
Chapter 1
Topological Vector Spaces

1.1 Introduction

The main objective of this chapter is to present an outline of the basic tools of
analysis necessary to develop the subsequent chapters. We assume the reader has
a background in linear algebra and elementary real analysis at an undergraduate
level. The main references for this chapter are the excellent books on functional
analysis: Rudin [58], Bachman and Narici [6], and Reed and Simon [52]. All proofs
are developed in details.

1.2 Vector Spaces

We denote by F a scalar field. In practice this is either R or C, the set of real or
complex numbers.

Definition 1.2.1 (Vector Spaces). A vector space over F is a set which we will de-
note by U whose elements are called vectors, for which are defined two operations,
namely, addition denoted by (+) : U ×U →U and scalar multiplication denoted by
(·) : F×U →U , so that the following relations are valid:

1. u+ v = v+ u,∀u,v ∈U,
2. u+(v+w) = (u+ v)+w,∀u,v,w ∈U,
3. there exists a vector denoted by θ such that u+θ = u, ∀u ∈U,
4. for each u ∈U, there exists a unique vector denoted by

−u such that u+(−u) = θ ,
5. α · (β ·u) = (α ·β ) ·u,∀α,β ∈ F, u ∈U,
6. α · (u+ v) = α ·u+α · v,∀α ∈ F, u,v ∈U,
7. (α +β ) ·u = α ·u+β ·u,∀α,β ∈ F, u ∈U,
8. 1 ·u = u,∀u ∈U.
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4 1 Topological Vector Spaces

Remark 1.2.2. From now on we may drop the dot (·) in scalar multiplications and
denote α ·u simply as αu.

Definition 1.2.3 (Vector Subspace). Let U be a vector space. A set V ⊂ U is said
to be a vector subspace of U if V is also a vector space with the same operations as
those of U . If V �=U , we say that V is a proper subspace of U .

Definition 1.2.4 (Finite-Dimensional Space). A vector space is said to be of finite
dimension if there exists fixed u1,u2, . . . ,un ∈ U such that for each u ∈ U there are
corresponding α1, . . . .,αn ∈ F for which

u =
n

∑
i=1

αiui. (1.1)

Definition 1.2.5 (Topological Spaces). A set U is said to be a topological space if it
is possible to define a collection σ of subsets of U called a topology in U , for which
the following properties are valid:

1. U ∈ σ ,
2. /0 ∈ σ ,
3. if A ∈ σ and B ∈ σ , then A∩B ∈ σ ,
4. arbitrary unions of elements in σ also belong to σ .

Any A ∈ σ is said to be an open set.

Remark 1.2.6. When necessary, to clarify the notation, we shall denote the vector
space U endowed with the topology σ by (U,σ).

Definition 1.2.7 (Closed Sets). Let U be a topological space. A set A ⊂U is said to
be closed if U \A is open. We also denote U \A = Ac = {u ∈U | u �∈ A}.

Remark 1.2.8. For any sets A,B ⊂U we denote

A\B = {u ∈ A | u �∈ B}.

Also, when the meaning is clear we may denote A\B by A−B.

Proposition 1.2.9. For closed sets we have the following properties:

1. U and /0 are closed,
2. if A and B are closed sets, then A∪B is closed,
3. arbitrary intersections of closed sets are closed.

Proof.

1. Since /0 is open and U = /0c, by Definition 1.2.7, U is closed. Similarly, since U
is open and /0 =U \U =Uc, /0 is closed.

2. A,B closed implies that Ac and Bc are open, and by Definition 1.2.5, Ac ∪Bc is
open, so that A∩B = (Ac ∪Bc)c is closed.
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3. Consider A = ∩λ∈LAλ , where L is a collection of indices and Aλ is closed,
∀λ ∈ L. We may write A = (∪λ∈LAc

λ )
c and since Ac

λ is open ∀λ ∈ L we have,
by Definition 1.2.5, that A is closed.

Definition 1.2.10 (Closure). Given A ⊂ U we define the closure of A, denoted by
Ā, as the intersection of all closed sets that contain A.

Remark 1.2.11. From Proposition 1.2.9 item 3 we have that Ā is the smallest closed
set that contains A, in the sense that if C is closed and A ⊂C, then Ā ⊂C.

Definition 1.2.12 (Interior). Given A ⊂U we define its interior, denoted by A◦, as
the union of all open sets contained in A.

Remark 1.2.13. It is not difficult to prove that if A is open, then A = A◦.

Definition 1.2.14 (Neighborhood). Given u0 ∈U we say that V is a neighborhood
of u0 if such a set is open and contains u0. We denote such neighborhoods by Vu0 .

Proposition 1.2.15. If A ⊂U is a set such that for each u ∈ A there exists a neigh-
borhood Vu 
 u such that Vu ⊂ A, then A is open.

Proof. This follows from the fact that A = ∪u∈AVu and any arbitrary union of open
sets is open.

Definition 1.2.16 (Function). Let U and V be two topological spaces. We say that
f : U →V is a function if f is a collection of pairs (u,v) ∈U ×V such that for each
u ∈U there exists only one v ∈V such that (u,v) ∈ f .

Definition 1.2.17 (Continuity at a Point). A function f : U → V is continuous at
u ∈ U if for each neighborhood V f (u) ⊂ V of f (u), there exists a neighborhood
Vu ⊂U of u such that f (Vu)⊂ V f (u).

Definition 1.2.18 (Continuous Function). A function f : U →V is continuous if it
is continuous at each u ∈U .

Proposition 1.2.19. A function f : U → V is continuous if and only if f−1(V ) is
open for each open V ⊂V, where

f−1(V ) = {u ∈U | f (u) ∈ V }. (1.2)

Proof. Suppose f−1(V ) is open whenever V ⊂ V is open. Pick u ∈ U and any
open V such that f (u) ∈ V . Since u ∈ f−1(V ) and f ( f−1(V )) ⊂ V , we have that
f is continuous at u ∈ U . Since u ∈ U is arbitrary we have that f is continuous.
Conversely, suppose f is continuous and pick V ⊂ V open. If f−1(V ) = /0, we
are done, since /0 is open. Thus, suppose u ∈ f−1(V ), since f is continuous, there
exists Vu a neighborhood of u such that f (Vu) ⊂ V . This means Vu ⊂ f−1(V ) and
therefore, from Proposition 1.2.15, f−1(V ) is open.
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Definition 1.2.20. We say that (U,σ) is a Hausdorff topological space if, given u1,
u2 ∈U , u1 �= u2, there exists V1, V2 ∈ σ such that

u1 ∈ V1 , u2 ∈ V2 and V1 ∩V2 = /0. (1.3)

Definition 1.2.21 (Base). A collection σ ′ ⊂ σ is said to be a base for σ if every
element of σ may be represented as a union of elements of σ ′.

Definition 1.2.22 (Local Base). A collection σ̂ of neighborhoods of a point u ∈ U
is said to be a local base at u if each neighborhood of u contains a member of σ̂ .

Definition 1.2.23 (Topological Vector Space). A vector space endowed with a
topology, denoted by (U,σ), is said to be a topological vector space if and only if

1. every single point of U is a closed set,
2. the vector space operations (addition and scalar multiplication) are continuous

with respect to σ .

More specifically, addition is continuous if given u,v ∈ U and V ∈ σ such that
u+ v ∈ V , then there exists Vu 
 u and Vv 
 v such that Vu +Vv ⊂ V . On the other
hand, scalar multiplication is continuous if given α ∈ F, u ∈U and V 
 α ·u, there
exists δ > 0 and Vu 
 u such that ∀β ∈ F satisfying |β −α|< δ we have βVu ⊂ V .

Given (U,σ), let us associate with each u0 ∈U and α0 ∈F (α0 �= 0) the functions
Tu0 : U →U and Mα0 : U →U defined by

Tu0(u) = u0 + u (1.4)

and

Mα0(u) = α0 ·u. (1.5)

The continuity of such functions is a straightforward consequence of the continuity
of vector space operations (addition and scalar multiplication). It is clear that the
respective inverse maps, namely T−u0 and M1/α0

, are also continuous. So if V is
open, then u0 +V , that is, (T−u0)

−1(V ) = Tu0(V ) = u0 +V is open. By analogy
α0V is open. Thus σ is completely determined by a local base, so that the term local
base will be understood henceforth as a local base at θ . So to summarize, a local
base of a topological vector space is a collection Ω of neighborhoods of θ , such that
each neighborhood of θ contains a member of Ω .

Now we present some simple results.

Proposition 1.2.24. If A ⊂ U is open, then ∀u ∈ A, there exists a neighborhood V
of θ such that u+V ⊂ A.

Proof. Just take V = A− u.

Proposition 1.2.25. Given a topological vector space (U,σ), any element of σ may
be expressed as a union of translates of members of Ω , so that the local base Ω
generates the topology σ .
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Proof. Let A ⊂ U open and u ∈ A. V = A− u is a neighborhood of θ and by defi-
nition of local base, there exists a set VΩu ⊂ V such that VΩu ∈ Ω . Thus, we may
write

A = ∪u∈A(u+VΩu). (1.6)

1.3 Some Properties of Topological Vector Spaces

In this section we study some fundamental properties of topological vector
spaces. We start with the following proposition.

Proposition 1.3.1. Any topological vector space U is a Hausdorff space.

Proof. Pick u0,u1 ∈U such that u0 �= u1. Thus V =U \{u1−u0} is an open neigh-
borhood of zero. As θ +θ = θ , by the continuity of addition, there exist V1 and V2

neighborhoods of θ such that

V1 +V2 ⊂ V (1.7)

define U =V1∩V2∩(−V1)∩(−V2), thus U =−U (symmetric) and U +U ⊂V
and hence

u0 +U +U ⊂ u0 +V ⊂U \ {u1} (1.8)

so that

u0 + v1 + v2 �= u1, ∀v1,v2 ∈ U , (1.9)

or

u0 + v1 �= u1 − v2, ∀v1,v2 ∈ U , (1.10)

and since U =−U

(u0 +U )∩ (u1 +U ) = /0. (1.11)

Definition 1.3.2 (Bounded Sets). A set A ⊂ U is said to be bounded if to each
neighborhood of zero V there corresponds a number s > 0 such that A ⊂ tV for
each t > s.

Definition 1.3.3 (Convex Sets). A set A ⊂U such that

if u,v ∈ A then λ u+(1−λ )v∈ A, ∀λ ∈ [0,1], (1.12)

is said to be convex.

Definition 1.3.4 (Locally Convex Spaces). A topological vector space U is said to
be locally convex if there is a local base Ω whose elements are convex.
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Definition 1.3.5 (Balanced Sets). A set A ⊂ U is said to be balanced if αA ⊂ A,
∀α ∈ F such that |α| ≤ 1.

Theorem 1.3.6. In a topological vector space U we have:

1. every neighborhood of zero contains a balanced neighborhood of zero,
2. every convex neighborhood of zero contains a balanced convex neighborhood of

zero.

Proof.

1. Suppose U is a neighborhood of zero. From the continuity of scalar multiplica-
tion, there exist V (neighborhood of zero) and δ > 0, such that αV ⊂ U when-
ever |α|< δ . Define W = ∪|α |<δ αV ; thus W ⊂ U is a balanced neighborhood
of zero.

2. Suppose U is a convex neighborhood of zero in U . Define

A = {∩αU | α ∈ C, |α|= 1}. (1.13)

As 0 ·θ = θ (where θ ∈U denotes the zero vector) from the continuity of scalar
multiplication there exists δ > 0 and there is a neighborhood of zero V such that
if |β | < δ , then βV ⊂ U . Define W as the union of all such βV . Thus W is
balanced and α−1W = W as |α|= 1, so that W = αW ⊂ αU , and hence W ⊂
A, which implies that the interior A◦ is a neighborhood of zero. Also A◦ ⊂ U .
Since A is an intersection of convex sets, it is convex and so is A◦. Now we will
show that A◦ is balanced and complete the proof. For this, it suffices to prove that
A is balanced. Choose r and β such that 0 ≤ r ≤ 1 and |β |= 1. Then

rβ A = ∩|α |=1rβ αU = ∩|α |=1rαU . (1.14)

Since αU is a convex set that contains zero, we obtain rαU ⊂ αU , so that
rβ A ⊂ A, which completes the proof.

Proposition 1.3.7. Let U be a topological vector space and V a neighborhood of
zero in U. Given u ∈U, there exists r ∈R

+ such that β u ∈ V , ∀β such that |β |< r.

Proof. Observe that u+V is a neighborhood of 1 ·u, and then by the continuity of
scalar multiplication, there exists W neighborhood of u and r > 0 such that

βW ⊂ u+V ,∀β such that |β − 1|< r, (1.15)

so that

β u ∈ u+V , (1.16)

or

(β − 1)u ∈ V , where |β − 1|< r, (1.17)
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and thus

β̂u ∈ V ,∀β̂ such that |β̂ |< r, (1.18)

which completes the proof.

Corollary 1.3.8. Let V be a neighborhood of zero in U; if {rn} is a sequence such
that rn > 0, ∀n ∈ N, and lim

n→∞
rn = ∞, then U ⊂ ∪∞

n=1rnV .

Proof. Let u∈U , then αu∈V for any α sufficiently small, from the last proposition
u∈ 1

α V . As rn →∞ we have that rn >
1
α for n sufficiently big, so that u∈ rnV , which

completes the proof.

Proposition 1.3.9. Suppose {δn} is a sequence such that δn → 0, δn < δn−1, ∀n ∈N

and V a bounded neighborhood of zero in U, then {δnV } is a local base for U.

Proof. Let U be a neighborhood of zero; as V is bounded, there exists t0 ∈R
+ such

that V ⊂ tU for any t > t0. As lim
n→∞

δn = 0, there exists n0 ∈ N such that if n ≥ n0,

then δn <
1
t0

, so that δnV ⊂ U ,∀n such that n ≥ n0.

Definition 1.3.10 (Convergence in Topological Vector Spaces). Let U be a topo-
logical vector space. We say {un} converges to u0 ∈U , if for each neighborhood V
of u0, then there exists N ∈N such that

un ∈ V ,∀n ≥ N.

1.4 Compactness in Topological Vector Spaces

We start this section with the definition of open covering.

Definition 1.4.1 (Open Covering). Given B ⊂ U we say that {Oα , α ∈ A} is a
covering of B if B ⊂ ∪α∈AOα . If Oα is open ∀α ∈ A, then {Oα} is said to be an
open covering of B.

Definition 1.4.2 (Compact Sets). A set B ⊂ U is said to be compact if each open
covering of B has a finite subcovering. More explicitly, if B ⊂ ∪α∈AOα , where Oα
is open ∀α ∈ A, then there exist α1, . . . ,αn ∈ A such that B ⊂ Oα1 ∪ . . .∪Oαn , for
some n, a finite positive integer.

Proposition 1.4.3. A compact subset of a Hausdorff space is closed.

Proof. Let U be a Hausdorff space and consider A ⊂U , A compact. Given x ∈A and
y ∈ Ac, there exist open sets Ox and Ox

y such that x ∈Ox, y ∈Ox
y , and Ox ∩Ox

y = /0. It
is clear that A ⊂ ∪x∈AOx, and since A is compact, we may find {x1,x2, . . . ,xn} such
that A ⊂ ∪n

i=1Oxi . For the selected y ∈ Ac we have y ∈ ∩n
i=1O

xi
y and (∩n

i=1O
xi
y )∩

(∪n
i=1Oxi) = /0. Since ∩n

i=1O
xi
y is open and y is an arbitrary point of Ac we have that

Ac is open, so that A is closed, which completes the proof.

The next result is very useful.
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Theorem 1.4.4. Let {Kα , α ∈ L} be a collection of compact subsets of a Hausdorff
topological vector space U, such that the intersection of every finite subcollection
(of {Kα , α ∈ L}) is nonempty.

Under such hypotheses
∩α∈LKα �= /0.

Proof. Fix α0 ∈ L. Suppose, to obtain contradiction, that

∩α∈LKα = /0.

That is,
Kα0 ∩ [∩α �=α0

α∈L Kα ] = /0.

Thus,
∩α �=α0

α∈L Kα ⊂ Kc
α0
,

so that
Kα0 ⊂ [∩α �=α0

α∈L Kα ]
c,

Kα0 ⊂ [∪α �=α0
α∈L Kc

α ].

However, Kα0 is compact and Kc
α is open, ∀α ∈ L.

Hence, there exist α1, . . . ,αn ∈ L such that

Kα0 ⊂ ∪n
i=1Kc

αi
.

From this we may infer that

Kα0 ∩ [∩n
i=1Kαi ] = /0,

which contradicts the hypotheses.
The proof is complete.

Proposition 1.4.5. A closed subset of a compact space U is compact.

Proof. Consider {Oα ,α ∈ L} an open cover of A. Thus {Ac, Oα , α ∈ L} is a cover
of U . As U is compact, there exist α1,α2, . . . ,αn such that Ac ∪ (∪n

i=1Oαi) ⊃U , so
that {Oαi , i ∈ {1, . . . ,n}} covers A, so that A is compact. The proof is complete.

Definition 1.4.6 (Countably Compact Sets). A set A is said to be countably com-
pact if every infinite subset of A has a limit point in A.

Proposition 1.4.7. Every compact subset of a topological space U is countably
compact.

Proof. Let B an infinite subset of A compact and suppose B has no limit point.
Choose {x1,x2, . . . .} ⊂ B and define F = {x1,x2,x3, . . .}. It is clear that F has no
limit point. Thus, for each n ∈ N, there exist On open such that On ∩ F = {xn}.
Also, for each x ∈ A− F , there exist Ox such that x ∈ Ox and Ox ∩F = /0. Thus
{Ox, x ∈ A−F; O1,O2, . . .} is an open cover of A without a finite subcover, which
contradicts the fact that A is compact.
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1.5 Normed and Metric Spaces

The idea here is to prepare a route for the study of Banach spaces defined below.
We start with the definition of norm.

Definition 1.5.1 (Norm). A vector space U is said to be a normed space, if it is pos-
sible to define a function ‖ · ‖U : U →R

+ = [0,+∞), called a norm, which satisfies
the following properties:

1. ‖u‖U > 0, if u �= θ and ‖u‖U = 0 ⇔ u = θ ,
2. ‖u+ v‖U ≤ ‖u‖U + ‖v‖U ,∀ u,v ∈U ,
3. ‖αu‖U = |α|‖u‖U ,∀u ∈U,α ∈ F.

Now we present the definition of metric.

Definition 1.5.2 (Metric Space). A vector space U is said to be a metric space if it
is possible to define a function d : U ×U →R

+, called a metric on U , such that

1. 0 ≤ d(u,v), ∀u,v ∈U ,
2. d(u,v) = 0 ⇔ u = v,
3. d(u,v) = d(v,u), ∀u,v ∈U ,
4. d(u,w)≤ d(u,v)+ d(v,w),∀u,v,w ∈U .

A metric can be defined through a norm, that is,

d(u,v) = ‖u− v‖U. (1.19)

In this case we say that the metric is induced by the norm.
The set Br(u) = {v ∈U | d(u,v)< r} is called the open ball with center at u and

radius r. A metric d : U ×U →R
+ is said to be invariant if

d(u+w,v+w) = d(u,v),∀u,v,w ∈U. (1.20)

The following are some basic definitions concerning metric and normed spaces:

Definition 1.5.3 (Convergent Sequences). Given a metric space U , we say that
{un} ⊂ U converges to u0 ∈ U as n → ∞, if for each ε > 0, there exists n0 ∈ N,
such that if n ≥ n0, then d(un,u0)< ε . In this case we write un → u0 as n →+∞.

Definition 1.5.4 (Cauchy Sequence). {un} ⊂U is said to be a Cauchy sequence if
for each ε > 0 there exists n0 ∈N such that d(un,um)< ε,∀m,n ≥ n0

Definition 1.5.5 (Completeness). A metric space U is said to be complete if each
Cauchy sequence related to d : U ×U →R

+ converges to an element of U .

Definition 1.5.6 (Limit Point). Let (U,d) be a metric space and let E ⊂U. We say
that v ∈U is a limit point of E if for each r > 0 there exists w ∈ Br(v)∩E such that
w �= v.
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Definition 1.5.7 (Interior Point, Topology for (U,d)). Let (U,d) be a metric space
and let E ⊂ U. We say that u ∈ E is interior point if there exists r > 0 such that
Br(u) ⊂ E. We may define a topology for a metric space (U,d) by declaring as
open all set E ⊂U such that all its points are interior. Such a topology is said to be
induced by the metric d.

Definition 1.5.8. Let (U,d) be a metric space. The set σ of all open sets, defined
through the last definition, is indeed a topology for (U,d).

Proof.

1. Obviously /0 and U are open sets.
2. Assume A and B are open sets and define C = A∩B. Let u ∈ C = A∩B; thus,

from u ∈ A, there exists r1 > 0 such that Br1(u) ⊂ A. Similarly from u ∈ B there
exists r2 > 0 such that Br2(u)⊂ B.
Define r = min{r1,r2}. Thus, Br(u)⊂ A∩B =C, so that u is an interior point of
C. Since u ∈C is arbitrary, we may conclude that C is open.

3. Suppose {Aα , α ∈ L} is a collection of open sets. Define E = ∪α∈LAα , and we
shall show that E is open.
Choose u ∈ E = ∪α∈LAα . Thus there exists α0 ∈ L such that u ∈ Aα0 . Since Aα0

is open there exists r > 0 such that Br(u) ⊂ Aα0 ⊂ ∪α∈LAα = E. Hence u is an
interior point of E , since u ∈ E is arbitrary, we may conclude that E = ∪α∈LAα
is open.

The proof is complete.

Definition 1.5.9. Let (U,d) be a metric space and let E ⊂U . We define E ′ as the set
of all the limit points of E .

Theorem 1.5.10. Let (U,d) be a metric space and let E ⊂ U. Then E is closed if
and only if E ′ ⊂ E.

Proof. Suppose E ′ ⊂ E . Let u ∈ Ec; thus u �∈ E and u �∈ E ′. Therefore there exists
r > 0 such that Br(u)∩E = /0, so that Br(u) ⊂ Ec. Therefore u is an interior point
of Ec. Since u ∈ Ec is arbitrary, we may infer that Ec is open, so that E = (Ec)c is
closed.

Conversely, suppose that E is closed, that is, Ec is open.
If E ′ = /0, we are done.
Thus assume E ′ �= /0 and choose u ∈ E ′. Thus, for each r > 0, there exists v ∈

Br(u)∩E such that v �= u. Thus Br(u) � Ec,∀r > 0 so that u is not a interior point
of Ec. Since Ec is open, we have that u �∈ Ec so that u ∈ E . We have thus obtained,
u ∈ E,∀u ∈ E ′, so that E ′ ⊂ E.

The proof is complete.

Remark 1.5.11. From this last result, we may conclude that in a metric space, E ⊂U
is closed if and only if E ′ ⊂ E.

Definition 1.5.12 (Banach Spaces). A normed vector space U is said to be a Banach
space if each Cauchy sequence related to the metric induced by the norm converges
to an element of U .
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Remark 1.5.13. We say that a topology σ is compatible with a metric d if any A ⊂ σ
is represented by unions and/or finite intersections of open balls. In this case we say
that d : U ×U → R

+ induces the topology σ .

Definition 1.5.14 (Metrizable Spaces). A topological vector space (U,σ) is said to
be metrizable if σ is compatible with some metric d.

Definition 1.5.15 (Normable Spaces). A topological vector space (U,σ) is said to
be normable if the induced metric (by this norm) is compatible with σ .

1.6 Compactness in Metric Spaces

Definition 1.6.1 (Diameter of a Set). Let (U,d) be a metric space and A ⊂ U . We
define the diameter of A, denoted by diam(A) by

diam(A) = sup{d(u,v) | u,v ∈ A}.

Definition 1.6.2. Let (U,d) be a metric space. We say that {Fk} ⊂ U is a nested
sequence of sets if

F1 ⊃ F2 ⊃ F3 ⊃ . . . .

Theorem 1.6.3. If (U,d) is a complete metric space, then every nested sequence of
nonempty closed sets {Fk} such that

lim
k→+∞

diam(Fk) = 0

has nonempty intersection, that is,

∩∞
k=1Fk �= /0.

Proof. Suppose {Fk} is a nested sequence and lim
k→∞

diam(Fk) = 0. For each n ∈ N,

select un ∈ Fn. Suppose given ε > 0. Since

lim
n→∞

diam(Fn) = 0,

there exists N ∈ N such that if n ≥ N, then

diam(Fn)< ε.

Thus if m,n > N we have um,un ∈ FN so that

d(un,um)< ε.

Hence {un} is a Cauchy sequence. Being U complete, there exists u ∈U such that

un → u as n → ∞.
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Choose m ∈ N. We have that un ∈ Fm,∀n > m, so that

u ∈ F̄m = Fm.

Since m ∈N is arbitrary we obtain

u ∈ ∩∞
m=1Fm.

The proof is complete.

Theorem 1.6.4. Let (U,d) be a metric space. If A ⊂U is compact, then it is closed
and bounded.

Proof. We have already proved that A is closed. Suppose, to obtain contradiction,
that A is not bounded. Thus for each K ∈N there exists u,v ∈ A such that

d(u,v)> K.

Observe that
A ⊂ ∪u∈AB1(u).

Since A is compact there exists u1,u2, . . . ,un ∈ A such that

A =⊂ ∪n
k=1B1(uk).

Define
R = max{d(ui,u j) | i, j ∈ {1, . . . ,n}}.

Choose u,v ∈ A such that

d(u,v)> R+ 2. (1.21)

Observe that there exist i, j ∈ {1, . . . ,n} such that

u ∈ B1(ui), v ∈ B1(u j).

Thus

d(u,v) ≤ d(u,ui)+ d(ui,u j)+ d(u j,v)

≤ 2+R, (1.22)

which contradicts (1.21). This completes the proof.

Definition 1.6.5 (Relative Compactness). In a metric space (U,d), a set A ⊂U is
said to be relatively compact if A is compact.

Definition 1.6.6 (ε-Nets). Let (U,d) be a metric space. A set N ⊂ U is sat to be a
ε-net with respect to a set A ⊂U if for each u ∈ A there exists v ∈ N such that

d(u,v)< ε.
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Definition 1.6.7. Let (U,d) be a metric space. A set A ⊂ U is said to be totally
bounded if for each ε > 0, there exists a finite ε-net with respect to A.

Proposition 1.6.8. Let (U,d) be a metric space. If A ⊂U is totally bounded, then it
is bounded.

Proof. Choose u,v ∈ A. Let {u1, . . . ,un} be the 1-net with respect to A. Define

R = max{d(ui,u j) | i, j ∈ {1, . . . ,n}}.

Observe that there exist i, j ∈ {1, . . . ,n} such that

d(u,ui)< 1, d(v,u j)< 1.

Thus

d(u,v) ≤ d(u,ui)+ d(ui,u j)+ d(u j,v)

≤ R+ 2. (1.23)

Since u,v ∈ A are arbitrary, A is bounded.

Theorem 1.6.9. Let (U,d) be a metric space. If from each sequence {un} ⊂ A we
can select a convergent subsequence {unk}, then A is totally bounded.

Proof. Suppose, to obtain contradiction, that A is not totally bounded. Thus there
exists ε0 > 0 such that there exists no ε0-net with respect to A. Choose u1 ∈ A; hence
{u1} is not a ε0-net, that is, there exists u2 ∈ A such that

d(u1,u2)> ε0.

Again {u1,u2} is not a ε0-net for A, so that there exists u3 ∈ A such that

d(u1,u3)> ε0 and d(u2,u3)> ε0.

Proceeding in this fashion we can obtain a sequence {un} such that

d(un,um)> ε0, if m �= n. (1.24)

Clearly we cannot extract a convergent subsequence of {un}; otherwise such a sub-
sequence would be Cauchy contradicting (1.24). The proof is complete.

Definition 1.6.10 (Sequentially Compact Sets). Let (U,d) be a metric space. A set
A ⊂U is said to be sequentially compact if for each sequence {un} ⊂ A, there exist
a subsequence {unk} and u ∈ A such that

unk → u, as k → ∞.

Theorem 1.6.11. A subset A of a metric space (U,d) is compact if and only if it is
sequentially compact.
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Proof. Suppose A is compact. By Proposition 1.4.7 A is countably compact. Let
{un} ⊂ A be a sequence. We have two situations to consider:

1. {un} has infinitely many equal terms, that is, in this case we have

un1 = un2 = . . .= unk = . . .= u ∈ A.

Thus the result follows trivially.
2. {un} has infinitely many distinct terms. In such a case, being A countably com-

pact, {un} has a limit point in A, so that there exist a subsequence {unk} and u∈A
such that

unk → u, as k → ∞.

In both cases we may find a subsequence converging to some u ∈ A.
Thus A is sequentially compact.
Conversely suppose A is sequentially compact, and suppose {Gα , α ∈ L} is an

open cover of A. For each u ∈ A define

δ (u) = sup{r | Br(u)⊂ Gα , for some α ∈ L}.

First we prove that δ (u) > 0,∀u ∈ A. Choose u ∈ A. Since A ⊂ ∪α∈LGα , there
exists α0 ∈ L such that u ∈ Gα0 . Being Gα0 open, there exists r0 > 0 such that
Br0(u)⊂ Gα0 .

Thus,
δ (u)≥ r0 > 0.

Now define δ0 by

δ0 = inf{δ (u) | u ∈ A}.
Therefore, there exists a sequence {un} ⊂ A such that

δ (un)→ δ0 as n → ∞.

Since A is sequentially compact, we may obtain a subsequence {unk} and u0 ∈ A
such that

δ (unk)→ δ0 and unk → u0,

as k → ∞. Therefore, we may find K0 ∈N such that if k > K0, then

d(unk ,u0)<
δ (u0)

4
. (1.25)

We claim that

δ (unk)≥
δ (u0)

4
, if k > K0.

To prove the claim, suppose

z ∈ B δ (u0)
4

(unk),∀k > K0,
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(observe that in particular from (1.25)

u0 ∈ B δ (u0)
4

(unk),∀k > K0).

Since
δ (u0)

2
< δ (u0),

there exists some α1 ∈ L such that

B δ (u0)
2

(u0)⊂ Gα1 .

However, since

d(unk ,u0)<
δ (u0)

4
, if k > K0,

we obtain

B δ (u0)
2

(u0)⊃ B δ (u0)
4

(unk), if k > K0,

so that

δ (unk)≥
δ (u0)

4
,∀k > K0.

Therefore

lim
k→∞

δ (unk) = δ0 ≥ δ (u0)

4
.

Choose ε > 0 such that
δ0 > ε > 0.

From the last theorem since A is sequentially compact, it is totally bounded. For the
ε > 0 chosen above, consider an ε-net contained in A (the fact that the ε-net may be
chosen contained in A is also a consequence of the last theorem) and denote it by N
that is,

N = {v1, . . . ,vn} ∈ A.

Since δ0 > ε , there exists
α1, . . . ,αn ∈ L

such that
Bε(vi)⊂ Gαi ,∀i ∈ {1, . . . ,n},

considering that
δ (vi)≥ δ0 > ε > 0,∀i ∈ {1, . . . ,n}.

For u ∈ A, since N is an ε-net we have

u ∈ ∪n
i=1Bε(vi)⊂ ∪n

i=1Gαi .

Since u ∈U is arbitrary we obtain

A ⊂ ∪n
i=1Gαi .
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Thus
{Gα1 , . . . ,Gαn}

is a finite subcover for A of
{Gα , α ∈ L}.

Hence, A is compact.
The proof is complete.

Theorem 1.6.12. Let (U,d) be a metric space. Thus A ⊂U is relatively compact if
and only if for each sequence in A, we may select a convergent subsequence.

Proof. Suppose A is relatively compact. Thus A is compact so that from the last
theorem, A is sequentially compact.

Thus from each sequence in A we may select a subsequence which converges
to some element of A. In particular, for each sequence in A ⊂ A, we may select a
subsequence that converges to some element of A.

Conversely, suppose that for each sequence in A, we may select a convergent sub-
sequence. It suffices to prove that A is sequentially compact. Let {vn} be a sequence
in A. Since A is dense in A, there exists a sequence {un} ⊂ A such that

d(un,vn)<
1
n
.

From the hypothesis we may obtain a subsequence {unk} and u0 ∈ A such that

unk → u0, as k → ∞.

Thus,
vnk → u0 ∈ A, as k → ∞.

Therefore A is sequentially compact so that it is compact.

Theorem 1.6.13. Let (U,d) be a metric space.

1. If A ⊂U is relatively compact, then it is totally bounded.
2. If (U,d) is a complete metric space and A ⊂ U is totally bounded, then A is

relatively compact.

Proof.

1. Suppose A⊂U is relatively compact. From the last theorem, from each sequence
in A, we can extract a convergent subsequence. From Theorem 1.6.9, A is totally
bounded.

2. Let (U,d) be a metric space and let A be a totally bounded subset of U .
Let {un} be a sequence in A. Since A is totally bounded for each k ∈N we find a
εk-net where εk = 1/k, denoted by Nk where

Nk = {v(k)1 ,v(k)2 , . . . ,v(k)nk }.
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In particular for k = 1 {un} is contained in the 1-net N1. Thus at least one ball
of radius 1 of N1 contains infinitely many points of {un}. Let us select a subse-

quence {u(1)nk }k∈N of this infinite set (which is contained in a ball of radius 1).

Similarly, we may select a subsequence here just partially relabeled {u(2)nl }l∈N
of {u(1)nk } which is contained in one of the balls of the 1

2 -net. Proceeding in this

fashion for each k ∈ N we may find a subsequence denoted by {u(k)nm}m∈N of the
original sequence contained in a ball of radius 1/k.

Now consider the diagonal sequence denoted by {u(k)nk }k∈N = {zk}. Thus

d(zn,zm)<
2
k
, if m,n > k,

that is, {zk} is a Cauchy sequence, and since (U,d) is complete, there exists u∈U
such that

zk → u as k → ∞.

From Theorem 1.6.12, A is relatively compact.

The proof is complete.

1.7 The Arzela–Ascoli Theorem

In this section we present a classical result in analysis, namely the Arzela–Ascoli
theorem.

Definition 1.7.1 (Equicontinuity). Let F be a collection of complex functions de-
fined on a metric space (U,d). We say that F is equicontinuous if for each ε > 0,
there exists δ > 0 such that if u,v ∈U and d(u,v)< δ , then

| f (u)− f (v)|< ε,∀ f ∈ F .

Furthermore, we say that F is point-wise bounded if for each u ∈ U there exists
M(u) ∈ R such that

| f (u)|< M(u),∀ f ∈ F .

Theorem 1.7.2 (Arzela–Ascoli). Suppose F is a point-wise bounded equicontinu-
ous collection of complex functions defined on a metric space (U,d). Also suppose
that U has a countable dense subset E. Thus, each sequence { fn} ⊂ F has a sub-
sequence that converges uniformly on every compact subset of U.

Proof. Let {un} be a countable dense set in (U,d). By hypothesis, { fn(u1)} is a
bounded sequence; therefore, it has a convergent subsequence, which is denoted by
{ fnk(u1)}. Let us denote

fnk(u1) = f̃1,k(u1),∀k ∈ N.
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Thus there exists g1 ∈ C such that

f̃1,k(u1)→ g1, as k → ∞.

Observe that { fnk(u2)} is also bounded and also it has a convergent subsequence,
which similarly as above we will denote by { f̃2,k(u2)}. Again there exists g2 ∈ C

such that
f̃2,k(u1)→ g1, as k → ∞.

f̃2,k(u2)→ g2, as k → ∞.

Proceeding in this fashion for each m ∈ N we may obtain { f̃m,k} such that

f̃m,k(u j)→ g j, as k → ∞,∀ j ∈ {1, . . . ,m},

where the set {g1,g2, . . . ,gm} is obtained as above. Consider the diagonal sequence

{ f̃k,k},

and observe that the sequence

{ f̃k,k(um)}k>m

is such that
f̃k,k(um)→ gm ∈ C, as k → ∞,∀m ∈ N.

Therefore we may conclude that from { fn} we may extract a subsequence also de-
noted by

{ fnk}= { f̃k,k}
which is convergent in

E = {un}n∈N.

Now suppose K ⊂U , being K compact. Suppose given ε > 0. From the equiconti-
nuity hypothesis there exists δ > 0 such that if u,v ∈U and d(u,v)< δ we have

| fnk(u)− fnk(v)|<
ε
3
,∀k ∈ N.

Observe that
K ⊂ ∪u∈KB δ

2
(u),

and being K compact we may find {ũ1, . . . , ũM} such that

K ⊂ ∪M
j=1B δ

2
(ũ j).

Since E is dense in U , there exists

v j ∈ B δ
2
(ũ j)∩E,∀ j ∈ {1, . . . ,M}.
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Fixing j ∈ {1, . . . ,M}, from v j ∈ E we obtain that

lim
k→∞

fnk(v j)

exists as k → ∞. Hence there exists K0 j ∈ N such that if k, l > K0 j , then

| fnk(v j)− fnl (v j)|< ε
3
.

Pick u ∈ K; thus
u ∈ B δ

2
(ũ ĵ)

for some ĵ ∈ {1, . . . ,M}, so that

d(u,v ĵ)< δ .

Therefore if
k, l > max{K01 , . . . ,K0M},

then

| fnk(u)− fnl (u)| ≤ | fnk(u)− fnk(v ĵ)|+ | fnk(v ĵ)− fnl (v ĵ)|
+| fnl (v ĵ)− fnl (u)|

≤ ε
3
+

ε
3
+

ε
3
= ε. (1.26)

Since u ∈ K is arbitrary, we conclude that { fnk} is uniformly Cauchy on K.
The proof is complete.

1.8 Linear Mappings

Given U,V topological vector spaces, a function (mapping) f : U → V , A ⊂ U ,
and B ⊂V , we define

f (A) = { f (u) | u ∈ A}, (1.27)

and the inverse image of B, denoted f−1(B) as

f−1(B) = {u ∈U | f (u) ∈ B}. (1.28)

Definition 1.8.1 (Linear Functions). A function f : U →V is said to be linear if

f (αu+β v) = α f (u)+β f (v),∀u,v ∈U, α,β ∈ F. (1.29)
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Definition 1.8.2 (Null Space and Range). Given f : U → V , we define the null
space and the range of f, denoted by N( f ) and R( f ), respectively, as

N( f ) = {u ∈U | f (u) = θ} (1.30)

and

R( f ) = {v ∈V | ∃u ∈U such that f (u) = v}. (1.31)

Note that if f is linear, then N( f ) and R( f ) are subspaces of U and V , respectively.

Proposition 1.8.3. Let U,V be topological vector spaces. If f : U →V is linear and
continuous at θ , then it is continuous everywhere.

Proof. Since f is linear, we have f (θ ) = θ . Since f is continuous at θ , given V ⊂V
a neighborhood of zero, there exists U ⊂U neighborhood of zero, such that

f (U )⊂ V . (1.32)

Thus

v− u ∈ U ⇒ f (v− u) = f (v)− f (u) ∈ V , (1.33)

or

v ∈ u+U ⇒ f (v) ∈ f (u)+V , (1.34)

which means that f is continuous at u. Since u is arbitrary, f is continuous every-
where.

1.9 Linearity and Continuity

Definition 1.9.1 (Bounded Functions). A function f : U →V is said to be bounded
if it maps bounded sets into bounded sets.

Proposition 1.9.2. A set E is bounded if and only if the following condition is sat-
isfied: whenever {un} ⊂ E and {αn} ⊂ F are such that αn → 0 as n → ∞ we have
αnun → θ as n → ∞.

Proof. Suppose E is bounded. Let U be a balanced neighborhood of θ in U and
then E ⊂ tU for some t. For {un} ⊂ E , as αn → 0, there exists N such that if n > N,
then t < 1

|αn| . Since t−1E ⊂U and U is balanced, we have that αnun ∈U , ∀n > N,
and thus αnun → θ . Conversely, if E is not bounded, there is a neighborhood V of
θ and {rn} such that rn → ∞ and E is not contained in rnV , that is, we can choose
un such that r−1

n un is not in V , ∀n ∈N, so that {r−1
n un} does not converge to θ .

Proposition 1.9.3. Let f : U → V be a linear function. Consider the following
statements:
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1. f is continuous,
2. f is bounded,
3. if un → θ , then { f (un)} is bounded,
4. if un → θ , then f (un)→ θ .

Then,

• 1 implies 2,
• 2 implies 3,
• if U is metrizable, then 3 implies 4, which implies 1.

Proof.

1. 1 implies 2: Suppose f is continuous, for W ⊂ V neighborhood of zero, there
exists a neighborhood of zero in U , denoted by V , such that

f (V )⊂ W . (1.35)

If E is bounded, there exists t0 ∈ R
+ such that E ⊂ tV , ∀t ≥ t0, so that

f (E) ⊂ f (tV ) = t f (V )⊂ tW , ∀t ≥ t0, (1.36)

and thus f is bounded.
2. 2 implies 3: Suppose un → θ and let W be a neighborhood of zero. Then, there

exists N ∈ N such that if n ≥ N, then un ∈ V ⊂ W where V is a balanced
neighborhood of zero. On the other hand, for n < N, there exists Kn such that
un ∈ KnV . Define K = max{1,K1, . . . ,Kn}. Then, un ∈ KV ,∀n ∈ N and hence
{un} is bounded. Finally from 2, we have that { f (un)} is bounded.

3. 3 implies 4: Suppose U is metrizable and let un → θ . Given K ∈ N, there exists
nK ∈ N such that if n > nK , then d(un,θ ) < 1

K2 . Define γn = 1 if n < n1 and
γn = K, if nK ≤ n < nK+1 so that

d(γnun,θ ) = d(Kun,θ )≤ Kd(un,θ )< K−1. (1.37)

Thus since 2 implies 3 we have that { f (γnun)} is bounded so that, by
Proposition 1.9.2, f (un) = γ−1

n f (γnun)→ θ as n → ∞.
4. 4 implies 1: suppose 1 fails. Thus there exists a neighborhood of zero W ⊂ V

such that f−1(W ) contains no neighborhood of zero in U . Particularly, we can
select {un} such that un ∈ B1/n(θ ) and f (un) not in W so that { f (un)} does not
converge to zero. Thus 4 fails.

1.10 Continuity of Operators on Banach Spaces

Let U,V be Banach spaces. We call a function A : U →V an operator.

Proposition 1.10.1. Let U,V be Banach spaces. A linear operator A : U → V is
continuous if and only if there exists K ∈ R

+ such that

‖A(u)‖V < K‖u‖U ,∀u ∈U.
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Proof. Suppose A is linear and continuous. From Proposition 1.9.3,

if {un} ⊂U is such that un → θ then A(un)→ θ . (1.38)

We claim that for each ε > 0 there exists δ > 0 such that if ‖u‖U < δ , then
‖A(u)‖V < ε.

Suppose, to obtain contradiction, that the claim is false.
Thus there exists ε0 > 0 such that for each n ∈ N there exists un ∈ U such that

‖un‖U ≤ 1
n and ‖A(un)‖V ≥ ε0.

Therefore un → θ and A(un) does not converge to θ , which contradicts (1.38).
Thus the claim holds.
In particular, for ε = 1, there exists δ > 0 such that if ‖u‖U < δ , then

‖A(u)‖V < 1. Thus given an arbitrary not relabeled u ∈U , u �= θ , for

w =
δu

2‖u‖U

we have

‖A(w)‖V =
δ‖A(u)‖V

2‖u‖U
< 1,

that is

‖A(u)‖V <
2‖u‖U

δ
,∀u ∈U.

Defining

K =
2
δ

the first part of the proof is complete. Reciprocally, suppose there exists K > 0 such
that

‖A(u)‖V < K‖u‖U ,∀u ∈U.

Hence un → θ implies ‖A(un)‖V → θ , so that from Proposition 1.9.3, A is continu-
ous.

The proof is complete.

1.11 Some Classical Results on Banach Spaces

In this section we present some important results in Banach spaces. We start with
the following theorem.

Theorem 1.11.1. Let U and V be Banach spaces and let A : U → V be a linear
operator. Then A is bounded if and only if the set C ⊂ U has at least one interior
point, where

C = A−1[{v ∈V | ‖v‖V ≤ 1}].
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Proof. Suppose there exists u0 ∈U in the interior of C. Thus, there exists r > 0 such
that

Br(u0) = {u ∈U | ‖u− u0‖U < r} ⊂C.

Fix u ∈U such that ‖u‖U < r. Thus, we have

‖A(u)‖V ≤ ‖A(u+ u0)‖V + ‖A(u0)‖V .

Observe also that
‖(u+ u0)− u0‖U < r,

so that u+ u0 ∈ Br(u0)⊂C and thus

‖A(u+ u0)‖V ≤ 1

and hence

‖A(u)‖V ≤ 1+ ‖A(u0)‖V , (1.39)

∀u ∈ U such that ‖u‖U < r. Fix an arbitrary not relabeled u ∈ U such that u �= θ .
From (1.39)

w =
u

‖u‖U

r
2

is such that

‖A(w)‖V =
‖A(u)‖V

‖u‖U

r
2
≤ 1+ ‖A(u0)‖V ,

so that

‖A(u)‖V ≤ (1+ ‖A(u0)‖V )‖u‖U
2
r
.

Since u ∈U is arbitrary, A is bounded.
Reciprocally, suppose A is bounded. Thus

‖A(u)‖V ≤ K‖u‖U ,∀u ∈U,

for some K > 0. In particular

D =

{
u ∈U | ‖u‖U ≤ 1

K

}
⊂C.

The proof is complete.

Definition 1.11.2. A set S in a metric space U is said to be nowhere dense if S has
an empty interior.

Theorem 1.11.3 (Baire Category Theorem). A complete metric space is never the
union of a countable number of nowhere dense sets.
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Proof. Suppose, to obtain contradiction, that U is a complete metric space and

U = ∪∞
n=1An,

where each An is nowhere dense. Since A1 is nowhere dense, there exist u1 ∈ U
which is not in Ā1; otherwise we would have U = Ā1, which is not possible since
U is open. Furthermore, Āc

1 is open, so that we may obtain u1 ∈ Ac
1 and 0 < r1 < 1

such that
B1 = Br1(u1)

satisfies
B1 ∩A1 = /0.

Since A2 is nowhere dense we have B1 is not contained in Ā2. Therefore we may
select u2 ∈ B1 \ Ā2 and since B1 \ Ā2 is open, there exists 0 < r2 < 1/2 such that

B̄2 = B̄r2(u2)⊂ B1 \ Ā2,

that is,
B2 ∩A2 = /0.

Proceeding inductively in this fashion, for each n ∈N, we may obtain un ∈ Bn−1\ Ān

such that we may choose an open ball Bn = Brn(un) such that

B̄n ⊂ Bn−1,

Bn ∩An = /0,

and
0 < rn < 21−n.

Observe that {un} is a Cauchy sequence, considering that if m,n > N, then un,um ∈
BN , so that

d(un,um)< 2(21−N).

Define
u = lim

n→∞
un.

Since
un ∈ BN ,∀n > N,

we get
u ∈ B̄N ⊂ BN−1.

Therefore u is not in AN−1,∀N > 1, which means u is not in ∪∞
n=1An = U , a

contradiction.
The proof is complete.

Theorem 1.11.4 (The Principle of Uniform Boundedness). Let U be a Banach
space. Let F be a family of linear bounded operators from U into a normed linear
space V . Suppose for each u ∈U there exists a Ku ∈ R such that
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‖T (u)‖V < Ku,∀T ∈ F .

Then, there exists K ∈R such that

‖T‖< K,∀T ∈ F .

Proof. Define
Bn = {u ∈U | ‖T (u)‖V ≤ n,∀T ∈ F}.

By the hypotheses, given u ∈U , u ∈ Bn for all n is sufficiently big. Thus,

U = ∪∞
n=1Bn.

Moreover each Bn is closed. By the Baire category theorem there exists n0 ∈N such
that Bn0 has nonempty interior. That is, there exists u0 ∈U and r > 0 such that

Br(u0)⊂ Bn0 .

Thus, fixing an arbitrary T ∈ F , we have

‖T (u)‖V ≤ n0,∀u ∈ Br(u0).

Thus if ‖u‖U < r then ‖(u+ u0)− u0‖U < r, so that

‖T (u+ u0)‖V ≤ n0,

that is,
‖T (u)‖V −‖T(u0)‖V ≤ n0.

Thus,

‖T (u)‖V ≤ 2n0, if ‖u‖U < r. (1.40)

For u ∈U arbitrary, u �= θ , define

w =
ru

2‖u‖U
,

from (1.40) we obtain

‖T (w)‖V =
r‖T (u)‖V

2‖u‖U
≤ 2n0,

so that

‖T (u)‖V ≤ 4n0‖u‖U

r
,∀u ∈U.

Hence

‖T‖ ≤ 4n0

r
,∀T ∈ F .

The proof is complete.
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Theorem 1.11.5 (The Open Mapping Theorem). Let U and V be Banach spaces
and let A : U →V be a bounded onto linear operator. Thus, if O ⊂U is open, then
A(O) is open in V .

Proof. First we will prove that given r > 0, there exists r′ > 0 such that

A(Br(θ ))⊃ BV
r′(θ ). (1.41)

Here BV
r′(θ ) denotes a ball in V of radius r′ with center in θ . Since A is onto

V = ∪∞
n=1A(nB1(θ )).

By the Baire category theorem, there exists n0 ∈ N such that the closure of
A(n0B1(θ )) has nonempty interior, so that A(B1(θ )) has nonempty interior. We
will show that there exists r′ > 0 such that

BV
r′(θ )⊂ A(B1(θ )).

Observe that there exists y0 ∈V and r1 > 0 such that

BV
r1
(y0)⊂ A(B1(θ )). (1.42)

Define u0 ∈ B1(θ ) which satisfies A(u0) = y0. We claim that

A(Br2(θ ))⊃ BV
r1
(θ ),

where r2 = 1+ ‖u0‖U . To prove the claim, pick

y ∈ A(B1(θ ))

thus there exists u ∈U such that ‖u‖U < 1 and A(u) = y. Therefore

A(u) = A(u− u0+ u0) = A(u− u0)+A(u0).

But observe that

‖u− u0‖U ≤ ‖u‖U + ‖u0‖U

< 1+ ‖u0‖U

= r2, (1.43)

so that

A(u− u0) ∈ A(Br2(θ )).

This means

y = A(u) ∈ A(u0)+A(Br2(θ )),

and hence
A(B1(θ ))⊂ A(u0)+A(Br2(θ )).
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That is, from this and (1.42), we obtain

A(u0)+A(Br2(θ ))⊃ A(B1(θ ))⊃ BV
r1
(y0) = A(u0)+BV

r1
(θ ),

and therefore

A(Br2(θ ))⊃ BV
r1
(θ ).

Since

A(Br2(θ )) = r2A(B1(θ )),

we have, for some not relabeled r1 > 0, that

A(B1(θ ))⊃ BV
r1
(θ ).

Thus it suffices to show that

A(B1(θ ))⊂ A(B2(θ )),

to prove (1.41). Let y ∈ A(B1(θ )); since A is continuous, we may select u1 ∈ B1(θ )
such that

y−A(u1) ∈ BV
r1/2(θ )⊂ A(B1/2(θ )).

Now select u2 ∈ B1/2(θ ) so that

y−A(u1)−A(u2) ∈ BV
r1/4(θ ).

By induction, we may obtain
un ∈ B21−n(θ ),

such that

y−
n

∑
j=1

A(u j) ∈ BV
r1/2n(θ ).

Define

u =
∞

∑
n=1

un,

we have that u ∈ B2(θ ), so that

y =
∞

∑
n=1

A(un) = A(u) ∈ A(B2(θ )).

Therefore
A(B1(θ ))⊂ A(B2(θ )).

The proof of (1.41) is complete.
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To finish the proof of this theorem, assume O ⊂ U is open. Let v0 ∈ A(O). Let
u0 ∈ O be such that A(u0) = v0. Thus there exists r > 0 such that

Br(u0)⊂ O.

From (1.41),
A(Br(θ ))⊃ BV

r′(θ ),

for some r′ > 0. Thus

A(O)⊃ A(u0)+A(Br(θ ))⊃ v0 +BV
r′(θ ).

This means that v0 is an interior point of A(O). Since v0 ∈ A(O) is arbitrary, we
may conclude that A(O) is open.

The proof is complete.

Theorem 1.11.6 (The Inverse Mapping Theorem). A continuous linear bijection
of one Banach space onto another has a continuous inverse.

Proof. Let A : U → V satisfying the theorem hypotheses. Since A is open, A−1 is
continuous.

Definition 1.11.7 (Graph of a Mapping). Let A : U → V be an operator, where U
and V are normed linear spaces. The graph of A denoted by Γ (A) is defined by

Γ (A) = {(u,v) ∈U ×V | v = A(u)}.

Theorem 1.11.8 (The Closed Graph Theorem). Let U and V be Banach spaces
and let A : U →V be a linear operator. Then A is bounded if and only if its graph is
closed.

Proof. Suppose Γ (A) is closed. Since A is linear, Γ (A) is a subspace of U⊕V . Also,
being Γ (A) closed, it is a Banach space with the norm

‖(u,A(u)‖= ‖u‖U + ‖A(u)‖V .

Consider the continuous mappings

Π1(u,A(u)) = u

and
Π2(u,A(u)) = A(u).

Observe that Π1 is a bijection, so that by the inverse mapping theorem, Π−1
1 is

continuous. As
A = Π2 ◦Π−1

1 ,

it follows that A is continuous. The converse is trivial.
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1.12 Hilbert Spaces

At this point we introduce an important class of spaces, namely the Hilbert
spaces.

Definition 1.12.1. Let H be a vector space. We say that H is a real pre-Hilbert space
if there exists a function (·, ·)H : H ×H →R such that

1. (u,v)H = (v,u)H , ∀u,v ∈ H,
2. (u+ v,w)H = (u,w)H +(v,w)H , ∀u,v,w ∈ H,
3. (αu,v)H = α(u,v)H , ∀u,v ∈ H, α ∈ R,
4. (u,u)H ≥ 0, ∀u ∈ H, and (u,u)H = 0, if and only if u = θ .

Remark 1.12.2. The function (·, ·)H : H ×H → R is called an inner product.

Proposition 1.12.3 (Cauchy–Schwarz Inequality). Let H be a pre-Hilbert space.
Defining

‖u‖H =
√
(u,u)H ,∀u ∈ H,

we have
|(u,v)H | ≤ ‖u‖H‖v‖H ,∀u,v ∈ H.

Equality holds if and only if u = αv for some α ∈ R or v = θ .

Proof. If v = θ , the inequality is immediate. Assume v �= θ . Given α ∈ R we have

0 ≤ (u−αv,u−αv)H

= (u,u)H +α2(v,v)H − 2α(u,v)H

= ‖u‖2
H +α2‖v‖2

H − 2α(u,v)H . (1.44)

In particular, for α = (u,v)H/‖v‖2
H, we obtain

0 ≤ ‖u‖2
H − (u,v)2

H

‖v‖2
H

,

that is,
|(u,v)H | ≤ ‖u‖H‖v‖H .

The remaining conclusions are left to the reader.

Proposition 1.12.4. On a pre-Hilbert space H, the function

‖ · ‖H : H → R

is a norm, where as above
‖u‖H =

√
(u,u).

Proof. The only nontrivial property to be verified, concerning the definition of
norm, is the triangle inequality.
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Observe that given u,v ∈ H, from the Cauchy–Schwarz inequality, we have

‖u+ v‖2
H = (u+ v,u+ v)H

= (u,u)H +(v,v)H + 2(u,v)H

≤ (u,u)H +(v,v)H + 2|(u,v)H |
≤ ‖u‖2

H + ‖v‖2
H + 2‖u‖H‖v‖H

= (‖u‖H + ‖v‖H)
2. (1.45)

Therefore
‖u+ v‖H ≤ ‖u‖H + ‖v‖H,∀u,v ∈ H.

The proof is complete.

Definition 1.12.5. A pre-Hilbert space H is to be a Hilbert space if it is complete,
that is, if any Cauchy sequence in H converges to an element of H.

Definition 1.12.6 (Orthogonal Complement). Let H be a Hilbert space. Consider-
ing M ⊂ H we define its orthogonal complement, denoted by M⊥, by

M⊥ = {u ∈ H | (u,m)H = 0, ∀m ∈ M}.

Theorem 1.12.7. Let H be a Hilbert space and M a closed subspace of H and sup-
pose u ∈ H. Under such hypotheses there exists a unique m0 ∈ M such that

‖u−m0‖H = min
m∈M

{‖u−m‖H}.

Moreover n0 = u−m0 ∈ M⊥ so that

u = m0 + n0,

where m0 ∈ M and n0 ∈ M⊥. Finally, such a representation through M ⊕M⊥ is
unique.

Proof. Define d by
d = inf

m∈M
{‖u−m‖H}.

Let {mi} ⊂ M be a sequence such that

‖u−mi‖H → d, as i → ∞.

Thus, from the parallelogram law, we have

‖mi −m j‖2
H = ‖mi − u− (m j − u)‖2

H

= 2‖mi − u‖2
H + 2‖m j − u‖2

H

−2‖− 2u+mi+m j‖2
H

= 2‖mi − u‖2
H + 2‖m j − u‖2

H
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−4‖− u+(mi+m j)/2‖2
H

→ 2d2 + 2d2− 4d2 = 0, as i, j →+∞. (1.46)

Thus {mi} ⊂ M is a Cauchy sequence. Since M is closed, there exists m0 ∈ M such
that

mi → m0, as i →+∞,

so that
‖u−mi‖H → ‖u−m0‖H = d.

Define
n0 = u−m0.

We will prove that n0 ∈ M⊥.
Pick m ∈ M and t ∈ R, and thus we have

d2 ≤ ‖u− (m0− tm)‖2
H

= ‖n0 + tm‖2
H

= ‖n0‖2
H + 2(n0,m)Ht + ‖m‖2

Ht2. (1.47)

Since
‖n0‖2

H = ‖u−m0‖2
H = d2,

we obtain
2(n0,m)Ht + ‖m‖2

Ht2 ≥ 0,∀t ∈R

so that
(n0,m)H = 0.

Being m ∈ M arbitrary, we obtain

n0 ∈ M⊥.

It remains to prove the uniqueness. Let m ∈ M, and thus

‖u−m‖2
H = ‖u−m0+m0 −m‖2

H

= ‖u−m0‖2
H + ‖m−m0‖2

H , (1.48)

since
(u−m0,m−m0)H = (n0,m−m0)H = 0.

From (1.48) we obtain

‖u−m‖2
H > ‖u−m0‖2

H = d2,

if m �= m0.
Therefore m0 is unique.
Now suppose

u = m1 + n1,



34 1 Topological Vector Spaces

where m1 ∈ M and n1 ∈ M⊥. As above, for m ∈ M

‖u−m‖2
H = ‖u−m1+m1 −m‖2

H

= ‖u−m1‖2
H + ‖m−m1‖2

H ,

≥ ‖u−m1‖H (1.49)

and thus since m0 such that
d = ‖u−m0‖H

is unique, we get
m1 = m0

and therefore
n1 = u−m0 = n0.

The proof is complete.

Theorem 1.12.8 (The Riesz Lemma). Let H be a Hilbert space and let f : H → R

be a continuous linear functional. Then there exists a unique u0 ∈ H such that

f (u) = (u,u0)H ,∀u ∈ H.

Moreover
‖ f‖H∗ = ‖u0‖H .

Proof. Define N by
N = {u ∈ H | f (u) = 0}.

Thus, as f is a continuous and linear, N is a closed subspace of H. If N = H, then
f (u) = 0 = (u,θ )H ,∀u ∈ H and the proof would be complete. Thus, assume N �= H.
By the last theorem there exists v �= θ such that v ∈ N⊥.

Define

u0 =
f (v)

‖v‖2
H

v.

Thus,if u ∈ N we have
f (u) = 0 = (u,u0)H = 0.

On the other hand, if u = αv for some α ∈ R, we have

f (u) = α f (v)

=
f (v)(αv,v)H

‖v‖2
H

=

(
αv,

f (v)v

‖v‖2
H

)
H

= (αv,u0)H . (1.50)

Therefore f (u) equals (u,u0)H in the space spanned by N and v. Now we show that
this last space (then span of N and v) is in fact H. Just observe that given u ∈ H we
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may write

u =

(
u− f (u)v

f (v)

)
+

f (u)v
f (v)

. (1.51)

Since

u− f (u)v
f (v)

∈ N

we have finished the first part of the proof, that is, we have proven that

f (u) = (u,u0)H ,∀u ∈ H.

To finish the proof, assume u1 ∈ H is such that

f (u) = (u,u1)H ,∀u ∈ H.

Thus,

‖u0 − u1‖2
H = (u0 − u1,u0 − u1)H

= (u0 − u1,u0)H − (u0 − u1,u1)H

= f (u0 − u1)− f (u0 − u1) = 0. (1.52)

Hence u1 = u0.
Let us now prove that

‖ f‖H∗ = ‖u0‖H .

First observe that

‖ f‖H∗ = sup{ f (u) | u ∈ H, ‖u‖H ≤ 1}
= sup{|(u,u0)H | | u ∈ H, ‖u‖H ≤ 1}
≤ sup{‖u‖H‖u0‖H | u ∈ H, ‖u‖H ≤ 1}
≤ ‖u0‖H . (1.53)

On the other hand

‖ f‖H∗ = sup{ f (u) | u ∈ H, ‖u‖H ≤ 1}
≥ f

(
u0

‖u0‖H

)

=
(u0,u0)H

‖u0‖H

= ‖u0‖H . (1.54)

From (1.53) and (1.54)
‖ f‖H∗ = ‖u0‖H .

The proof is complete.
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Remark 1.12.9. Similarly as above we may define a Hilbert space H over C, that is,
a complex one. In this case the complex inner product (·, ·)H : H×H →C is defined
through the following properties:

1. (u,v)H = (v,u)H , ∀u,v ∈ H,
2. (u+ v,w)H = (u,w)H +(v,w)H , ∀u,v,w ∈ H,
3. (αu,v)H = α(u,v)H , ∀u,v ∈ H, α ∈ C,
4. (u,u)H ≥ 0, ∀u ∈ H, and (u,u) = 0, if and only if u = θ .

Observe that in this case we have

(u,αv)H = α(u,v)H , ∀u,v ∈ H, α ∈ C,

where for α = a+ bi ∈ C, we have α = a− bi. Finally, similar results as those
proven above are valid for complex Hilbert spaces.

1.13 Orthonormal Basis

In this section we study separable Hilbert spaces and the related orthonormal
bases.

Definition 1.13.1. Let H be a Hilbert space. A set S ⊂ H is said to be orthonormal if

‖u‖H = 1,

and
(u,v)H = 0,∀u,v ∈ S, such that u �= v.

If S is not properly contained in any other orthonormal set, it is said to be an or-
thonormal basis for H.

Theorem 1.13.2. Let H be a Hilbert space and let {un}N
n=1 be an orthonormal set.

Then, for all u ∈ H, we have

‖u‖2
H =

N

∑
n=1

|(u,un)H |2 +
∥∥∥∥∥u−

N

∑
n=1

(u,un)Hun

∥∥∥∥∥
2

H

.

Proof. Observe that

u =
N

∑
n=1

(u,un)Hun +

(
u−

N

∑
n=1

(u,un)Hun

)
.

Furthermore, we may easily obtain that

N

∑
n=1

(u,un)Hun and u−
N

∑
n=1

(u,un)Hun
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are orthogonal vectors so that

‖u‖2
H = (u,u)H

=

∥∥∥∥∥
N

∑
n=1

|(u,un)Hun

∥∥∥∥∥
2

H

+

∥∥∥∥∥u−
N

∑
n=1

(u,un)Hun

∥∥∥∥∥
2

H

=
N

∑
n=1

|(u,un)H |2 +
∥∥∥∥∥u−

N

∑
n=1

(u,un)Hun

∥∥∥∥∥
2

H

. (1.55)

Corollary 1.13.3 (Bessel Inequality). Let H be a Hilbert space and let {un}N
n=1 be

an orthonormal set. Then, for all u ∈ H, we have

‖u‖2
H ≥

N

∑
n=1

|(u,un)H |2.

Theorem 1.13.4. Each Hilbert space has an orthonormal basis.

Proof. Define by C the collection of all orthonormal sets in H. Define an order in C
by stating S1 ≺ S2 if S1 ⊂ S2. Then, C is partially ordered and obviously nonempty,
since

v/‖v‖H ∈C,∀v ∈ H,v �= θ .

Now let {Sα}α∈L be a linearly ordered subset of C. Clearly, ∪α∈LSα is an orthonor-
mal set which is an upper bound for {Sα}α∈L.

Therefore, every linearly ordered subset has an upper bound, so that by Zorn’s
lemma C has a maximal element, that is, an orthonormal set not properly contained
in any other orthonormal set.

This completes the proof.

Theorem 1.13.5. Let H be a Hilbert space and let S = {uα}α∈L be an orthonormal
basis. Then for each v ∈ H we have

v = ∑
α∈L

(uα ,v)Huα ,

and
‖v‖2

H = ∑
α∈L

|(uα ,v)H |2.

Proof. Let L′ ⊂ L be a finite subset of L. From Bessel’s inequality we have

∑
α∈L′

|(uα ,v)H | ≤ ‖v‖2
H.

From this, we may infer that the set An = {α ∈ L | |(uα ,v)H |> 1/n} is finite, so that

A = {α ∈ L | |(uα ,v)H |> 0}= ∪∞
n=1An
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is at most countable.
Thus (uα ,v)H �= 0 for at most countably many α ′s ∈ L, which we order by

{αn}n∈N. Since the sequence

sN =
N

∑
i=1

|(uαi ,v)H |2,

is monotone and bounded, it is converging to some real limit as N → ∞. Define

vn =
n

∑
i=1

(uαi ,v)Huαi ,

so that for n > m we have

‖vn − vm‖2
H =

∥∥∥∥∥
n

∑
i=m+1

(uαi ,v)Huαi

∥∥∥∥∥
2

H

=
n

∑
i=m+1

|(uαi ,v)H |2

= |sn − sm|. (1.56)

Hence, {vn} is a Cauchy sequence which converges to some v′ ∈ H.
Observe that

(v− v′,uαl )H = lim
N→∞

(v−
N

∑
i=1

(uαi ,v)Huαi ,uαl )H

= (v,uαl )H − (v,uαl)H

= 0. (1.57)

Also, if α �= αl ,∀l ∈ N, then

(v− v′,uα)H = lim
N→∞

(v−
∞

∑
i=1

(uαi ,v)Huαi ,uα)H = 0.

Hence
v− v′⊥uα , ∀α ∈ L.

If
v− v′ �= θ ,

then we could obtain an orthonormal set{
uα , α ∈ L,

v− v′

‖v− v′‖H

}



1.13 Orthonormal Basis 39

which would properly contain the complete orthonormal set

{uα , α ∈ L},

a contradiction.
Therefore, v− v′ = θ , that is,

v = lim
N→∞

N

∑
i=1

(uαi ,v)Huαi .

1.13.1 The Gram–Schmidt Orthonormalization

Let H be a Hilbert space and {un} ⊂ H be a sequence of linearly independent
vectors. Consider the procedure

w1 = u1, v1 =
w1

‖w1‖H
,

w2 = u2 − (v1,u2)Hv1, v2 =
w2

‖w2‖H
,

and inductively,

wn = un −
n−1

∑
k=1

(vk,un)Hvk, vn =
wn

‖wn‖H
,∀n ∈ N,n > 2.

Observe that clearly {vn} is an orthonormal set and for each m ∈ N, {vk}m
k=1 and

{uk}m
k=1 span the same vector subspace of H.

Such a process of obtaining the orthonormal set {vn} is known as the Gram–
Schmidt orthonormalization.

We finish this section with the following theorem.

Theorem 1.13.6. A Hilbert space H is separable if and only if it has a countable
orthonormal basis. If dim(H)=N <∞, the H is isomorphic to C

N. If dim(H) =+∞,
then H is isomorphic to l2, where

l2 =

{
{yn} | yn ∈ C,∀n ∈ N and

∞

∑
n=1

|yn|2 <+∞

}
.

Proof. Suppose H is separable and let {un} be a countable dense set in H. To ob-
tain an orthonormal basis it suffices to apply the Gram–Schmidt orthonormalization
procedure to the greatest linearly independent subset of {un}.

Conversely, if B = {vn} is an orthonormal basis for H, the set of all finite linear
combinations of elements of B with rational coefficients are dense in H, so that H is
separable.
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Moreover, if dim(H) = +∞, consider the isomorphism F : H → l2 given by

F(u) = {(un,u)H}n∈N.

Finally, if dim(H) = N <+∞, consider the isomorphism F : H →C
N given by

F(u) = {(un,u)H}N
n=1.

The proof is complete.
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