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By the early 1980s, regression with homoscedastic errors was well understood,
but methodology for handling heteroscedastic noise was just being developed. There
were two general approaches. In the first, studied by Carroll and Ruppert (1981
[TW-1], 1984 [TW-3]), the response is transformed to homoscedasticity. In the
second, studied by Carroll and Ruppert (1982 [TW-2]) and Davidian and Carroll
(1987 [TW-4]), one uses a variance function that specifies the conditional variance
of the response given the covariates. Transformation has the added feature that it
can also reduce skewness of the errors, but transformation is useful only when the
conditional variance is of a special form and, in particular, is a function of the condi-
tional mean; this is a common occurrence, but there are many applications where it
does not occur. Transformation and variance functions can be combined into a very
general methodology as described briefly below.

There are two important reasons for modeling the conditional variance. The first
is that the regression parameters can be more precisely estimated if one weights
by the reciprocals of the conditional variances. The second is that prediction and
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156 2 Transformation and Weighting

calibration intervals can be grossly inaccurate (true coverage probabilities far from
nominal values) if one ignores the heteroscedasticity. As Davidian and Carroll (1987
[TW-4]) note, the second reason may be more important. A weighted analysis is
significantly more efficient than an unweighted one only when there is substantial
heteroscedasticity, but even a small amount of heteroscedasticity, say the conditional
standard deviation varying by a factor of two, can cause prediction and calibration
intervals to be seriously in error.

Transformation and the Box–Cox Controversy

Carroll and Ruppert (1981 [TW-1]) find a middle ground in a somewhat acrimo-
nious controversy about the use of the Box–Cox transformation model in practice.
Although the transformation of variables, e.g., replacing a variable by its logarithm,
has had a long history in statistics, estimation of transformation parameters was not
put on a firm theoretical footing until Box and Cox (1964). Their model is

y
.�/
i D xiˇC�"i ; (2.1)

where yi is a nonnegative response for the i th case, xi is a vector of predictors,
ˇ is a vector of regression coefficients, � is the residual standard deviation, and
"1;"2; : : : ;"N are i.i.d. N.0;1/, or more generally i.i.d. F for some known F . Here,

y.�/ D .y� �1/=�; �¤ 0;

D log.y/; �D 0;
(2.2)

embeds the log transformation smoothly into the power transformation family.
Model (2.1) states that, after transformation by an unknown parameter �, the re-
sponse follows a homoscedastic, Gaussian linear model.

The controversy was over whether inference about ˇ should be conditional on
the value of � or not. Box and Cox (1982) recommend the conditional approach so
that once � is estimated, � is treated as if it were known and equal to its estima-
tor O�. Bickel and Doksum (1981) disagree and study the sampling variability of ˇ
when � is treated as unknown. Because the value of ˇ is highly dependent on that
of �, the estimators Ǒ and O� are highly correlated, and the standard deviations of
the components of Ǒ are much larger when � is estimated compared to when � is
treated as known. In summary, Box and Cox argue that uncertainty about � should
be ignored when making inference about ˇ, while Bickel and Doksum argue that
this uncertainty should be acknowledged and has a large effect, so that inference
about ˇ is unstable.

Neither of these viewpoints seems entirely satisfactory. In a rebuttal to Bickel
and Doksum, Box and Cox (1982) ask “how can it be sensible scientifically to state
a conclusion as number measured on an unknown scale?” This is a reasonable ques-
tion. On the other hand, there are few if any other estimation problems where ignor-
ing the uncertainty in nuisance parameters is recommended in practice. Certainly,
there must be some cost due to estimation of �.
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Carroll and Ruppert (1981 [TW-1]) study the problem of prediction about y on
the original scale. That is, they study f . O�;x0ˇ

�/ where f .�; �/ is the inverse of y.�/

so that f .�;y.�// � y, x0 is a value where prediction is to be made, and ˇ� is an
estimator of ˇ. Working on the original scale circumvents Box and Cox’s objection
to conclusions stated on an unknown scale.

Carroll and Ruppert (1981 [TW-1]) show that the high correlation between O�
and ˇ� has effects that are similar to the effects of multicollinearity in multiple
regression. Both have small, but non-ignorable, effects on prediction. Carroll and
Ruppert first look at the case of simple linear regression with � D 0 and prove a
general result showing that the cost (inflation of the mean squared error) due to
estimating � cannot exceed 50 % and often is much smaller, e.g., at most 8 % in
the balanced two-sample problem. Then, they look at the general case where the
dimension of ˇ is p and extend the model so that "1;"2; : : : ;"N are i.i.d. F for some
known F . Asymptotic results are messy in the general case but simplify if one uses
small-� asymptotics where � ! 0 as n! 1. Small-� asymptotics were also used
by Bickel and Doksum. In the small-� case, the cost of estimating � is 1=p, exactly
the same as the effect of adding an additional covariate in linear regression. In their
last section, they look at the problem of predicting the mean response and show that
the cost of adding r additional nuisance parameters when there are q parameters in
the model is bounded by r=q.

Estimation of the mean on the original scale was studied further by Taylor (1986).
Taylor (1988) studied the related problem of estimating event probabilities using
binary regression where the link function contains an unknown parameter. Taylor,
Siqueira, and Weiss (1996) propose a general framework that includes the Box–
Cox model and binary regression with link parameters as special cases. In all three
papers, it was found that the cost of estimating the unknown nuisance parameters is
small but not ignorable.

Weighting in Regression

Carroll and Ruppert (1982 [TW-2]) address the question of whether one should
use the generalized least squares estimator (GLSE) or the normal-theory maximum
likelihood estimator (MLE) when fitting heteroscedastic models. The weighted
least-squares estimator weights each squared residual by the reciprocal of its con-
ditional variance, but is generally not available since the conditional variances
typically are unknown. The GLSE replaces the unknown conditional variances by
estimators. The MLE maximizes the likelihood under the working assumption that
the errors are normally distributed. Of course, it is only a true maximum likelihood
estimator when that assumption holds. The Carroll and Ruppert model is

Yi D xT
i ˇC "i ff .xi ;ˇ;�/g�1=2 ; (2.3)

where Yi is the response, xi is a vector of covariates, ˇ contains the regression co-
efficients, "1; : : : ;"N are i.i.d. with variance �2, f is unknown function that models
the heteroscedasticity, and � is a vector of parameters that specify the conditional
variance of Yi given xi . A typical example of f is
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ff .xi ;ˇ;�/g�1=2 D .xT
i ˇ/

˛; (2.4)

so that the conditional variance is proportional to a power of the conditional mean.
(In this model, it is usually assumed that xT

i ˇ is positive.)
There are two sources of information about ˇ, the conditional mean xT

i ˇ and
the conditional standard deviation Œf .xi ;ˇ;�/�

�1=2. Maximum likelihood uses both
sources and has the smallest possible asymptotic covariance matrix if the errors are
Gaussian as the MLE assumes. The GLSE uses only the first source and, in gen-
eral, is not fully efficient. However, variance models are often only approximations.
Carroll and Ruppert (1982 [TW-2]) show that even a minor misspecification of the
heteroscedasticity can degrade the performance of the MLE but has little effect on
the GLSE.

More precisely, Carroll and Ruppert (1982 [TW-2]) assume that

Yi D xT
i ˇC "i ŒGN .xi ;ˇ;�/�

�1=2; (2.5)

where N is the sample size, GN .xi ;ˇ;�/ D f .xi ;ˇ;�/f1C 2BN�1=2h.xi ;ˇ;�/g,
and N�1

PN
iD1h

2.xi ;ˇ;�/ ! � for some 0 < � <1. Thus, 2BN�1=2h.xi ;ˇ;�/

represents the misspecification of the conditional standard deviation and, since it
decays to 0 at rateN�1=2, the model misspecification is too small to be detected with
certainty even in the limit as N ! 1. More formally, the true model is contiguous
to the assumed model.

The asymptotic distribution of the GLSE assuming model (2.3) is the same under
the models (2.3) and (2.5), so that the GLSE is not affected by contiguous misspec-
ification. The asymptotic distribution of the MLE assuming model (2.3) has the
same (fully efficient) asymptotic variance under models (2.3) and (2.5), but there is
a bias under (2.5). Whether the MLE or the GLSE has the smaller asymptotic mean
squared error (MSE) depends on the amount of model misspecification as deter-
mined byB , h.x1;ˇ;�/; : : : ;h.xN ;ˇ;�/, and how much information about ˇ is con-
tained in the conditional standard deviations. The latter is determined byw1; : : : ;wN

where, with Ǒ
M the MLE, we have

N 1=2. Ǒ
M �ˇ/DN�1=2

NX

iD1

fvi"i Cwi ."
2
i �1/g CoP .1/; (2.6)

so that, roughly speaking, wi ; i D 1; : : : ;N , determine how the second source of
information about ˇ is used and v1; : : : ;vN do the same for the first source.

In summary, the asymptotic distribution of the GLSE is robust to misspecifica-
tion of the conditional standard deviation, but this is not true of the MLE. If there
is no misspecification, then the MLE has the smallest asymptotic mean squared er-
ror (MSE), but under misspecification either the MLE or the GLSE may have the
smallest MSE.

Carroll and Ruppert (1982 [TW-2]) also discuss robustness to outliers. For the
GLSE, (2.6) holds with wi � 0 so the GLSE depends linearly, not quadratically,
on "1; : : : ; "N . Although neither the GLSE nor the MLE is robust to outliers, the
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MLE is more seriously affected by outliers because it depends quadratically upon
the errors. A robust M-estimator called ROBUST WEIGHTED is also considered in
the paper and, in a Monte Carlo study, is the best performing estimator, even when
the heteroscedasticity is correctly specified and the errors are normally distributed;
in this case, it is tied with the MLE.

Carroll and Ruppert (1984 [TW-3]) propose a model that is at first glance super-
ficially similar to, but ultimately rather different from, the Box–Cox (1964) trans-
formation model. The Carroll–Ruppert model starts with a theoretical model

yi D f .xi ;�0/; i D 1; : : : ;N; (2.7)

relating a response yi to a covariate vector xi . Here f is a known function that
might have been derived from scientific theory, e.g., pharmacokinetics, and �0 is
an unknown parameter vector. Model (2.7) will not hold exactly and in many cases
there will be substantial variation of yi about f .xi ;�0/.

To estimate �0, one can expand (2.7) to the nonlinear regression model

yi D f .xi ;�0/C "i ; i D 1; : : : ;N; (2.8)

where "1; : : : ;"N are i.i.d. errors and typically are assumed to be normally dis-
tributed. Carroll and Ruppert noted that (2.7) is equivalent to h.yi /D hff .xi ;�0/g;
for all i , where h is any invertible transformation. However, the noise model

h.yi /D hff .xi ;�0/g C "i ; (2.9)

with "1; : : : ;"N i.i.d. Gaussian, can hold for at most one h. Therefore, there is
no compelling reason to assume (2.8). Instead, Carroll and Ruppert (1984 [TW-
3]) argue that (2.9) holds for some h in a parametric family of transformations,
e.g., (2.2). As an example, if there are multiplicative lognormal errors so that
yi D f .xi ;�0/exp."i / where "1; : : : ;"N are i.i.d. normal, then (2.9) holds with
h.y/D log.y/.

Model (2.9) seeks a transformation h that induces additive, homoscedastic, and
Gaussian errors. The Box–Cox transformation also has these goals, but the Box–
Cox transformation model has a third goal, inducing a simple linear model. For
example, xiˇ in (2.1) might be a no-interaction model and then one seeks a � so
that this no-interaction model holds; Box and Cox (1964) provide such an example.
In other examples, xi D .1 wi / for a scalar covariate wi and one seeks � so that
E.yi jwi / is linear in wi . In contrast, model (2.9) does not seek to simplify the
regression model. Instead, it preserves the regression model by applying h to both
yi and f .xi ;�0/. In practice, h will be monotonic and then (2.9) implies that the
median of yi is f .xi ;�0/; this is the sense in which the model is preserved. Stated
differently, the Carroll–Ruppert method is used when yi already fits the regression
model while the Box–Cox method is used when yi must be transformed to fit the
regression model.

Because f .xi ;�0/ is the median of yi , the problem of stating conclusions on an
unknown scale is avoided. Conclusions can be stated about yi itself. Therefore,
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the controversy discussed previously about inference for the Box–Cox model is
avoided. Using small-� asymptotics, Carroll and Ruppert show that the limit dis-
tribution of O� is the same when the transformation parameter is unknown as when
it is known. A more general result that does not use small-� asymptotics is that
the cost of not knowing the transformation parameter is at most 	=2 D 1:57. This
bound should be contrasted with the huge costs that Bickel and Doksum found for
the Box–Cox model. Moreover, Carroll and Ruppert’s Monte Carlo study shows that
this bound is usually quite conservative.

Davidian and Carroll (1987 [TW-4]) provide a comprehensive study of variance
function estimation and compare the many variance function estimators that have
been proposed. They use the model

EYi D �i D f .xi ;ˇ/I var.Yi /D �2g2.´i ;ˇ;�/; (2.10)

where Yi is a response, xi is a vector of covariates in the regression function f , ´i

is the vector of covariates in the variance function g2, ˇ is a vector of regression
parameters, � is a vector of variance parameters, and "1; : : : ;"N are i.i.d.. Typically,
ˇ is estimated by ordinary least squares and fixed. The residuals from this prelim-
inary estimator of ˇ can be used to estimate � . For example, the squared residuals
are estimators of g2 though they are biased unless one corrects for the loss of de-
grees of freedom. Often, log.g/ is linear in � , and then it is tempting to use the
logarithms of the absolute residuals as the responses, though Davidian and Carroll
note that residuals near zero induce outliers when this is done. If the data come in
groups where xi and ´i are constant, then the sample variances of these groups are
unbiased estimators of g2 and can be used as the responses in a regression model
with g2 as the regression function.

Combining Transformation and Weighting

Transformation and weighting need to be combined in some applications. A gen-
eralization of (2.9) discussed in Chapter 5 of Carroll and Ruppert (1988) is

h.yi /D hff .xi ;�0/g C�g.´i ;ˇ;�/"i : (2.11)

One application of this model is to fitting the Michaelis–Menten equation of enzyme
kinetics. A number of methods for estimating the Michaelis–Menten parameters
have been proposed. Ruppert, Carroll, and Cressie (1989) show that all of these are
special cases of a general transformation/weighting model, so each is efficient only
for a certain error structure, that is, for particular values of the transformation and
variance parameters. By using the general model, one can adapt to the error structure
and obtain more accurate estimators.
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On prediction and the power transformation family 
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SUMMARY 

609 

The power transformation family is often used for transforming to a normal linear 
model. The variance of the regression parameter estimators can be much larger when the 
transformation parameter is unknown and must be estimated, compared to when the 
transformation parameter is known. We consider prediction of future untransformed 
observations when the data. can be transformed to a linear model. When the 
transformation must be estimated, the prediction error is not much larger than when the 
parameter is known. 

Some lrey word.9: Asymptotic distribution; Box-Cox family; Maximum likelihood estimation; Monte-Carlo 
simulation; Prediction of conditional median; Robustness. 

1. !NTRODUC'TION 

The power transformation family studied by Box & Cox (1964) takes the following 
form: for some unknown,\ and i = 1, ... , n, 

(H) 

Here a is the standard deviation; the e1 are independently and identically distributed with 
mean zero, variance one and distribution F, and 

(A)_ {(yA-1) /, \ (,\ * 0), 
y - logy (..\=0). 

Box & Cox propose maximum likelihood estimates for ,\ and {J when F is the normal 
distribution. There are numerous alternative methods as well as proposals for testing 
hypotheses of the form H0 : ,\ = ,\ 0 (Hinkley, 1975; Andrews, 1971; Atkinson, 1973; 
Carroll, 1980). Carroll studied the testing problem via. Monte-Carlo; by allowing F to be 
nonnormal he approximated a problem with outliers and found that the chance of 
mistakenly rejecting the null hypothesis can be very high indeed. 

Bickel & Doksum (1981) develop an asymptotic theory for estimation. For technical 
reasons they assume that the design vectors x 1, x2 , ... are independent and identically 
distributed according to G. If the maximum likelihood estimate of the regression 
parameter is p when,\ is known, and (J� = P(A) when,\ is unknown and estimated by X, they 
compute the asymptotic distributions of ni@- { J ) /a and ni(( J � -( J ) /a as n-+ oo and 
a -+ 0. These distributions, which are given in the Appendix, are different, and as regards 
variances 

the cost of not knowing,\ and estimating it ... is generally severe .... The problem is that p� and i are highly 
correlated. 
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Their theoretical and Monte Carlo work indicate that X and {J* are highly variable and 
highly correlated, and as discuBSed in § 2, the problem is similar in nature to that of 
multicollinearity. An example of the variability of {J* is given in the next section. 

These results are somewhat controversial. One point of discussion concerns the scale on 
which inference is to be made: i.e. should one make unconditional inference about the 
regression parameter in the correct but unknown scale, a.s in Bickel & Doksum's theory, or 
a conditional inference for an appropriately defined 'regression parameter' in an 
estimated scale? 

In order to eliminate such problems, we will study the cost of estimating A when one 
wants to make inferences in the original scale of the observations. In the multicollinearity 
problem, reasonably good prediction is still possible if new vectors x arrive independently 
with the distribution G. Motivated by this fact, we focus our attention specifically on 
prediction, but we also discuss the two-sample problem and a somewhat more general 
estimation theory. Using Bickel & Doksum's asymptotic theory and Monte Carlo, we find 
that for prediction as well a.s other problems in the original scale there is a cost due to 
estimating A, but it is generally not severe. 

2. PREDICTING THE CONDITIONAL MEDIAN IN REGRESSION 

2·1. The general case 

Our model specifically includes an intercept, i.e. x1 = (1, c1); by suitable rescalin~ we 
assume the c1 have mean zero and identity covariance. From the sample we calculate A and 
{J*, and we are given a new vector x 0 = (1, c0 ), which is independent of the other x's but 
still has the same distribution G. This formulation is simple but hardly necessary; the 
design vectors x1 could satisfy the usual regression assumptions, and x0 can be thought of 
a.s chosen according to the design. Our predicted value in the transformed scale would be 
x0 {J*, so a natural predictor isj(X,x0 {J*) where 

j(A 8) = {(l +.\8) 11;. (A =I= 0), 
' e8 (A= 0). 

Notice that ifF ha.s median equal to 0, then j(A, x0 {J) is the median of the conditional 
distribution of y given x0 , even though it is not necessarily the conditional expectation. 
Calculation of conditional expectations would require the use of numerical integration 
and that F be known or an estimator ofF be available. See § 3 for further discussion. 

A Taylor expansion shows that 

j(X, x0 {J*)-f(A, x0 {J)/g(A, x 0 {J) ""' x0 ({J* -{J) +h(A, x 0 {J)(X -A) (2-1) 

where 
g(A, 8) = j(A, 8)/(l+A8), h(A, 8) = 8/A-{(l +A8)log (1 +A8)}N. 

Estimates I. and p� are unstable and highly correlated, and expansion (2·1) shows that 
our problem as presently formulated is quite similar to a prediction problem in 
regression when there is multicollinearity. 

2·2. Case l 

We now assume that F is a normal distribution, A= 0, a= 1, and the model is simple 
linear regression with slope {3 1 a.nd intercept {10 . 
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For this special case, likelihood calculations (Hinkley, 1975) can be made. Here the 
correct scale is the log scale and E(c1) = 0, E(cf) = 1, E(ct) = ft 3 and E(c1) = ft4 � Lengthy 
likelihood analysis shows 

where 

and where 
c= -t(l+,B~+M> . .at=.a,+tMP-3/.ao. y=3+4M+.a1(!-'4-~-'~-1). 

Note that if A were not estimated we would have had :E0 as the identity matrix, and in the 
next section we give an example which demonstrates the multicollinearity. 

THEOREM 1. Let MSE (A, x0 ) be the mean sqoored error for utimating the conditional 
median of Y given x0 and A known, while MSE (A, x0 ) is the same qoontity lrut with A unknown. 
Then 

where 

EG( II Xo W :: ~!:::~)/ E( II Xo 11 2 ) --> H(,81), (2·2) 

H(,Btl = 1 +t{1 +,81(p.4 -1-p.~)}{6+8,8~ +,81(p.4 -1-p.~W 1 . 

Note thatp.4 -1-p.~ = E{(cf -p.3 c1 -1)2 } ~ 0. The quantity (2·2) is a modified form of 
the average cost for prediction when A is estimated. If one prefers to assume the design 
vectors are constants, then one might think of (2·2) as an average over the design. In either 
case the results are encoursging: · 

(i) there is a cost due to estimating A, but it cannot exceed 50%; 
(ii) for the balanced two-sample problem, c1 = ± 1 with probability t. the cost is at most 

8% and decreases to zero as ,81 --> cc. 

2·3. Case 2: Symmetric errors 

We now allow A and the number of regression parameters, p, to be arbitrary, but we 
assume that F is symmetric about zero. 

Here we use the asymptotic theory of Bickel & Doksum, in which n --> cc and a -+ 0 
simultaneously; see the Appendix for details. We report results only for the simplest case 
of an orthogonal design in which 

. 
n- 1 :L x!x1 -+ I. 

1=1 

It then follows that (A, p�) is asymptotically normally distributed with mean (A, ,8) and 
covariance a:Etfn, where 

[ 1 -D 1 :E 1 ~e- 1 -D' el+D'D' 
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x = (1,x2 , .•• ,xp) = (x1 , ..• ,xp), H(a,>.) = ).- 1 a->.- 2(1+>.a)log(1+>.a), 
p 

D = E{H(xp,>.)x}, e = E[{H(xp,>.)ll]- L [E{x 1H(xp,>.)}] 2 � 
j= 1 

It is interesting that in the case of simple linear regression >. = 0, 1:1 is different from but 
of the same form as :E0 . More precisely, c is replaced by c• = c+t and tr by 
e = JI't(p.4 -p.~-1)/4. 

THEOREM 2. As N -+ oo and a -+ 0 for any >., 

EG {llxoii 2 :~:~!::::}/EG(IixoWl-+ 1+1/p, 

where p is the dimension of the vector p. 

The small a asymptotics of Bickel & Doksum tell us that there is a positive but bounded 
cost due to estimating>., with the cost decreasing asp increases. Note that Theorem 2 and 
Theorem 1 agree for simple linear regression,>.= 0, p.4 -1-p.i > 0 and P1 -+ oo. 

Bickel & Doksum and Carroll also simultaneously introduced robust estimates of(>., {J) 
based on the ideas of Huber ( 1977). One can use Bickel & Doksum's small a asymptotics to 
show that (i) the cost in robust estimation for estimating>. is still1/p and (ii) Bickel & 
Doksum's and Carroll's methods have better robustness properties than does maximum 
likelihood. 

We conducted a. small Monte Carlo study to check small sample performance and to 
investigate the results ofTheorems 1 and 2. The observations were generated according to 
(1+Po+P1 c1+e1) 11;.for>. = -1, andexp({J0 +fl1 c1+e1) for>.= 0. Heren = 20, the e1 are 
standard normal, flo = 5, /1 1 = 1 and the c1 centred at zero, equally spaced, satisfy :E c~ = n 
and range from -1·65to 1·65. Thenp.4 = 1·79and H(/11 ) = 1·06, sothatTheorems1 and 2 
lead us to expect very little cost due to estimating >.. There were 600 repetitions of the 
experiment. Likelihood calculations show that 

3·65 1·35] 
50·28 18·25 

. 7·76 
with correlation matrix 

[ 
1 0·99 0·93] 
. 1 0·92 , 
. . 1 

which illustrates the multicollinearity quite well, for if>. were known then nt(p0 - {1 0 ) and 
nt(p1 -/10 ) would be uncorrelated with common variance 1. 

In rows 1 to 4 of Table 1, we provide an analysis of the estimates fJ8 and fJT in the case 
that>. is estimated. The estimates are biased and have much larger mean squared errors 
than the estimates Po and ~1 obtained for the case that >. is known. 

The remaining rows of Table 1 give the results for the prediction problem. The last row 
corresponds to Theorems 1 and 2, although the actual mean squared errors are computed. 
It appears that, on the average, our asymptotic calcula:tions are reasonable, and there is 
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Table I. Monte-Carlo resull8 for the model Y1 = {J 0 +{31 e1+ue" 
flo = 5, and {J 1 = 1; EK and Eu denote expedatian when ,.\ is known 

and unknown, rupedively 

A= -1-o A= (H) 

JEu<ftol-JioJ 

JEu<fttl-Jid 

()-44 <HlO 

()-20 ()-26 

[ Eu{ <Po-Jlo)2}/E,;{ <Po- Jlo)2}]1 12·9 9-6 

[Eu{<P, -Jitl2}/E,.{<P.-JI.l2}Ji 
Eu[{J(A,Pol-f(A,Jio)}2] 
E,:[{/(.1, Jlo)-/(.I,Jio)}2J 

Eu[{J(A,Po-1-65fl.)-f(A,flo-1·66J!,)}'] 
E,.[{J(A, Po -1·66fJ,)-f(A,flo -1-65{J, )}21 

Eu[{f(A,Po+P, co)-/(A,flo+P, co)}2] 
E,.[{J(A,flo+fl, Co)-/(A,flo+P, Co)}2] 

• The value predicted by a likelihood analysis using :!: 0 . 

t The value predicted by the small a analysis using :!: 1. 

For the last entry, c0 is randomly chosen from the design. 

4-() 4-() 

1-()2 

1·35 
1·27° 
2·27t 

1-()8 

1-()1° 
21JOt 

1-06 
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only a small cost involved in estimating,.\ for prediction. To read rows 5 and 6, we note that 
to this point we have defined the cost of estimating,.\ as an average over the distribution of 
the new value x0 • It is also of interest to study the costs conditional on a. given value of x0 . 

For Case 1 when x0 = (1,e0 ) and,.\= 0 we find that 

MSE(A,x0 ) 

MSE (,.\ = 0, xo) -+ 1 o(eo. fJ), 

while for Case 2 this limit is l't (e0 , tJ), where 

1 1(e 0 ,{3)=ar.1 aT (j=1,2), a=[-!(fJ0 +{J1 c0 )1 ,1,c0 ). 

Rows 5 and 6 of Table 1 give the ratios of the mean squared errors at two points, the centre 
and an extreme of the design. As expected from Theorems 1 and 2, there is only a. slight 
cost due to estimating..\, and the small u a.symptotics of Bickel & Doksum are somewhat 
conservative. 

3. PREDICTION OF THE CONDITIONAL MEAN 

The estimator in§ 2 is the median of the conditional distribution of y given x0 . Our focus 
in this section is on estimating the conditional mean of y given x0 . 

We sketch a general result which indicates that the cost of extra. nuisance parameters, 
such as..\, is not large. We a.ssume a regreBBion model with (Y1, X1) having a. joint density 
g(y, x !80 ). As in normal theory regreBBion we assume 

g(y, x !80 ) = g1(y I x, 80 )g2(x). 

Letting L.( 8) denote the log likelihood, we make the usual a.BBumptions: 

E{L~(80)} = 0, 

E{L~(80)L~(80)T} = -E{L;(80 )} = 1(80), (3·1) 
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where fJft is the maximum likelihood estimate, q is the dimension of the parameter 80 and 
the prime denotes differentiation with respect to fJ at fJ = 80 � We are given a new value x0 
and wish to predict E(Y I x0 ); the natural estimate, which usually is only computable 
numerically, is 

Taylor expansion shows that 
AJ(Yixo) = fyg1(ylx0 ,fJft)dy. 

Aft(fJ0 ,x0 ) = nt{(AJ(Yix0 )-E(Yix0 )} 

'"""J{y-E(ylxo)} {:8 logg1(ylxo. Bo)}nt(fJ.-fJo)g1(Yixo. Bo)dy 

= J{y-E(ylx0 )} [:8 logg(y,x0 lfJ0 )]nt(fJ.-fJ0 )g1(ylx0 ,fJ0 )dy. (3·2) 

An overall measure of the accuracy of the prediction is E{A:(fJ0 ,x0 ) } ; (3-1) and (3·2) and 
Schwarz's inequality show that for a sample [/ 

E{A:(fJo,Xo) It/}~ var{y-E(ylxo)}nt(fJ.-fJo)T J(fJo)nt(fJft-fJo). 

Since nt((Jft -fJ0 )T J(fJ0 )nt(fJft- 80 } converges in distribution to a chi-squared variable with 
q degrees of freedom, this suggests that 

E{A;(fJ0 ,x0 }} ~ qvar{y-E(ylx0 }}. (3·3} 

Equation (3·3} shows that in prediction with q parameters the average squared prediction 
error is bounded, and this bound increases in relative magnitude by r/q when r additional 
nuisance parameters are added. A similar result holds for the two-sample problem. 

Example. Consider the transformation model ( 1·1} but take A = 1; this means one uses 
the Box-cox model when transformation is unnecessary. If there are p regression 
parameters, then q = p + 1 when A = 1 is known and 

E{A;(fJ0 ,x0 )} = var{y-E(ylx0 }}p. 

When one estimates .\, (3·3} shows that 

E{A;(fJ0 ,x0 ) } ~ var{y-E(ylxo)}(p+2). 

Thus, the relative cost of estimating A is at most 2/p, which agrees qualitatively with 
Theorem 2. 

We thank Professors Bickel and Doksum for providing a copy of their paper and the 
referee for his helpful comments. 

APPENDIX 

Some asymptotica 
Suppose that the distribution function F is symmetric. In the theory of Bickel & 

Doksum (1981}, it is assumed that a= f"7j where r = r(n} is a known sequence tending to 
zero and 1J is unknown and fixed. Define 

A= (x1, ... ,x.)T, P = A(AT A}- 1 AT, Q =(AT A}- 1 AT dr, d = (d1 , �. � ,d.}. 

d1 = {A- 2(v1-1)-v1loglvd}, v1 = 1+"-x1,B, e =ddT -dPdr. 
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Assum~ that e converges to a positive limit, they prove after very detailed calculations 
that n+{(,\-.\)/u, ({J*-fJ)/u, (~-7J)/'I} is asymptotically normally distributed with mean 
zero and covariance 

lim e- 1 -QT (n- 1 AT A)- 1e+QQT 0 . [ 1 -Q 0] 
•-ao 0 0 !e 

Hence when,\ is estimated one adds to the covariance of {J* the term lim (QQT e - 1 ), which 
is positive~semidefinite and, as the example shows, can often be much larger than the 
covariance of P when,\ is known. It is this extra term which causes the instability of the 
regression estimate {J* when ,\ is estimated. 
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A Comparison Between Maximum Likelihood and 
Generalized Least Squares in a 

Heteroscedastic Linear Model 
R.J. CARROLL and DAVID RUPPERT* 

We consider a linear model with normally distributed but 
heteroscedastic errors. When the error variances are 
functionally related to the regression parameter, one can 
use either maximum likelihood or generalized least 
squares to estimate the regression parameter. We show 
that likelihood is more sensitive to small misspecifica•
tions in the functional relationship between the error var•
iances and the regression parameter. 

KEY WORDS: Linear models; Heteroscedasticity; Con•
tiguity; Robustness; Weighted least squares; Maximum 
likelihood. 

1. INTRODUCTION 

There has been considerable recent interest in the het•
eroscedastic linear model, which we write as 

Y; = x' 1~ + e1[f(x;, ~. 8)]- 112 , (1.1) 

where ~(p x I) is the regression coefficient, {x 1(p x I)} 
are the design vectors, {e1} are independent and identi•
cally distributed with distribution function F, and the 
function f(x1, ~. 9) expresses the possible heteroscedas•
ticity. Bickel (1978) considers various tests of the hy•
pothesis of homoscedasticity, that is, tests of 

Ho:f(x1 , ~. 8) =constant. (1.2) 

His work has been extended by Carroll and Ruppert 
(1981), and the tests have been shown to be locally most 
powerful by Hammerstrom (1981). Other recent papers 
are Jobson and Fuller (1980), Carroll and Ruppert (1982), 
Box and Hill (1974), and Fuller and Rao (1978). 

Box and Hill (1974), Carroll and Ruppert (1982), and 
Jobson and Fuller (1980) suggest various forms of gen•
eralized weighted least squares estimates (GLSE) of ~. 
Basically, ~he suggestion is to obtain preliminary e~ti
mates (~p,8) of(~. 8), estimate variances by [f(x 1, ~P• 
0)]- 1 , and then perform ordinary weighted least squares. 
Carroll and Ruppert (1982) emphasize robustness and 
develop methods that are robust against outliers and non-

• R.J. Carroll is Associate Professor and David Ruppert is Assistant 
Professor, Department of Statistics, University of North Carolina, 
Chapel Hill, NC 27514. R.r. Carroll was supported by the U.S. Air 
Force Office of Scientific Research Contract AFOSR-80-0080. Part of 
his research was completed at the Universitat Heidelberg, with support 
from the Deutsche Forscbunggemeinschaft. David Ruppert was sup. 
ported by NSF Grant MCS78-01240. The authors wish to thank the 
editor and associate editor for many helpful comments. 

normal distributions F; they prove that generalized M 
estimates of~. which include GLSE estimates as special 
cases, are just as good asymptotically as if the weights 
were really known. The same phenomenon has been 
found in other models of heteroscedasticity; see Williams 
(1975) for a review. 

Jobson and Fuller (1980) suggest using the information 
about ~ in the function f to improve the GLSE. They 
state that their method is asymptotically equivalent to the 
MLE for ~ obtained by setting up the normal likelihood 
based on (1.1) and maximizing it; this likelihood is 

N N 

! ~ log(f(x;, ~. 8))- i ~ (Y,- x',~)' f(x,, ~. 8). 
i=J 1=1 

(1.3) 

They have a very interesting result that suggests that as 
long as (1.1) is correct and F is normal the MLE will be 
preferred to the GLSE. 

In this heteroscedasticity problem, we have an addi•
tional robustness consideration. Besides the usual goal 
(Huber 1981) of protecting ourselves against outliers and 
nonnormal error distributions, we also must protect our•
selves against slight misspecifications in the functional 
relationship between var(Y1) and (x;, ~. 8). Since this 
functional relationship expressed in (1.1) through f is 
typically at best an approximation, and since our primary 
interest is estimating ~. we would prefer not to estimate 
~ by a statistic that is adversely affected by slight mis•
specification of f. 

In this note, we assume that the error distribution F 
is actually normal. We study the robustness of GLSE and 
MLE to small specification errors in f using simple con•
tiguity techniques. We show that small mistakes in spec•
ifying f can easily make GLSE preferable to the MLE. 

2. A CONTIGUOUS MODEL 

We consider small deviations from (1.1) in the form of 

Y; = x·,~ + [gN(x;, ~. 8)]- 112e,, (2.1) 

where for a scalar B and arbitrary unknown function h, 

KN(x,, ~. 8) = f(x, ~. 8){1 + 2BN- 112h(x;, ~. 8)} (2.2) 
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N 

N- 1 ~ h 2(x1, f3, 9)--+ I" (0 <I"< co) 
i=1 

{e,} are iid standard normal. 

One should note that the model (2.1) is very close to 
the assumed model (1.1). Thus the model (2.1) fits our 
needs because the variance misspecification error is very 
small and decreases for larger sample sizes. An estimate 
of f3 that is robust against specification errors should have 
the same asymptotic properties under both models (1.1) 
and (2.1). Thus the question at hand is to study the sen•
sitivity of the MLE and GLSE when (1.1) is assumed but 
(2.1) is true. If /1 denotes the log-likelihood for (1.1), and 
lz is the log-likelihood for (2.1), it is quite simple to show 
that, when (1.1) is true, to order oP(l), 

[.=h-I, 
N 

,:, - B 2 1" - ~ (e/ - I)Bh(:J:, ~. ~)N- 112 , (2.3) 
i=l 

so that by the Central Limit Theorem, 

~(l.)----='-+ N( -B 2 .,, 2B2 1") when model (1.1) holds, 

(2.4) 

where N(a, b) is the normal distribution with mean a and 
variance b. From Corollary 1.2 of Hajek and Sldak (1967, 
p. 204), this means that model (2.1) is contiguous to model 
(1.1). 

3. LIMIT DISTRIBUTIONS FOR GLSE 

Suppose that for some positive definite matrix S, 
N 

N- 1 ~ x'1 x,f(x1 , f3, 9)--+ S. (3.1) 
1=1 

Then, assuming normal errors and smoothness conditions 
on f, Carroll and Ruppert (1982) (as well as Jobson and 
Fuller 1980) show that when model (1.1) is true, the GLSE 
~a satisfies 

N 

N 112(f3a- f3) - N- 112 ~ s-'x',f'12(x, f3, 9)e,~ 9, 
1=1 

(3.2) 

N112(~a - f3)----='-+ N(O, s- 1 ). (3.3) 

A formal proof is possible as long as f is smooth, {f(x, 
~. 9)} is J>ounded away from co uniformly in i, and (~p• 
9) satisfy 

and 

(3.4) 

Carroll and Ruppert (1982) and Jobson and Fuller (1980) 
verify (3 .4) in the normal case under certain technical 
conditions. 
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Now, since {e,} are normal random variables, one uses 
(2.3) and (3.2) to show that/. = 12 - I, and N112(~a -
f3) are asymptotically independent, so that by LeCam's 
third lemma (Hajek and Sldak 1967, p. 208), 

~(N112(~a - f3))--+ N(O, s- 1 ), (3.5) 

and this under either model (1.1) or (2.1). This means that 
GLSE is robust against small specification errors of the 
variance function f. This encouraging result suggests that 
one will not go too wrong with GLSE as long as model 
(1.1) is reasonable: These results are easily extended to 
the robust estimates introduced by Carroll and Ruppert 
(1982). 

4. LIMIT DISTRIBUTION FOR THE MLE 

While GLSE is robust against minor errors in speci•
fying the function f in model (1.1), the same cannot be 
said for the MLE. Denote this MLE by ~M· JobsOn and 
Fuller (1980) show that for a particular covariance matrix 
l:, if the MLE is computed assuming (1.1), then under 
(1.1), 

N112(~M - f3)----='-+ N(O, l:). (4.1) 

The result of particular interest is that l: is no larger than 
s-' (see 3.1) and (3.3) in the sense that s-' - l: is 
positive semi-definite under the model (1.1). In addition 
to (4.1), from (2.3) and the proof of Theorem 2 in Jobson 
and Fuller (1980), N112(~M- f3) and/. are jointly asymp•
totically normal with mean (0, - B2 .,), marginal vari•
ances (l:, 2B21"), and covariances Bq computed below, 
that is, 

(N112(~M- f3)',/.) 

----='-+N(<o. -B 2 .,), [;.B. 2B~!])· <4.2) 

We now indicate why it is true that the only cases in 
which the MLE can be expected to be robust against 
variance specification errors is when S- 1 = l: and the 
MLE is asymptotically equivalent to GLSE. To see this, 
first consider model (1.1) to hold. Jobson and Fuller 
(1980) show that ~M is essentially a linear function of {e,} 
and {e,Z - 1}, that is, for vectors {v1} and {w,}, 

N112(~M- f3) 
N 

= N- 112 ~ {v1e1 + w1(e/ - 1)} + oP(l). (4.3) 
I= I 

If we have w1 "" 0 (i = 1, ... , N), then from (3.2), (4.3), 
and Gauss-Markov, we have that 

N112(~m- ~a)..!:.. 0, 

and the estimates have the same limit distribution. Thus 
the only way for ~ M to improve on ~a under (1.1) is for 
the {w,} to be nonzero. In this case, however, we can 
perform contiguity calculations based on (2.3) and (4.3), 
thus showing that under model (2.1), for the MLE com-
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puted assuming (1.1), 

N112(~M - p)---=--. N( -2Bq, :£), (4.4) 
N 

q = lim N- 1 :£ w1h(x1 , p, 6). 
N-+oo i-1 

Of course, q will be nonzero in general if the {w 1} are. 
These results have important consequences for effi•

ciency. Suppose we wish to estimate the linear combi•
nation a'p. Then, under model (1.1), 

NMSE (a'~G)->a'S- 1 a 

NMSE (a'~M)-> a:£ a"' a•s-'a. (4.5) 

However, under the model (2.1), when the GLSE and 
MLE are computed assuming (1.1), 

NMSE(a'~G)->a' s-'a (no change) 

NMSE(a'~M)->a'l:a + 4B2(a'q)', (4.6) 

and of course a'~ M will be a rather poor estimate if a is 
not orthogonal to q and B is large. 

5. MONTE CARLO SPECIFICATIONS 

We performed a small Monte Carlo study to illustrate 
the results given in the previous section, as well as to 
determine the effect of nonnormality; these are the two 
aspects of robustness discussed in this note, distributional 
robustness in heteroscedastic models as well as robust•
ness against misspecification of the form of the variance 
function. All of the results are based on the following 
model (<:r1 = [f(x 1, p, 6)]- 112 in the previous notation): 

Y, = Po + p,x" + PzXa + "••• (i = 1, ... , N). 

Here N = 40 and the design {(x11 , x12)} is as given in a 
similar experiment performed by Jobson and Fuller 
(1980). What varies in our experiments is the form of {<:r,} 
and the distribution of the errors {e1}. However, all 
weighted estimates were computed assuming the follow•
ing model for variances: 

<r? =a, + azT?, •• =Po+ p,x" + PzXa. (5.1) 

In context, (5.1) acts like (1.1) of the text. In all the 
experiments, we took (Po. P" Pz) = (10, -4, 2), as is 
done by Jobson and Fuller (1980). Normal random num•
bers were generated by the IMSL routine GGNPM. Con•
taminated normal random numbers were generated by 
first finding a normal deviate Z, and then multiplying Z 
by 3.0 if a uniform (0, I) random number generated by 
IMSL's GGUBS exceeded .90. The starting seed was 
325017, and the experiments were repeated 800 times. 

The estimators we used included first of all the ordinary 
least squares estimate (LSE). We also attempted to study 
the estimator JLS of Jobson and Fuller (1980), which is 
a one-step version of the MLE; see their paper for details. 
Their estimate worked well at the normal error model 
and for their choice (a1, a 2) = (300.0, .2), but it was very 
bad at nonnormal distributions or even when the hetero-
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scedasticity was severe. Consequently, the estimator 
JLS* studied here is a modification of Jobson and 
Fuller's. Basically, JLS* is JLS if both &uLS <: 0 and 
&2JLS ~ 0, where &uLs, &21Ls) are the estimates of (a}, 
a 2 ) using JLS. However, if either &uLS < 0 or &21LS < 
0, we estimated (a1 , a 2 ) as in Equation (5.1) of Jobson 
and Fuller. The modified estimator JLS* appeared to us 
to be very much better than JLS in overall performance. 

We also defined a GLSE called GLSE and a weighted 
robust estimate ROBUST WEIGHTED (Carroll and Rup•
pert 1982). In extensive trial and error work, we found 
that in small samples, the choice of method of estimating 
the weights has a very big effect on GLSE, although 
asymptotically there is no effect as long as consistent 
estimates are available; ROBUST WEIGHTED seems 
almost insensitive to the choice of weighting method even 
in small samples. Details will be reported in a future 
paper. We finally settled on the following somewhat com•
plicated method. 

First, for any function '¥, define 

~('¥) = (21r)- 112 J '¥ 2 (v) exp( -v2 /2)dv. 

In general, Huber's Proposal 2 simultaneously solves 

l:'l'((Y,- X/p)/<:r){X,/<:r} = 0 

and 

l:'¥2((Y, - X/P)/<:r) = (N- p) ~ ('¥), (5.4) 

where p = dimension of p. Now define 

w.(x) = min (k,l X I) sign (x). 

The LSE solves (5.4) using k = ao. A general algorithm 
for defining weighted estimates is based on k. Essentially, 
what we do is estimate a 2 robustly and a 1 consistently. 
The estimates of a 2 will also be consistent, although ro•
bust estimates of a 1 are apparently not feasible (see Car•
roll1979, Sec. 3 for theoretical details). Estimating a 2 by 
any of the standard methods is not robust and results in 
poor overall performance of GLSE. For any given k, the 
algorithm we used is as foll\)ws. 

I. Let ~ solve (5.4) using '¥2 • 

2. Define r1 = (Y1 - X,'~)', and Pas in Jobson and 
Fuller (1980). 

3. Form predicted values t1 = x',p. 
4. Define H as an (N x 2) matrix, the first column of 

which consists of ones, the second the t?. 
5. Solve (5.4) for the regression model 

Er =PH(::) 
using '¥2 (this is much like (5.1) of Jobson and Fuller 
1980). Define Z1 = r1 - max (&z, O)t,Z. 

6. Define&, = N- 1 :£ z,. 
7. Compute d.,Z = max(&" 0) + max (&2 , 0) t?. 
8. Solve (5.4) using '¥2 with Y1 and X 1 replaced by Y,! 

u1 and X 1/u 1 � Call this estimate ~. 
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9. Repeat (2)-(8), except in Step (8) use 'I' k instead of 
'l'z. 

Our estimate GLSE uses k = oo, while ROBUST 
WEIGHTED uses k = 2. The estimate HUBER was the 
Huber Proposal 2 computed in Step l. 

Finally, the mean squared error (MSE) of an estimator, 
as well as the standard error of this MSE, were calculated 
by the following simple device. Denote by WLS the 
weighted least squares estimate based on the weights 
ai -z. This is not a real statistic since the weights are 
unknown in practice. Then, for JLS* as an example, 

MSE (JLS*) = E{~(JLS*) - IW 

= E[{~(JLS*) - IW - {~(WLS) - !3Fl 

+ MSE(WLS). (5.5) 

The second term on the right side of (5.5) is known 
exactly; the first term and its standard error are calculated 
by the Monte Carlo experiment. Because of the corre•
lation between JLS * and WLS, this method produces 
better estimates of MSE(JLS*) than would the usual di•
rect Monte Carlo calculation. 

6. MONTE CARLO RESULTS 

The first part of the study concerns the effect of non•
normality on the estimates and is reported in Table l. In 
constructing this table, the assumed model (5 .l) was ac•
tually true, with (<>~> tx2 ) = (300, .2) as in Jobson and 
Fuller's work. For each estimator, the first line is the 
ratio of its MSE with that ofWLS (the weighted estimator 
with known weights). ]!.rote that the Carroll-Ruppert RO•
BUST WEIGHTED is the best; it is quite competitive at 

Table 1. Distributional Robustness When Model 

(5.1) Is Assumed and Is True, tx1 = 300 and <>2 = .20 

Standard Normal Contaminated Normal 
Errors Errors 

~0 ~- ~' ~0 ~- ~' 
LSE 1.32 1.27 1.27 1.33 1.26 1.24 

.05 .04 .04 .06 .05 .05 
-.11 .03 -.01 .14 .00 .01 

JLs· 1.18 1.17 1.12 1.25 1.21 1.21 
.04 .04 .04 .06 .06 .10 

-.35 .05 -.03 -.26 .05 -.02 

GLSE 1.16 1.18 1.16 1.16 1.14 1.11 
.03 .04 .03 .05 .04 .04 
.16 .02 -.02 .39 .00 .00 

Huber 1.27 1.27 1.27 0.96 0.94 .099 
.04 .04 .04 .04 .04 .05 
.07 .01 -.01 .32 -.01 .00 

Robust 1.16 1.18 1.16 0.88 0.89 0.92 
Weighted .03 .03 .03 .04 .04 .05 

.23 .01 -.02 -.02 -.01 -.01 

Actual MSE 196.9 1.08 .57 354.4 1.94 1.02 
ofWLS 

NOTE: The first row is the MSE ratio (MSE of indicated estlmalor/MSE of WLS), the 

second its standard error, and the third is the observed Monte Carlo bias. 
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the normal model and the clear winner at the contami•
nated normal model; this is in agreement with theory. 
Note too that, qualitatively at least, JLS* suffers the 
worst in the switch from normal to contaminated normal. 

The benefit of using our modification JLS* to Jobson 
and Fuller's JLS is dramatic here. Ordered as in Table 
l, the MSE ratio values for JLS are 1.22, 1.27, 1.25, 2. 72, 
7.27, and 13.27. 

Table 2 is designed to cover the problem of specifi•
cation robustness discussed theoretically in Sections 
l-4. Designing a Monte Carlo experiment that illustrated 
the theory was quite difficult because the theory is a local 
theory. We finally used heteroscedastic models that had 
fairly large inequalities in variances. The assumed model 
was (5.1), but with tx 1 = 100, tx2 = .20. For the left side 
of Table 2, we do calculations when (5.1) is in fact true, 
the errors are normally distributed, and tx 1 = 100, tx2 
= .20. In the right side of Table 2 the model correspond•
ing to (2.1) and (2.2) has 

rr? = <>t exp(2txll T, I), 

<Xt = 100, 

and 

<X2 = .128. (6.1) 

The choice of tx2 = .128 in Table 2 reflects a model 
whose variance behavior is close to that of (5.1) with tx 1 

= 100, tx2 = .20; the ratio of(6.1) to (5.1) over the range 
of the mean value is between .95 and 1.15. Further, the 

Table 2. Specification Robustness When (5.1) Is 
Assumed. Small Specification Error 

Model (5. 1) Is True Model (6.1) Is True 
a, = 100, a2 = .20 a,= 100, a2 = .128 
(correct model) (misspecified model) 

~0 ~- ~' ~0 ~- ~' 
LSE 1.62 1.59 1.60 1.63 1.63 1.58 

.07 .06 .06 .07 .07 .06 
-.04 .02 -.01 -.04 .02 -.01 

JLs· 1.54 1.51 1.39 1.62 1.62 1.54 
.12 .12 .09 .15 .16 .16 

-.19 .04 -.03 -.22 .04 -.03 

GLSE 1.27 1.29 1.28 1.28 1.31 1.27 
.05 .05 .05 .05 .05 .05 
.07 .02 -.02 .09 .02 -.02 

Huber 1.62 1.59 1.60 1.63 1.63 1.58 
.07 .06 .06 .07 .07 .06 

-.04 .02 -.01 -.04 .02 -.01 

Robust 1.27 1.29 1.28 1.27 1.29 1.26 
Weighted .05 .04 .04 .05 .05 .04 

.18 .01 -.02 .21 .01 -.01 

Actual MSE 116.1 .72 .35 120.2 .74 .35 
ofWLS 

NOTE: The first row is the MSE ratio (MSE of indicated estimator/MSE of WLS), the 

second Its standard error, and the third is the observed Monte Carlo bias. 
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~iffere?~ in actual MSE for WLS (with known weights) 
1s negligible, as can be seen in the last row of Table 2. 
As predicted by our theory, the only estimate that seems 
at all affected by the error in specifying the variances 
(assuming (5.1) when (6.1) is true) is JLS*, the MLE 
approximation. Note, too, how well our estimate RO•
BUST WEIGHTED performs; it is quite good at the nor•
mal error model and, as seen in Table 1, is superior for 
the contaminated normal model. 

V:e ~so analyzed the case for (6.1) that a 2 = .131, 
which illustrates a specification error resulting in over•
weighting the points with largest variance. This hardly 
affected WLS. Once again, the worst overall performance 
was turned in by JLS*; this MLE approximation was the 
weighted method most affected by the specification error. 

One might ask how well our theory predicts the specific 
numbers in Table 2. As this section shows, the theory is 
at least qualitatively correct in predicting that the MLE 
approximation JLS* would be most sensitive to variance 
function misspecification, while GLSE and ROBUST 
WEIGHTED would be only slightly affected (see (4.6)). 
On the other hand, the result (4.5) that indicates thatJLS* 
should be better than GLSE when the variances are cor•
rectly specified was not borne out. Another instance, 
which is really not too bad, in which asymptotic theory 
and Monte Carlo theory do not closely agree is that the 
GLSE had about 30 percent higher mean squared error 
than WLS. Because the approximation given by (4.5) is 
not close to the Monte Carlo results, evaluating the ex•
cess mean squared error 4B2 (a' q) ' in (4.6) due to vari•
ance misspecification in unlikely to be too accurate. If 

cr? = 1/f(x,, (3, 8) 

and 

8,' = 1/gN(X;, (3, 8), 

then from (2.2) we have approximately 

2Bh(x,, (3, 8) ,;, N 112(rr?/8? - 1). (6.2) 

Using the theory of Jobson and Fuller, we can evaluate 
the terms {w,} of (4.3), which then enables us from (6.2) 
to approximate 2Bq of (4.4). When this is done, we are 
able to predict that in going from the correct model to 
the misspecified model in Table 2, the MSE for JLS* 
should increase by (4.7 percent, 5.8 percent, 4.7 percent) 
for estimating (J3o, 13t. (32). The actual Monte Carlo in•
creases were (8.9 percent, 10.3 percent, 10.8 percent). 
In other words, in this example, the effect of variance 
function misspecification on the MLE approximation 
JLS* was more than that predicted by the asymptotic 
theory. 
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7. DISCUSSION 

The theoretical work and the small Monte Carlo study 
presented here indicate that the maximum likelihood es•
timate (or approximations to it) in a heteroscedastic 
model is sensitive both to the normal error assumption 
and to small errors in specifying a functional form for the 
variances. Generalized least squares estimates are sen•
sitive to the normal error assumption but, at least theo•
retically, are robust against small variance specification 
~rrors; a particular GLSE was constructed that, in a lim•
Ited Monte Carlo study, had these properties in small 
samples. The robust weighted estimators of Carroll and 
Ruppert (1982) had the best theoretical and empirical ro�
bustness behavior, while at the same time giving up only 
very little when all assumptions about the variances and 
error distributions are true. For homoscedastic regres•
sion models, estimators with bounded influence functions 
have been defined and studied (Krasker and Welsch 
1982). We did not consider the question but believe it is 
possible to develop bounded influence weighted esti•
mators with appealing properties for heteroscedastic 
situations. 

[Received Apri/1981. Revised June 1982.] 
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Power Transformations When Fitting Theoretical 
Models to Data 

RAYMOND J. CARROLL and DAVID RUPPERT* 

We investigate power transformations in nonlinear 
regression problems when there is a physical model for 
the response but little understanding of the underlying 
error structure. In such circumstances, and unlike the 
ordinary power transformation model, both the response 
and the model must be transformed simultaneously and 
in the same way. We show by an asymptotic theory and 
a small Monte Carlo study that for estimating the model 
parameters there is little cost for riot knowing the correct 
transform a priori; this is in dramatic contrast to the re•
sults for the usual case where only the response is tnms•
formed. Possible applications of the theory are illustrated 
by examples. 

KEY WORDS: Transformations; Box-Cox models; The•
oretical models; Robustness; Nonlinear regression. 

1. INTRODUCTION 

Often in scientific work, an experimenter observes data 
y, and x/ = (x 11 ••• Xp;) and postulates that these data 
follow a model 

y, = f(x,, 6o), i = I, ... , N, (1.1) 

where 60 is a k-parameter vector. The function/may be 
derived, for example, from differential equations believed 
to govern the physical system that gave rise to the data. 
The deterministic model (1.1) is often inadequate since 
the data exhibit random variation, but whereas/was de•
rived from theoretical considerations, there is really no 
firm understanding of the mechanism producing the ran•
domness. In this case, the experimenter usually assumes 
that 

y, = f(x;, 6o) + E;, (1.2) 

where the {< 1} are iid N(O, rr02 ). In those cases in which 
the data suggest that model (1.2) is also unsatisfactory, 
one might then, for example, assume that the errors are 
multiplicative and lognormal, so that 

log(y1) = log(f(x,, 6o)) + <;. (1.3) 

* Raymond J. Carroll is Professor of Statistics and David Ruppert is 
Associate Professor of Statistics at the U Diversity of North Carolina, 
Chapel Hill, NC 27514. Research for this article was supported by the 
Air Force Office of Scientific Research Grant F49620-82-C-0009 and by 
National Science Foundation Grant MCS 8100748. Rod Reish kindly 
provided the authors with the menhaden data. He and Rick Deriso 
greatly aided our understanding of those data. The authors also thank 
a referee and an editor for their comments on an earlier version of this 
paper. 
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The point here is that model (1.1) is equivalent to the 
model 

h(y,) = h(f(x;, Oo)) 

whenever hO is a monotonic transformation. Therefore 
(1.2) and (1.3) are based on the same theoretical model, 
but they allow variability to enter into the model in dif•
ferent fashions. 

A more flexible approach is to take a sufficiently rich 
family of strictly monotonic transformations h(y, l\), in•
dexed by the m-vector parameter l\, and to assume that 
for some value l\0 , 

h(y,, l\o) = h(f(x,, 6o), l\o) + E;. (1.4a) 

Equation ( 1.1) could be understood to mean Ey = for y 
= f when there is no error. We have in mind the latter 
meaning; the former is not possible under (1.4a). The 
model (1.4a) is in the spirit of Box and Cox (1964), who 
suggested the family of power transformations with m = 
I and 

h(y, l\) = y"' = (y" - 1)/l\ if)\¥ 0 

= log(y) if l\ = 0. (1.4b) 

However, as we will make clear, our proposed model 
(1.4) has greatly different ramifications than those usually 
associated with the power family. Box and Cox (I 964) 
used their family in a study of the transformation model 

h(y, l\o) = x'6o + E. (1.5) 

Notice that here, unlike in (1.4), the regression function 
in (1.5) is not transformed. Box and Cox sought a trans•
formation that achieves (a) a simple additive or linear 
model, (b) homoscedastic errors, and (c) normally dis•
tributed errors. Our model is different. Theoretical con•
siderations already provide a regression function. We 
hope to transform the response and the regression func•
tion simultaneously to obtain homoscedasticity and nor•
mality. 

There are two reasons for using model (1.4) instead of 
simply fitting (1.1) by least squares or some other method. 
First, estimation of Oo based on model (1.4) should be 
more efficient than other methods. Second, it may be 
necessary to estimate the entire conditional distribution 
of y given x; if the data clearly suggest that the distri-

© Journal of the American Statistical Association 
June 1984, Volume 79, Number 386 

Theory and Methods Section 



175

322 

butions of {y, - f(x,, e0 )} are not constant across i, one 
must go beyond standard regression methodology. 

An example that motivated the research of this article 
is the relationship between egg production in a fish stock 
and subsequent recruitment into the stock. At least for 
some species, as egg production increases, the changes 
in the skewness and variance of recruitment are as large 
as the change in the median recruitment, and these 
changes in distributional shape may have important im•
plications for management of the fishery. This example 
is discussed in more detail in Section 4.1. 

Another possible reason for transformation is that 
often, for an appropriate h, h(f(x,, e)) is a linear function 
of e. Linearization was an accepted technique before the 
advent of nonlinear regression programs. Now, however, 
the statistician must decide whether to use linearization 
or nonlinear regression. As discussed later, our theory 
provides a method for deciding whether linearization is 
appropriate. 

A natural question is, Which aspects of the data enable 
us to estimate Ao? If we transform y, by h( ·, A) and A ,o 
Ao, then information that A ¥ Ao is provided by both (a) 
nonnormality and (b) nonconstancy in i of the distribution 
of h(y,, A) - h(f(x,, eo), A). If the values of f(x,, eo) are 
relatively constant, then (a) provides most of the infor•
mation. On the other hand, if cr 2 = var(.,) is small, then 
most of the information is provided by heteroscedasticity. 
To see this last fact, suppose, for example, that (1.4b) 
holds and that we do not transform the data (i.e., we use 
A = 1), but that the true value Ao is not I. For each A, 
let g(·, A) be the inverse of the function h(·, A), and define 
gy(y, A) = (a/ay) g(y, A). Then by (1.4) and a Taylor 
approximation, which is suitable if e, is small, we have 

y, = g[h(f(x,, eo), Ao) + e,, Ao] 

= f(x,, eo) + k,e,, 

where k, = gy[h(f(x,, eo), Ao), Ao]; therefore y, is ap•
proximately normally distributed with mean f(x,, e0 ) and 
variance k/rr2 . 

When analyzing data, after we have determined esti•
mates fore, A, and cr, we can estimate the density of y, 
(or of [y, - f(x,, e)], the residual from the median). By 
plotting this estimated density we can check for skewness 
and other signs of nonnormality on the original scale. By 
overlaying plots for several values of x, we can also check 
for heterogeneity of the distribution of the untransformed 
data. Instead of graphing densities, we might graph quan•
tiles against quantiles of the normal distribution; non•
normality would then be especially easy to detect. We 
use such a quantile-quantile plot in Example 4.1. 

When we make inferences about e, the issue arises 
whether~ should be treated as fixed or whether we should 
acknowledge that it is random. For example, there are at 
least two approaches to estimating the variance-covari•
ance matrix of li. The first is invert the estimated Fisher 
information matrix for (A, cr, 8). The second is to trans•
form the model and the response by h(·, ~)and then use 
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standard nonlinear regression methodology. The second 
method is not strictly correct since it treats A as known 
rather than estimated. However, it is convenient and ex•
pedient since existing nonlinear least squares software 
can be applied. In this article we report large-sample anal•
ysis and Monte Carlo results showing that the two meth•
ods tend to give similar results. The second method usu•
ally underestimates the variability of e, but it does give 
a rough approximation to this variability. In the different 
model (1.5) of Box and Cox (1964), the two methods can 
give drastically different results, and this fact has led to 
considerable controversy; see Bickel and Doksum (1981), 
Carroll and Ruppert (1981), Hinkley and Runger (1984), 
and Box and Cox (1982). 

Another major difference between our model and that 
of Box and Cox (1964) is that in our model the parameter 
e has physical meaning even when Ao is unknown; f(x,, 
eo) is the median of y, regardless of the value of Ao. 

2. THEORETICAL ANALYSIS 

To analyze the effect of treating ~ as fixed (and equal 
to Ao), we begin by computing the information matrices 
for (Ao, eo, cr0 ) and (e 0 , cro), the latter case assuming that 
Ao is known. The details quickly become intractable, so 
we resort to the approximation cr 0 = 0. The following 
theorems are proved in Appendix A. 

Theorem 1. Under general conditions, if N-> oo and 
then cro-> 0, the limit distribution of a is the same whether 
Ao is known or unknown. The limit distribution of 6- de•
pends on whether Ao is known or unknown. 

Theorem I says that the effect of having to transform 
the problem to get homoscedastic, normal errors is small 
when O"o is small. However, we are not concerned only, 
or even primarily, with small cr0 • In fact, the need for 
transformation will probably be greater when cr0 is large. 
When cr0 is small, e from the untransformed data, 
S, ~ 1, Will have a Small bias because y i Will be approxi•
mately normally distributed. Moreover, although il,~ 1 
may be inefficient in terms of variance, there may be less 
need for an efficient estimate if cro is small. The small cr 0 

asymptotics do, however, lead to major simplifications, 
and the Monte Carlo results presented later agree with 
them. 

Because we are interested in all values of cr 0 , we looked 
at a second approach. This approach is outlined in Ap•
pendix A. Basically, we construct a third estimator of e0 

and compute its efficiency with respect to li(A 0 ), the es•
timator of eo when Ao is known. This gives us a bound 
on the efficiency of the MLE. 

Theorem 2. For any Ao, cro, eo, f, or design {x,}, as N 
-> 00 , the asymptotic relative efficiency of the MLE 
B(~) compared to that estimate B(~o) with Ao known is at 
least 2/-rr, that is, 

ARE(S(~). S(Ao)) <= 2/-rr. 

This bound is very general, and if the Monte Carlo sim-
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ulation in Section 3 is any guide, the bound is conser•
vative. It follows that the practice of transforming and 
then using a standard errors for 0(~) the estimates output 
from a nonlinear least squares package witt be only mod•
erately in error. 

3. MONTE CARLO 

To study 6 when N is finite and <ro is not necessarily 
small, we undertook a small simulation of the model 

h(y,, l\o) = h(81 + 82 x,, l\o) + ""' ' ' (3.1) 

where h(-) is the Box and Cox (1%4) power family (1.4b). 
In our simulations, N = 50, the design points {x1} were 
equally spaced on [ -1, 1], the errors were normally dis•
tributed with mean zero and variance one, and 8 1 = 7, 
82 = 2. We considered three estimators: (a) ML esti•
mator, l\o known (KNOWN), (b) ML estimator, l\0 un•
known (MLE), and (c) The ordinary least squares esti•
mator (LSE) without any transformation. 

Since it is a rather frequent practice to use least squares 
estimation without transformation, we included the LSE 
in the study. The method of computation is outlined in 
Appendix B. We chose three values of cr0 : cr0 = .05, .10, 
and .50. We present results in Tables I and 2 for l\ 0 = 0 
(lognormal data) and l\0 = .25. There were 600 replica•
tions of the experiment for each (l\0 , cr0 ) and each esti•
mator, all generated from a common set of random num•
bers. The normal random deviates were generated from 
the IMSL routine GGNPM. Estimation of (8 1 , 82 ) for 
each l\ was done by the lMSL routine ZXSSQ while 
ZXGSN was used to estimate l\0 . 

The results for the ML estimator with l\ 0 unknown (de•
noted by MLE) are very encouraging. The mean squared 

Table 1. Results of the Monte Carlo Study 
Described in the Text. (These results are for the 

INTERCEPT. The median response is linear 
with intercept = 7 and slope = 2.) 

~ = .00 .25 

.05 .10 .50 .05 .10 .50 

Bias of KNOWN .03 .06 .56 .01 . 03 .23 
MSE of KNOWN 2.41 9.67 24.87 .90 3.59 9.04 
Bias of MLE .02 .04 .60 .01 .02 .19 
MSE of MLE 

MSEofKNOWN 1.02 1.05 1.14 1.01 1.03 1.12 
MSE of MLE - MSE 
of KNOWN .05 .47 3.44 .01 .09 1.09 

STD. ERROR of above 
difference .02 .15 .77 .01 .04 .25 

Bias of LSE .11 .40 9.48 .04 .13 2.60 
MSE of MLE 

MSE of LSE .97 .90 .22 1.00 .98 .63 
MSE of MLE - MSE 
ofLSE -.06 -1.15 -96.62 .00 -.06 -6.07 

STD. ERROR of above 
difference .04 .33 4.71 .01 .06 .78 

NOTE: Known = ML estimate with A known, MLE ... ML estimate with A unknown, and 

LSE = ordinary least squares estimate. In these calculations, the mean squared error 
{MSE) and STD. ERROR of difference terms are muttlplled by T .. 2. Here T = 10 if cr :S 

.10and T = 1 if a= .50. 
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Table 2. Results of the Monte Carlo Study 
Described in the Text. (These results are for the 

SLOPE The median response is linear with 
intercept = 7 and slope = 2.) 

~ = .00 .25 

.05 .10 .50 .05 .10 .50 

Bias of KNOWN .01 .01 .03 .00 .01 .02 
MSEof KNOWN 7.08 28.36 72.23 2.71 10.83 27.24 
Bias of MLE -.01 -.04 -.15 .00 -.02 -.16 
MSE of MLE· 

MSEof KNOWN 1.06 1.06 1.01 1.06 1.06 1.03 
MSE of MLE - MSE 
of KNOWN .41 1.57 .95 .15 .60 .72 

STD. ERROR of 
difference .10 .40 .67 .04 .77 .27 

Bias of LSE .05 .15 2.97 .02 .04 .50 
MSE of MLE ----
MSE of LSE .98 .59 1.01 1.01 .91 
MSE of MLE - MSE 
of LSE -.16 -1.29 -50.54 .05 .13 -2.81 

STD. ERROR of above 
difference .18 .80 5.10 .06 .23 .74 

NOTE: Known = Ml estimate with A known, MLE = Ml estimate with A unknown, and 

LSE = ordinary least squares estimate. In these calculations, the mean squared error 

(MSE) and STD. ERROR of difference terms are multiplied by T .. 2. Here T = 10 if u s 
tO and T= 1 ifu =.50. 

errors for MLE are reasonably close to those for 
KNOWN, the ML estimator with l\0 known, especially 
for the slope 82 • These results agree with our small " 
theory and indicate the moderate cost of not knowing l\o. 
The relative efficiencies of MLE to KNOWN are always 
welt above the lower bound of 2/-rr. To appreciate how 
welt MLE does compared with KNOWN (line 2 of Tables 
I and 2), see Table 5 of Bickel and Doksum (1981); in 
their model, which we call (1.5), they have ratios MLE(l\o 
estimated)/KNOWN(l\0 known) always at least 1.5 and 
as large as 211, while ours never exceed 1.2. 

The other valuable point learned from Table 2 is that 
when we estimate the stope 82 , the ML estimator with 
l\o unknown tends to dominate the LSE, especially for 
larger values of <ro. In other words, for our model (1.4), 
there is real value to transformation when it is appropri•
ate . 

Finally, it should be noted that there is indeed a (mod•
erate) cost for estimating 80 when l\ 0 must also be esti•
mated . .The consequence of this moderate cost is that 
inference drawn in the "usual" way-treating ~ as if it 
were preassigned-will be only moderately in error. (See 
Carroll and Ruppert 1981 and Carroll 1982a for details 
concerning the error in the usual inference for model 
(1.5), which tends to be moderate, on average, but which 
can be large for prediction at individual design points.) 

4. EXAMPLES 

4.1 Spawner-Recruit Data 

This research was motivated by our study of the pop•
ulation dynamics of the Atlantic menhaden, which is, ex•
cluding shellfish, the third largest commerical U.S. fish-
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ery. The Atlantic menhaden fishery experienced a 
massive decline in the mid-1960's, and although there has 
been a slight recovery, present yields are only about half 
of those in the early 1960's. Our simulation study was an 
attempt to find strategies to reverse this decline in har•
vest; see Ruppert et al. (1983) for further details. 

An important part of our study was the examination of 
the spawner-recruit (SR) relationship, in which we at•
tempted to use the number of eggs E produced by mature 
menhaden (spawners) to predict the number R of juvenile 
menhaden recruited into the fishery (recruits). Estimates 
of E and R for the 21-year period 1955-1975 are given in 
Table 3. 

An inspection of Table 3 or a plot of R against E shows 
that there is substantial variability. Note, for example, 
that 1958 has only the eighth-largest egg production, while 
it produced twice as many recruits as any other year. The 
year 1975 has the third-largest number of recruits but only 
the fourteenth largest egg production. 

Two of the more usual ways to model the SR relation•
ship are through the following approximations: 

(Beverton-Holt 1957) 

(Unnormalized Gamma) R, = 6Et exp(-yE,). 

The Unnormalized Gamma (Gamma) is an extension of 
the Ricker (1954) equation, which allows only 8 = I. Both 
the Beverton-Holt and the Ricker equations were derived 
from deterministic models. There appears to be no dis•
cussion in the fisheries literature on how these models 
should be interpreted for fish populations exhibiting 
highly variable SR relationships. The parameters are 
often estimated by using linearizing transformations. As 
stated in the Introduction, these two models can be 
thought of as part of a relationship driving the system, 
but they entail considerable variation. We wanted not 

Table 3. Spawner-Recruit Estimates 

Year 

1955 
1956 
1957 
1958 
1959 
1960 
1961 
1962 
1963 
1964 
1965 
1966 
1967 
1968 
1969 
1970 
1971 
1972 
1973 
1974 
1975 

"ln units of 1014 eggs. 
11 ln unitsof1010 tish. 

Egg Production Ea 

2.42289 
1.77413 
1.13816 
1.11338 
1.32726 
1.88340 
2.62193 
1.63753 

.63302 

.33314 

.20943 

.16043 

.18389 

.23256 

.15267 

.22244 

.31532 

.33109 

.33011 

.27415 

.30154 

Recruits Rb 

.85558 
1.00935 
.49287 

2.10332 
.31186 
.41814 
.30636 
.30912 
.25417 
.29163 
.21642 
.30285 
.17046 
.24301 
.40457 
.20309 
.47767 
.37155 
.40746 
.52426 
.92933 
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only to decide upon one of the two models, but also, for 
our simulations, to do an adequate job of describing the 
nature of the variation in recruitment given egg produc•
tion. The difference between the two models can have 
important effects on methods for managing the menhaden 
fishery. When, as is usual, 'Y < 0, the Gamma curve ex•
hibits overcompensation; that is, eventually large egg 
production decreases recruitment, perhaps because of 
competition for food or perhaps because of a population 
explosion of a predator species. The Beverton-Holt 
model is much different, since it specifies that, except 
for random variation, large egg production will lead to an 
asymptote a- 1 in recruitment. Since many strategies pro•
posed for increasing the harvest depend on increasing egg 
production, perhaps beyond historically observed levels, 
the choice of the Gamma over the Beverton-Holt model 
could lead to a different management strategy. There has 
been no previous evidence for Atlantic menhaden sup•
porting the Gamma curve, so a priori we would favor the 
Beverton-Holt curve, but it is obviously important for us 
to determine if the Beverton-Holt curve describes the 
present data as well as or better than the Gamma model. 

Linearization leads to the models 

(Beverton-Holt, Linear) R,- 1 =a+ j3E,- 1 + cr 1e, 

(Gamma, Linear) log R, = 81og E, + a. + -yE, 

+ cr,e,. (4.1) 

From the point of view of meeting the assumption that 
e,, ... , En are iid N(O, 1), the linearized Beverton-Holt 
is superior; the predictions of R, are similar for the two 
models, but the residuals from the linearized Gamma are 
less normal-looking and somewhat more heteroscedastic. 
Thus, if we are constrained to admitting only the linear•
ization models (4.1), the choice for simulation studies 
would be the Beverton-Holt. 

There is, however, no reason why the variation about 
the Gamma model should be best explained by forcing 
linearization through logarithms. As argued in the Intro•
duction, a more flexible model for determining the struc•
ture of the model variability is through our nonlinear Box•
Cox models 

(Beverton-Holt) R!'•' ={(a+ j3E,- 1)- 1 }""' + cr8 e, 

(Gamma) 

The MLE for )..8 is ~8 = - . 72, with a 90% confidence 
interval of ( -1.0, -0.17), and ~8 restricted to [ -1, 1]. 
The likelihood ratio test for H0 : )..8 = - 1.0 has value AB 
= .63, indicating that the linearized Beverton-Holt model 
is at least reasonable. (Compare with X (I) quantiles.) 

For the Gamma model, we obtained ~c = - .71, with 
a 90%confidence interval of( -1.0, - .16). The likelihood 
ratio test for H o: Ac = 0 has value Ac = 4.61. This in•
dicates that linearizing the Gamma model is probably not 
appropriate. In fact, having transformed by the power 
~c = - . 71, the .residuals are essentially as normal look•
ing and homoscedastic as those from the linearized 
Beverton-Holt. 
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The estimated Gamma curve reaches a maximum well 
above historically observed levels of egg production. In 
fact. the fitted Gamma and Beverton-Holt curves are 
quite similar over the observed range. However, our sim•
ulation experiments included allowing increased egg pro•
duction where overcompensation would have an effect if 
the Gamma curve were used in the simulation model. We 
decided to base our simulations on the Beverton-Holt SR 
relationship, because there is no real evidence for over•
compensation. 

As this example makes clear, nonlinear models that can 
be linearized should not necessarily be linearized, since 
transformation analysis of response and predictor func•
tion can lead to a data scale with better distributional 
properties. In some cases, however, such as the Sever•
ton-Holt model given here, the transformation analysis 
will provide added support for linearization. 

Our theory predicts that the need to estimate A is not 
costly in regard to estimation of" and~. and examination 
of the relevant Fisher information matrices suggests that 
this is, in fact, the case. If we fix A = ~. and (pretending 
that A = ); was known a priori) invert the information 
matrix for«, ~. and a, then the estimated (asymptotic) 
variances are .2029, 2.0361, and .0258, respectively. If 
we invert the information matrix for«, ~. cr, and A, then 
the estimated (asymptotic) variances for "• ~. and a are 
.2213, 2.0394, and .1674, respectively. As our theory pre•
dicted, only the variance of a increased substantially. 

From our data analysis, we concluded that a realistic 
simulation model would need to be stochastic, and it was 
in the development of a stochastic model that power 
transformations proved to be most useful. In our simu•
lation model we used 

(4.2) 

where &, ~. and a are estimates on the ); scale, and • is 
a standard normal pseudorandom number. With small 
probability the quantity in square brackets in (4.2) will 
be close to 0 or even negative, but in the model this quan•
tity was truncated, so recruitment never exceeded twice 
the greatest recruitment observed in our data. In (4.2) 
one could use the MLE,); = - .72, but for simplicity, 
and because a likelihood ratio test indicated that H 0 : A 

= - 1.0 was very credible, we used ~ = - 1.0. 
Model (4.2) with either ); = -1.0 or ); = - .72 is a 

particularly simple model that possesses these essential 
characteristics found in the data: 

(i) Recruitment is highly variable and the variability 
increases with E. 

(ii) Recruitment is positively skewed, and the skew•
ness also increases with£. Therefore, except when 
E is small, the fishery has occasional dominant year 
classes. 

The heteroscedasticity and variable skewness can be 
seen by examining the estimated distributions of recruit•
ment with eggs set equal to the observed values during 
1961 and 1969, the years with highest and lowest values 
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of egg production, respectively, among all years for which 
we have data. In Figure l, the quantiles of these estimated 
distributions are plotted against normal quantiles. The 
plots were obtained by plotting (4.2) with<= <t>- 1(i/70) 
on the horizontal axis and <I>- 1 (i/70) on the vertical axis 
fori = 2, ... , 68, and interpolating these points with a 
spline. (<I> is the standard normal distribution function.) 
For the graphs, we used); = -.72 in (4.2), but i; = -1.0 
(the value used in simulations) would give similar plots. 

With our model we were able to make a detailed sim•
ulation study of management policies for Atlantic men•
haden. We found that management of a fishery with oc•
casional, randomly occurring, dominant-year classes is a 
problem considerably different from managing a fishery 
with low variability. 

In some situations, A may be a nuisance parameter that 
is estimated only so that other parameters can be more 
efficiently estimated. However, as in this example, we 
may sometimes want to know the conditional distribution 
of the dependent variable, given the independent varia•
bles. A then becomes a parameter equally as important 
as other parameters. 
It is no coincidence that As = A a. Since, for the range 

of E in the data, the Beverton-Holt and unnormalized 
Gamma curves with estimates substituted for the param•
eters are similar, their residuals from the estimated me•
dians are also similar. ); is determined by the nonnor-

II 

L£000: HETl«XX 

t5 '21 
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--HlOHtGM 

" " 
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Figure 1. Estimated quantiles of recruitment plotted against stan•
dard normal quantiles. Recruitment is conditional on egg produc•
tion being equal to the 1961 value (HIGH EGGS) or the 1969 value 
(LOW EGGS). Recruitment is in units of 1Cf fish. 
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mality and heterogeneity of distribution that can be 
detected in these residuals. 

As a final note, the analysis presented here was not 
merely an academic exercise; it formed a part of our study 
of the SR relationship, which itself was only a small (al•
beit important) component of a large study performed 
under time constraints. We welcome further analyses of 
the data, but we hope it is clear that we do not consider 
the reported analysis complete. In fact, we analyzed 
many other models under varying assumptions. For ex•
ample, the inclusion of a quadratic time trend in the lin•
earized Beverton-Holt model substantially improved the 
fit to the data. However, the time trend may be due to 
substantial overfishing in the l%0's, and the use of the 
trend for predicting future recruitments does not seem 
warranted. Another candidate for an explanatory variable 
in a more complex model is recruitment lagged one year. 

4.2 Chemical Reaction Data 

As a second sample, consider the data of Carr (1960) 
on the isomerization of pentane. For that data set, one 
proposed model is 

y = 9o9z(Xz - XJ/1.632) . (4.3) 
I + 9,x, + 9zxz + 93X3 

Box and Hill (1974) also list the data and discuss the 
model. They linearize (4.3) by taking inverses and then 
using a form of weighted least squares; without going into 
the full details, it suffices to state that their analysis sug•
gests that y'" has constant variance, where ll = .8 (see 
also Pritchard, Downie, and Bacon 1977). We shall call 
the Box and Hill method power transformation (linear•
ized) weight least squares (PTWLS). 

Since the linearized model based on analyzing y- 1 in 
(4.3) exhibits marked heteroscedasticity, it is interesting 
to see how our estimation method (based on (1.4a)•
(1.4b)) performs; this method will be called PTBS for 
power transforming both sides. Based on Box and Hill's 
analysis, we should expect our PTBS to find ll = .8. As 
seen in Table 4, we estimated~ = .71, which is definitely 
encouraging. 

We applied PTBS to model (4.3), untransformed. See 
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Table 4 for the results, which for 9 are somewhat different 
from those obtained by Pritchard, Downie, and Bacon 
(1977), who used their algorithm DIRECT on the untrans•
formed data. Possibly this difference is due to the pres•
ence of several local minima. When we applied un•
weighted nonlinear least squares to model (4.3), using 
Box and Hill's (1974) PTWLS solution as a starting value, 
other algorithms found a different solution with a smaller 
sum of squares than that reported by Pritchard, Downie, 
and Bacon (see Table 4). 

Our aim in studying this example was to show that our 
PTBS gives reasonable results. We think our answers are 
perfectly sensible, and they correspond to PTWLS. For 
both, one obtains physically meaningful (positive) esti•
mates of 9, 92 , and 93 , but unweighted linear least 
squares on the inverse scale gives negative estimates. We 
believe that PTWLS and PTBS can be recommended 
equally for this data set, although perhaps unweighted 
nonlinear least squares is just as effective and somewhat 
simpler. 

A minor advantage of using the untransformed data is 
that on the inverse scale, Observation 6 of Box and Hill 
is highly influential even with power weighting (Carroll 
l982b), while on the original scale no observation appears 
to have unusually high influence on the estimate of ll. 
Influence and diagnostics for inference in our model are 
questions that should be addressed in the future. 

We used our transformation method successfully on 
other data sets, including the second data set mentioned 
by Pritchard, Downie, and Bacon. 

APPENDIX A: PROOFS 

Outline of Proof for Theorem 1 

The likelihood analysis proceeds as follows. Define 

Z; = dh(f;(9o), llo)/d9o, 

f,(9) = f(x,, 9), f, = f,(9o), 

hy(y) = hy(y, ll) = dh(y, ll)/dy, and h(y) = h(y, ll). 

Let h,(y) and hn(Y) be the gradient vector and Hessian 
of h(y, ll) with respect to ll. By shnple algebra we find 

Table 4. Analysis of Carr's Data Using Unweighted, Least Squares, Power Transformation 
Weighted Least Squares (PTWLS), and Power Transforming Both Sides (PTBS) 

Estimation Method Unweighted PTWLS PTBS Unwelghted Unwelghted 

Source Pritchard et at. Box and Hill IMSLZXSSQ� Pritchard at al. BMDP3R� 
and ZXGSN 

Response Variable y-1 y-1 y y y 
~ 1 -.8 .71 1 1 
~um of Squaresc 3.24397 3.23448 

Oo 16.3 40.00 39.2 35.9 35.9 

01 -.043 .75 .043 1.04 .071 

o. -.014 .35 .021 .55 .038 

0. -.098 1.85 .104 2.46 .167 

a See Section 5. 
"Same solution obtained with BMDPAR, SAS·NLIN with derivatives, and IMSl ZXSSQ. 
c Used to compare the fits with A = 1 and response 5 = y. 
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the joint information matrix of (Oo, <ro, Ao) as (all sum- then 
mations are from l to N) 

lim lim FE- 1 F' = [ 0 0 ], 

where 

0 
l/(2rro4 ) 

S = N- 12:,z;z/, 

C1 = -N- 1E"' ;i,Z; [h,(y;)- h,(f;) ] ' , 

C2 = -N- 1E"';i,e;[h,(y;) - h,(f;)]', 

C3 = N' 1E"' ;i, { [h,(y;)- h,(f;) ] [h,(y;)- h,(f;) ] ' 

+ E;[h .. (y;) - h .. (f;)] 

+ (aiaA)(aiaA)'log[hy(y;)]}. 

In general, C 1 and C2 are not zero, and the asymptotic 
distribution of (0, & 2) when Ao is estimated differs from 
when Ao is known. The key question, of course, is 
whether C 1 and C 2 are sufficiently different from zero to 
seriously affect the distribution of ~-

The expressions C 1, C 2, and C 3 are complex even when 
[;(Oo) has a nice form such as simple linear regression. 
To simplify matters sufficiently so that we can gain some 
insight about the difference between knowing and esti•
mating Ao, we follow Bickel and Doksum (1981) and oth•
ers and let <ro--+ 0. 

Taylor expansions show that under mild regularity con•
ditions C1 = 0(rro2), C2 = O(rro2), and CJ = O(rr02) as rr0 
--+ 0. Standard calculations show that when Ao is known, 

N 112 covariance [(0 - Oo)irro, (rr2 - <ro2)/rr02 I Ao known] 

--+A -I = [(lim g)-1 ~] . (A.l) 

LetD = Diag(rr0 , .•• , rr0 , rr02, l, ... , !). Then, to find 
this limiting covariance matrix when A.0 is unknown, we 
must find the upper left (k + I) x (k + l) corner of 

which by standard results on inverting partitioned ma•
trices is A -I + FE-'F', where A -I is given in (A.!), E 
= C3/rr02 - B'A B, F = A - 1B, and B' = (C1/rro C2/ 
rr02). Clearly, 

and 

E = C3/rro2 - c,•s-•c,irro2 - ZCiC2/rro4 

To obtain simple asymptotics, we will assume that for <ro 
fixed, Cdrro2 , C2/rro2 , and C3/rr02 converge as N ---7> oo, 
and that these, in turn, have limits D 1, D2, and D3, re•
spectively, as <ro--+ 0. We also assume that S--+ Sx (pos•
itive definite) as N--+ oo. If D3 - 2DiD2 is nonsingular, 

o:n~ON-crc 0 W 

where W = 4Di[DJ- DiD2]- 1D2. 

Outline of Proof of Theorem 2 

Let w1, ... , wN be positive numbers, and let 01 be 
any point that minimizes the expression 

"';i,w, I y,- f,ro,) !-
Under (1.4), [ 1(80) is the unique median of y,, so 9, will 
be consistent under some regularity conditions. The 
asymptotic distribution of 01 can be studied using tech•
niques in Ruppert and Carroll (1980). A particularly sim•
ple asymptotic variance matrix is obtained if w, = 
hy(f1(80 ), Ao), that is, if w, is proportional to the density 
of [y, - f,(Oo)l at its median, zero. Then 

N 112(0 1 - Oo)irro....:£... N(O, (,/2)S- 1). 

Although w1 depends on Oo and Ao, the methods in Carroll 
and Ruppert (1982) can be used to show that the same 
limiting distribution holds if one substitutes VN-consis•
tent estimates for Oo and Ao. 

Let V(Ao) and V(~) be the asymptotic variance ma•
trices oftl(Ao) and 0(~). respectively. Since V(Ao) = s-•, 
the asymptotic optimality of the MLE shows that 

s- 1 , v(~), (1Ti2)s-•. 

where the inequalities are in the sense of positive defi•
niteness. 

APPENDIX B: COMPUTATION 

Let L(O, rr, A) denote the log-likelihood for model (1.4). 
We do not recommend direct maximization of this like•
lihood by a canned routine for maximizing a function of 
many parameters. Rather, we adopt the usual practice for 
the Box-Cox (1964) model (1.5), which reduces the prob•
lem to maximizing a function of the scalar A. Here are 
the general steps we used. 

Step I. Fix an initial scale A'"- For the simulation and 
second example, A'" = 1.0, while for the first example 
Am was chosen to satisfy (4.1). 

Step 2. Obtain preliminary estimates ofe, say e'"· For 
the simulation and first example, these were found by 
least squares, while for the second example the starting 
values are the last column of Table 4. The value rr'" is 
simply the square root of the mean squared residual. 

Step 3. Now begin the maximization of the log-likeli•
hood. At the current value of A, find O(A), <r(A) by using 
a nonlinear regression algorithm, starting from 6(1), rr0 >. 
After completion, update e'" = O(A), rr'" = rr(A). Define 
the one-parameter function L *(A) = L(O(l\), <r(A), A). 

Step 4. On the interva!A E [- 1.0, 1.0], L *(A) is often 
concave and can be maximized by a program specifically 
designed to maximize a concave function of one param•
eter. If L *(A) is not concave, use a grid search. 
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For Steps 3 and 4, we used the IMSL subroutines 
ZXSSQ and XZGSN, respectively. The latter program 
includes a check for convexity of - L *(;\.), which in the 
simulations was always satisifed. 

[Received November 1982. Revised October 1983.] 
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Variance Function Estimation 
M. DAVIDIAN and R. J. CARROLL* 

Heteroscedastic regression models are used in fields including eco•
nomics, engineering, and the biological and physical sciences. Often, the 
heteroscedasticity is modeled as a function of the covariates or the regres•
sion and other structural parameters. Standard asymptotic theory implies 
that how one estimates the variance function, in particular the structural 
parameters, has no effect on the first-order properties of the regression 
parameter estimates; there is evidence, however, both in practice and 
higher-order theory to suggest that how one estimates the variance func•
tion does matter. Further, in some settings, estimation of the variance 
function is of independent interest or plays an important role in esti•
mation of other quantities. In this article, we study variance function 
estimation in a unified way, focusing on common methods proposed in 
the statistical and other literature, to make both general observations 
and compare different estimation schemes. We show that there are sig•
nificant differences in both efficiency and robustness for many common 
methods. 

We develop a general theory for variance function estimation, focusing 
on estimation of the structural parameters and including most methods 
in common use in our development. The general qualitative conclusions 
are these. First, most variance function estimation procedures can be 
looked upon as regressions with "responses" being transformations of 
absolute residuals from a preliminary fit or sample standard deviations 
from replicates at a design point. Our conclusion is that the former is 
typically more efficient, but not uniformly so. Second, for variance func•
tion estimates based on transformations of absolute residuals, we show 
that efficiency is a monotone function of the efficiency of the fit from 
which the residuals are formed, at least for symmetric errors. Our con•
clusion is that one should iterate so that residuals are based on generalized 
least squares. Finally, robustness issues are of even more importance 
here than in estimation of a regression function for the mean. The loss 
of efficiency of the standard method away from the normal distribution 
is much more rapid than in the regression problem. 

As an example of the type of model and estimation methods we con•
sider, for observation-covariate pairs (Y,,x,), one may model the variance 
as proportional to a power of the mean response, for example, 

E(Y,) ~ f(x., p), var(Y,) ~ uf(x., f!J', 
f(x.,f!J >0, 

where f (x,. fJ) is the possibly nonlinear mean function and (} is the 
structural parameter of interest. "Regression methods" for estimation 
of(} and u based on residuals r1 = Y; - f(x 1, $.) for some regression 
fit iJ. involve minimizing a sum of squares where some function T of 
the jr,j plays the role of the "responses" and an appropriate function of 
the variance plays the role of the "regression function." For example, 
if T(x) = x 2, the responses would be if, and the form of the regression 
function would be suggested by the aproximate fact E(rn = u2f 
(x, iJ.)'111. One could weight the sum of squares appropriately by consi•
dering the approximate variance of ri. For the case of replication at 
eachx,, some methods suggest replacing the r1 in the function Tby sam•
ple standard deviations at each x,. Other functions T, such as T(x) = 

x or log x, have also been proposed. 

KEY WORDS: Asymptotic efficiency; Heteroscedasticity; Regression; 
Variance estimation. 

1. INTRODUCTION 

Consider a heteroscedastic regression model for ob•
servable data Y: 

EY; = JJ; = f(x;, P); var(Y;) = a 2g2(z;, p, IJ). (1.1) 

* M. Davidian is Assistant Professor, Department of Statistics, North 
Carolina State University, Raleigh, NC 27695-8203. R. J. Carroll is Pro•
fessor, Department of Statistics, University of North Carolina, Chapel 
Hill, NC 27514. This work was supported by Air Force Office of Scientific 
Research Grant F-4962Q.85·C.0!44. 

Here, {xJ are the design vectors, P(p x 1) is the regression 
parameter, f is the mean response function, and the vari•
ance function g expresses the heteroscedasticity, where { zJ 
are known vectors, possibly the {xJ, a is an unknown scale 
parameter, and !J(r x 1) is an unknown parameter. For 
example, the variance may be modeled as proportional to 
a power of the mean: 

g(z;, p, IJ) = f(x;, P)', f(x;, fl) > 0. (1.2) 

One might also model the variance as quadratic in the 
predictors, that is, 

ag(z;, p, IJ) = 1 + IJ 1x; + IJ 2x/, 

or by an expanded power of the mean model, that is, 

a'g2(z,, p, IJ) = IJ, + !Jzf(x;, P)''· (1.3) 

Box and Meyer (1986) used 

g(z;, p, !J) = exp(z!O). 

An important feature of ( 1.1) is that no assumption about 
the distribution of the {Y;} has been made other than that 
of the form of the first two moments. Models that may be 
regarded as special cases of (1.1) are used in diverse fields, 
including radioimmunoassay, econometrics, pharmacoki•
netic modeling, enzyme kinetics, and chemical kinetics, 
among others. The usual emphasis is on estimation of p 
with estimation of the variances as an adjunct. 

The most common method for estimating P is general•
ized least squares, in which one estimates g(z" p, IJ) by 
using an estimate of (} and a preliminary estimate of P and 
then performs weighted least squares; see, for example, 
Carroll and Ruppert (1982a) and Box and Hill (1974). This 
might be iterated, with the preliminary estimate replaced 
by the current estimate of p, a new estimate of(} obtained, 
and the process repeated. Standard asymptotic theory as 
in Carroll and Ruppert (1982a) or Jobson and Fuller (1980) 
shows that as long as the preliminary estimators for the 
parameters of the variance function are consistent, all es•
timators of p obtained in this way will be asymptotically 
equivalent to the weighted least squares estimator with 
known weights. 

There is evidence that for finite samples, the better one's 
estimate of IJ, the better one's final estimate of p. Williams 
(1975) stated that "both analytic and empirical studies ... 
indicate that . . . the ordering of efficiency (of estimates 
of p) . . . in small samples is in accordance with the or•
dering by efficiency (of estimates of IJ)" (p. 563). Roth•
enberg (1984) showed via second-order calculations that 
if g does not depend on p, when the data are normally 
distributed the covariance matrix of the generalized least 
squares estimator of p is an increasing function of the 
covariance matrix of the estimator of IJ. 
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Second-order asymptotics provide only a weak justifi•
cation for studying the properties of variance function es•
timates. Instead, our thesis is that estimation of the struc•
tural variance parameter 0 is of independent interest. In 
many engineering applications, an important goal is to 
estimate the error made in predicting a new observation; 
this can be obtained from the variance function once a 
suitable estimate of 0 is available. In chemical and bio•
logical assay problems, issues of prediction and calibration 
arise. In such problems, the estimator of e plays a central 
role. As motivation for the study of variance function es•
timation, in Section 2 we discuss the problem of calibration 
and prediction in the case of heteroscedasticity. For a for•
mal investigation of how the statistical properties of pre•
diction intervals and calibration constructs, such as the 
minimal detectable concentration, are highly dependent 
on how one estimates e, see Davidian, Carroll, and Smith 
(1987). In off-line quality control, the emphasis is not only 
on the mean response but also on its variability; Box and 
Meyer (1986) stated that "one distinctive feature of Jap•
anese quality control improvement techniques is the use 
of statistical experimental design to study the effect of a 
number of factors on variance as well as the mean" (p. 
19). The goal is to adjust the levels of a set of experimental 
factors to bring the mean of the responses to some target 
value while minimizing standard deviation; the problem 
involves simultaneous consideration of both mean and 
variability, where the latter may be a function of the mean 
(see Box 1986; Box and Ramirez 1986). These authors 
advocated methods based on data transformations to ac•
count for the heteroscedasticity in separating the factors 
into those affecting dispersion but not location, those af•
fecting location but not dispersion, and those affecting 
neither. Similarly, one might employ effective estimation 
of variance functions in this application. We briefly discuss 
the relationship between variance function estimation and 
one type of data transformation in Section 3. 
It should be evident from this brief review that, far from 

being only a nuisance parameter, the structural variance 
parameter 0 can be an important part of a statistical analy•
sis. The foregoing discussion suggests the need for a un•
ified investigation of estimation of variance functions, in 
particular, estimation of the structural parameter 0. Pre•
vious work in the literature tends to treat various special 
cases of (1.1) as different models with their own estimation 
methods. The intent of this article is to study parametric 
variance function estimation in a unified way. Nonpara•
metric variance function estimation has also been studied 
(see, e.g., Carroll 1982); we will confine our study to the 
parametric setting. 

Parametric variance function estimation may be thought 
of as a type of regression problem in which we try to 
understand variance as a function of known or estimable 
quantities and in which e plays the part of a "regression" 
parameter. The major insight that allows for a unified 
study is that the absolute residuals from the current fit to 
the mean or the sample standard deviations from replicates 
are basic building blocks for analysis. At the graphical 
level, this means that transformations of the absolute re•
siduals and sample standard deviations can be used to gain 
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insight into the structure of the variability and to suggest 
parametric models. For estimation, a major contribution 
is to point out that most of the methods proposed in the 
literature are (possibly weighted) regressions of transfor•
mations of the basic building blocks on their expected 
values. Many exceptions to this are dealt with in this article 
as well. 

Our study yields these major qualitative conclusions. As 
stated here, they apply strictly only to symmetric error 
distributions, but they are fairly definitive, and one is un•
likely to be too successful ignoring them in practice. 

1. Robustness plays a great role in the efficiency of 
variance function estimation, probably even greater than 
in estimation of a mean function. For example, if the vari•
ance does not depend on the mean response, the standard 
method will be normal theory maximum likelihood, as in 
Box and Meyer (1986). A weighted analysis of absolute 
residuals yields an estimator only 12% less efficient at the 
normal model, which rapidly gains efficiency over maxi•
mum likelihood for progressively heavier tailed distribu•
tions. This slope of improvement is much larger than is 
typical for estimation of the mean response. For a standard 
contaminated normal model for which the best robust es•
timators have efficiency 125% with respect to least squares, 
the absolute residual estimator of the variance function 
has efficiency 200%. 

2. We obtain implications for fit to the means upon 
which the residuals are based. It has been our experience 
that unweighted least squares residuals yield unstable es•
timates of the variance function when the variances de•
pend on the mean. This is confirmed in our study, in the 
sense that the asymptotic efficiency of the variance func•
tion estimators is an increasing function of the efficiency 
of the current fit to the means. Thus we suggest the use 
of iterative weighted fitting, so the variance function es•
timate is based on generalized least squares residuals. As 
far as we can tell, this part of our article is one of the first 
formal justifications for iteration in a generalized least 
squares context. 

3. It is standard in many applied fields to take m rep•
licates at each design point, where usually m s; 4. Rather 
than using (transformations of) absolute residuals for es•
timating variance function parameters, one might use the 
sample standard deviations. We develop an asymptotic 
theory from which we obtain the efficiency of this substi•
tution. The effect is typically, although not always, a loss 
of efficiency, at least when there are m s; 4 replicates. The 
clearest results occur when the variance does not depend 
on the mean. Normal theory maximum likelihood is a 
weighted regression of squared residuals; the correspond•
ing method would be a weighted regression based on sam•
ple variances. Using the latter entails a loss of efficiency, 
no matter what the underlying distribution. For normally 
distributed data, the efficiency is (m - 1)/m, thus being 
only 50% for duplicates. For other methods, using the 
replicate standard deviations can be more efficient. This 
is particularly true of a method due to Harvey (1976), 
which is based on the logarithm of absolute residuals. A 
small absolute residual, which seems always to occur in 
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practice, can wreak havoc with this method. This is con•
sistent with our influence function calculations, so we sug•
gest some trimming of the smallest absolute residuals be•
fore applying Harvey's method. 

4. Our results indicate that the precision of estimates of 
8 is approximately independent of a. In addition, in the 
power of the mean model (1.2), the efficiency of a regres•
sion estimator improves as the relative range of values of 
the mean response increases; efficiency depends on the 
spread of the logarithms of means, not their actual values. 
This helps explain why in assays, estimating variances is 
typically much harder than estimating means. 

In Section 2 we discuss the prediction and calibration 
problems as a motivating example of a situation in which 
variance function estimation is of key importance. In Sec•
tion 3 we describe a number of methods for estimation of 
8. We do not discuss robust methods (see Giltinan, Carroll, 
and Ruppert 1986). In Section 4 we present an asymptotic 
theory for a general estimator of e whose construction 
encompasses the methods of Section 3. Section 5 contains 
examples of specific applications of our theory and a dis•
cussion of the implications of our formulation. Sketches 
of proofs are presented in Appendix A. 

2. AN EXAMPLE: THE ROLE OF VARIANCE 

ESTIMATION IN PREDICTION AND 

CALIBRATION PROBLEMS 

One example in which heterogeneity of variation occurs 
is in calibration experiments in the physical and biological 
sciences, in which one fits a model such as (1.1) to a sample 
{ Y,, x,) (i = 1, ... , N). The {xJ may be concentrations 
of a substance and the { Y,} may be counts or intensity 

1500 

1200 

900 
.... 
c: 
"' 8 

600 

300 

0 
0 10 20 

1081 

levels that vary with concentration. The interest lies in 
using the estimated regression to make inference about a 
pair { Y0 , x0), which is independent of the original data 
set. One may wish to obtain point and interval predictors 
for Y0 in the case in which x0 is known (prediction) or 
estimate x0 in the case in which Y0 only is known ( cali•
bration) (see Rosenblatt and Speigelman 1981). As a mo•
tivating example for considering estimation of variance 
functions as an independent problem, we describe the pri•
mary role of form and estimation of the variance function 
in construction of prediction/calibration intervals in the 
case of heteroscedasticity. 

Throughout this discussion assume that xi === zi so that 
we may write the variance function as g(x,, p, 8), and 
assume that the data are approximately normally distrib•
uted. Given x 0 , the standard point estimate of the response 
Yo is f(x0 , /1), where /J is some estimate for p. For any 
consistent estimator /1 of p, under (1.1) the variance in the 
error made by the prediction is, for large sample sizes, 
var{ Y0 - f(x 0 , /1)) = a 2g'(x0 , p, 8), so the error in pre•
diction is determined mainly by the variance function a2g'(x0 , 

p, 8) and not the original data set itself. An approximate 
(1 - a) 100% confidence interval for Yo is l(x0) = {all Y 
in the interval f(xo, /1) ± tf'_-t;, ag(x0 , /1, e)) ; here tf'_-£:2 

is the (1 - a/2) percentage point of the t distribution with 
( N - p) degrees of freedom and a and /1 are estimates. 
If the parameters are estimated by a weighted analysis, 
such as generalized least squares assuming (1.1), all esti•
mates are consistent and the prediction interval becomes 

l(x0) ={all Yin the interval 

f(xo, P) ± tf'_-t;,ag(xo, p, 8)). (2.1) 

30 40 50 60 

Esterase 

Figure 1. Approximate Form of Prediction lnteNals for a Unear Mean Response Function Based on Unweighted (ignoring heteroscedasticity) 

and Weighted [as in (1. 1 )] Regression Fits. Esterase assay 95% prediction limits: dashed line-unweighted, solid line-weighted. 
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If one were to ignore the heterogeneity, the interval would 
be given by 10 (x0) = {all Y in the interval f(x0 , P) ± 

tf~-£12 8}. For an unweighted analysis, however, a 2 would 
be estimated by the unweighted mean squared error D-L = 
a'N- 1 ~ g'(x, /3, 8) = a 2gl; for large N. Thus the un•
weighted prediction interval satisfies 

1u(x0 ) = {all Yin the interval 

f(xo, p) ± tf".:-t"agN}· (2.2) 

Comparing (2.1) and (2.2), we see that where the vari•
ability is small, the unweighted interval will be too long 
and hence pessimistic, and conversely where the variance 
is large. Figure 1 illustrates this phenomenon for the results 
of an assay for the concentration of an enzyme esterase, 
where the responses are binding counts in the simple sit•
uation of an approximately linear mean response function 
where variability increases with mean response. 

The situation is the same for calibration. For simplicity 
in discussing calibration, assume that f(x, /3) is strictly 
increasing or decreasing in x. Given Y 0 , the usual estimate 
of x0 is that value satisfying Y0 = f(x, fj). The common 
confidence interval for x0 is the set of all x values for which 
Y0 falls in the prediction interval 1(x); this interval is ac•
tually a (1 - a) 100% confidence interval for the unknown 
x0 . Since the confidence interval for x0 is thus an inversion 
of the intervals in Figure 1, again, the effect of not weight•
ing is intervals that are too long for x0 when the variance 
is small and the opposite when the variance is large. We 
are not familiar with any extensive investigation of cali•
bration confidence intervals for heteroscedastic models, 
but see Watters, Carroll, and Spiegelman (1987). 

The key point of this discussion is that when hetero•
geneity of variance is present, how well one models and 
estimates the variances will have substantial impact on 
prediction and calibration based on the estimated mean 
response, since the form of the intervals depends on the 
form of the variance function. Some theoretical work has 
been done verifying the implications of this discussion; for 
an investigation of how the statistical properties of esti•
mators for calibration quantities depend on those of the 
estimator 8, see Davidian et al. (1987) and Carroll (1987). 

3. ESTIMATION OF 8 

We now discuss the form and motivation for several 
estimators of 8 in (1.1). In what follows, let fj. be a pre•
liminary estimator for p. This could be unweighted least 
squares or the current estimate in an iterative reweighted 
least squares calculation. Let e1 = {Y 1 - f(x,, /3)}/{ag(z,, 
p, 8)} denote the errors so that Ee1 = 0 and Eei = 1, and 
denote the residuals by r1 = Y1 - f(x1, fj.). We consider 
some methods requiring m1 "' 2 replicates at each of M 

design points; for simplicity, we consider only the case of 
equal replication m1 = m and write in obvious fashion {Y,J 
( j = 1, ... , m) to denote the m observations at x, where 
appropriate, so that N = Mm is the total number of ob•
servations. In this case, let Y,. and s, denote the sample 
mean and standard deviation at xi. For consistency of ex•
position, however, we denote the sum over all observa-
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tions as ~[: 1 instead of ~~~~7: 1 . When we speak of re•
placing absolute residuals {jr,j} by sample deviations {sJ in 
the case of replication, jr,j or s, appears m times in the 
sum. 

3.1 Regression Methods 

3.1.1. Pseudolikelihood. Given f;., the pseudolikeli•
hood estimator maximizes the normal log-likelihood l(fj., 
8, a), where 

N 

l(/3, 8, a) = - N log a - 2: log{g(z,, p, 8)} 
i=l 

N 

-(2a2)-1 2: {Y, - f(x1 , f3)}'!g'(z 1, fJ, 8) (3.1) 
i=1 

(see Carroll and Ruppert 1982a). Here the term "pseu•
dolikelihood" is used as in Gong and Samaniego (1981). 
Generalizations of pseudo likelihood for robust estimation 
have been studied by Carroll and Ruppert (1982a) and 
Giltinan et al. (1986). 

3.1 .2. Least Squares on Squared Residuals. Besides 
pseudolikelihood, other methods using squared residuals 
have been proposed. The motivation for these methods is 
that the squared residuals have approximate expectation 
a 2g2( z 1, p, 0) (see Amemiya 1977; Jobson and Fuller 1980). 
This suggests a nonlinear regression problem in which the 
"responses" are {rl} and the "regression function" is a2g2(z1, 

fj., 8). The estimator 8,. minimizes in 8 and a, 

N 

2: {rt - a 2g'(z1, fj., 8)}2• 

i"'l 

For normal data the squared residuals have approximate 
variance a4g4(z1, p, 8); in the spirit of generalized least 
squares, this suggests the weighted estimator that mini•
mizes in e and (J' 

N 

2: {rt- a 2g'(z1, fj., 8)}2/g'(z,, fj., &.), (3.2) 
i=l 

where&. is a preliminary estimator for 8, 8,., for example. 
Full iteration, when it converges, would be equivalent to 
pseudo likelihood. 

3.1.3. Accounting for the Effect of Leverage. One ob•
jection to methods such as pseudolikelihood and least 
squares based on squared residuals is that no compensa•
tion is made for the loss of degrees of freedom associated 
with preliminary estimation of p. For example, the effect 
of applying pseudolikelihood directly seems to be a bias 
depending on piN. For settings such as fractional facto•
rials, where p is large relative to N, this bias could be 
substantial. 

Bayesian ideas have been used to account for loss of 
degrees of freedom (see Harville 1977; Patterson and 
Thompson 1971). When g does not depend on p, there•
stricted maximum likelihood approach of Patterson and 
Thompson suggests in our setting one estimate 8 from the 
mode of the marginal posterior density for 8 assuming 
normal data and a prior for the parameters proportional 
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to a-'- When g depends on p, one may extend the Bayesian 
arguments and use a linear approximation as in Box and 
Hill (1974) and Beal and Sheiner (1987) to define a re•
stricted maximum likelihood estimator. 

Let Q be theN x p matrix with ith row fp(x 1, P)'lg(z,, 
p, 0), where fp(x1, PJ = a/ap{f(x1, p)}, and let H = 
Q(Q'Q) - 'Q' be the "hat" matrix with diagonal element h11 

= h11(P, 0); the values {h.} are the leverage values. It turns 
out that the restricted maximum likelihood estimator is 
equivalent to an estimator obtained by modifying pseu•
dolikelihood to account for the effect of leverage. This 
characterization, although not unexpected, is new; we de•
rive this estimator and its equivalence to a modification 
of pseudolikelihood in Appendix B. 

The least squares approach using squared residuals can 
also be modified to show the effect of leverage. Jobson 
and Fuller (1980) essentially noted that for nearly normally 
distributed data we have the approximations 

Err= a 2(1 - h,)g2(z1, p, 0), 

var r[ = 2a4(1 - h11) 2g4(z1, p, 0). 

To exploit these approximations modify (3.2) to minimize 
in 0 and a, 

N 

2: {r [ - a 2(1 - h11)g'(z,, p., O)P 
i=l 

+ {(! - h11 ) 2g'(z,, p., &.)}, (3.3) 

where h11 = h11(p., II.) and II. is a preliminary estimator 
for 0. An asymptotically equivalent variation of this esti•
mator in which one sets the derivatives of (3.3) with respect 
to 0 and a equal to 0 and then replaces &. by 0 can be 
seen to be equivalent to pseudolikelihood in which one 
replaces standardized residuals by studentized residuals. 
Although this estimator also takes into account the effect 
of leverage, it is different from restricted maximum like•
lihood. 

3.1.4. Least Squares on Absolute Residuals. Squared 
residuals are skewed and long-tailed, which has led many 
authors to propose using absolute residuals to estimate 0 
(see Glejser 1969; Theil1971). Assume that 

E\Y, - f(x 1, P)\ = 71g(z,, p, 0), 

which is satisfied if the errors {e,} are iid. Mimicking the 
least squares approach based on squared residuals, one 
obtains the estimator 0 AR by minimizing in 'I and 0, 

N 

2: {\r1\ - 71g(z,, p., 0)}2 

In analogy to (3.2), the weighted version is obtained by 
minimizing 

N 

2: {\r1\ - 71g(z1 , p., O)}'/g'(z1, p., II.), 
i=l 

where II. is a preliminary estimator for 0, probably OAR· 

As for least squares estimation based on squared residuals, 

1083 

one presumably could modify this approach to account for 
the effect of leverage. 

3.1.5. Logarithm Method. The suggestion of Harvey 
(1976) is to exploit the fact that the logarithm of the ab•
solute residuals has approximate expectation log{ag(z, p, 
0)}. Estimate 0 by ordinary least squares regression of 
log\r,\ on log{ag(z1, p., 0)}, since if the errors are iid, the 
regression should be approximately homoscedastic. If one 
ofthe residuals is near 0, the regression could be adversely 
affected by a large "outlier"; hence in practice one might 
wish to delete a few of the smallest absolute residuals, 
perhaps trimming the smallest few percent. 

3.2 Other Methods 

Besides squares and logarithms of absolute residuals, 
other transformations could be used. For example, the 
square root and i root would typically be more normally 
distributed than the absolute residuals themselves. Such 
transformations appear to be useful, although they have 
not been used much to our knowledge. Our asymptotic 
theory applies to such transformations. 

In a parametric model such as (1.1), joint maximum 
likelihood estimation is possible, where we use the term 
maximum likelihood to mean normal theory maximum 
likelihood. When the variance function does not depend 
on p, it can be easily shown that maximum likelihood is 
asymptotically equivalent to weighted least squares meth•
ods based on squared residuals. In the situation in which 
the variance function depends on p this is not the case. In 
this setting, it has been observed by Carroll and Ruppert 
(1982b) and McCullagh (1983) that, although maximum 
likelihood estimators enjoy asymptotic optimality when 
the model and distributional assumptions are correct, the 
maximum likelihood estimator of p can suffer problems 
under departures from these assumptions. This suggests 
that joint maximum likelihood estimation should not be 
applied blindly in practice. The theory of the next section 
shows the asymptotic equivalence of maximum likelihood 
with other methods in a simplifying special case. Based on 
this theory, we tend to prefer weighted regression methods 
even when the data are approximately normal for reasons 
of relative computational simplicity. 

Although we have chosen to describe the methods of 
Section 3.1 as "regression methods," asymptotically equiv•
alent versions of such methods may be derived by consid•
ering maximum likelihood assuming some underlying dis•
tribution. For example, the form of the weighted squared 
residuals method is that of normal theory maximum like•
lihood with p known and II. replaced by 0 (pseudolikeli•
hood); the form of the weighted absolute residual method 
is that of maximum likelihood assuming P known and II. 
replaced by 0 under the double exponential distribution. 
Thus what we term a regression method may be viewed 
as an approximation to maximum likelihood assuming a 
particular distribution. We feel that the regression inter•
pretation is a much more appealing and natural motiva•
tion, since no particular distribution need be considered 
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Table 1. Description of Some Methods tor Variance Function Estimation 

Normal theory maximum likelihood In p, a,(). Maximum likelihood 
Pseudolikelihood Normal theory maximum likelihood when p is set to current value. When iterated, equivalent to maximum likelihood if the 

variance does not depend on p. 
Weighted squared 
residuals 

Weighted absolute 
residuals 

Logartthm method 
Restricted maximum 
likelihood 

Regress squared residuals on the variance, function, weight inversely with squared current variance estimate. 

Regress absolute residuals on the standard deviation function, weight inversely with current variance estimate. 

Regress logarithm of absolute residuals on log of standard deviation function. Be wary of near-zero residuals. 
Pseudolikellhood corrected for leverage. Maximizes marginal posterior for noninformative prior. 

All of the preceding except restricted maximum likelihood have analogs formed by replacing absolute residuals by sample standard deviations In 
the case of replication. The following are based on the mean function or design being fully or partially unknown and are often used in assays. 

Rodbard and Frazier Regress log sample standard deviation on log sample mean, where the variance function depends on p only through the 
means. 

Modified maximum 
likelihood 

Modified functional maximum likelihood [Eq. (2.5)], where variance function depends on p only through means. 

Sadler and Smith Same as modified maximum likelihood, but means estimated by sample means. 

to obtain the form of the estimators, only the mean-vari•
ance relationship. 

Another joint estimation method is the extended quasi•
likelihood of Neider and Pregibon (1987) also described 
in McCullagh and Neider (1983). This estimator is based 
on assuming a class of distributions "nearly" containing 
skewed distributions, such as the Poisson and gamma. Al•
though it may be viewed as iteration between estimation 
of IJ and a and generalized least squares for p, technically 
this scheme does not fit in the general framework of the 
next section: an asymptotic theory was developed else•
where (see Davidian and Carroll, in press). A related for•
mulation was given by Efron (1986). 

Methods requiring replicates at each design point have 
been proposed in the assay literature. These methods do 
not depend on the postulated form of the regression func•
tion; one reason that this may be advantageous is that in 
many assays, along with observed pairs (Yii, x,), there will 
also be pairs in which only Y,i is observed. A popular and 
widely used method is that ofRodbard and Frazier (1975). 
If we assume that 

g(z, p, IJ) = g(l', z,, IJ), (3.4) 

as in, for example, (1.2) or (1.3), the method is identical 
to the logarithm method previously discussed except that 
one replaces jr,j by the sample standard deviation s, and 
f(x,, fj.) in the "regression" function by the sample mean 
Y, .. As a motivation for this and the method of Harvey, 
consider that under ( 1.2) IJ is simply the slope parameter 
for a simple linear regression. 

As an alternative, under the assumption of indepen•
dence and (3.4), the modified maximum likelihood method 
of Raab (1981) estimates IJ by joint maximization in the 
(M + r + 1) parameters a 2 , IJ, "" ... , I'M of the "mod•
ified" normal likelihood 
M 

II {2na'g'(.u,, z,, IJ))<m-1)12 
i=l 

X exp[-f (Y,i - l';)2/{2a2g2(1'1, z,, IJ)}]. (3.5) 
}~! 

The modification serves to make the estimator of a un•
biased. The idea here is to improve upon the regression 

method of Rodbard by appealing to a maximum likelihood 
approach that, despite a parameter space increasing as the 
number of design points, is postulated to have reasonable 
properties. A related method is that in which IJ and a are 
estimated by maximizing (3.5) with"' replaced by Y,., the 
motivation being computational ease and evidence that 
this estimator may not be too different from that of Raab 
in practice (see Sadler and Smith 1985). 

Table 1 contains a summary of some of the common 
methods for variance function estimation and their for•
mulations. 

4. AN ASYMPTOTIC THEORY OF VARIANCE 
FUNCTION ESTIMATION 

In this section we construct an asymptotic theory for a 
general class of regression-type estimators for IJ. Since our 
major interest lies in obtaining general insights, we do not 
state technical assumptions or details. In what follows, in 
the case of replication N--. oo in such a way that m remains 
fixed. The reader uninterested in this development may 
wish to review the definition of the form of the estimators 
in the first two paragraphs of Section 4.1 and then skip to 
Section 5, where conclusions and implications of the the•
ory are presented. 

4.1 Methods Based on Transformations of 
Absolute Residuals 

Writed,!JI) = jY,- f(x,,p)j. Let Tbeasmoothfunction 
and define M, by 

M,('l, IJ, p) = E[T{d,(p))], 

where '1 is a scale parameter that is usually a function of 
a only. We consider estimation of the more general pa•
rameter '1 instead of a itself for ease of exposition, and 
since u is estimated jointly with IJ in regression methods, 
our theory focuses on expansions for '1 and IJ jointly. If 
;,., 8*, and P. are any preliminary estimators for 11, (), 
and p, define ~ and IJ to be the solutions of 

N 

N-lil L H,(,, IJ, fj.) {T{d,(fj.)) - M,(,, IJ, fj.)) 
i=l 

+ V,(~. &., fj.) = 0, (4.1) 
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where V;(~, 0, p) is a smooth function and H, is a smooth 
function that for the estimators of Section 3 is the partial 
derivative of M, with respect to (~, 0). In what follows, 
we suppress the arguments of the functions M 1, V 1, etcetera 
when they are evaluated at the true values ~. 0, and p. 
Specific examples are considered in the next section. 

The class of estimators solving (4.1) includes directly or 
includes an asymptotically equivalent version of the esti•
mators of Section 3.1. For methods that account for the 
effect of leverage, M, V,, and H, will depend on the h,. 
In this case we need the additional assumption that if h 
~ max{h,}, then N 112h converges to 0. 

Theorem 4.1. Let fi,, 0,, and/1, be N 112 consistent for 
estimating ~. 0, and p. Let T be the derivative of T, and 
define 

C, ~ H,[T{d,(P)} - M,]!V,, 

N 

B1.N ~ N- 1 L H,Hf!V,, 
i=l 

N 

Bz.N ~ -N- 1 2: (H,IV,)a!ap{M,(~. 0, P)}, 
i=l 

N 

B 3.N ~ - N- 1 :2; (H,JV,)fp(x,, P)E[T{d,(p)}sign(e,)]. 
i=l 

Then, under regularity conditions as N ~ oo, 

B N1;2 [1 - ~J ~ N-1/2 £ C 
1,N e - e i=l l 

+ (Bz.N + B,.N)N112 (/1, - P) + op(1). (4.2) 

We may immediately make some general observations 
about the estimator {j solving (4.1). Note that if the vari•
ance function does not depend on p, then M, does not 
depend on p and hence B2 .N = 0. For the estimators of 
Section 2.1, Tis an odd function. Thus, if the errors {e,} 
are symmetrically distributed, E[H,{d;(P)}sign(e,)] ~ 0 and 
hence B 3.N = 0. 

Corollary 4.l(a). Suppose that the variance function 
does not depend on p and the errors are symmetrically 
distributed. Then the asymptotic distributions of the 
regression estimators of Section 3.1 do not depend on the 
method used to obtain fj,. If both of these conditions do 
not hold simultaneously, then the asymptotic distributions 
will depend in general on the method of estimating p. 

The implication is that in the situation for which the 
variance function does not depend on P and the data are 
approximately symmetrically distributed, for large sample 
sizes the preliminary estimator for p will play little role in 
determining the properties of /1. Note also from (4.2) that 
for weighted methods, the effect of the preliminary esti•
mator of 0 is asymptotically negligible regardless of the 
underlying distributions. 

The preliminary estimator fj, might be the unweighted 
least squares estimator, a generalized least squares esti•
mator, or some robust estimator. See, for example, Huber 
(1981) and Giltinan et a!. (1986) for examples of robust 
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estimators for p. For some vectors {vN.J, these estimators 
admit an asymptotic expansion of the form 

N 

N112(/1, - p) ~ N- 112 :2; 'l'(vN.i� e,) + op(1). (4.3) 
i=l 

Here '¥ is odd in the argument e. In case the variance 
function depends on p, B 2 N ,0 0 in general; however, if 
the errors are symmetrically distributed and fj, has ex•
pansion ofform (4.3), then the two terms on the right side 
of ( 4.2) are asymptotically independent. The following is 
then immediate. 

Corollary 4.J(b). Suppose that the errors are sym•
metrically distributed and that fj, has an asymptotic ex•
pansion of the form (4.3). Then for the estimators of Sec•
tion 3.1, the asymptotic covariance matrix of {j is a mono•
tone nondecreasing function of the asymptotic covariance 
matrix of fj,. 

By the Gauss-Markov theorem and the results ofJobson 
and Fuller (1980) and Carroll and Ruppert (1982a), the 
implication of Corollary 4.1(b) is that using unweighted 
least squares estimates of p will result in inefficient esti•
mates of IJ. This phenomenon is exhibited in small samples 
in a Monte Carlo study of Davidian eta!. (1987). If one 
starts from the unweighted least squares estimate, one 
ought to iterate the process of estimating li-use the cur•
rent value fj, to estimate 0 from (4.1), use these fj, and 
{j to obtain an updated fj, by generalized least squares, 
and repeat the process e - 1 more times. It is clear that 
the asymptotic distribution of {j will be the same for e "= 
2 with larger asymptotic covariance for e ~ 1, so in prin•
ciple one ought to iterate this process at least twice. See 
Carroll, Wu, and Ruppert (1987) for more on iterating 
generalized least squares. 

4.2 Methods Based on Sample 
Standard Deviations 

Assume replication, and as before let {s,} be the sample 
standard deviations at each x,, which themselves have been 
proposed as estimators of the variance in generalized least 
squares estimation of p. This can be disastrous (see Jac•
quez, Mather, and Crawford 1968). When replication ex•
ists, however, practitioners feel comfortable with the no•
tion that the {s,} may be used as a basis for estimating 
variances; thus one might reasonably seek to estimate 0 
by replacing d,(/J,) by s, in (4.1). 

The following result is almost immediate from the proof 
of Theorem 4.1 in Appendix A. 

Theorem 4.2. If d,(/1,) is replaced by s, in (4.1), then 
under the conditions of Theorem 4.1 the resulting esti•
mator for 0 satisfies (4.2) with B 3.N = 0 and the redefi•
nitions 

C, ~ (H,IV,){T(s,) - M,}, 

M, ~ E{T(s,)} ~ M,(~, 0, p). 

(4.4a) 

(4.4b) 

If the errors are symmetrically distributed, then, from 
(4.2) and Theorem 4.2, whether one is better off using 
absolute residuals or sample standard deviations in the 
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methods of Section 3.1 depends only on the differences 
between the expected values and variances of T{d 1(P)} and 
T(s1). In Section 5 we exhibit such comparisons explicitly 
and show that absolute residuals can be preferred to sam•
ple standard deviations in situations of practical impor•
tance. 

4.3 Methods Not Depending on the 
Regression Function 

We assume throughout this discussion that the variance 
function has form (3.4) and replication is available. From 
Section 3.1 we see that the "regression function" part of 
the estimating equations depends on f(x., ft.), so in the 
general equation (4.1) M,, V., and H, all depend on f(x1, 

p.). In some settings, one may not postnlate a form for 
the p, for estimating 0; the method of Rodbard and Frazier 
(1975), for example, uses s, in place of d1(ft.) as in Section 
4.2 and replaces f(x., ft.) by the sample mean Y,. We 
now consider the effect of replacing predicted values by 
sample means for the general class (4.1). 

The presence of the sample means in the variance func•
tion in (4.1) requires more complicated and restrictive 
assumptions than the usual large sample asymptotics ap•
plied heretofore. The method of Rodbard and Frazier and 
the general method (4.1) with sample means are nonlinear 
errors-in-variables problems as studied by Wolter and 
Funer (1982) and Stefanski and Carron (1985). Standard 
asymptotics for these problems correspond to letting a go 
to 0 at rate N- 112• In Section 4.4 we discuss the practical 
implications of a being small; for now, we state the fonow•
ing result. 

Theorem 4.3. Suppose that we replace f(x., ft.) by 
Y, in M., V., and H 1 in (4.1) and adopt the assumptions 
of Theorems 4.1 and 4.2. Further, suppose that as N-+ 
co, a -+ 0 simultaneously and 

(i) N 112a-+ .<, 0 S .<<co; 
(ii) N112 ~{:, C, has a nontrivial asymptotic normal limit 

distribution; 
(iii) The {e1} are symmetric and iid; 
(iv) {jY, - p.lfa}' has uniformly bounded k moments, 

some k > 2. 

Then the results of Theorems 4.1 and 4.2 hold with B2 N 

= B,,N .. 0. . 

This result shows that under certain restrictive assump•
tions, one may replace predicted values by sample means 
under replication; it is important to realize, however, that 
the assumption of sman a is not generany valid and hence 
the use of sample means may be disadvantageous in sit•
uations where these asymptotics do not apply. Further, 
relaxation of Assumption (iii) win result in an asymptotic 
bias in the asymptotic distribution of the estimator not 
present for estimators based on residuals regardless of the 
assumption of symmetry (see App. A). 

The estimator of Raab (1981) discussed in Section 3.2 
is also a functional nonlinear error-in-variables estimator, 
complicated by a parameter space with size of order N. 
Sadler and Smith (1985) observed that the Raab estimator 
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is often indistinguishable from their estimator with p1 re•
placed by Y, in (3.5); such an estimator is contained in 
the general class ( 4.1 ). Davidian (1986) showed that under 
the asymptotics of Theorem 4.3 and additional regularity 
conditions the two estimators are asymptotically equiva•
lent in an important special case. We may thus consider 
the result of Theorem 4.3 relevant to this estimator. 

4.4 Small a Asymptotlcs 

In Section 4.3 technical considerations forced us to pur•
sue an asymptotic theory in which a is small. It turns out 
that in some situations of practical importance these 
asymptotics are relevant. In particular, in assay data we 
have observed values for a that are quite small relative to 
the means. Such asymptotics are used in the study of data 
transformations in regression. It is thus worthwhile to con•
sider the effect of sman a on the results of Sections 4.1 
and 4.2 and to comment on some other implications of 
letting a -+ 0. 

In the situation of Theorem 4.1, if the errors are sym•
metrically distributed, then for the estimators of Section 
3.1, if a-+ 0 asN-+ co, then there is no effect for estimating 
the regression parameter p. In the situation of Theorem 
4.2, the errors need not even be symmetricany distributed. 
The major insight provided by these results is that in cer•
tain practical situations in which a is sman, the choice of 
ft. may not be too important even if the variance function 
depends on p. 

Small a asymptotics may be used to provide insight into 
the behavior of other estimators for (I that do not fit into 
the general framework of (4.1). It can be shown that the 
extended quasilikelihood estimator need not necessarily 
be consistent for fixed a, but if one adopts the asymptotics 
of the previous section, this estimator is asymptoticany 
equivalent to regression estimators based on squared re•
siduals as long as the errors are symmetrically distributed. 
Otherwise, an asymptotic bias may result, which may have 
implications for inference for 0. For discussion see Davi•
dian and Carron (in press). 

The sman a assumption also provides an illustration of 
the relationship between variance function estimation and 
data transformations. Let l(y, <p) = (Y" - 1)/<p, and con•
sider the model 

E{l(Y,, tp)} = l(f(x., {f), tp}, var{I(Y., <p)} = a; 

(4.5) 

such "transform both sides" models are proposed and mo•
tivated by Carron and Ruppert (1984). For a = 0, E(Yi) 
= f(x., {f) and var(Y1) = af(x., p)('-•l, so in (1.2) we have 
(I= 1 - 'P· Thus, when the sman u assumption is relevant, 
(4.5) and (1.1), (1.2) represent approximately the same 
model. 

5. APPLICATIONS AND FURTHER RESULTS 

In Section 4 we constructed an asymptotic theory for 
and stated some general characteristics of regression-type 
estimators of 0. In this section we use the theory to exhibit 
the specific forms for the various estimators of Section 3 
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and compare and contrast their properties. In our inves•
tigation we rely on the simplifying assumptions implied by 
the theory of Section 4, in particular the small u asymptotic 
approach in which u--> 0 and N--> oc. Throughout, define 
v(i, f3, 0) = log g(z;, /3, 0), let v0(i, /3, 0) be the column 
vector of partial derivatives of v with respect to 0, let ~(/3, 
0) be the covariance matrix of v0(i, /3, 0), and let r(i, /3, 
0) = {1, vl(i, f3, 0))'. For simplicity, assume that the errors 
{e;} are iid with kurtosis K; K = 0 for normality. 

5.1 Maximum likelihood, Pseudollkellhood, 
Restricted Maximum Likelihood, and 
Weighted Squared Residuals 

Writing q = logu, we have T(x) = x 2, M, = exp(2q)g'(z,, 
f3, 0), v, = Ml ,Hf = aM,Ia(q, 0')', and E[T{d,(f3)}sign(e,)] 
= 2E[Y, - f(x,, /3)] = 0, so B3,N"' 0 regardless of the 
underlying distributions. If h --> 0 such that N 112h--> 0 for 
methods accounting for the effect of leverage, then all of 
these methods admit an expansion of the form (4.2) with 
B 3 .N = o, The expansion will be different depending on 
whether p. is a generalized least squares estimator for f3 
or full maximum likelihood, since the maximum likelihood 
estimator has an expansion quadratic in the errors and 
that of the generalized least squares estimator is linear in 
the {e;} (see Carroll and Ruppert 1982b ). The implication 
is that regression methods based on iterated weighted 
squared residuals and full maximum likelihood are differ•
ent in general asymptotically. Regardless of the underlying 
distributions, for fixed u, Davidian (1986) showed that the 
asymptotic covariance matrix of the former methods in•
creases without bound as a function of u whereas that of 
maximum likelihood remains bounded for all u. Further, 
a simple comparison of the two covariances reveals that 
under reasonable conditions maximum likelihood has 
smaller asymptotic covariance as long as K ::> 2. Although 
these facts may suggest a preference for full maximum 
likelihood even away from normality, the computational 
and model robustness considerations mentioned earlier 
may make this preference tenuous. Generalized least 
squares and maximum likelihood estimators for f3 both 
satisfy /J. - f3 = Op(uN- 1"), so if u--> 0 or g does not 
depend on f3, then 0 is asymptotically normally distributed 
with mean e and covariance matrix 

(2 + K){4N~(f3, 0))-l (5.1) 

As mentioned in Section 3, under the small u asymp•
totics of Theorem 3.3, the extended quasilikelihood esti•
mator of 0 is asymptotically equivalent to the estimators 
here with asymptotic covariance matrix (5.1). Thus, if g 
does not depend on f3 or u--> 0, pseudolikelihood, weighted 
squared residuals, restricted maximum likelihood, maxi•
mum likelihood and, if u--> 0, extended quasilikelihood, 
are all asymptotically equivalent. In addition, all of these 
estimators have influence functions that are linear in the 
squared errors, indicating substantial nonrobustness. 

We may also observe that these methods are preferable 
to unweighted regression on squared residuals. Write (5.1) 
as 
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where V is the N x N diagonal matrix with elements V, 
and W is the N X p matrix with ith row H!. For the 
unweighted estimator based on squared residuals, calcu•
lations similar to those above show that the asymptotic 
covariance matrix when either g does depend on f3 or u 
--> 0 is given by 

( ! + Ki4)(W'w)- 1(W'VW)(W'w)- 1• (5.3) 

The comparison between (5.2) and (5.3) is simply that of 
the Gauss-Markov theorem, so (5.2) is no larger than 
(5.3). 

5.2 Logarithms of Absolute Residuals and the 
Effect of lnllers 

We do not consider deletion of the few smallest absolute 
residuals. Here T(x) = log x, so T(x) = x- 1 � Letting q 
= log u and assuming iid errors we have M, = q + v(i, 

/3, 0) + E log lei, V, "' 1, and H, = r(i, /3, 0). Under the 
assumption of symmetry of the errors, with g not depend•
ing on f3 or u--> 0, tedious algebra shows that 0 is asymp•
totically normally distributed with mean 0 and covariance 
matrix 

var{log(lei2)}{4N~(f3, 0))-l (5.4) 

The influence function for this estimator is linear in the 
logarithm of the absolute errors. This indicates nonro•
bustness more for inliers than for outliers, which at the 
very least is an unusual phenomenon. If the errors are not 
symmetric, then there will be an additional effect due to 
estimating f3 not present for the methods of Section 5.1, 
even if g does not depend on f3. 

5.3 Weighted Absolute Residuals 
Assume that the errors are iid, and let exp(q) = uEiel. 

Consider the weighted estimator. We have T(x) = x, T(x) 
= 1, M, = exp(q )g(z,, /3, 0), and V, = MI. Thus, if the 
errors are symmetrically distributed and either g does not 
depend on f3 or u--> 0, {! is asymptotically normally dis•
tributed with mean 0 and covariance matrix 

{<l/(1 - <l)}{N~(/3, 0)}- 1, (5.5) 

where b = varlei. The influence function for this estimator 
is linear in the absolute errors. By an argument similar to 
that at the end of Section 5.1, we may conclude that when 
the effect of /1. is negligible one should use a weighted 
estimator and iterate the method. 

5.4 General Transformations 

One may also consider other power transformations of 
absolute residuals. If ). -F 0 is the power of absolute re•
siduals on which the regression is based, then define q by 
exp(.!.q) = u'E(iel') and T(x) = x'. ThenM, = exp(.!.q)g'(z,, 
/3, 0), V, = M/. Straightforward calculations show that if 
the errors are symmetric and either g does not depend on 
f3 or u --> 0, then 0 is asymptotically normally distributed 
with mean 0 and asymptotic covariance matrix 

[var(iei')i{E(iei')}2]{.!.'N~(f3, 0)}- 1, (5.6) 

(5.2) with influence function linear in lei'· Thus (5.6) yields (5.1) 
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when A = 2 and (5.5) when A = 1. For square root trans•
formations, for example, A = !, and from (5.1) and (5.6), 
the asymptotic relative efficiency of the square root trans•
formation relative to pseudolikelihood under normal er•
rors is .693; from (5.5), the efficiency relative to weighted 
absolute residuals is .791. 

At this point it is worthwhile to mention that under the 
simplifying assumptions of our discussion, the precision of 
general regression estimators does not depend on a, since 
a general expression such as (5.6) is independent of 'I· 
Thus how well we estimate 8 in many practical cases will 
be approximately independent of a. Furthermore, when 
the power of the mean model for variance (1.2) holds, 
v0 (i, p, 8) = log p,, so ~(p, 8) is the limiting variance of 
the {log p;}. From the general expression (5.6), the pre•
cision with which one can estimate 8 depends only on the 
relative spread of the mean responses, not their actual 
sizes, and clearly this spread must be fairly substantial so 
that the spread of the logarithms of the means will be so 
as well. The implications are that for (1.2), the design will 
play an important role in efficiency of estimation of 8, and 
in some practical situations we may not be able to estimate 
8 well no matter which estimator we employ. 

5.5 Comparison of Methods Based on Residuals 

We assume that the errors are symmetric and iid and 
that either g does not depend onp or a is small. By (5.1), 
(5.4), and (5.5), the asymptotic relative efficiency of the 
three methods depends only on the distribution of the 
errors. For normal errors, using absolute residuals results 
in a 12% loss in efficiency, whereas for standard double 
exponential errors there is a 25% gain in efficiency for 
using absolute residuals. For normal errors, the logarithm 
method represents a 59% loss of efficiency with respect 
to pseudolikelihood. 

In Table 2 we present asymptotic relative efficiencies 
for various contaminated normal distributions. The 
asymptotic efficiency of the weighted absolute residual 
method to pseudolikelihood is the same as the asymptotic 
relative efficiency of the mean absolute deviation with 
respect to the sample variance for a single sample (see 
Huber 1981, p. 3); the first column of the table is thus 
identical to that of Huber. The table shows that, although 
at normality neither the absolute residuals nor the loga-

Table 2. Asymptotic Relative Efficiency of Appropriately Weighted 
Regression Methods Based on a Function T of Absolute Residuals 

and the Method Based on Logarithms of Absolute Residuals 
With Respect to Appropriately Weighted Regression Methods 

Based on Squared Residuals for Underlying Contaminated 
Normal Error Distributions With Distribution Function F(x) = 

(1 - a)<l>(x) + a<l>(x/3) 

Contamination 
T(x) 

fraction a x21s xl/2 x"3 logx 

.000 .876 .772 .693 .606 .405 

.001 .948 .841 .756 .662 .440 

.002 1.016 .906 .816 .715 .480 

.010 1.439 1.334 1.216 1.075 .720 

.050 2.035 2.100 '1.996 1.823 1.220 

Joumal of the American Slatls11cal Association, December 1987 

rithm methods are efficient, a very slight fraction of "bad" 
observations is enough to offset the superiority of squared 
residuals in a dramatic fashion. For example, just 2 bad 
observations in 1,000 negate the superiority of squared 
residuals. If 1% or 5% of the data are "bad," absolute 
residuals and the logarithm method, respectively, show 
substantial gains over squared residuals. The implication 
is that, although it is commonly perceived that methods 
based on squared residuals are to be preferred in general, 
these methods can be highly nonrobust. Our formulation 
includes this result for maximum likelihood, showing its 
inadequacy under slight departures from the assumed dis•
tributional structure. We also include asymptotic relative 
efficiencies for appropriately weighted residual methods 
based on square, cube, and i roots to pseudolikelihood 
using (5.6) and observe that these methods also exhibit 
comparative robustness to contamination. 

5.6 Methods Based on Sample 
Standard Deviations 

Assume that m « 2 replicate observations are available 
at each design point. In practice, m is usually small (see 
Raab 1981). We compare using absolute residuals with 
using sample standard deviations in the estimators of Sec•
tion 3 .1. One advantage of sample standard deviations 
over absolute residuals is that, because they do not use 
the mean function, they will be robust to misspecification 
of the model for the mean response; absolute residuals 
will not. We assume that one is fairly confident in the 
postulated form of the model, thus viewing methods based 
on sample standard deviations as not taking full advantage 
of the information available. For simplicity, assume that 
the errors are iid and symmetrically distributed and that 
either g does not depend on p or a is small. If the errors 
are not symmetric and a is not small or the variance de•
pends on p, using sample standard deviations presumably 
will be more efficient than in the discussion that follows. 
This issue deserves further attention. 
Lets~ be the sample variance of m errors {e1 , � � � , em}. 

It is easily shown by calculations analogous to those of 
Section 5.1 that replacing absolute residuals by sample 
standard deviations has the effect of changing the asymp•
totic covariance matrices (5.1), (5.4), and (5.5) to 

Pseudolikelihood: {(2 + K) + 2/(m - 1)}{4N~(P. 8)}- 1; 

Logarithm method: m var{log(s;.)}{4N~(P, 8)}- 1 ; 

Weighted absolute residuals: 

{mJ./(1 - a.)){N~(P. !1)}- 1, (5.7) 

where o. = var(sm). Table 3 compares the asymptotic 
relative efficiencies of using sample standard deviations 
with using transformations of absolute residuals for various 
values of m when the errors are standard normal. The 
values in the table for T(x) = x' and x indicate that if the 
data are approximately normally distributed, using sample 
standard deviations can entail a loss in efficiency with re•
spect to using residuals if m is small. For substantial rep•
lication (m « 10), using sample standard deviations pro-
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Table 3. Asymptotic Relative Efficiency of Regression Methods 
Based on a Function T of Sample Standard Deviations Relative 

to Using Regression Methods Based on a Function T of 
Absolute Residuals under Normality for T(x) 

(weighted methods) 

T(x) 

m x' Jog x 

.500 .500 .500 

.667 1.000 .696 

.750 1.320 .801 

9 .889 1.932 .986 
10 .900 1.984 1.001 

1.000 2.467 1.142 

duces a slight edge in efficiency with respect to weighted 
absolute residuals for T(x) = x. 

The second column of Table 3 shows that, for the log•
arithm method, using sample standard deviations sur•
passes using residuals in terms of efficiency except when 
m = 2 and is more than twice as efficient for large m. In 
its raw form, loglr11 is very unstable because, at least oc•
casionally, lr11 = 0, producing a wild "outlier" in the regres•
sion. The effect of using sample standard deviations is to 
decrease the possibility of such inliers; the sample standard 
deviations will likely be more uniform, especially as m 
increases. The implication is that the logarithm method 
should not be based on residuals unless remedial measures 
are taken. The suggestion to trim a few of the smallest 
absolute residuals before using this method is clearly sup•
ported by the theory; presumably, such trimming would 
reduce or negate the theoretical superiority of using sam•
ple standard deviations. 

Table 4 contains the asymptotic relative efficiencies of 
weighted squared sample standard deviations and loga•
rithms of these to weighted squared residuals under nor•
mality of the errors. The first column is the efficiency of 
Raab's method to pseudolikelihood, and the second col•
umn is the efficiency of the Rodbard and Frazier method 
to pseudolikelihood. The results of the table imply that 
using the Raab and Rodbard and Frazier methods, which 
are popular in the analysis of radioimmunoassay data, can 
entail a loss of efficiency when compared with methods 
based on weighted squared residuals. Davidian (1986) 
showed that the Rodbard and Frazier estimator can have 

Table 4. Asymptotic Relative Efficiency of Regression Methods 
Based on a Function T of Sample Standard Deviations Relative 

to Regression Methods Based on Weighted Squared 
Residuals Under Normal Errors 

T(x) 

m x' /ogx 

2 .500 .203 
3 .667 .405 
4 .750 .535 

9 .889 .783 
10 .900 .804 

1.000 1.000 
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a slight edge in efficiency over the weighted squared re•
siduals methods for some highly contaminated normal dis•
tributions. From (5.7), the squared residual methods will 
be more efficient than Raab's method in the limit. Also 
note that the entries for T(x) = x and log x in Table 3 
for m = oo are the reciprocals of the first row of Table 2 
and that the entries for the last row of Table 4 are 1.0; 
thus if both Nand m grow large all the methods yield the 
same results. 

Table 4 also addresses the open question as to whether 
Raab's method is asymptotically more efficient than the 
Rodbard and Frazier method for normally distributed data. 
The answer is a general yes, thus agreeing with the Monte 
Carlo evidence available when the variance is a power of 
the mean. The results of this section suggest that, in the 
case of assay data containing pairs for which only Y11 is 
observed, an estimator for (} combining estimation based 
on residuals for the observations for which X 1 is known 
and on standard deviations otherwise in an appropriately 
weighted fashion would offer some improvement over the 
methods currently employed (see Davidian et al. 1987). 

6. DISCUSSION 
In Section 4 we constructed a general theory of regres•

sion-type estimation for e in the heteroscedastic model 
(1.1). This theory includes as special cases common meth•
ods described in Section 3 and allows for the regression 
to be based on absolute residuals from the current regres•
sion fit as well as sample standard deviations in the event 
of replication at each design point. Under various restric•
tions such as symmetry or small a, when the variance 
function g does not depend on p, we showed in Sections 
4 and 5 that we can draw general conclusions about this 
class of estimators as well as make comparisons among 
the various methods. 

When employing methods based on residuals, one should 
weight the residuals appropriately and iterate the process. 
There can be large relative differences among the methods 
in terms of efficiency. Under symmetry ofthe errors, squared 
residuals are preferable for approximately normally dis•
tributed data, but this preference is tenuous, since these 
can be highly nonrobust under only slight departures from 
normality; methods based on logarithms or the absolute 
residuals themselves exhibit relatively more robust behav•
ior. For the small amount of replication found in practice, 
using sample standard deviations rather than residuals can 
entail a loss in efficiency if estimation is based on the 
squares of these quantities or the quantities themselves. 
For the logarithm method based on residuals, trimming 
the smallest few absolute residuals is essential, since for 
normal data using sample standard deviations is almost 
always more efficient than using residuals, even for a small 
number of replicates. Popular methods in applications such 
as radioimmunoassay based on sample means and sample 
standard deviations can be less efficient than methods based 
on weighted squared residuals. In some instances, the pre•
cision with which we can estimate 0 depends on the relative 
range of values of the mean responses, not their actual 
values, so immediate implications for design are suggested. 
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Efficient variance function estimation in heteroscedastic 
regression analysis is an important problem in its own 
right. There are important differences in estimators for 
variance when it is modeled parametrically. 

APPENDIX A: PROOFS OF MAJOR RESULTS 

We now present sketches of the proofs of the theorems of 
Section 4. Our exposition is brief and nonrigorous, as our· goal 
is to provide general insights. In what follows, we assume that 

N'n [ z :: ~] = 0,(1); (A.1) 

under sufficient regularity conditions it is possible to prove (A.1). 
Such a proof would be long, detailed, and essentially noninfor•
mative; see Carroll and Ruppert (1982a) for a proof of N'n 
consistency in a special case. 

Sketch of the Proof of Theorem 4.1. From (4.1), a Taylor 
series, the fact that E[T{d,(p)}) = M, and laws oflarge numbers, 
we have 

0 = N-"' f (H,IV,)[T{d,(ft.)} - M,(~. /}, P.)] + o,(1). 
i•l 

(A.2) 

By tbe arguments of Ruppert and Carroll (1980) or Carroll and 
Ruppert (1982a), 

N 

N-"' L (H,IV,)[T{d,(ft.)} - T{d,(P)}) 
i•l 

= N-•n :± (H,!V,)T{d,(/f)}{d,(ft.) - d,{/f)} + o,(1) 
i•l 

(A.3) 

Applying this result to (A.2) along with a Taylor series in M, 
gives 

0 = N-�n :± C, + (B,.N + B, .� )N'n(ft. - p) 
i•l 

- B, . � N'n [~ = :] + o,(1), 

which is (4.2). 

Theorem 4.2 follows by a similar argument; in this case the 
representation (A.3) is unnecessary. 

Sketch of the Proof of Theorem 4.3. We consider Theorem 
4.2; the proof for Theorem 4.1 is similar. Recall here that (3.4) 
holds. In tbe following, all derivatives are with respect to the 
mean I'• and the definitions of C, and M, are as in (4.4). 

Assumption (iv) implies that 

N 112 max ]Y,. - p1] ~ 0, 

'"""' 
so a Taylor series in,, 8, and Yr gives 

B, .• N'n [~ = :] 
N N 

= N-�n L C, - N-"' L (M,H,IV,)(Y, - p,) 
1=1 1•1 

N 

+ N-�n L {(H,IV,) - (V,JV,)}(Y, - p,) + o,(1). ,_, 
(A.4) 

Since Y,. - p, = ag(p, z, O)i" .... A,N-ll2gf.llt, Z~o 8)£,.. where a,. 
is the mean of the errors at X;, we can write the last two terms 
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on the right side of (A.4) as 
N 

lN-· L ii,(q, .• + q,.,C,) (A.S) ,_, 
for constants {q ,) . Since ii, has mean 0, (A.S) converges in prob•
ability to 0 if E(ii,C,) = 0, which holds under the assumption of 
symmetry. Thus (A.S) converges to 0, which from (A.4) com•
pletes the proof. Note that if we drop the assumption of sym•
metry, from (A.S) the asymptotic normal distribution of N'n( { j 
- 9) will have mean 

N 

p-lim {lBi:kN-� L (ii,C,q,.,)}. 
N-"" i•l 

APPENDIX 8: CHARACTERIZATION OF RESTRICTED 
MAXIMUM LIKELIHOOD 

Let j j. be a generalized least squares estimator for p. Assume 
first that g does not depend on p. Let the prior distribution for 
the parameters 1<(/1, 9, a) be proportional to a-'. The marginal 
posterior for 8 is hard to compute in closed form for nonlinear 
regression. Following Box and Hill (1974) and Beal and Sheiner 
(1987), we have the linear approximation 

f(x, P) = f(x, ft.) + f,(x, P.)'(p - ft.). 

Replacing f(x, P) by its linear expansion, the marginal posterior 
for 9 is proportional to 

{ggf(IJ)} -•n 

p(9) = aW ''(9){Det Sa(9)}'" ' (B.1) 

where 
N 

a'a(9) = (N - p)-• L rl/gl(9), 
i•l 

Sa(9) = N-• f f,(x, P.)f,(x, P.)'/gf(9), 
i•l 

and where Det A = determinant of A. 1f the variances depend 
on p, we extend the Bayesian arguments by replacing g,(9) by 
g(z, P •• 9). 

Let H be the hat matrix H evaluated at P. and let h., = 

h.,(ft., 9). From (3.1), pseudolikelihood solves in (9, a) 

f [rt/{a'g'(z, P., 9)}] [ (. p~ 9) ] 
1=1 V9 I, *' 

N [ 1 ] =L . ,_, v9(i, p., 9) · 
(B.2) 

Since His idempotent, the left side of (B.2) has approximate 
expectation 

:± [ . 1 -piN_ ]. 
,., v,(1, P •• 9)(1 h.,) 

(B.3) 

To modify pseudolikelibood to account for loss of degrees of 
freedom, equate the left side of (B.2) to (B.3). From matrix 
computations as in Nel (1980), this can be shown to be equivalent 
to restricted maximum likelihood. 

[Received July 1986. Revised Apri/1987.] 
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