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Abstract Dielectric experiments are an indispensable tool to further our
understanding of the relaxation behavior of polymers, not only in bulk samples but
also in confined situations. A chemically realistic Molecular Dynamics simulation,
in which all information about molecular motions is available, can shed light onto
the questions of heterogeneity and anisotropy of the underlying molecular relaxation
processes which lead to the ensemble averaged experimental dielectric signal. In this
contribution, we present a careful analysis of the dielectric response of aweakly polar
and confined polymer, 1,4-polybutadiene between graphite walls. The relaxation of
the segmental dipole moments was obtained in the time domain and transformed
into frequency (Fourier) domain as well as the relaxation time (Debye) domain to
highlight the differences between the two types of analysis. A particular bonus of the
simulation is that detailed spatially resolved information on structure and dynamics
of the confined system is available. We determine the influence of the confinement
on the dielectric relaxation and show that for this system the apparent glass transition
temperature of a confined film is independent of its thickness even on the scale of a
few nanometers.
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Alpha-process · Vogel/Fulcher/Tammann equation · Relaxation map · Glass
transition temperature · Torsion stiffness · Layering · Anisotropic relaxation

Abbreviations

DIP Dipole moment
DSC Differential Scanning Calorimetry
FFT Fast Fourier Transform
KWW Kohlrausch-Williams-Watts
MD Molecular Dynamics
NMR Nuclear Magnetic Resonance
PBD PolyButaDiene
RTD Relaxation Time Distribution
vdW van der Waals
VFT Vogel/Fulcher/Tammann

1 Introduction

Dielectric spectroscopy is an important technique to address the dynamics of
macromolecular systems [1]. It measures the polarization current of a (loaded) sam-
ple capacitor. Thus, the relaxation of the projection of the electric dipole moment of
the sample onto the applied electric field can be measured. For polymeric systems,
local dipole moments are carried by some or all of the segments making up the
chains, so the total dipole moment is a sum of the segmental ones, μtot = ∑

i μi .
The macroscopic dipole density in a volume V is then given as p = (1/V ) · ∑i μi .
In linear response theory, the dielectric permittivity tensor ε = εαβ links the polar-
ization to the external electric field E by the relation p = (ε − 1)ε0E = χε0E,
where χ is the dielectric susceptibility tensor and ε0 is the dielectric permittiv-
ity of vacuum. The dielectric signal in the time domain is then proportional to
〈[p(t)·E(t)][p(0)·E(0)]〉 ∝ 〈μtot,E(t)μtot,E(0)〉, where the angular brackets indicate
a thermodynamic average and the index, E , denotes the projection onto the applied
electric field. In most polymers, the individual segmental dipoles relax essentially
independently, so one has 〈μtot,E(t)μtot,E(0)〉 ∝ 〈μseg,E(t)μseg,E(0)〉, and the exper-
iment probes local segmental relaxation. In so-called type A polymers, the dipole
components perpendicular to the chain backbone relax independently, but the paral-
lel components are correlated and add up to a dipole moment parallel to the chain
end-to-end vector. In these polymers, dielectric spectroscopy can address local (seg-
mental) as well as global (end-to-end vector) conformational relaxation of polymer
chains, and separates into the so-called “segmental” and “normal” modes. Molec-
ular Dynamics (MD) simulations addressing the dielectric response of a polymer
melt have been mostly concerned with bulk systems, see [2–4] for example. These
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Fig. 1 Snapshot of a polymer
melt close to a crystalline
surface. The interphase is the
region perturbed by the con-
finement where any physical
property gradually evolves to
a bulk-like behavior far away
from the surface

systems are homogeneous and isotropic and the susceptibility is proportional to the
unit tensor, χ = χδαβ . Then the dielectric observable is proportional to the auto-
correlation function of the dipole vector, 〈μtot,E(t)μtot,E(0)〉 ∝ 〈μtot(t) · μtot(0)〉. It
has been found in experiments [5] as well as in simulations [3] that the assumption
of uncorrelated relaxation of different segments discussed above seems to be a good
approximation to describe bulk dielectric behavior.

The development of polymer nanocomposite materials required to go beyond the
analysis of bulk dielectric behavior and led to the study of confined polymer sys-
tems, where the confinement may be one-dimensional (films) or two-dimensional
(nanopores). One then has to address the question what changes occur in the poly-
mer dynamics at a solid surface and what may be the characteristic width of the
perturbed region in the polymer, the so-called “interphase” (see Fig. 1). Clearly, the
relaxation behavior in such a confined systembecomes heterogeneous, i.e., it depends
on the distance to the surface, as well as anisotropic: an electric field applied perpen-
dicular to the surface probes other molecular motions than a field applied parallel
to the surface. For a flat (i.e., atomically corrugated) surface, the susceptibility ten-
sor is written as χ = χαeα ⊗ eα in a Cartesian basis eα;α = x, y, z. Due to the
rotational symmetry, one has χx = χy �= χz and correspondingly for the dielectric
permittivity. The dielectric relaxation of a polymer film was first analyzed carefully
for a computer simulation in a study of Peter et al. [6], who considered, however, a
coarse-grained bead-spring polymer model supported by a perfectly smooth and flat
repulsive interface. This studywasmotivated by the question, how the glass transition
behavior of a polymer melt is changed in a polymer film, a controversial topic in the
study of the glass transition phenomenon, which had received much experimental,
e.g., [7–9], and simulation attention, e.g., [10–14]. This question is closely related
to the problem whether or not the dramatic slowing down of relaxation phenomena
in glass forming fluids is associated with the growth of a lengthscale over which
motions are strongly correlated [15]. This idea is well established for continuous
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phase transitions in equilibrium systems (“critical slowing down”), but the extent to
which this mechanism can be carried over to glassy freezing is heavily debated [15].

In the following,wediscuss the dielectric relaxationof amelt of 1,4-polybutadiene
(PBD) chains confined by two parallel graphite surfaces, simulated in a chemically
realistic way.We present in detail also the technical aspects of determining the dielec-
tric relaxation behavior for such a chemically realistic simulation. The next section
discusses our model and the simulation technique. In Sect. 3, we then present the
determination of the dielectric response from the MD simulation trajectory, both
in the time domain and in the frequency domain. This section addresses the ques-
tions of anisotropy and heterogeneity of the dipolar relaxation. In Sect. 4, we then
address the analysis of the temperature dependence of the segmental relaxation and its
dependence on film thickness. In addition, the determination of the relaxation time
distribution (RTD) from the simulations is discussed in Sect. 5 and finally Sect. 6
presents some conclusions.

2 Atomistic MD Simulations of PBD Between Graphite Walls

We performed MD simulations in the NVT ensemble (i.e., at constant density and
temperature) extending for up to approximatively 1 µs in time using the Gromacs
package [16]. The simulations were performed for a chemically realistic model of
1,4–polybutadiene (55% trans, 45% cis) for which the dielectric relaxation functions
in the bulk have been studied before [3]. The polymermelt consisted of Nc chains each
of Np = 116 united atom particles representing CH, CH2 and CH3 (treated as CH2)
groups, i.e., the chains consisted of 29 repeat units. The force field for the polymer
melt may be found in the literature [17]. The graphite model was taken from the
literature as well [18] and standard Lorentz-Berthelot combining rules were applied.
The glass transition for this polymer1 was estimated at Tg = 178K from differential
scanning calorimetry (DSC) measurements, and at Tg = 175K from rheological
measurements [19]. The PBD melt was confined between two graphite walls, which
were 10nm (T = 353 K, 323 K, 293 K, 273 K, 253 K and then Nc = 720) and 20 nm
(T = 240 K, 225 K and 213 K and then Nc = 1440) apart, respectively. Periodic
boundary conditionswere applied in the threeCartesian directions to simulate a semi-
infinite polymer film confined between two half-spaces of graphite. The temperature
of themelt was kept fixed using aNosé-Hoover thermostat, whereas the carbon atoms
were frozen. The Newton equations were integrated using a leap-frog algorithm
with a timestep of δt = 1 fs. Since we are considering a weakly polar polymer
at a neutral interface, the influence of the partial atomic charges on the segmental
dynamics can be neglected (same as for the bulk [20]), so that the atomic charges

1 In Ref. [19], a polymer with 7% of 1, 2, 52% of 1,4-trans and 41% of 1,4-cis fractions was
considered.
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Fig. 2 The left picture shows a snapshot of one polymer chain consisting of a repetition of the
monomeric unit CH2−CH = CH−CH2. A cis conformation is isolated and shown with the real
charges on the right [3]. The dipole moment (DIP) of the cis segment is computed using the position
of the particles. The hydrogen atoms lie on bisections between carbon triplets

were not included in the MD simulations to speed-up the calculations. Thus, the
dielectric properties were estimated a-posteriori by reinserting partial charges into
the stored trajectories as shown in Fig. 2. For the bulk, this procedure gave results
which were in quantitatively good agreement with dielectric experiments [3], NMR
spin lattice relaxation time measurements [21] and neutron spin echo measurements
of the chain dynamics [22]. Each chain in the PBD melt contains 13 cis and 16 trans
conformations in a random sequence. A trans conformation has no dipole moment,
so that only the segmental relaxation of the cis-conformations is observed in the
dielectric spectroscopy experiment.

3 The Dielectric Relaxation of PBD at Graphite

To illustrate the effect that the presence of the graphite wall has on the structure of the
melt adjacent to it, we show in Fig. 3 the dependence of the particle density and the
chain center of mass density profiles as a function of the distance from the next wall.
The crystalline graphite surface attracts the united atoms through a van der Waals
attraction. This attraction leads to a strong density layering. Similarly, an adsorbed
layer is observable in the center of mass density. With decreasing temperature the
layering in the particle density becomes sharper, but the distance over which this
layering extends, does not grow significantly in the simulated temperature range.
These structural changes influence the relaxation behavior of the polymer segments
and lead to a heterogeneous response, depending on the distance to the walls, but
only on the scale of a few nanometers, as one would expect from Fig. 3.

Due to the presence of the attraction to the walls, motions parallel (x, y) and
perpendicular (z) to the walls are also not equivalent, so one has heterogeneous as
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Fig. 3 Particle and chain center of mass density profiles. All densities are normalized to their values
in the center of the film, where the particle density is equal to the bulk density at this temperature

well as anisotropic dynamics. In a dielectric experiment on a thin polymer film,
the support will always provide one of the electrodes, so that the electric field is
oriented perpendicular to the walls. According to the discussion in the introduction,
the dielectric experiment is then sensitive to the relaxation of the z-component of the
total dipole moment or respectively the segmental dipole. The measured dielectric
permittivity is then ε = εzz . Themost interesting behavior of the segmental relaxation
function is observed for a layer of segments directly adjacent to the walls, which is
shown in Fig. 4. The dipole relaxation functions in Fig. 4 are not describable as a
simple exponential decays φ(t) = exp(−t/τ0), where t is time and τ0 the relaxation
time constant. After a short time vibrational decay, which is visible in the log-lin plot
in the inset and which happens on times below 1ps, there are two more processes
observable.

They can be clearly seen at the higher temperatures but seem to merge at the
lower temperatures. The first of these is the structural relaxation (or α-relaxation) of
the system, the second one an additional decay process linked to the wall-desorption
kinetics [23, 24]. It is known, that theα-process is well described by a stretched expo-
nential decay (Kohlrausch-Williams-Watts, KWW, law) φ(t) = exp[−(t/τKWW)β ],
where the stretching exponent obeys 0 < β < 1 and τKWW is the time constant.
We empirically fitted the relaxation functions in Fig. 4 by a sum of two stretched
exponentials to capture the two relaxation processes present,

φ(t) = a0

[

a1 exp
[−(t/τ0)

β0
] + (1 − a1) exp

[ − (t/τ1)
β1

]
]

, (1)

where a0, a1, τ0, β0, τ1 and β1 are the fitting parameters. The overall amplitude, a0,
is smaller than one because the short time vibrational decay can not be captured by
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Fig. 4 Main panel: log—log representation of the segmental dipole relaxation functions as a func-
tion of temperature. The relaxation functions were computed for a layer of width 1.2nm next to the
walls. The functional form of Eq. (1) was fitted to the data (grey full lines). Small panel: log—lin
representation of the same data

this fit. For the center region of the film, the final wall-induced relaxation process is
absent (data not shown) and a single exponential is enough to fit the autocorrelation
functions, in the same way as for the bulk.

3.1 The Dielectric Loss Spectra

The relaxation functions in Fig. 4 span many decades in time and contain processes
on very different time scales, from the fast vibrational motions to the long time
desorption kinetics. To obtain these functions requires a logarithmic sampling in time,
and it is impossible to resolve the whole curve with a resolution adapted to the fastest
process. Thus, the raw simulation data were first interpolated and linearly sampled
over the full time range of observation, and then a Fast Fourier Transform algorithm
was used to obtain the frequency spectrum. In addition, the good fit functions (as
shown by the red lines in Fig. 4) at hand were also used to generate the correlation
functions on a uniformly spaced time grid of width 	t having 226 time points,
which could be used to extend the time range over which the relaxation function was
observed compared to the raw data. This was done for all temperatures.

The Shannon-Nyquist sampling theorem then relates the time increment to the
largest frequency one can resolve, and the lowest frequency is given by the inverse of
the longest time, (226	t)−1, one reaches this way. The time interval 	t depends on
temperature because the longest time scale one has to reach increases with decreas-
ing temperature, so the frequency grid points for which one determines the Fourier
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Fig. 5 Main panel: temperature dependence of the dielectric loss for the layer next to the wall. At
high temperatures the Fourier transforms of the data and the fit agree, at the lowest temperatures,
the Fourier transform of the fit allows for an extrapolation to lower frequencies than obtainable
from the data. Inset: scaled representation of the same data showing a broadening of the frequency
spectra at low temperatures

transform also depend on temperature. The dielectric spectra shown in Fig. 5 show
that the results obtained by transforming the original data and by transforming the fit
functions agree with each other for high temperatures. At the lowest temperatures,
the relaxation becomes so slow that it can not be completely resolved within the
simulation time window. Here the Fourier transforms of the fits (which agree with
those of the data at high frequencies) allow for an extrapolation of the spectra to
lower frequencies.

4 The Temperature Dependence of the α-Process

The temperature dependence of the position of the maximum in the dielectric loss,
which was used in the inset of Fig. 5 to scale the frequencies, gives a measure for the
temperature dependence of theα process.Whenweperform this analysis for different
layer widths starting at the graphite surface, we can obtain an idea on the thickness
dependence of the glass process in PBD films. This temperature dependence is not
described by an Arrhenius law in fragile glass formers to which PBD belongs, rather
it is empirically fitted by the Vogel/Fulcher/Tammann (VFT) equation [15]

f = f∞ exp

[

− Ea

(T − T0)

]

, (2)

or
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Table 1 Results of VFT fits (see Fig. 6) adjusted to the data from the MD simulations

Param. Bulk 1.2 nm 2.5 nm 3.7 nm 5.0 nm

log( f∞) 11.405 ± 0.061 10.758 ± 0.152 10.884 ± 0.128 10.986 ± 0.131 11.027 ± 0.131
Ea 980 ± 53 664 ± 43 691 ± 37 721 ± 39 739 ± 40
T0 141 ± 5 155 ± 1 153 ± 1 151 ± 1 149 ± 1
Tg 173 ± 7 178 ± 3 176 ± 2 175 ± 3 174 ± 3

The glass transition temperature and its (asymptotic standard) error bar are estimated from the fit
parameters using Eq. (3)
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Fig. 6 The relaxation map for various layer thicknesses. The error in the data is smaller than the
size of the symbols. The respective thicknesses are given in the legend. The lines show empirical
VFT fits (see Table1), extrapolating to the known bulk glass transition temperature within the error
bars

T = T0 + Ea

[ln f∞ − ln f ] , (3)

where f∞ (frequency as T → +∞), Ea (activation temperature) and T0 (so-called
ideal glass transition or Vogel temperature) are the fitting parameters. We recall that
onemodel that leads to Eqs. (2) or (3) is based on the idea of regionswhere relaxations
require cooperative rearrangements of the molecules (or monomeric units) that they
contain, implying that the size of these regions diverges at T0. However, the empirical
fits of actual data show (see Table. 1) that T0 always is distinctly smaller than Tg.

The second form allows for the calculation of the glass transition temperature
when the VFT parameters are known. The glass transition temperature corresponds
to a relaxation rate of f = 10−2Hz [25]. Therefore, onemay define here the dielectric
glass transition by Tg = T ( f = 10−2Hz) [1]. When one performs VFT fits to the
data in Fig. 6, one obtains the fit parameters shown in Table1, where also the error
bars of the fit parameters are given.
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There is an obvious jump in the value of the Vogel temperature T0 going from
the bulk to the film data. The reason for this is the change in the temperature range
for which the data are available. The bulk data are taken from Ref. [3] and are given
for 253K ≤ T ≤ 500K, whereas the film data are given for 213K ≤ T ≤ 353K.
This jump reveals the fact that the VFT law actually is not able to cover the complete
temperature dependence from the high temperature liquid to the supercooled regime
close to Tg. This was worked out in pioneering dielectric experiments by Stickel et al.
[26, 27] and was also found for simulations on bulk PBD [20], when the time scale
for incoherent neutron scatteringwas analyzed. Rather than aVFT law, one has to use
two Arrhenius laws to capture the crossover from high temperature liquid-like to low
temperature solid-like relaxation. However, when we look at the prediction for the
glass transition temperature obtainable from theseVFTfits,we can conclude that they
agree with each other and with the experimentally known value within the error bars
inherent in the VFT fitting procedure. There is no indication that the glass transition
temperature changes with a reduction in film thickness, similar to what is found in
recent dielectric experiments, for example in [28, 29]. This conclusion differs from
the one reached in the simulation work by Peter et al. [6]. We explain this difference
by the difference between a coarse-grained and a chemically realistic model. In
a bead-spring coarse-grained model, the glass transition is mostly determined by
density effects alone, so a layering as visible in Fig. 3 leads to strong effects on the
glass transition temperature. In a chemically realistic model, the internal rotation
barriers of the dihedral angles are much more important and induce a larger dynamic
chain stiffness than a bead-spring coarse-grained model possesses, where no torsion
stiffness is included. Removing the torsion potential from the simulation shifts the
glass transition temperature of PBD (simulated at the realistic densities) from about
175K to about 60K [2]. The layering at the walls (or for that purpose, the reduced
density at a free surface) therefore has a much smaller effect on Tg in such realistic
models and in real confined polymer systems then it has for simulations of a coarse-
grained model.

5 The Relaxation Time Distribution

It is astonishing that the two processes clearly visible in the time domain behavior
(Fig. 4) do not lead to separate peaks in the frequency spectra (Fig. 5). This smearing
out of features in the Fourier analysis can be avoidedwhen one instead determines the
relaxation spectrum ρ(τ) (or distribution of relaxation times) of the time domain sig-
nal. Here, the relaxation function is written as an integral over Debye processes, i.e.,

φ(t) =
+∞∫

0

ρ(τ) exp[−t/τ ]dτ , (4)
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where one has to fulfill the normalization condition
∫ +∞
0 ρ(τ)dτ = 1. Eq. (4) may

be reinterpreted as a Laplace transform if one replaces the real variable t by the
complex variable s = ζ + iη (i stands for imaginary unit) and carries out a change of
variables λ = 1/τ . It leads to Eq. (5), where the function ρ(λ) = ρ(1/λ)/λ2 should
be reinterpreted as a spectrum of relaxation rate constants, which is simpler to use
from a mathematical point of view. From there, the function ρ of λ can be calculated
as the inverse Laplace transformL −1

φ of the relaxation function φ using the variable
s. It follows that

Lρ(s) =
+∞∫

0

ρ(λ) exp[−sλ]dλ , (5)

ρ(λ) = 1

2π i

ζ+i∞∫

ζ−i∞
φ(s) exp[+sλ]ds . (6)

Since the functionφ, seeEq. (1), as a function of s = ζ+iη belongs to theHardy space
(i.e., φ is a holomorphic function for 
(s) > 0 and supζ>0

∫ +∞
−∞ |φ(ζ + iη)|2dη <

+∞), the Paley-Wiener theorem allows one to set ζ to zero in equation (6), i.e.,
the inverse Fourier transform of φ(iη) exists, and ρ is a square-integrable function
(i.e.,

∫ +∞
−∞ |ρ(λ)|2dλ < +∞), see [30, 31]. Thus, the inverse Laplace transform

may be written as an inverse Fourier transform. The relaxation rate distributions
were computed for each model φ(t) using the FFT algorithm, after the function φ

was normalized. The computation was done for several integration time windows,
so as to cover a large range of relaxation rate constants. We carefully checked that
the normalization condition was satisfied, and that the relaxation rate distributions
obtained give the model φ(t) according to Eq. (4). Finally, one can convert the results
into distributions of relaxation time constants.

The RTD is able to separate the two processes as shown in Fig. 4 and to reveal their
temperature dependence. This dependence is shown inFig. 7 the layer ofwidth 1.2nm
next to the wall for which the contribution of the desorption process is clearest. For
both processes, the typical relaxation times increase as the temperature is lowered,
however, the time scale for the α-relaxation increases faster than the one for the
desorption process. Thus the two peaks first merge and the relative position of the
two contributions even changes. In addition and for a given temperature, in Fig. 7,
a big red filled circle corresponds to the frequency of the maximum dielectric loss
from Fig. 5. Doing this for the temperature range that was simulated, one obtains a
master line, which indicates that the maximum dielectric loss position in frequency
is a blend of the two processes. One can also conclude that different physics of the
glass transition may be addressed, if one considers the maximum dielectric loss or
the maxima in the relaxation rate distributions.

It is interesting to perform a direct comparison of the analysis in terms of a
superposition of Debye processes and the analysis in terms of a superposition of
harmonic oscillators (Fourier spectrum). We perform this comparison in Fig. 8 for
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the relaxation behavior observed in layers of different thicknesses next to the walls
and for a temperature of 353K. Clearly, the Fourier signal shows a single peak which
only broadens upon reducing the layer thickness for which the dielectric signal is
evaluated (only for the smallest thickness of 1.2nm there is a small shift of the
peak position). Both relaxation processes contribute to this peak and the stronger
contribution of the wall process for the smaller layer thicknesses only leads to the
observed broadening. In contrast, for the RTD a clear bimodal signal is observed.
The peak at lower τ captures the contributions to the α process at this temperature,
the peak at larger τ captures the wall-desorption process. The latter one is completely
absent when one considers a layer in the center of the film as shown by the dashed
line.

6 Conclusion

In this contribution, MD simulations (extending for up to approximatively 1 μs in
time) for a chemically realistic model of 1,4–polybutadiene (55% trans, 45% cis)
confined by graphite walls were performed to address the question of the dielectric
relaxation behavior of a polymer in confinement. Since polybutadiene is a weakly
polar polymer, the partial charges were included after the simulations of the same
but nonpolar polymer. Then, using the fluctuation–dissipation theorem which states
that the linear response of a given system to an external perturbation is expressed in
terms of fluctuation properties of the system in thermal equilibrium, one is able to
estimate the dielectric permittivity from the fluctuations of the dipole moments of the
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fits, as done in Fig. 4. The inset shows the temperature dependence at two indicated thicknesses
at a frequency of f = 2.25 · 108 Hz. Bottom panel: the relaxation time distributions as a function
of the inverse of the relaxation time constant at T = 353K. Data are shown for comparable layer
thicknesses as in the top panel

cis segments in a polymer molecule. The dielectric relaxation functions in the bulk
had been studied before for this polymer. The Fourier spectra and the relaxation time
distributionswere computed from the raw data and from amodel fit capturing the data
(and also extrapolating the behavior to long times). This allows one to conclude that
the confinement introduces mainly a broadening of the frequency spectrum (Fourier
space), which, however, is the result of a sum of two unimodal processes according to
the relaxation time distributions. We estimated the glass transition for this confined
polymer systems using the activation representation, where the frequency of the
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maximum dielectric loss is plotted as a function of inverse temperature. When one
performs standard VFT fits of the temperature dependence of the maximum loss
frequencies, no shift of the extrapolated glass transition temperature with decreasing
film thickness is obtained within the error bars.

Since ourMolecular Dynamics simulations allow us to study the relaxation behav-
ior spatially well resolved (e.g., focusing on monomers that are no further away from
the graphite surface than 1.2 nm), we are able to identify the signals of two distinct
slowly relaxing phenomena, both in the time dependence of relaxation functions (see
Fig. 4) and in the relaxation time spectrum (see Fig. 8): namely glassy freezing of
the same type as in the bulk, and chain desorption kinetics at the graphite wall. The
relaxation time distributions of both processes are broad, and due to their somewhat
different temperature dependence, they merge in the temperature region of interest.
We also show that it is hard to disentangle these processes in the dielectric loss spectra
(see Fig. 5).
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