.1. Let H be a vector space. We say that H is a real pre-Hilbert space
if there exists a function (-,-)y : H X H — R such that

1. (u,v)g = (v,u)u, Yu,v € H,

2. (u+v,w)g = (u,w)g + (v,w)u, Yu,v,w € H,

3. (qu,v)g = a(u,v)u, Yu,ve H, ot € R,

4. (u,u)y >0, Yu € H, and (u,u)y =0, if and only if u = 6.

Remark 1.12.2. The function (-,-)y : H x H — R is called an inner product.
Proposition 1.12.3 (Cauchy—Schwarz Inequality). Let H be a pre-Hilbert space.

Defining
lullg =/ (u,u)n,Vu € H,

we have
|(uv)u| < [lulla|v]H, Vu,v € H.

Equality holds if and only if u = o for some oo € R orv=0.
Proof. 1If v = 0, the inequality is immediate. Assume v # 6. Given o € R we have

0< (u—ovu—ov)y
= (u,u)y + ocz(v, Vg —20(u,v)g
= |lullz; + o (Ivl|F — 20e(u, v)ar. (1.44)

In particular, for & = (u,v)p /||v||, we obtain

(V)

2
H

that is,
[(u, V)| < [[ulla|v]|a-

The remaining conclusions are left to the reader.
Proposition 1.12.4. On a pre-Hilbert space H, the function
Iz :H—=R

is a norm, where as above
[l = /(e u).

Proof. The only nontrivial property to be verified, concerning the definition of
norm, is the triangle inequality.
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Observe that given u,v € H, from the Cauchy—Schwarz inequality, we have

lu+vllE = (utv,u+v)g

= (u,u)n + (v v)u +2(u,v)n

(w,u)m + (v,v)m +2|(u, V)|

all 7+ 1V 11 + 2l el v 2

(Nlullez + |[vIle)>. (1.45)

<
<

Therefore
lu+vlag < lullg+v]aYu,v € H.

The proof is complete.

Definition 1.12.5. A pre-Hilbert space H is to be a Hilbert space if it is complete,
that is, if any Cauchy sequence in H converges to an element of H.

Definition 1.12.6 (Orthogonal Complement). Let H be a Hilbert space. Consider-
ing M C H we define its orthogonal complement, denoted by M=, by

={ucH|(umpy=0,VmeMj}.

Theorem 1.12.7. Let H be a Hilbert space and M a closed subspace of H and sup-
pose u € H. Under such hypotheses there exists a unique mo € M such that

|t —mol|n = rlglelﬂl}{llu—mHH}-

Moreover ny = u—mgy € M so that
u = mq + no,

where mg € M and ny € M*. Finally, such a representation through M & M* is
unique.

Proof. Define d by
d = inf {||u—m|z}.

Let {m;} C M be a sequence such that
Hu—m,'||H — d, as i — oo,
Thus, from the parallelogram law, we have

(lmi—ml[z = llmi—u—(mj—u)|f
= 2||m; — ullf +2[m; —ullF

=2 —2u+mi+mj|\%1
2 2
= 2lm; —ully +2[lm; —ully
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=4l = u+ (mit m;) /2|3
— 2d*+2d*—4d* =0, as i, j — oo (1.46)
Thus {m;} C M is a Cauchy sequence. Since M is closed, there exists ny € M such

that
m; — mg, as i — oo,

so that
lu—millg — |lu—molln =d.
Define
nog = u—my.

We will prove that ng € M.
Pick m € M and t € R, and thus we have

d* < Ju— (mo—tm)||f;

= |lno+tml|F
= |0/l +2(no,m)at + [|m|| 1. (1.47)
Since
2 2 2
ol = llu—mol|g =d~,
we obtain
2(ng,m)yt + ||m||52> > 0,vt € R
so that
(n()am)H =0.
Being m € M arbitrary, we obtain
no eM*-.

It remains to prove the uniqueness. Let m € M, and thus

lu—m|[f = [lu—mo+mo—m|F
= J|u—mol|7; + [[m — mo |3, (1.48)
since
(w—mo,m—mo)pg = (no,m —mp)g = 0.

From (1.48) we obtain
e = mllz > |u— mol|7; = d?,

if m = my.
Therefore my is unique.
Now suppose
u=my+ny,
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where m; € M and n; € M+. As above, form € M

llu—mllz; = [lu—my+mi —m|z
2 2
= |u—mu|lgg + [lm—m |,
> ||u—m|lu (1.49)

and thus since mg such that
is unique, we get

and therefore
ny = u—mgy = ny.

The proof is complete.
Theorem 1.12.8 (The Riesz Lemma). Let H be a Hilbert space and let f: H — R
be a continuous linear functional. Then there exists a unique uy € H such that
f(u) = (u,up)n,Yu e H.
Moreover
(12 = l[uollz-

Proof. Define N by
N={ueH]| f(u)=0}.

Thus, as f is a continuous and linear, N is a closed subspace of H. If N = H, then
f(u) =0=(u,0)y,Vu € H and the proof would be complete. Thus, assume N # H.
By the last theorem there exists v # 6 such that v € N*.
Define
)

VIl

Uo
Thus,if u € N we have
f(u) =0= (u,up)y =0.
On the other hand, if u = v for some o € R, we have
flu) = af(v)
Jv)(av,v)u

V117

_ f(V)V>
<°‘V’ M ) &
= (ov,uo)u- (1.50)

Therefore f(u) equals (u,uq)y in the space spanned by N and v. Now we show that
this last space (then span of N and v) is in fact H. Just observe that given u € H we
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may write
(LY | fy
”‘( 70 )* 0K
Since Fa)
“o) Y

we have finished the first part of the proof, that is, we have proven that

f(u) = (u,uo)n,Yu € H.
To finish the proof, assume u; € H is such that

f(u) = (u,u)y,Yu € H.
Thus,

o — ur||3; = (uo — ur,uo — ur)m

= (“O_ulauo)H_ (uo_ulaul)H

= f(uo—uy) — f(up—uy) =0.

Hence u; = ug.
Let us now prove that
(£ 11+ = lluollz-

First observe that

Al = sup{f(u) | u € H, [lullz <1}
= sup{|(u,uo)u| [ u € H, |[ullx <1}
< sup{[ulluluollz [u € H, [Julla <1}

< luolln-

On the other hand

[fllz+ = sup{f(u) |ueH, [lullz <1}

Uo
27 ( ||u0||H)

_ (1o, uo)H
l|uol| 1
= |luolln-

From (1.53) and (1.54)
£+ = l[uolla-

The proof is complete.
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(1.51)

(1.52)

(1.53)

(1.54)



36 1 Topological Vector Spaces

Remark 1.12.9. Similarly as above we may define a Hilbert space H over C, that is,
a complex one. In this case the complex inner product (-, )y : H x H — C is defined
through the following properties:

1. (u,v)g = (v,u)u, Yu,v € H,

2. (u+v,w)g = (u,w)g + (v,w)u, Yu,v,w € H,

3. (ou,v)g =(u,v)y, Yu,ve H, o0 € C,

4. (u,u)y >0, Vu € H, and (u,u) =0, if and only if u = 6.

Observe that in this case we have
(u,ov)g = a(u,v)y, Yu,v € H, a € C,

where for oo = a + bi € C, we have @ = a — bi. Finally, similar results as those
proven above are valid for complex Hilbert spaces.

1.13 Orthonormal Basis

In this section we study separable Hilbert spaces and the related orthonormal
bases.

Definition 1.13.1. Let H be a Hilbert space. A set S C H is said to be orthonormal if
lulla =1,

and
(u,v)g =0,Vu,v € S, such that u # v.

If S is not properly contained in any other orthonormal set, it is said to be an or-
thonormal basis for H.

Theorem 1.13.2. Let H be a Hilbert space and let {u,,}ﬁl\’:1 be an orthonormal set.
Then, for all u € H, we have

2

N
2 2
lullfy = D 1w ) |* +
n=1

N
(uty ) run + (tytty)ttn | -
1 n=1

Furthermore, we may easily obtain that

N
2 Uy U ) H Uy

H

Proof. Observe that

u=

M=

n

N

(ut, )y and u — 2 (1, ) Uy
1 n=1

M=

n
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are orthogonal vectors so that

2
lulliz = (u,u)n

N 2 N 2
= Z | (s ) 2 (st Uty
n=1 H n=1 H
N N 2
Z )i |* + (1= () (1.55)
n=1 n=1 H

Corollary 1.13.3 (Bessel Inequality). Let H be a Hilbert space and let {u,}"_, be
an orthonormal set. Then, for all u € H, we have

N
2
ullfy > 3 (s un) e
n=1

Theorem 1.13.4. Each Hilbert space has an orthonormal basis.

Proof. Define by C the collection of all orthonormal sets in H. Define an order in C
by stating S < S» if §1 C S». Then, C is partially ordered and obviously nonempty,
since

v/|[v|lm € C,YveH,v#8.

Now let {Sq } oL be alinearly ordered subset of C. Clearly, Ug Sy is an orthonor-
mal set which is an upper bound for {S¢ } e

Therefore, every linearly ordered subset has an upper bound, so that by Zorn’s
lemma C has a maximal element, that is, an orthonormal set not properly contained
in any other orthonormal set.

This completes the proof.

Theorem 1.13.5. Let H be a Hilbert space and let S = {uy }ocr. be an orthonormal
basis. Then for each v € H we have

V= 2 (MOHV)HMOH

acL

and

WlIE =3 (e v)n

acL

Proof. Let L' C L be a finite subset of L. From Bessel’s inequality we have

2 (e, V)| < HV”H

acl’

From this, we may infer that the set A, = {&t € L | |(ug,v)m| > 1/n} is finite, so that

A={aeL||(ug,v)u| >0} =U, A,
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is at most countable.
Thus (ug,v)y # 0 for at most countably many o's € L, which we order by
{00 }nen- Since the sequence

N
SN = 2 |(u06i=v)1'1|27
-1

is monotone and bounded, it is converging to some real limit as N — oo. Define
n
Vn = z (MOC,' 9 v)H”(X,’?
i=1

so that for n > m we have

2
n
||Vn—Vm||%1 = 2 (MOCNV)HMOQ
i=m+1 H
n
= 2 |(”06i7V)H|2
i=m+1
= |5y — Sml- (1.56)

Hence, {v,} is a Cauchy sequence which converges to some v/ € H.
Observe that

(v—V,ug)g = lim (v—

Nesvoo (uﬂtivv)Hulli;“(X])H

™=

I
—

l

—~

= (Va “OC])H_ Vvull])H
=0. (1.57)

Also, if o # oy, VI € N, then

(v—v,ug)y = lim (v— Z(Ltai,v)yuai,ua)g =0.
Nzl 15

Hence
v—v1lugy, Yo € L.

If
v—v'#£80,

then we could obtain an orthonormal set

v—y
{ ok ||v—v'||H}
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which would properly contain the complete orthonormal set

{uﬂh o€ L}a
a contradiction.
Therefore, v — V' = 0, that is,
N
v = Alllglozwai,v)yum.

i=1

1.13.1 The Gram—Schmidt Orthonormalization

Let H be a Hilbert space and {u,} C H be a sequence of linearly independent
vectors. Consider the procedure

wi
wy=up, Vi =—0,
[willa
wa
wy =uy — (vi,u2)gvi, v2 = ,
w2l
and inductively,
n—1 w
Wy = Uy — 2 (Vs n) VR, Vo= ——,¥n € N,n>2.
k=1 lwnllm

Observe that clearly {v,} is an orthonormal set and for each m € N, {v}}", and
{ux}7, span the same vector subspace of H.

Such a process of obtaining the orthonormal set {v,} is known as the Gram—
Schmidt orthonormalization.

We finish this section with the following theorem.

Theorem 1.13.6. A Hilbert space H is separable if and only if it has a countable
orthonormal basis. If dim(H) = N < oo, the H is isomorphic to CN. If dim(H) = oo,
then H is isomorphic to 12, where

n=1

= {{yn} | ya € C,Vn € N and z lya|* < +oo},

Proof. Suppose H is separable and let {u,} be a countable dense set in H. To ob-
tain an orthonormal basis it suffices to apply the Gram—Schmidt orthonormalization
procedure to the greatest linearly independent subset of {u, }.

Conversely, if B = {v,} is an orthonormal basis for H, the set of all finite linear
combinations of elements of B with rational coefficients are dense in H, so that H is
separable.
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Moreover, if dim(H) = oo, consider the isomorphism F : H — [? given by
F(u) = {(un,u) }nen.
Finally, if dim(H) = N < oo, consider the isomorphism F : H — CV given by
F (1) = { (un, )11 11

The proof is complete.
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