
Chapter 2

Banach Algebras

In this chapter we present the basic concepts on Banach algebras and C∗-algebras,
which are needed to understand many of the further topics in this book. In particular,
we shall treat the basics of the Gelfand theory for commutative Banach algebras, and
we shall give a proof of the Gelfand-Naimark theorem, which asserts that a com-
mutative C∗-algebra is naturally isomorphic to the algebra of continuous functions
vanishing at infinity on a locally compact Hausdorff space.

2.1 Banach Algebras

Recall the notion of an algebra from Sect. 1.6. A Banach algebra is an algebra A
over the complex numbers together with a norm ‖·‖, in which A is complete, i.e., A
is a Banach space, such that the norm is submultiplicative, i.e., the inequality

‖a · b‖ ≤ ‖a‖‖b‖
holds for all a, b ∈ A. Note that this inequality in particular implies that the multi-
plication on A is a continuous map from A×A → A, which means that if (an)n∈N

and (bn)n∈N are sequences in A converging to a and b, respectively, then the product
sequence anbn converges to ab. This follows from the estimate

‖anbn − ab‖ = ‖anbn − anb + anb − ab‖
≤ ‖an‖‖bn − b‖ + ‖b‖‖an − a‖,

as the latter term tends to zero as n →∞.

Examples 2.1.1

• The algebra Mn(C) equipped with the norm

‖a‖ =
n∑

i,j=1

|ai,j |

is a Banach algebra.
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38 2 Banach Algebras

• For a topological spaceX letC(X) denote the vector space of continuous functions
f : X → C. If X is compact, the space C(X) becomes a commutative Banach
algebra if it is equipped with the sup-norm ‖f ‖X = supx∈X |f (x)|.

• If G is a locally compact group, then L1(G) equipped with ‖ · ‖1 and the convo-
lution product (f , g) �→ f ∗ g is a Banach algebra by Theorem 1.6.2, which is
commutative if and only if G is abelian by Theorem 1.6.4.

• Let V be a Banach space. For a linear operator T : V → V define the operator
norm by

‖T ‖op def= sup
v 
=0

‖T v‖
‖v‖ .

The operator T is called a bounded operator if ‖T ‖op < ∞. By Lemma C.1.2 an
operator is bounded if and only if it is continuous. The set B(V ) of all bounded
linear operators on V is a Banach algebra with the operator norm (see Exercise
2.1 below).

Definition An algebra A is unital if there exists an element 1A ∈ A such that

1Aa = a1A = a for every a ∈ A.

The element 1A is then called the unit of A. It is uniquely determined, for if 1′A
is a second unit, one has 1A = 1A1′A = 1′A. We shall often write 1 for 1A if no
confusion can arise.

Recall that two norms ‖·‖ and ‖·‖′ on a complex vector space V are called equivalent
norms if there is C > 0 with

1

C
‖·‖ ≤ ‖·‖′ ≤ C‖·‖.

In that case, V is complete in the norm ‖·‖ if and only if it is complete in the norm
‖·‖′ and both norms define the same topology on V.

Lemma 2.1.2 Let A be a unital Banach algebra with unit 1. Then ‖1‖ ≥ 1 and
there is an equivalent norm ‖·‖′ such that (A, ‖·‖′) is again a Banach algebra with
‖1‖′ = 1.

With this lemma in mind, we will, when talking about a unital Banach algebra,
always assume that the unit element is of norm one.

Proof In the situation of the lemma one has ‖1‖2 ≥ ‖12‖ = ‖1‖, so ‖1‖ ≥ 1.
For a ∈ A let ‖a‖′ be the operator norm of the multiplication operator Ma , which
sends x to ax, so ‖a‖′ = supx 
=0

‖ax‖
‖x‖ . Then ‖·‖′ is a norm with ‖1‖′ = 1. Since

‖ax‖ ≤ ‖a‖‖x‖, it follows that ‖a‖′ ≤ ‖a‖. On the other hand one has ‖a‖′ =
supx 
=0

‖ax‖
‖x‖ ≥ ‖a·1‖

‖1‖ = ‖a‖
‖1‖ . This shows that ‖·‖ and ‖·‖′ are equivalent. The

inequality ‖ab‖′ ≤ ‖a‖′‖b‖′ is easy to show (See Exercise 2.1). �
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Proposition 2.1.3 Let G be a locally compact group. The algebra A = L1(G) is
unital if and only if G is discrete.

Proof If G is discrete, then the function 1{1} is easily seen to be a unit of A.
Conversely, assume that A = L1(G) possesses a unit φ and G is non-discrete. The
latter fact implies that any unit neighborhood U has at least two points. This implies
by Urysohn’s Lemma (A.8.1) that for every unit-neighborhood U there are two Dirac
functions φU and ψU , both with support in U , such that the supports of φU and ψU

are disjoint, hence in particular, ‖φU − ψU‖1 = 2 for every n ∈ N. The function
φ being a unit means that we have φ ∗ f = f ∗ φ = f for every f ∈ L1(G).
There exists a unit-neighborhood U , such that one has ‖φU ∗ φ − φ‖1 < 1 and
‖ψU ∗ φ − φ‖1 < 1. Hence 2 = ‖φU − ψU‖1 ≤ ‖φU − φ‖1 + ‖φ − ψU‖1 < 2, a
contradiction! Hence the assumption is false and G must be discrete. �

Definition Let A, B be Banach algebras. A homomorphism of Banach algebras is
by definition a continuous algebra homomorphism φ : A → B. This means that
φ is continuous, C-linear and multiplicative, i.e., satisfies φ(ab) = φ(a)φ(b). A
topological isomorphism of Banach algebras is a homomorphism with continuous
inverse, and an isomorphism of Banach algebras is an isomorphism φ, which is an
isometry, i.e., which satisfies ‖φ(a)‖ = ‖a‖ for every a ∈ A. For better distinction
we will call an isomorphism of Banach algebras henceforth an isometric isomorphism
of Banach algebras.

Example 2.1.4 Let Y ⊂ X be a compact subspace of the compact topological
space X. Then the restriction of functions is a homomorphism of Banach algebras
from C(X) to C(Y ). Note that this includes the special case when Y = {x} consists
of a single element. In this case C(Y ) ∼= C, and the restriction is the evaluation
homomorphism δx : C(X) → C mapping f to f (x).

If A is a unital Banach algebra, we denote by A× the group of invertible elements
of A, i.e., the multiplicative group of all a in A, for which there exists some b ∈ A
with ab = ba = 1. This b then is uniquely determined, as for a second such b′ one
has b′ = b′ab = b. Therefore it is denoted a−1 and called the inverse of a.

Recall that for a ∈ A we denote by Br (a) the open ball of radius r > 0 around
a ∈ A, in other words, Br (a) is the set of all z ∈ A with ‖a − z‖ < r .

Lemma 2.1.5 (Neumann series). Let A be a unital Banach algebra, and let a ∈ A
with ‖a‖ < 1. Then 1 − a is invertible with inverse

(1 − a)−1 =
∞∑
n=0

an.

The unit group A× is an open subset of A. With the subspace topology, A× is a
topological group.
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Proof Since ‖a‖ < 1 one has
∑∞

n=0 ‖an‖ ≤ ∑∞
n=0 ‖a‖n < ∞, so the series

b =∑∞
n=0 a

n converges absolutely in A, and we get the first assertion by computing
(1−a)b = (1−a)

∑∞
n=0 a

n =∑∞
n=0 a

n−∑∞
n=0 a

n+1 = 1, and likewise b(1−a) = 1.

For the second assertion let y ∈ A×. As the multiplication on A is continuous, the
map x �→ yx is a homeomorphism. This implies that yB1(1) ⊂ A× is an open
neighborhood of y, so A× is indeed open.

To show that A× is a topological group, it remains to show that the inversion is
continuous on A×. Note that the map a �→∑∞

n=0 a
n = (1 − a)−1 is continuous on

B1(0), which implies that inversion is continuous on B1(1). But then it is continuous
on the open neighborhood yB1(1) ⊂ A× of any y ∈ A×. �

Examples 2.1.6

• Let A = Mn(C). Then the unit group A× is the group of invertible matrices,
i.e., of those matrices a ∈ A with det(a) 
= 0. The continuity of the determinant
function in this case gives another proof that A× is open.

• Let A = C(X) for a compact Hausdorff space X. Then the unit group A× consists
of all f ∈ C(X) with f (x) 
= 0 for every x ∈ X.

2.2 The Spectrum σA(a)

Let A be a unital Banach algebra. For a ∈ A we denote by

Res (a)
def= {λ ∈ C : λ1 − a is invertible}

the resolvent set of a ∈ A. Its complement,

σA(a)
def= C�Res(a)

is called the spectrum of a. Since A× is open in A by Lemma 2.1.5 and since
λ �→ (λ1 − a) is continuous, we see that Res(a) is open, and σA(a) is closed in C.

Examples 2.2.1

• Let A = Mn(C). Then for a ∈ A the spectrum σ (a) equals the set of eigenvalues
of a.

• LetX be a compact topological space, and let A = C(X). For f ∈ A the spectrum
σ (f ) equals the image of the map f : X → C.

Lemma 2.2.2 Let A be a unital Banach algebra. Then for every a ∈ A the spectrum
σ (a) is a closed subset of the closed ball B̄‖a‖(0) around zero of radius ‖a‖, so in
particular, σ (a) is compact.
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Proof As the resolvent set is open, the spectrum is closed. Let a ∈ A, and let λ ∈ C

with |λ| > ‖a‖. We have to show that λ1 − a is invertible. As ‖λ−1a‖ < 1, by
Lemma 2.1.5 one has 1−λ−1a ∈ A×; it follows that λ ·1−a = λ(1−λ−1a) ∈ A×,
so λ ∈ Res(a). �

Definition Let D ⊂ C be an open set, and let f : D → V be a map, where V is a
Banach space. We say that f is holomorphic if for every z ∈ D the limit

f ′(z) = lim
h→0

1

h
(f (z + h) − f (z))

exists in V. Note that if f is holomorphic and α : V → C is a continuous linear
functional, then the function z �→ α(f (z)) is a holomorphic function from D to C.
A holomorphic map is continuous (see Exercise 2.2).

Lemma 2.2.3 Let a ∈ A, then the map f : λ �→ (λ − a)−1 is holomorphic on the
resolvent set Res(a). Here we have written λ for λ1 ∈ A.

Proof Letλ ∈ Res(a), and lethbe a small complex number. Then 1
h

(f (λ+h)−f (λ))
equals

1

h

(
(λ+ h− a)−1 − (λ− a)−1

)

= 1

h
((λ− a) − (λ+ h− a)) (λ+ h− a)−1(λ− a)−1

= −(λ+ h− a)−1(λ− a)−1.

This map is continuous at h = 0, since the inversion is a continuous map on the
resolvent set by Lemma 2.1.5. �

Theorem 2.2.4 Let A be a unital Banach algebra, and let a ∈ A. Then σA(a) 
= ∅.

Proof Assume there exists a ∈ A with empty spectrum. Let α be a continuous
linear functional on A, then the function fα : λ �→ α

(
(a − λ)−1

)
is entire. As α is

continuous, hence bounded, there exists C > 0 such that |α(b)| ≤ C‖b‖ holds for
every b ∈ A. For |λ| > 2‖a‖ we get

|fα(λ)| = |α ((a − λ)−1
) | = 1

|λ| |α
(
(1 − λ−1a)−1

) |

= 1

|λ|

∣∣∣∣∣α
( ∞∑

n=0

(λ−1a)n
)∣∣∣∣∣ ≤

1

|λ|
∞∑
n=0

|α ((λ−1a)n
) |

≤ C

|λ|
∞∑
n=0

‖λ−1a‖n <
C

|λ|
∞∑
n=0

(
1

2

)n
= 2 C

|λ| .
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It follows that the entire function fα is constantly zero by the Theorem of Liouville
[Rud87]. This holds for every α, so the Hahn-Banach Theorem C.1.3 implies that
f : λ �→ (λ− a)−1 is the zero map as well, which is a contradiction. �

Corollary 2.2.5 (Gelfand-Mazur). Let A be a unital Banach algebra such that all
non-zero elements a ∈ A are invertible. Then A = C1.

Proof If a ∈ A�C1 we have λ1−a invertible for every λ ∈ C. But this means that
σA(a) = ∅, which contradicts Theorem 2.2.4. �

Definition For an element a of a unital Banach algebra A we define the spectral
radius r(a) of a by

r(a)
def= sup{|λ| : λ ∈ σA(a)}.

In what follows next we want to prove an important formula for the spectral radius
r(a).

Theorem 2.2.6 (Spectral radius formula). Let A be a unital Banach algebra. Then
r(a) ≤ ‖a‖ and

r(a) = lim
n→∞‖a

n‖ 1
n .

Proof As ‖an‖ ≤ ‖a‖n the first assertion follows from the second. We shall show
the inequalities

r(a) ≤ lim inf ‖an‖ 1
n ≤ lim sup ‖an‖ 1

n ≤ r(a),

which clearly implies the theorem.

For λ ∈ σA(a), the equation λn1 − an = (λ1 − a)
∑n−1

j=0 λ
jan−1−j implies that

λn ∈ σA(an) and hence that |λ|n ≤ ‖an‖ for every n ∈ N. Thus r(a) ≤ ‖an‖ 1
n for

every n ∈ N, which gives the first inequality.

To see that lim sup ‖an‖ 1
n ≤ r(a) recall (λ1− a)−1 = λ−1(1− a

λ
)−1 =∑∞

n=0 a
n 1
λn+1

for |λ| > ‖a‖, and hence, as the function is holomorphic there, the series converges
in the norm-topology for every |λ| > r(a), as we derive from Corollary B.6.7 applied
to z = 1

λ
.

For a fixed |λ| > r(a), it follows that the sequence an 1
λn+1 is bounded in A, so that

there exists a constant C ≥ 0 such that ‖an‖ ≤ C|λ|n+1 for every n ∈ N. Taking
n-th roots on both sides and then applying lim sup shows that lim sup ‖an‖ 1

n ≤ |λ|.
Since this holds for every |λ| > r(a) we get lim sup ‖an‖ 1

n ≤ r(a). �
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Lemma 2.2.7 Suppose that A is a closed subalgebra of the unital Banach algebra
B such that 1 ∈ A. Then

∂σA(a) ⊂ σB(a) ⊂ σA(a)

for every a ∈ A, where ∂σA(a) denotes the boundary of σA(a) ⊂ C.

Proof If a ∈ A is invertible in A it is invertible in B ⊃ A. So ResA(a) ⊂ ResB(a),
which is equivalent to the second inclusion.

To see the first inclusion let λ ∈ ∂σA(a) ⊂ σA(a), and let (λn)n∈N be a sequence in
ResA(a) with λn → λ. If λ ∈ ResB(a), then A  (λn1 − a)−1 → (λ1 − a)−1 ∈ B.

Since A is closed in B we get (λ1 − a)−1 ∈ A, which implies that λ ∈ ResA(a).
This contradicts λ ∈ σA(a). �

Example 2.2.8 Let D ⊂ C be the closed disk of radius 1 around zero, and let D̊ be
its interior. The disk-algebra A is by definition the subalgebra of C(D) consisting
of all functions that are holomorphic inside D̊. Since uniform limits of holomorphic
functions are again holomorphic, the disk-algebra is a closed subalgebra of C(D) and
hence a Banach algebra. Let T = ∂D be the circle group. By the maximum principle
for holomorphic functions, every f ∈ A takes its maximum on T. Therefore the
restriction homomorphism A → C(T) mapping f ∈ A to its restriction f |T is an
isometry. So A can be viewed as a sub Banach algebra of B = C(T). For f ∈ A and
λ ∈ C the function (λ− f )−1 is defined in A if and only if λ is not in the image of f.
Therefore, the spectrum σA(f ) equals the image f (D). Likewise, considered as an
element of B, the spectrum of f equals σB(f ) = f (T).

2.3 Adjoining a Unit

The results of the previous section always depended on the existence of a unit in
the Banach algebra A. But many important Banach algebras, like L1(G) for a non-
discrete locally compact group G, do not have a unit. We solve this problem by
adjoining a unit if needed. Indeed, if A is any Banach algebra (with or without unit),
then the cartesian product,

Ae def= A× C

equipped with the obvious vector space structure and the multiplication

(a, λ)(b,μ) = (ab + λb + μa, λμ)

becomes an algebra with unit (0, 1). If we define ‖(a, λ)‖ = ‖a‖ + |λ|, one easily
checks that Ae becomes a Banach algebra containing A ∼= A × {0} as a closed
subalgebra of codimension 1. We call Ae the unitization of A.
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If A already has a unit 1A, then the algebra Ae is isomorphic to the direct sum
A ⊕ C of the algebras A and C, where we define multiplication component-wise.
The isomorphism from Ae to A⊕ C is given by (a, λ) �→ (a + λ1A) ⊕ λ.

If A is a Banach algebra without unit then we define the spectrum of a ∈ A as

σA(a)
def= σAe (a),

where we identify A with a subset of Ae via a �→ (a, 0). With this convention,
all results from the previous section, in particular the spectral radius formula, have
natural analogues in the non-unital case.

A very important class of commutative Banach-Algebras without unit is given as
follows:

Definition Suppose that X is a locally compact Hausdorff space. A function f :
X → C is said to vanish at infinity if for every ε > 0 there exists a compact
set K = Kε ⊂ X such that |f (x)| < ε holds for every x ∈ X�K . Let C0(X)
denote the vector space of all continuous functions on X that vanish at infinity.
Then C0(X) is a Banach algebra with point-wise multiplication and the sup-norm
‖f ‖X = supx∈X |f (x)|. Note that C0(X) is unital if and only if X is compact in
which case C0(X) equals C(X).

Example 2.3.1 As a crucial example we want to compute the unitization C0(X)e.
We recall the construction of the one point compactification, also called Alexandrov
compactification X∞, of the space X. Let∞ denote a new point and X∞ = X∪{∞},
so X∞ is just a set that contains X as a subset plus one more element. On X∞ one
introduces the following topology. A set U ⊂ X∞ is open if it is either already
contained in X and open in the topology of X, or if ∞ ∈ U and the set X�U is a
compact subset of X. Note that X being a Hausdorff space implies that compact sets
in X are closed in X. Every continuous function in C(X∞) defines, by restriction,
a continuous function on X. In this way one can identify C0(X) with the subspace
of all continuous functions f on X∞ with f (∞) = 0. This ultimately justifies the
notion “vanishing at infinity”.

Lemma 2.3.2 There is a canonical topological isomorphism of Banach algebras
C(X∞) ∼= C0(X)e.

Proof Extending every f ∈ C0(X) by zero to X∞, we consider C0(X) as a subspace
of C(X∞). Define ψ : C0(X)e → C(X∞) by ψ(f , λ) = f + λe, where e(x) = 1
for every x ∈ X∞. Then ψ is an isomorphism of algebras. For the norms one has

‖ψ(f , λ)‖X∞ = sup
x∈X∞

|f (x) + λ| ≤ sup
x∈X

|f (x)| + |λ| = ‖(f , λ)‖.

This implies that ψ is continuous. On the other hand, one has

sup
x∈X∞

|f (x) + λ| ≥ |f (∞) + λ| = |λ|.
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Since |f (x)| ≤ |λ| + |f (x) + λ| for every x, we then get

‖(f , λ)‖ = sup
x∈X∞

|f (x)| + |λ| ≤ 3‖ψ(f , λ)‖X∞ .

The lemma is proven. Note that ψ is not an isometry, but restricted to C0(X), it
becomes one. �

2.4 The Gelfand Map

In this section we shall always assume that A is a commutative Banach algebra. In
this case we define the structure space 	A to be the set of all non-zero continuous
algebra homomorphisms m : A → C. This space is often called the maximal
ideal space, which is justified by Theorem 2.5.2 below, that sets up a bijection
between 	A and the set of maximal ideals of A. The elements of 	A are also called
multiplicative linear functionals, which is why we use the letter m to denote them.
If A is unital, it follows automatically that m(1) = 1 for every m ∈ 	A, since
m(1) = m(12) = m(1)2 implies m(1) = 0 or m(1) = 1. Now m(1) = 0 implies
m = 0, a case which is excluded.

Examples 2.4.1

• Let A = C0(X) for a locally compact Hausdorff space X. For x ∈ X one gets an
element mx of 	A defined by mx(f ) = f (x).

• Let A = L1(A), whereA is an LCA-group. Letχ ∈ Â, then the mapmχ : A → C

defined by

mχ (f ) = f̂ (χ ) =
∫
A

f (x)χ (x) dx

is an element of 	A as follows from Lemma 1.7.2.

For a given multiplicative functional m ∈ 	A, there exists precisely one extension
of m to a multiplicative functional on Ae given by

me(a, λ) = m(a) + λ.

A multiplicative functional of Ae that is not extended from A must vanish on A,
and hence it must be equal to the augmentation functional m∞ of Ae given by
m∞(a, λ) = λ. Thus we get

	Ae = {me : m ∈ 	A} ∪ {m∞}.
We now want to equip 	A with a natural topology that makes 	A into a locally
compact space (compact if A is unital). For a Banach space V let V ′ be the dual
space consisting of all continuous linear maps α : V → C. This is a Banach space
with the norm ‖α‖ = supv∈V�{0}

|α(v)|
‖v‖ .
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Lemma 2.4.2 Suppose that A is a commutative Banach algebra. Let m ∈ 	A. Then
m is continuous with ‖m‖ ≤ 1. If A is unital, then ‖m‖ = 1.

Proof We first consider the case when A is unital. If a ∈ A, then m(a−m(a)1) = 0,
which implies that a − m(a)1 is not invertible in A, so that m(a) ∈ σ (a). Since
σ (a) ⊂ B‖a‖(0), this implies that |m(a)| ≤ ‖a‖ for every a ∈ A. By m(1) = 1 we
see that m is continuous with ‖m‖ = 1.

If A is not unital, the extension me : Ae → C is continuous with ‖me‖ = 1. But
then the restriction m = me|A is also continuous with ‖m‖ ≤ 1. �

It follows from the lemma that 	A ⊂ B̄ ′ ⊂ A′, where B̄ ′ = {f ∈ A′ : ‖f ‖ ≤ 1} is
the closed ball of radius one. Recall that for any normed space V, the weak-*-topology
on V ′ is defined as the initial topology on V ′ defined by the maps {δv : v ∈ V } with
δv : V ′ → C; α �→ α(v). It is the topology of point-wise convergence, i.e., a net
(αj )j in V ′ converges to α ∈ V ′ in the weak-* topology if and only if αj (v) → α(v)
for all v ∈ V .

We need the following important fact, which, as we shall see, is a consequence of
Tychonov’s Theorem.

Theorem 2.4.3 (Banach-Alaoglu). Let V be a normed (complex) vector space. Then
the closed unit ball

B̄ ′ def= {f ∈ V ′ : ‖f ‖ ≤ 1} ⊂ V ′

equipped with the weak-*-topology is a compact Hausdorff space.

Proof Recall D = {z ∈ C : |z| ≤ 1}. For α ∈ B̄ ′ and v ∈ V one has |α(v)| ≤ ‖v‖,
so α(v) is an element of the compact set D ‖v‖. So one gets an injective map

B̄ ′ →
∏
v∈V

D‖v‖

α → (α(v))v.

Note that the product space on the right is Hausdorff and compact by Tychonov’s
Theorem A.7.1. Since a net in the product space converges if and only if it converges
in each component, the weak-*-topology on B̄ ′ coincides with the subspace topology
if one views B̄ ′ as a subspace of the product space. Thus, all we need to show is that
B̄ ′ is closed in the product space. An element x of the product space lies in B̄ ′ if and
only if its coordinates satisfy xv+w = xv + xw and xλv = λxv for all v, w ∈ V and
every λ ∈ C. These conditions define a closed subset of the product. �

If A is any commutative Banach algebra, we equip the structure space 	A ⊂ A′ of
the algebra A with the topology induced from the weak-*-topology on A′.

Lemma 2.4.4 Suppose that A is a commutative Banach algebra. Then the inclusion
map � : 	A → 	Ae that maps m to me is a homeomorphism onto its image.



http://www.springer.com/978-3-319-05791-0


	Chapter 2 Banach Algebras
	2.1 Banach Algebras
	2.2 The Spectrum σA(a)
	2.3 Adjoining a Unit
	2.4 The Gelfand Map




