
Chapter 2

Fuzziness and Induction

This chapter examines the foundations of IFC by analyzing the concepts of deduc-

tion, fuzziness, and induction. The first subsection explains the classical concepts of

sharp and deductive logic and classification; in this section, it is presupposed that all

terms are clearly defined. The second section explains what happens when those

definitions have fuzzy boundaries and provides the tools, fuzzy logic and fuzzy

classification, to reason about this. However, there are many terms that do not only

lack a sharp boundary of term definition but also lack a priori definitions. Therefore,

the third subsection discusses how such definitions can be inferred through induc-

tive logic and how such inferred propositional functions define inductive fuzzy

classes. Finally, this chapter proposes a method to derive precise definitions of

vague concepts—membership functions—from data. It develops a methodology for

membership function induction using normalized likelihood comparisons, which

can be applied to fuzzy classification of individuals.

2.1 Deduction

This subsection discusses deductive logic and classification, analyzes the classical

as well as the mathematical (Boolean) approaches to propositional logic, and shows

their application to classification. Deduction provides a set of tools for reasoning

about propositions with a priori truth-values—or inferences of such values. Thus, in

the first subsection, the concepts of classical two-valued logic and algebraic Bool-

ean logic are summarized. The second subsection explains how propositional

functions imply classes and, thus, provide the mechanism for classification.
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2.1.1 Logic

In the words of John Stuart Mill (1843), logic is “the science of reasoning, as well as

an art, founded on that science” (p. 18). He points out that the most central entity of

logic is the statement, called a proposition:

The answer to every question which it is possible to frame, is contained in a proposition, or

assertion. Whatever can be an object of belief, or even of disbelief, must, when put into

words, assume the form of a proposition. All truth and all error lie in propositions. What, by

a convenient misapplication of an abstract term, we call a truth, is simply a true proposition.

(p. 27)

The central role of propositions indicates the importance of linguistics in phi-

losophy. Propositions are evaluated for their truth, and thus, assigned a truth-value

because knowledge and insight is based on true statements.

Consider the universe of discourse in logic: The set of possible statements or

propositions, P. Logicians believe that there are different levels of truth, usually

two (true or false); in the general case, there is a set, T , of possible truth-values that

can be assigned to propositions. Thus, the proposition p∈P is a meaningful piece

of information to which a truth-value, τ pð Þ∈ T , can be assigned. The

corresponding mapping of τ : P ! T from propositions P to truth-values T is

called a truth function.
In general logic, operators can be applied to propositions. A unary operator,

O1 : P1 ! T , maps a single proposition into a set of transformed truth-values. Accord-

ingly, a binary operator,O2 : P1 � P2 ! T , assigns a truth-value to a combination of

two propositions, and an n-ary operator,On : P1 � � � � � Pn ! T , is a mapping of

a combination of n propositions to a new truth-value.

The logic of two-valued propositions is the science and art of reasoning about

statements that can be either true or false. In the case oftwo-valued logic, or

classical logic (CL), the set of possible truth values, T CL :¼ true; falsef g, contains
only two elements, which partitions the class of imaginable propositions P into

exactly two subclasses: the class of false propositions and the class of true ones.

With two truth-values, there are four (22) possible unary logical operators;

however, there is only one possible non-trivial unary operator other than identity,

truth, and falsehood: A proposition,p∈P, can be negated (not p), which inverts the
truth-value of the original proposition. Accordingly, for a combination of two

propositions, p and q, each with two truth-values, there are 16 (22
2

) possible binary

operators. The most common binary logical operators are disjunction, conjunction,

implication, and equivalence: A conjunction of two propositions, p and q, is true if
both propositions are true. A disjunction of two propositions, p or q, is true if one of
the propositions is true. An implication of q by p is true if, whenever p is true, q is true
as well. An equivalence of two propositions is true if p implies q and q implies p.

Classical logic is often formalized in the form of a propositional calculus. The

syntax of classical propositional calculus is described by the concept of variables,

unary and binary operators, formulae, and truth functions. Every proposition is

represented by a variable (e.g., p); every proposition and every negation of a
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proposition is a term; every combination of terms by logical operators is a formula;

terms and formulae are themselves propositions; negation of the proposition p is

represented by Øp; conjunction of the two propositions p and q is represented by

p ^ q; disjunction of the two propositions p and q is represented by p _ q;
implication of the proposition q by the proposition p is represented by p ) q;
equivalence between the two propositions p and q is represented by p � q; and

there is a truth function, τCL : P ! T CL, mapping from the set of propositions p into
the set of truth values T . The semantics of propositional calculus are defined by the

values of the truth function, as formalized in Formula (2.1) through Formula (2.5).

τCL Øpð Þ :¼ if τ pð Þ ¼ trueð Þ false

else true:

�
ð2:1Þ

τCL p ^ qð Þ :¼ if
�
τ pð Þ ¼ τ

�
q
�
¼ true

�
true

else false:

�
ð2:2Þ

τCL p _ qð Þ :¼ if
�
τ pð Þ ¼ τ

�
q
�
¼ false

�
false

else true:

�
ð2:3Þ

τCL p ) qð Þ :¼ τCL Øp _ qð Þ ð2:4Þ

τCL p � qð Þ :¼ τCL p ) q ^ q ) pð Þ ð2:5Þ

George Boole (1847) realized that logic can be calculated using the numbers

0 and 1 as truth values. His conclusion was that logic is mathematical in nature:

I am then compelled to assert, that according to this view of the nature of Philosophy, Logic

forms no part of it. On the principle of a true classification, we ought no longer to associate

Logic and Metaphysics, but Logic and Mathematics. (p. 13)

In Boole’s mathematical definition of logic, the numbers 1 and 0 represents the

truth-values and logical connectives are derived from arithmetic operations: sub-

traction from1 as negation and multiplication as conjunction. All other operators

can be derived from these two operators through application of the laws of logical

equivalence. Thus, in Boolean logic (BL), the corresponding propositional calculus
is called Boolean algebra, stressing the conceptual switch from metaphysics to

mathematics. Its syntax is defined in the same way as that of CL, except that the

Boolean truth function, τBL : P ! T BL, maps from the set of propositions into the set

of Boolean truth values, T BL :¼ 0; 1f g, that is, the set of the two numbers 0 and 1.

The Boolean truth function τBL defines the semantics of Boolean algebra. It is

calculated using multiplication as conjunction and subtraction from 1 as negation,

as formalized in Formula (2.6) through Formula (2.8). Implication and equivalence

can be derived from negation and disjunction in the same way as in classical

propositional calculus.
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τBL Øpð Þ :¼ 1� τBL pð Þ ð2:6Þ

τBL p ^ qð Þ :¼ τBL pð Þ � τBL qð Þ ð2:7Þ

τBL p _ qð Þ :¼ Ø
�
Øp ^ Øq

�
¼ 1�

�
1� τBL pð Þ

�
�
�
1� τBL

�
q
�� ð2:8Þ

2.1.2 Classification

Class logic, as defined by Glubrecht, Oberschelp, and Todt (1983), is a logical

system that supports statements applying a classification operator. Classes of

objects can be defined according to logical propositional functions. According to

Oberschelp (1994), a class, C ¼ {i ∈ U | Π(i)}, is defined as a collection of

individuals, i, from a universe of discourse, U, satisfying a propositional function,

Π, called the classification predicate. The domain of the classification operator,

{. |.} : ℙ ! U*, is the class of propositional functions ℙ and its range is the

powerclass of the universe of discourseU*, which is the class of possible subclasses

of U. In other words, the class operator assigns subsets of the universe of discourse
to propositional functions. A universe of discourse is the set of all possible

individuals considered, and an individual is a real object of reference. In the

words of Bertrand Russell (1919), a propositional function is “an expression

containing one or more undetermined constituents, such that, when values are

assigned to these constituents, the expression becomes a proposition” (p. 155).

In contrast, classification is the process of grouping individuals who satisfy

the same predicate into a class. A (Boolean) classification corresponds to a mem-

bership function, μC : U ! {0, 1}, which indicates with a Boolean truth-value

whether an individual is a member of a class, given the individual’s classification

predicate. As shown by Formula (2.9), the membership μ of individual i in class

C ¼ {i ∈ U | Π(i)} is defined by the truth-value τ of the classification predicate

Π(i). In Boolean logic, the truth-values are assumed to be certain. Therefore,

classification is sharp because the truth values are either exactly 0 or exactly 1.

μC ið Þ :¼ τ Π ið Þð Þ∈ 0; 1f g ð2:9Þ

Usually, the classification predicate that defines classes refers to attributes of

individuals. For example, the class “tall people” is defined by the predicate “tall,”

which refers to the attribute “height.” An attribute, X, is a function that character-

izes individuals by mapping from the universe of discourse U to the set of possible

characteristics χ (Formula 2.10).

X : U ! χ ð2:10Þ

There are different types of values encoding characteristics. Categorical attri-
butes have a discrete range of symbolic values. Numerical attributes have a range of
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numbers, which can be natural or real. Boolean attributes have Boolean truth-values
{0, 1} as a range. Ordinal attributes have a range of categories that can be ordered.

On one hand, the distinction between univariate and multivariate classification,

the variety, depends on the number of attributes considered for the classification

predicate. The dimensionality of the classification, on the other hand, depends on

the number of dimensions, or linearly independent attributes, of the classification

predicate domain.

In a univariate classification (UC), the classification predicate Π refers to one

attribute, X, which is true for an individual, i, if the feature X(i) equals a certain

characteristic, c ∈ χ.

μUC ið Þ :¼ τBL X ið Þ ¼ cð Þ ð2:11Þ

In a multivariate classification (MVC), the classification predicate refers to

multiple element attributes. The classification predicate is true for an individual,

i, if an aggregation, a, of several characteristic constraints has a given value,

c ∈ χ.

μMVC ið Þ :¼ τBL a X1 ið Þ, � � �,Xn ið Þð Þ ¼ cð Þ ð2:12Þ

A multidimensional classification (MDC) is a special case of a multivariate

classification that refers to n -tuples of attributes, such that the resulting class is

functionally dependent on the combination of all n attributes.

μMDC ið Þ :¼ τBL
X1 ið Þ
⋮

Xn ið Þ

2
4

3
5 ¼

C1

⋮
Cm

2
4

3
5

0
@

1
A ð2:13Þ

This distinction between multivariate and multidimensional classification is

necessary for the construction of classification functions. Multivariate classifica-

tions can be derived as functional aggregates of one-dimensional membership

functions, in which the influence of one attribute to the resulting aggregate does

not depend on the other attributes. In contrast, in multidimensional classification,

the combination of all attributes determines the membership value, and thus, one

attribute has different influences on the membership degree for different combina-

tions with other attribute values. Therefore, multidimensional classifications need

multidimensional membership functions that are defined on n -tuples of possible

characteristics.
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2.2 Fuzziness

There are many misconceptions about fuzzy logic. Fuzzy logic is not fuzzy. Basically,

fuzzy logic is a precise logic of imprecision and approximate reasoning. (Zadeh, 2008,

p. 2051)

Fuzziness, or vagueness (Sorensen, 2008), is an uncertainty regarding concept

boundaries. In contrast to ambiguous terms, which have several meanings, vague

terms have one meaning, but the extent of it is not sharply distinguishable. For

example, the word tall can be ambiguous, because a tall cat is usually smaller than a

small horse. Nevertheless, the disambiguated predicate “tall for a cat” is vague,

because its linguistic concept does not imply a sharp border between tall and

small cats.

Our brains seem to love boundaries. Perhaps, making sharp distinctions quickly

was a key cognitive ability in evolution. Our brains are so good at recognizing

limits, that they construct limits where there are none. This is what many optical

illusions are based on: for example, Kaniza’s (1976) Illusory Square (Fig. 2.1).

An ancient symbol of sharp distinction between classes is the yin and yang

symbol (Fig. 2.2). It symbolizes a dualistic worldview—the cosmos divided into

light and dark, day and night, and so on.

Nevertheless, in reality, the transition between light and dark is gradual during

the 24 h of a day. This idea of gradation of our perceptions can be visualized by a

fuzzy yin and yang symbol (Fig. 2.3). Sorensen (2008) explains that many-valued

logics have been proposed to solve the philosophical implications of vagueness.

One many-valued approach to logic is fuzzy logic, which allows infinite truth-

values in the interval between 0 and 1.

In the next section, introducing membership functions, fuzzy sets, and fuzzy

propositions are discussed; these are the bases for fuzzy logic, which in fact, is a

precise logic for fuzziness. Additionally, it is shown how fuzzy classifications are

derived from fuzzy propositional functions.

2.2.1 Fuzzy Logic

Lotfi Zadeh (2008) said, “Fuzzy logic is not fuzzy” (p. 2751). Indeed, it is a precise

mathematical concept for reasoning about fuzzy (vague) concepts. If the domain of

those concepts is ordinal, membership can be distinguished by its degree. In
classical set theory, an individual, i, of a universe of discourse, U, is either

completely a member of a set or not at all. As previously explained, according to

Boolean logic, the membership function μS : U ! {0, 1}, for a crisp set S, maps

from individuals to sharp truth-values. As illustrated in Fig. 2.4, a sharp set (the big

dark circle) has a clear boundary, and individuals (the small bright circles) are

either a member of it or not. However, one individual is not entirely covered by the

big dark circle, but is also not outside of it.
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In contrast, a set is called fuzzy by Zadeh (1965) if individuals can have a gradual
degree of membership to it. In a fuzzy set, as shown by Fig. 2.5, the limits of the set

are blurred. The degree of membership of the elements in the set is gradual,

illustrated by the fuzzy gray edge of the dark circle. The membership function,

μF : U ! [0, 1], for a fuzzy set, F, indicates the degree to which individual i is a
member of F in the interval between 0 and 1. In Fig. 2.4, the degree of membership

of the small circles i is defined by a normalization n of their distance d from the

center c of the big dark circle b, μb(i) ¼ n(d(i, c)). In the same way as in classical

set theory, set operators can construct complements of sets and combine two sets by

union and intersection. Those operators are defined by the fuzzy membership

function. In the original proposal of Zadeh (1965), the set operators are defined

by subtraction from 1, minimum and maximum. The complement,F, of a fuzzy set,
F, is derived by subtracting its membership function from 1; the union of two sets,

F [ G, is derived from the maximum of the membership degrees; and the inter-

section of two sets, F \ G, is derived from the minimum of the membership

degrees.

Accordingly, fuzzy subsets and fuzzy power sets can be constructed. Consider

the two fuzzy sets A and B on the universe of discourse U. In general, A is a fuzzy

subset of B if the membership degrees of all its elements are smaller or equal to the

membership degrees of elements in B (Formula 2.14). Thus, a fuzzy power set, B�e,
of a (potentially fuzzy) set B is the class of all its fuzzy subsets (Formula 2.15).

Fig. 2.1 There is no square.

Adapted from “Subjective

Contours” by G. Kaniza,

1976, Copyright 1976 by

Scientific American, Inc
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Ae�B :¼ 8x∈U : μA xð Þ � μB xð Þ ð2:14Þ

B�e :¼ Ae�U
�� Ae�B

� �
ð2:15Þ

With the tool of fuzzy set theory in hand, the sorites paradox cited in the

introduction (Chap. 1) can be tackled in a much more satisfying manner. A heap

of wheat grains can be defined as a fuzzy subset, Heap e� ℕ, of natural numbers ℕ
of wheat grains. A heap is defined in the English language as “a great number or

large quantity” (merriam-webster.com, 2012b). For instance, one could agree that

1,000 grains of wheat is a large quantity, and between 1 and 1,000, the “heapness”

of a grain collection grows logarithmically. Thus, the membership function of the

number of grains n ∈ ℕ in the fuzzy setHeap can be defined according to Formula

(2.16). The resulting membership function is plotted in Fig. 2.6.

Fig. 2.3 Shades of grey:
fuzzy yin and yang symbol

with a gradation between

opposites, representing

metaphysical monism

Fig. 2.2 Black or white:

conventional yin and yang

symbol with a sharp

distinction between

opposites, representing

metaphysical dualism.

Adapted from http://www.

texample.net/tikz/

examples/yin-and-yang/

(accessed 02.2012) with

permission (creative

commons license CC BY

2.5)
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μHeap nð Þ :¼
0 if n ¼ 0

1 if n > 1000

0:1448ln nð Þ else:

8<
: ð2:16Þ

Based on the concept of fuzzy sets, Zadeh (1975a) derived fuzzy propositions
(FP) for approximate reasoning: A fuzzy proposition has the form “x is L,” where

Fig. 2.5 A visualization of

a fuzzy set

Fig. 2.4 A visualization of

a classical set with sharp

boundaries
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x is an individual of a universe of discourse U and L is a linguistic term, defined as a
fuzzy set on U. As stated by Formula (2.17), the truth-value τFL of a fuzzy

proposition is defined by the degree of membership μL of x in the linguistic term L.

τFP x is Lð Þ :¼ μL xð Þ ð2:17Þ

If A is an attribute of x, a fuzzy proposition can also refer to the corresponding

attribute value, such as x is L :¼ A (x) is L. The fuzzy set L on U is equivalent to the

fuzzy set L on the domain of the attribute, or dom(A). In fact, the set can be defined
on arbitrarily deep-nested attribute hierarchies concerning the individual. As an

example, let us look at the fuzzy proposition, “Mary is blond.” In this sentence, the

linguistic term “blond” is a fuzzy set on the set of people, which is equivalent to a

fuzzy set blond on the color of people’s hair (Formula 2.18).

τFP “Mary is blond”ð Þ ¼ μblond Maryð Þ � μblond color hair Maryð Þð Þð Þ ð2:18Þ

Fuzzy propositions (FP) can be combined to construct fuzzy formulae using the

usual logic operators not (Ø), and (^), and or (_), for which the semantics are

defined by the fuzzy truth function τFP : F ! [0, 1], mapping from the class of

fuzzy propositions F into the set of Zadehan truth values in the interval between

1 and 0. Let “x is P” and “x is Q” be two fuzzy propositions on the same individual.

Then their combination to fuzzy formulae is defined as follows (Formula 2.19

through Formula 2.21): negation by the inverse of the corresponding fuzzy set,

conjunction by intersection of the corresponding fuzzy sets, and disjunction by

union of the corresponding fuzzy sets.

τFP Ø x is Pð Þð Þ :¼ μP xð Þ; ð2:19Þ

τFP x is P ^ x is Qð Þ :¼ μP\Q xð Þ; ð2:20Þ

τFP x is P _ x is Qð Þ :¼ μP[Q xð Þ ð2:21Þ

Zadeh’s fuzzy propositions are derived from statements of the form “X is Y.”

They are based on the representation operator is : U � U�e ! F mapping from the

Fig. 2.6 Fuzzy set theory

applied to the sorites

paradox
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universe U of discourse and its fuzzy powersetU�e to the class of fuzzy propositions
F . Consequently, fuzzy propositions in the sense of Zadeh are limited to statements

about degrees of membership in a fuzzy set.

Generally, logic with fuzzy propositions—or more precisely, a propositional

logic with Zadehan truth values in the interval between 0 and 1, a “Zadehan Logic”
(ZL)—can be viewed as a generalization of Boole’s mathematical analysis of logic

to a gradual concept of truth. In that sense, ZL is a simple generalization of Boolean

logic (BL), in which the truth value of any proposition is not only represented by

numbers, but also can be anywhere in the interval between 0 and 1.

According to the Stanford Encyclopedia of Philosophy (Hajek, 2006), fuzzy

logic, in the narrow sense, is a “symbolic logic with a comparative notion of truth

developed fully in the spirit of classical logic” (“Fuzzy Logic,” paragraph3). If ZL is

viewed as a generalization of BL, fuzzy propositions of the form “X is Y” are a

special case, and propositions and propositional functions of any form can have

gradual values of truth. Accordingly, ZL is defined by the truth function τZL : P
! T ZL mapping from the class of propositionsP to the set of Zadehan truth-values

T ZL ¼ 0; 1½ 	. Consequently, fuzzy set membership is a special case of fuzzy

proposition, and the degree of membership of individual x in another individual

y can be defined as the value of truth of the fuzzy proposition x ∈ y
(Formula 2.22).

μy xð Þ :¼ τZL x∈ yð Þ ð2:22Þ

The Zadehan truth function τZL defines the semantics of ZL. As in Boolean

algebra, its operators can be defined by subtraction from 1 as negation, and

multiplication as conjunction, as formalized in Formula (2.23) and Formula

(2.24). Disjunction, implication, and equivalence can be derived from negation

and conjunction in the same way as in Boolean logic.

τZL Øpð Þ :¼ 1� τZL pð Þ ð2:23Þ
τZL p ^ qð Þ :¼ τZL pð Þ � τZL qð Þ ð2:24Þ

In that light, any proposition with an uncertain truth-value smaller than 1 or

greater than 0 is a fuzzy proposition. Additionally, every function with the range

[0,1] can be thought of as a truth function for a propositional function. For example,

statistical likelihood L(y|x) can be seen as a truth function for the propositional

function, “y is likely if x,” as a function of x. This idea is the basis for IFC proposed

in the next section. The usefulness of this generalization is shown in the chapter on

applications, in which fuzzy propositions such as “customers with characteristic

X are likely to buy product Y” are assigned truth-values that are computed using

quantitative prediction modeling.
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2.2.2 Fuzzy Classification

A fuzzy class, eC :¼
 i∈U
�� eΠ ið Þ

� �
, is defined as a fuzzy set eC of individuals i,

whose membership degree is defined by the Zadehan truth-value of the propositioneΠ ið Þ. The classification predicate, eΠ , is a propositional function interpreted in ZL.

The domain of the fuzzy class operator, 
 :
��:� �

: ℙ ! U�e, is the class of proposi-
tional functions, ℙ, and the range is the fuzzy power set, U�e (the set of fuzzy

subsets) of the universe of discourse, U. In other words, the fuzzy class operator

assigns fuzzy subsets of the universe of discourse to propositional functions.

Fuzzy classification is the process of assigning individuals a membership degree

to a fuzzy set, based on their degrees of truth of the classification predicate. It has

been discussed, for example, by Zimmermann (1997), Del Amo et al. (1999), and

Meier et al. (2008). A fuzzy classification is achieved by a membership function,

μeC : U ! 0; 1½ 	, that indicates the degree to which an individual is a member of a

fuzzy class, eC, given the corresponding fuzzy propositional function, eΠ . This

membership degree is defined by the Zadehan truth-value of the corresponding

proposition, eΠ ið Þ, as formalized in Formula (2.25).

μeC ið Þ :¼ τZL eΠ ið Þ
� �

ð2:25Þ

In the same way as in crisp classification, the fuzzy classification predicate refers

to attributes of individuals. Additionally, Zadehan logic introduces two new types

of characteristics. Zadehan attributes have a range of truth values represented by

T ZL :¼ 0; 1½ 	. Linguistic attributes have a range of linguistic terms (fuzzy sets)

together with the Zadehan truth-value of membership in those terms (Zadeh,

1975b).

In a univariate fuzzy classification (UF), the fuzzy classification predicate eΠ
refers to one attribute, X, and it corresponds to the membership degree of the

attribute characteristic X(i) in a given fuzzy restriction (Zadeh, 1975a), R∈ χe�,
which is a fuzzy subset of possible characteristics χ (Formula 2.26).

μUF ið Þ :¼ τZL X ið Þ is Rð Þ ð2:26Þ

In a multivariate fuzzy classification (MVF), eΠ refers to multiple attributes. The

truth function of the classification predicate for an individual, i, equals to an

aggregation, a, of several fuzzy restrictions of multiple attribute characteristics,

Xj(i), j ¼ 1 . . . n (Formula 2.27).

μMVF ið Þ :¼ a τZL X1 ið Þ is R1, . . . ,Xn ið Þ is Rnð Þ
� �

ð2:27Þ

In a multidimensional fuzzy classification (MDF), eΠ refers to n -tuples of

functionally independent attributes. The membership degree of individuals in a
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multidimensional class is based on an n -dimensional fuzzy restriction, Rn

(Formula 2.28), which is a multidimensional fuzzy set on the Cartesian product

of the attribute ranges with a multidimensional membership function of

μMDF : range (X1) � . . . � range (Xn) ! [0, 1].

μMDF ið Þ :¼ τZL
X1 ið Þ
⋮

Xn ið Þ

2
4

3
5is Rn

0
@

1
A ð2:28Þ

2.3 Induction

Given a set of certainly true statements, deduction works fine. The problem is that

the only certainty philosophy can offer is Descartes’ “I think therefore I am”

proposition; however, postmodern philosophers are not so sure about the

I anymore (Precht, 2007, p. 62 ff). Therefore, one should be given a tool to reason

under uncertainty, and this tool is induction. In this chapter, inductive logic is

analyzed, the application of induction to fuzzy classification is discussed, and a

methodology for membership function induction using normalized ratios and

differences of empirical conditional probabilities and likelihoods is proposed.

2.3.1 Inductive Logic

Traditionally, induction is defined as drawing general conclusions from particular

observations. Contemporary philosophy has shifted to a different view because, not

only are there inductions that lead to particular conclusions, but also there are

deductions that lead to general conclusions. According to Vickers (2009) in the

Stanford Encyclopedia of Philosophy (SEP), it is agreed that induction is a form of

inference that is contingent and ampliative (“The contemporary notion of induc-

tion”, paragraph 3), in contrast to deductive inference, which is necessary and

explicative. Induction is contingent, because inductively inferred propositions are

not necessarily true in all cases. And it is ampliative because, in Vickers words,

“induction can amplify and generalize our experience, broaden and deepen our

empirical knowledge”(“The contemporary notion of induction”, paragraph 3). In

another essay in the SEP, inductive logic is defined as “a system of evidential

support that extends deductive logic to less-than-certain inferences” (Hawthorne,

2008, “Inductive Logic,” paragraph 1). Hawthorne admits that there is a degree of

fuzziness in induction: In an inductive inference, “the premises should provide
some degree of support for the conclusion” (“Inductive Logic,” para. 1). The degree
of support for an inductive inference can thus be viewed as a fuzzy restriction of

possible inferences, in the sense of Zadeh (1975a). Vickers (2009) explains that the

problem of induction is two-fold: The epistemic problem is to define a method to

distinguish appropriate from inappropriate inductive inference. The metaphysical
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problem is to explain in what substance the difference between reliable and

unreliable induction actually exists.

Epistemologically, the question of induction is to find a suitable method to infer

propositions under uncertainty. State of the art methods rely on empirical proba-

bilities or likelihoods. There are many interpretations of probability (Hájek, 2009).

For the context of this thesis, one may agree that a mathematical probability, P(A)
numerically represents how probable it is that a specific proposition A is true:

P(A) � τZL(" A is probable "); and that the disjunction of all possible propositions,

the probability space Ω, is certain, i.e., P(Ω) ¼ 1.

In practice, probabilities can be estimated by relative frequencies, or sampled

empirical probabilities p in a sample of n observations, defined by the ratio between
the number of observations, i, in which the proposition Ai is true, and the total

number of observations (Formula 2.29).

P Að Þ � p Að Þ :¼

Xn

i¼1
τ Aið Þ

n
ð2:29Þ

A conditional probability (Weisstein, 2010a) is the probability for an outcome x,
given that y is the case, as formalized in Formula (2.30).

P x
�� y� �

¼ P x ^ yð Þ
P yð Þ ð2:30Þ

Empirical sampled conditional probabilities can be applied to compute likeli-

hoods. According to James Joyce, “in an unfortunate, but now unavoidable, choice

of terminology, statisticians refer to the inverse probability PH(E) as the ‘likeli-

hood’ of H on E” (Joyce, 2003, “Conditional Probabilities and Bayes’ Theorem,”

paragraph 5). The likelihood of the hypothesis H is an estimate of how probable the

evidence or known data E is, given that the hypothesis is true. Such a probability is

called a “posterior probability” (Hawthorne, 2008, “inductive Logic,” paragraph 5),

that is, a probability after measurement, shown by Formula (2.31).

L H
�� E� �

:¼ p E
�� H� �

ð2:31Þ

In the sense of Hawthorne (2008), the general law of likelihood states that, for a

pair of incompatible hypotheses H1 and H2, the evidence E supports H1 over H2, if

and only if p(E |H1) > p(E |H2) The likelihood ratio (LR) measures the strength of

evidence for H1 over H2 (Formula 2.32). Thus, the “likelihoodist” (sic; Hawthorne,

2008, “Likelihood Ratios, Likelihoodism, and the Law of Likelihood,” paragraph

5) solution to the epistemological problem of induction is the likelihood ratio as

measure of support for inductive inference.
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LR H1 > H2

�� E� �
:¼

L H2

��E� �
L H1

��E� � ð2:32Þ

According to Hawthorne, the prior probability of a hypothesis, p0(H ), that is, an

estimated probability prior to measurement of evidence E, plays an important role

for inductive reasoning. Accordingly, Bayes’ theorem can be interpreted and

rewritten using measured posterior likelihood and prior probability in order to

apply it to the evaluation of scientific hypotheses. According to Hawthorne

(2008), the posterior probability of hypothesis H conditional to evidence E is

equal to the product of the posterior likelihood of H given E and the prior

probability of H, divided by the (measured) probability of E (Formula 2.33).

p H
�� E� �

¼
L H

�� E� �
� p0 Hð Þ

p Eð Þ ð2:33Þ

What if there is fuzziness in the data, in the features of observations, or in the

theories? How is likelihood measured when the hypothesis or the evidence is fuzzy?

If this fuzziness is ordinal, that is, if the extent of membership in the fuzzy terms can

be ordered, a membership function can be defined, and an empirical probability of

fuzzy events can be calculated. Analogous to Dubois and Prade (1980), a fuzzy

event eA in a universe of discourse U is a fuzzy set on U with a membership function

μeA : U ! 0; 1½ 	. For categorical elements of U, the estimated probability after

n observations is defined as the average degree of membership of observations

i in eA, as formalized in Formula (2.34).

P eA� 	
� p eA� 	

¼

X n

i¼1
μeA ið Þ

n
ð2:34Þ

By application of Formula (2.34) to Formula (2.31), the likelihood of ordinal

fuzzy hypothesis eH , given ordinal fuzzy evidence eE, can be defined as a conditional
probability of fuzzy events, as shown in Formula (2.35).

L eH �� eE� 	
¼ p eE �� eH� 	

¼

Xn

i¼1
μeH\eE ið ÞXn

i¼1
μeH ið Þ

ð2:35Þ

The question of the metaphysical problem of induction is: what is the substance

of induction? In what kind of material does the difference between reliable and

unreliable inductive inference exist? The importance of this question cannot be

underestimated, since reliable induction enables prediction. A possible answer

could be that the substance of an induction is the amount of information contained

in the inference. This answer presupposes that information is a realist category, as

suggested by Chmielecki (1998). According to Shannon’s information theory
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(Shannon, 1948), the information contained in evidence x about hypothesis y is

equal to the difference between the uncertainty (entropy), H(y), about the hypoth-
esis y and the resulting uncertainty, Hx(y), after observation of the evidence x,
I(x, y) ¼ H(y) � Hx(y) ¼ ΣxΣyp(x ^ y)log2p(x ^ y)/( p(x)p(y)). Shannon’s quan-
tity of information is defined in terms of joint probabilities. However, by applica-

tion of Shannon’s theory, the metaphysical problem of induction is transferred to a

metaphysical problem of probabilities because, according to Shannon, the basic

substance of information is the probability of two signals occurring simultaneously

compared to the probability of occurring individually. (One could link this solution

to the concept of quantum physical particle probability waves [Greene, 2011], but

this would go beyond the scope of this thesis and would be highly speculative;

therefore, this link is not explored here. Suffice it to state that probability apparently

is a fundamental construct of matter and waves as well as of information and

induction.)

2.3.2 Inductive Classification

Inductive classification is the process of assigning individuals to a set based on a

classification predicate derived by an inductive inference. Inductive classification

can be automated as a form of supervised machine learning (Witten & Frank, 2005):

a class of processes (algorithms or heuristics) that learn from examples to decide

whether an individual, i, belongs to a given class, y, based on its attributes.

Generally, supervised machine learning processes induce a model from a dataset,

which generalizes associations in the data in order to provide support for inductive

inference. This model can be used for predicting the class membership of new data

elements. Induced classification models, called classifiers, are first trained using a

training set with known class membership. Then, they are applied to a test or

prediction set in order to derive class membership predictions. Examples of clas-

sification learning algorithms that result in classifications are decision trees, clas-

sification rules, and association rules. In those cases, the model consists of logical

formulae of attribute values, which predict a crisp class value.

Data are signs (signals) that represent knowledge such as numbers, characters, or

bits. The basis for automated data analysis is a systematic collection of data on

individuals. The most frequently used data structure for analytics is the matrix, in

which every individual, i (a customer, a transaction, a website, etc.), is represented

by a row, and every attribute, Xk, is represented by a column. Every characteristic,

Xk(i), of individual i for attribute Xk is represented by one scalar value within the

matrix.

A training dataset d is an m � (n + 1) matrix with m rows, n columns for

X1, . . ., Xn and a column Y indicating the actual class membership. The columns

Xk, 1 � k � n are called analytic variables, and Y is called the target variable,
which indicates membership in a target class y. In case of a binary classification, for
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each row index i, the label Y(i) is equal to 1 if and only if individual i is in class

y (Formula 2.36).

Y ið Þ :¼ 1 if i∈ y
0 else:

�
ð2:36Þ

A machine learning process for inductive sharp classification generates a model

My(i), mapping from the Cartesian product of the analytic variable ranges into the

set {0, 1}, indicating inductive support for the hypothesis that i ∈ y. As discussed
in the section on induction, the model should provide support for inductive infer-

ences about an individual’s class membership: Given My(i) ¼ 1, the likelihood of

i ∈ y should be greater than the likelihood of i =2 y.
The inductive model My can be applied for prediction to a new dataset with

unknown class indicator, which is either a test set for performance evaluation or a

prediction set, where the model is applied to forecast class membership of new data.

The test set or prediction set d0 has the same structure as the training set d, except
that the class membership is unknown, and thus, the target variable Y is empty. The

classifier My, derived from the training set, can be used for predicting the class

memberships of representations of individuals i ∈ d. The model output prediction

My(i) yields an inductive classification defined by {i | My(i) ¼ 1}.

In order to evaluate the quality of prediction of a crisp classifier model, several

measures can be computed. In this section, likelihood ratio and Pearson correlation

are mentioned. The greater the ratio between likelihood for target class member-

ship, given a positive prediction, and the likelihood for target class membership,

given a negative prediction, the better the inductive support of the model. Thus, the

predictive model can be evaluated by the likelihood ratio of target class member-

ship given the model output (Formula 2.37).

LR Y ið Þ ¼ 1
�� My ið Þ ¼ 1

� �
:¼

p My ið Þ ¼ 1
�� Y ið Þ ¼ 1

� �
p
�
My ið Þ ¼ 1

�� Y ið Þ ¼ 0
� ð2:37Þ

Working with binary or Boolean target indicators and model indicators allows

the evaluation of predictive quality by a measure of correlation of the two variables

My and Y (Formula 2.38). The correlation between two numerical variables can be

measured by the Pearson correlation coefficient as the ratio between the covariance

of the two variables and the square root of the product of individual variances

(Weisstein, 2010b).

corr My; Y
� �

¼
E My � avg My

� �� �
Y � avg Yð Þð Þ

� �
stddev My

� �
� stddev Yð Þ

ð2:38Þ

The advantage of the correlation coefficient is its availability in database sys-

tems. Every standard SQL (structured query language) database has an implemen-

tation of correlation as an aggregate function. Thus, using the correlation
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coefficient, evaluating the predictive performance of a model in a database is fast

and simple. However, it is important to stress that evaluating predictions with a

measure of correlation is only meaningful if the target variable as well as the

predictive variable are Boolean, Zadehan, or numeric in nature. It will not work
for ordinal or categorical target classes, except if they are transformed into a set of

Boolean variables.

For example, in database marketing, the process of target group selection uses

classifiers to select customers who are likely to buy a certain product. In order to do

this, a classifier model can be computed in the following way: Given set of

customers C, we know whether they have bought product A or not. Let c be an

individual customer, and CA be the set of customers who bought product A. Then,
the value Y(c) of target variable Y for customer c is defined in Formula (2.39).

Y cð Þ ¼ 1 if c∈CA

0 else:

�
ð2:39Þ

The analytic variables for customers are selected from every known customer

attribute, such as age, location, transaction behavior, recency, frequency, and

monetary value of purchase. The aim of the classifier induction process is to learn

a model, MCA
, that provides a degree of support for the inductive inference that a

customer is interested in the target product A. This prediction, MCA
cð Þ∈ 0; 1f g,

should provide a better likelihood to identify potential buyers of product A, and it

should optimally correlate with the actual product usage of existing and future

customers.

2.4 Inductive Fuzzy Classification

The understanding of IFC in the proposed research approach is an inductive

gradation of the degree of membership of individuals in classes. In many interpre-

tations, the induction step consists of learning fuzzy rules (e.g., Dianhui, Dillon, &
Chang, 2001; Hu, Chen, & Tzeng, 2003; Roubos, Setnes, & Abonyi, 2003; Wang &

Mendel, 1992). In this thesis, IFC is understood more generally as inducing

membership functions to fuzzy classes and assigning individuals to those classes.

In general, a membership function can be any function mapping into the interval

between 1 and 0. Consequently, IFC is defined as the process of assigning individ-

uals to fuzzy sets for which membership functions are generated from data so that

the membership degrees are based on an inductive inference.

An inductive fuzzy class, y0, is defined by a predictive scoring model, My : U
! [0, 1] , for membership in a class, y. This model represents an inductive

membership function for y0, which maps from the universe of discourse U into

the interval between 0 and 1 (Formula 2.40).
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μy0 : U ! 0; 1½ 	 :¼ My ð2:40Þ

Consider the following fuzzy classification predicate P(i, y) :¼ “i is likely a

member of y.” This is a fuzzy proposition (Zadeh, 1975a) as a function of i and y,
which indicates that there is inductive support for the conclusion that individual

i belongs to class y. The truth function, τZL, of this fuzzy propositional function can
be defined by the membership function of an inductive fuzzy class, y0. Thus, P(i, y)
is a fuzzy restriction on U defined by μy0 (Formula 2.41).

τZL “i is likely a member of y”ð Þ :¼ My ið Þ ð2:41Þ

In practice, any function that assigns values between 0 and 1 to data records can

be used as a fuzzy restriction. The aim of IFC is to calculate a membership function

to a fuzzy set of likely members in the target class. Hence, any type of classifier

with a normalized numeric output can be viewed as an inductive membership

function to the target class, or as a truth function for the fuzzy proposition P(i, y).
State of the art methods for IFC in that sense include linear regression, logistic

regression, naı̈ve Bayesian classification, neural networks, fuzzy classification

trees, and fuzzy rules. These are classification methods yielding numerical pre-

dictions that can be normalized in order to serve as a membership function to the

inductive fuzzy class y0 (Formula 2.42).

y
0
:¼ i∈U

�� i is likely a member of y
� �

ð2:42Þ

2.4.1 Univariate Membership Function Induction

This section describes methods to derive membership functions for one variable

based on inductive methods. First, unsupervised methods are described, which do

not require learning from a target class indicator. Second, supervised methods for

predictive membership functions are proposed.

Numerical attributes can be fuzzified in an unsupervised way, that is, without a

target variable, by calculating a membership function to a fuzzy class x is a large
number, denoted by the symbol ": the fuzzy set of attribute values that are large

relative to the available data. This membership function, μ" : dom(C) ! [0, 1],

maps from the attribute domain of the target variable into the set of Zadehan truth

values. This unsupervised fuzzification serves two purposes. First, it can be used to

automatically derive linguistic interpretations of numerical data, such as “large” or

“small.” Second, it can be used to transform numerical attributes into Zadehan

target variables in order to calculate likelihoods of fuzzy events. There are two

approaches proposed here to compute a membership function to this class: percen-

tile ranks and linear normalization based on minimum and maximum.

For a numeric or ordinal variable X with a value x E dom(X), the percentile rank
(PR) is equal to the sampled probability that the value of the variable X is smaller

than x. This sampled probability is calculated by the percentage of values in dom(X)
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that are smaller than or equal to x. This sampled probability can be transformed into

a degree of membership in a fuzzy set. Inductively, the sampled probability is taken

as an indicator for the support of the inductive inference that a certain value, Xi, is

large in comparison to the distribution of the other attribute values. The member-

ship degree of x in the fuzzy class “relatively large number”, symbolized by ", is
then defined as specified in Formula (2.43).

μ" xð Þ :¼ p X < xð Þ ð2:43Þ

For example, customers can be classified by their profitability. The percentile

rank of profitability can be viewed as a membership function of customers in the

fuzzy set " of customers with a high profitability. Figure 2.7 shows an example of an

IFC-PR of customer profitability for a financial service provider.

A simpler variant of unsupervised fuzzification for generating a membership

function for a relatively large number (") is linear normalization (IFC-LN). For a

numerical attribute C, it is defined as the relative distance to the minimal attribute

value, as specified in Formula (2.44).
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μ" C ið Þð Þ :¼ C ið Þ �min Cð Þ
max Cð Þ �min Cð Þ ð2:44Þ

For the membership function induction (MFI) methods in the following sections,

the target variable for supervised induction must be a Zadehan variable, Y : U
! [0, 1] mapping from the universe of discourse (the set of possible individuals)

into the interval of Zadehan truth values between 0 and 1. Thus, Yi) indicates the
degree of membership of individual i in the target class y. In the special case of a

Boolean target class, Yi) is equal to 1 if i ∈ y, and it is equal to 0 if i =2 y. In the

analytic training data, a target class indicator Y can be deduced from data attributes

in the following way:

• If an attribute, A, is Zadehan with a range between 0 and 1, it can be defined

directly as the target variable. In fact, if the variable is Boolean, this implies that

it is also Zadehan, because it is a special case (Formula 2.45).

Zadehan Að Þ ) μy ið Þ :¼ A ið Þ ð2:45Þ

• If an attribute, B, is categorical with a range of n categories, it can be

transformed into n Boolean variables μyk k ¼ 1, 2, . . . , nð Þ, where μyk ið Þ indicates
whether record i belongs to class k, as specified by Formula (2.46).

categorical Bð Þ ) μyk ið Þ∶ ¼ 1 if B ið Þ ¼ k
0 else:

�
ð2:46Þ

• If an attribute, C, is numeric, this thesis proposes application of an unsupervised

fuzzification, as previously specified, in order to derive a Zadehan target vari-

able, as formalized in Formula (2.47). This is called an inductive target
fuzzification (ITF).

numerical Cð Þ ) μy ið Þ :¼ μ" C ið Þð Þ ð2:47Þ

The second approach for univariate membership function induction is super-

vised induction based on a target variable. In order to derive membership functions

to inductive fuzzy classes for one variable based on the distribution of a second

variable, it is proposed to normalize comparisons (ratios and differences) of likeli-

hoods for membership function induction. For example, a normalized likelihood

ratio can represent a membership degree to an inductive fuzzy class.

The basic idea of inductive fuzzy classification based on normalized likelihood
ratios (IFC-NLR) is to transform inductive support of target class membership into

a membership function with the following properties: The higher the likelihood of

i ∈ y in relation to i =2 y, the greater the degree membership of i in y0. For an
attribute X, the NLR function calculates a membership degree of a value x E dom(X)
in the predictive class y0, based on the likelihood of target class membership. The
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resulting membership function is defined as a relation between all values in the

domain of the attribute X and their NLRs.

As discussed in Sect. 2.3.1, following the principle of likelihood (Hawthorne,

2008), the ratio between the two likelihoods is an indicator for the degree of support

for the inductive conclusion that i ∈ y, given the evidence that X(i) ¼ x In order to
transform the likelihood ratio into a fuzzy set membership function, it can be

normalized in the interval between 0 and 1. Luckily, for every ratio, R ¼ A/B,
there exists a normalization, N ¼ A/(A + B), having the following properties:

• N is close to 0 if R is close to 0.

• N is equal to 0.5 if and only if R is equal to 1.

• N is close to 1 if R is a large number.

This kind of normalization is applied to the aforementioned likelihood ratio in

order to derive the NLR function. Accordingly, the membership μ of an attribute

value x in the target class prediction y’ is defined by the corresponding NLR, as

formalized in Formula (2.48).

μy0 xð Þ :¼ NLR y xjð Þ ¼ L y xjð Þ
L y xjð Þ þ L Øy xjð Þ ð2:48Þ

In fact, one can demonstrate that the NLR function is equal to the posterior

probability of y, conditional to x, if both hypotheses y and Øy are assumed to be of

equal prior probability (Formula 2.52), by application of the second form of Bayes’

theorem (Joyce, 2003), as presented in Formula (2.50). The trick is to express the

probability of the evidence p(x) in terms of a sum of products of prior probabilities,

p0, and measured likelihoods, L, of the hypothesis and its alternative by application

of Formula (2.33).

Theorem
NLR y xjð Þ ¼ p y xjð Þ , p0 yð Þ ¼ p0 Øyð Þ ð2:49Þ

Proof

p y
�� x� �

¼
p0 yð ÞL y

�� x� �
p xð Þ

�
c:f: Formula 2:33

�

¼
p0 yð ÞL y

�� x� �
p0 yð ÞL y

�� x� �
þ p0 Øyð ÞL Øy

�� x� �


if p xð Þ ¼ p

�
y
�
p
�
x
�� y�þ p

�
Øy

�
p
�
x
�� Øy�

and p yð Þ :¼ p0
�
y
�
and p

�
x
�� y� :¼ L

�
y
�� x��

¼
L y

�� x� �
L y

�� x� �
þ L Øy

�� x� � 

if p0 yð Þ :¼: p0

�
Øy

��
¼: NLR y

�� x� �
, q:e:d:

ð2:50Þ

Alternatively, two likelihoods can be compared by a normalized difference, as

shown in Formula (2.51). In that case, the membership function is defined by a
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normalized likelihood difference (NLD), and its application for classification is

called inductive fuzzy classification by normalized likelihood difference
(IFC-NLD). In general, IFC methods based on normalized likelihood comparison
can be categorized by the abbreviation IFC-NLC.

μy0 xð Þ :¼ NLD y xjð Þ ¼ L y xjð Þ � L Øy xjð Þ þ 1

2
ð2:51Þ

If a target attribute is continuous, it can be mapped into the Zadehan domain of

numeric truth-values between 0 and 1, and membership degrees can be computed

by a normalized ratio of likelihoods of fuzzy events. If the target class is fuzzy, for

example because the target variable is gradual, the likelihoods are calculated by

fuzzy conditional relative frequencies based on fuzzy set cardinality (Dubois &

Prade, 1980). Therefore, the formula for calculating the likelihoods is generalized

in order to be suitable for both sharp and fuzzy characteristics. Thus, in the general

case of variables with fuzzy truth-values, the likelihoods are calculated as defined in

Formula (2.52).

L y xjð Þ :¼

Xn

i¼1
μx ið Þμy ið ÞXn

i¼1
μy ið Þ

L Øy xjð Þ :¼

Xn

i¼1
μx ið Þ 1� μy ið Þ

� �
Xn

i¼1
1� μy ið Þ
� �

ð2:52Þ

Accordingly, the calculation of membership degrees using the NLR function

(Formula 2.52) works for both categorical and fuzzy target classes and for categor-

ical and fuzzy analytic variables. For numerical attributes, the attribute values can

be discretized using quantiles, and a piecewise linear function can be approximated

to average values in the quantiles and the corresponding NLR. A membership

function for individuals based on their attribute values can be derived by aggrega-

tion, as explained in Sect. 2.4.2.

Following the different comparison methods for conditional probabilities

described by Joyce (2003), different methods for the induction of membership

degrees using conditional probabilities are proposed in Table 2.1. They have been

chosen in order to analytically test different Bayesian approaches listed by Joyce

(2003) for their predictive capabilities. Additionally, three experimental measures

were considered: logical equivalence, normalized correlation, and a measure based

on minimum and maximum. In those formulae, x and y are assumed to be Zadehan

with a domain of [0,1] or Boolean as a special case. These formulae are evaluated as

parameters in the meta-induction experiment described in Sect. 4.2.

A method for discretization of a numerical range is the calculation of quantiles

or n-tiles for the range of the analytical variable. A quantile discretization using n-
tiles partitions the variable range into n intervals having the same number of

individuals. The quantile QZ
n (i) for an attribute value Z(i), of a numeric attribute
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Z and an individual i, is calculated using Formula (2.53), where n is the number of

quantiles, m is the total number of individuals or data records, rankZ(i) is the

position of the individual in the list of individuals sorted by their values of attribute

Z, and trunc(r) is the closest integer that is smaller than the real value r.

QZ
n ið Þ :¼ trunc

n

m
rankZ ið Þ � 1ð Þ

� 	
ð2:53Þ

The rank of individual i relative to attribute Z, rankZ(i), in a dataset S is the

number of other individuals, h, that have higher values in attribute Z, calculated
using Formula (2.54).

rankZ ið Þ :¼ h∈ S
�� 8i∈ S : Z hð Þ > Z ið Þ

� ��� �� ð2:54Þ

In order to approximate a linear function, the method of two-dimensional

piecewise linear function approximation (PLFA) is proposed. For a list of points

in ℝ2, ordered by the first coordinate, (hx1, y1i, hx2, y2i, . . ., hxn, yni), for every
point hx1, y1i except the last one (i ¼ 1, 2, . . ., n � 1), a linear function, fi(x) ¼
aix + bi, can be interpolated to its neighbor point, where ai is the slope (For-

mula 2.55) and bi is the intercept (Formula 2.56) of the straight line.

Table 2.1 Proposed formulae for induction of membership degrees

Method Formula

Likelihood of y given x (L) L(y|x) ¼ p(x|y)

Normalized likelihood ratio (NLR)
NLR y

�� x� �
¼ p x

�� y
� �

p x
�� y

� �
þp x

�� Øy
� �

Normalized likelihood ratio unconditional (NLRU)
NLRU y

�� x� � p x
�� y

� �
p x

�� y
� �

þp xð Þ

Normalized likelihood difference (NLD)
NLD y

�� x� �
¼ p x

�� y
� �

�p x
�� Øy

� �
þ1

2

Normalized likelihood difference unconditional

(NLDU) NLDU y
�� x� �

¼ p y
�� x

� �
�p xð Þþ1

2

Conditional probability of y given x (CP) p(y|x)

Normalized probability ratio (NPR)
NPR y

�� x� �
¼ p y

�� x
� �

p y
�� x

� �
þp y

�� Øx
� �

Normalized probability ratio unconditional (NPRU)
NPRU y

�� x� �
¼ p y

�� x
� �

p y
�� x

� �
þp yð Þ

Normalized probability difference (NPD)
NPD y

�� x� �
¼ p y

�� x
� �

�p y
�� Øx

� �
þ1

2

Normalized probability difference unconditional

(NPDU) NPDU y
�� x� �

¼ p y
�� x

� �
�p yð Þþ1

2

Equivalence—if and only if (IFF) avg

((1 � x � (1 � y)) � (1 � y � (1 � x)))

Minimum–maximum (MM) p y
�� x

� �
þminz∈ dom Xð Þ p y

�� z
� �� �

minz∈ dom Xð Þ p y
�� z

� �� �
þmaxz∈ dom Xð Þ p y

�� z
� �� �

Normalized correlation (NC) corr x;yð Þþ1

2
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ai :¼
yiþ1 � yi
� �
xiþ1 � xið Þ ð2:55Þ

bi :¼ yi � aixi ð2:56Þ

For the calculation of membership degrees for quantiles, the input is a list of

points with one point for every quantile k. The first coordinate is the average of the
attribute values in k. The second coordinate is the inductive degree of membership

μy0 in target class y, given Z(i) is in quantile k, for example derived using the NLR

function.

yk :¼ μy0 kð Þ
xk :¼ avg

�
Z ið Þ Qz

n

�� �
i
�
¼ k

� ð2:57Þ

Finally, a continuous, piecewise affine membership function can be calculated,

truncated below 0 and above 1, and is composed of straight lines for every quantile

k ¼ 1, . . ., n � 1; n � 2 of the numeric variable Z (Formula 2.58).

μy xð Þ :¼

0 a1xþ b1 � 0 _ an�1xþ bn�1 � 0j
a1xþ b1 x � x2j
⋮ ⋮
akxþ bk xk < x � xkþ1

⋮ ⋮
an�1xþ bn�1 x > xn�1j
1 a1xþ b1 � 1 _ an�1xþ bn�1 � 1

8>>>>>>>><
>>>>>>>>:

ð2:58Þ

The number of quantiles can be optimized, so that the correlation of the

membership function with the target variable is optimal, as illustrated in Fig. 2.8.

2.4.2 Multivariate Membership Function Induction

As shown in Fig. 2.9, the proposed process for inducing a multivariate inductive

fuzzy class consists of preparing the data, inducing univariate membership func-

tions for the attributes, transforming the attribute values into univariate target

membership degrees, classifying individuals by aggregating the fuzzified attributes

into a multivariate fuzzy classification, and evaluating the predictive performance

of the resulting model.

The idea of the process is to develop a fuzzy classification that ranks the

inductive membership of individuals, i, in the target class y gradually. This fuzzy

classification will assign individuals an inductive membership degree to the pre-

dictive inductive fuzzy class y0 using the multivariate model μy0 . The higher the
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inductive degree of membership μy0 ið Þ of an individual in y0, the greater the degree

of inductive support for class membership in the target class y.
In order to accomplish this, a training set is prepared from source data, and the

relevant attributes are selected using an interestingness measure. Then, for every

attribute Xk, a membership function, μ k
y0
: dom Xkð Þ ! 0; 1½ 	, is defined. Each μ k

y0
is

induced from the data such that the degree of membership of an attribute value Xk(i)
in the inductive fuzzy class y0 is proportional to the degree of support for the

inference that i ∈ y. After that, in the univariate classification step, each variable,

Xk, is fuzzified using μ k
y0
. The multivariate fuzzy classification step consists of

aggregating the fuzzified attributes into one multivariate model, μy0 , of data

elements that represents the membership function of individual i in y0. This induc-
tive fuzzy class corresponds to an IFC that can be used for predictive ranking of

data elements. The last step of the process is model evaluation through analyzing

the prediction performance of the ranking. Comparing the forecasts with the real

class memberships in a test set does this. In the following paragraphs, every step of

the IFC process is described in detail.

In order to analyze the data, combining data from various sources into a single

coherent matrix composes a training set and a test set. All possibly relevant

attributes are merged into one table structure. The class label Y for the target

variable has to be defined, calculated, and added to the dataset. The class label is

Fig. 2.8 Computation of membership functions for numerical variables

Fig. 2.9 Proposed method for multivariate IFC
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restricted to the Zadehan domain, as defined in the previous section. For multiclass

predictions, the proposed process can be applied iteratively.

Intuitively, the aim is to assign to every individual a membership degree in the

inductive fuzzy class y0. As explained in Sect. 2.3.1, this degree indicates support

for the inference that an individual is a member of the target class y. The member-

ship function for y0 will be derived as an aggregation of inductively fuzzified

attributes. In order to accomplish this, for each attribute, a univariate membership

function in the target class is computed, as described in the previous section.

Once the membership functions have been induced, the attributes can be

fuzzified by application of the membership function to the actual attribute values.

In order to do so, each variable, Xk, is transformed into an inductive degree of

membership in the target class. The process of mapping analytic variables into the

interval [0, 1] is an attribute fuzzification. The resulting values can be considered a

membership degree to a fuzzy set. If this membership function indicates a degree of

support for an inductive inference, it is called an inductive attribute fuzzification
(IAF), and this transformation is denoted by the symbol Î inFormula (2.59).

Xk ið ÞÎ μy0 Xk ið Þð Þ ð2:59Þ

The most relevant attributes are selected before the IFC core process takes place.

The proposed method for attribute selection is a ranking of the Pearson correlation

coefficients (Formula 2.38) between the inductively fuzzified analytic variables and

the (Zadehan) target class indicator Y. Thus, for every attribute, Xk, the relevance

regarding target y is defined as the correlation of its inductive fuzzification with the
target variable (see Sect. 3.1.1).

In order to obtain a multivariate membership function for individuals i derived
from their fuzzified attribute values μy0 Xk ið Þð Þ, their attribute value membership

degrees are aggregated. This corresponds to a multivariate fuzzy classification of

individuals. Consequently, the individual’s multivariate membership function μy0

: U ! 0; 1½ 	 to the inductive fuzzy target class y0 is defined as an aggregation, aggr,
of the membership degrees of n attributes, Xk, k ¼ 1, 2, . . ., n (Formula 2.60).

μy0 ið Þ :¼ aggr μy0 X1 ið Þð Þ, . . . , μy0 Xn ið Þð Þ
� 	

ð2:60Þ

By combining the inductively fuzzified attributes into a multivariate fuzzy class

of individuals, a multivariate predictive model,μy0 , is obtained from the training set.

This corresponds to a classification of individuals by the fuzzy proposition “i is
likely a member of y,” for which the truth value is defined by an aggregation of the

truth values of fuzzy propositions about the individual’s attributes, Xk(i) is y
0. This

model can be used for IFC of unlabeled data for predictive ranking. Applying an

alpha cutoff, i
�� μy0 ið Þ � α

n o
, an α ∈ [0, 1] leads to a binary classifier.

There are different possibilities for calculating the aggregation, aggr. Simpler

methods use an average of the attribute membership degrees, logical conjunction

2.4 Inductive Fuzzy Classification 33

http://dx.doi.org/10.1007/978-3-319-05861-0_3#Sec2


(minimum, algebraic product), or logical disjunction (maximum, algebraic sum).

More sophisticated methods involve the supervised calculation of a multivariate

model. In this thesis, normalized or cutoff linear regression, logistic regression, and

regression trees are considered. These different aggregation methods were tested as

a parameter in the meta-induction experiment described in Sect. 4.2 in order to find

an optimal configuration.

Finally, in order to evaluate predictive performance, the classifier is applied to a

hold-out test set, and the predictions μy0 ið Þ are compared with the actual target

variable (i). The correlation between the prediction and the target, corr μy0 ; Y
� �

, can

be used to compare the performance of different IFC models.
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