
Chapter 2
Stabilization of T–S Fuzzy Systems
with Constrained Controls

2.1 Introduction

It is known that the qualitative knowledge of a system can be represented by a
nonlinear model. This idea has allowed the emergence of a new design approach
in the fuzzy control field. The nonlinear system can be represented by a Takagi–
Sugeno (T–S) fuzzy model [1, 2]. The control design is then carried out using known
or recently developed methods from control theory [3–8].

A main problem, which is always inherent to all dynamical systems, is the pres-
ence of actuator saturations. Even for linear systems, this problem has been an active
area of research for many years. Two main approaches have been developed in the
literature: The first one is the so-called positive invariance approach, which is based
on the design of controllers that work inside a region of linear behavior where sat-
urations do not occur (see [9–13] and the references therein). This approach has
been extended to systems modeled by T–S systems [4, 14]. The second approach,
allows saturations to take effect, while guaranteeing asymptotic stability (see [15, 16]
and the references therein). This method has been extended to T–S continuous-time
fuzzy systems in [17]. The main challenge in these two approaches is to obtain a
large enough domain of initial states that ensures asymptotic stability of the system
despite the presence of saturations [18].

In this chapter, the saturations on the control signal are taken into account with the
fuzzymodel. The concept of positive invariance is used to obtain sufficient conditions
of asymptotic stability for the global fuzzy system with constrained control inside a
subset of the state space. The main idea of [19] representing the nonlinear system
by a set of uncertain linear subsystems is used in this chapter. The problem is then
to design a controller which is “robust” with respect to the upper bound extreme
subsystems by taking into account the saturations on the control. Both a common
Lyapunov function and a piecewise Lyapunov function as used in [19] and [20] are
used to analyze and to design the controllers which ensure the asymptotic stability of
the nonlinear system despite the presence of saturations on the control. Hence, a set of
LinearMatrix Inequalities (LMIs) is proposed to built stabilizing controllers together
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with their corresponding region of asymptotic stability and positive invariance. The
results of this chapter were published for the first time in [4, 14, 21, 22].

2.2 Problem Presentation

Consider the following nonlinear system with constrained control that can be
described by the T–S fuzzy model as detailed in Chap. 1:

ẋ(t) = A(z)x(t) + B(z)u(t) (2.1)

with,

A(z) =
r∑

i=1

hi (z(t))Ai ; (2.2)

B(z) =
r∑

i=1

hi (z(t))Bi ; (2.3)

with, hi (z(t)) is the normalized membership function satisfying:

hi (z(t)) ≥ 0, i = 1, . . . , r;
r∑

i=1

hi (z(t)) = 1 (2.4)

x ∈ IRn is the state and u ∈ IRm is the control which is constrained as follows:

u ∈ � = {
u ∈ IRm,−q2 ≤ u ≤ q1; q1, q2 ∈ IRm} . (2.5)

Using the PDC control defined in Chap.1

u(t) = F(z)x(t) (2.6)

=
r∑

i=1

hi (z(t))Fi x(t)

This control leads to the following system in closed-loop,

ẋ(t) = [A(z) + B(z)F(z)] x(t) (2.7)

=
r∑

i=1

r∑

j=1

hi (z(t))h j (z(t))
(

Ai + Bi Fj
)

x(t) (2.8)

The main objective of this chapter is to design controller F(z) such that the global
system is asymptotically stable at the origin despite the presence of constraints on
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the control. To achieve this objective, two techniques will be used: The first one
concerns the use of the so-called positive invariance approach which will enable one
to construct regions of linear behavior for the system with saturations on the control.
The second consists in rewriting equivalently the initial system (2.1) by using a state
space repartition allowing to introduce r like uncertain subsystems as used before
by many authors.

2.3 Preliminary Results

In this section, we remind the approach of positive invariance as known in the lit-
erature applied to a linear time-invariant system. For more details, one can consult
[11]. Consider the following system given by,

ẋ(t) = Ax(t) (2.9)

Let the state be constrained as follows,

D = {x ∈ IRn/ − δ2 ≤ x ≤ δ1; δ1, δ2 ∈ IRn}; (2.10)

In the following, we remind the approach proposed in [9, 10, 23].

Definition 2.1 A subset D of IRn is said to be positively invariant with respect to
(w.r.t.) the motion of the system (2.9) if for every initial state xo ∈ D , the motion
x(xo, t) ∈ D , for every t .

The necessary and sufficient condition of domain D to be positively invariant w.r.t
system (2.9) is given by [10, 23]:

Theorem 2.1 The set D is positively invariant w.r.t system (2.9) if and only if:

Ãδ ≤ 0 (2.11)

where,

Ã =
[

A1 A2
A2 A1

]
; A1 =

{
aii

a+
i j for i �= j ,

and A2 =
{
0
a−

i j for i �= j , δ =
[

δ1
δ2

]
,

Remark 2.1 If the constraints are symmetric, i.e., δ1 = δ2, the condition of positive
invariance of the set D w.r.t the system (2.9) becomes,

Âδ1 ≤ 0 (2.12)
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where matrix Â is given by,

Â =
{

aii

|ai j | for i �= j

Note that A = A1 − A2; |A| = A1 + A2.

Consider now the following time-invariant system given by:

ẋ(t) = Ax(t) + Bu(t). (2.13)

The control vector is constrained in domain� defined by (2.5). We propose a control
law given by,

u(t) = Fx(t) (2.14)

The system in closed-loop follows readily,

ẋ(t) = (A + B F)x(t) (2.15)

We follow the same approach proposed in [9, 10, 23]. Remind that this approach
consists in giving conditions allowing the choice of stabilizing controller (2.14) in
such a way that model (2.15) remains valid every time. This is only possible if the
state is constrained to evolve in a specified region defined by the set,

D = {x ∈ IRn/ − q2 ≤ Fx ≤ q1; q1, q2 ∈ IRm}; (2.16)

The necessary and sufficient condition of each domainD to be positively invariant
w.r.t system (2.15) is given by [10, 23]:

Theorem 2.2 Set D is positively invariant w.r.t system (2.15) if and only if, there
exists matrix H ∈ IRm×m such that:

F(A + B F) = H F (2.17)

H̃q ≤ 0 (2.18)

where,

H̃ =
[

H1 H2
H2 H1

]
; H1 =

{
hii

h+
i j fori �= j ;

H2 =
{
0
h−

i j fori �= j and q =
[

q1
q2

]
.

An efficient algorithm to built such controllers is given by the resolution of
algebraic equations X A+ X B X = H X [24] where matrix H is first given according
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to conditions (2.18). Note that the obtained controller is stabilizing the system in the
closed-loop (2.15) while the control is admissible for all x0 ∈ D . This technique is
so-called the inverse procedure. The resolution of this algebraic equation necessitates
that matrices A admit at least n − m stable eigenvalues as required by assumption
H2. If not, one has to use the technique of augmentation [24] described below.

Rewrite the system (2.13) under the equivalent form:

ẋ(t) = Ax(t) + Baw(t), (2.19)

with matrix Ba given by:
Ba = [

B � ]
,

where � ∈ IRn×(n−m) represents the null matrix. This augmentation technique leads
to the introduction of n −m fictitious entries together with their fictitious constraints
given by: −ϕ2 ≤ v ≤ ϕ1. In this case, the control law is also modified and becomes

w(t) =
[

u(t)
v(t)

]
,

w(t) = K x(t) and v(t) = Ex(t). Note K and g as follows:

K =
[

F
E

]
, g1 =

[
q1
ϕ1

]
, g2 =

[
q2
ϕ2

]
, g =

[
g1
g2

]

where g represents the new vector constraint. Note that the system in closed-loop
given with augmented control w(t) remains the same as (2.13) while the set of
admissible constraints becomes, with this augmentation,

�a = {
w ∈ IRn/ − g2 ≤ w ≤ g1

}

It is worth noting that this technique does not modify the system, but introduces new
degree of freedom with ϕ, which are used to satisfy conditions (2.18), but in return,
reduces domain D which is transformed to the following bounded and convex set:

G = {
x ∈ IRn/ − g2 ≤ K x ≤ g1; g1, g2 ∈ IRn} ;

Obviously, conditions (2.17) and (2.18) are to be rewritten with matrices K and Ba ,
matrices H become of n × n size:

K A + K Ba K = H K ; H ∈ IRn×n (2.20)

H̃ g ≤ 0, (2.21)

Remind now a result of asymptotic stability of the fuzzy system in closed-
loop (2.8).
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Theorem 2.3 [2] Unconstrained system (2.8) is asymptotically stable if there exists
a common positive definite matrix P such that,

(Ai + B Fi )
TP + P(Ai + B Fi ) < 0 j ∈ [1, r ]

2.4 Conditions of Stabilizability Using Positive Invariance
Approach

In this section, we present an approach which consists in ensuring that the global
control is always admissible. The condition of stability of global system (2.8) is then
derived. These results appeared for the first time in [4].

Consider the system in closed-loop (2.8) where matrices Ai and Bi are constant
of appropriate size and satisfy the following assumptions:

(H1) Each pair (Ai , Bi ) is stabilizable.
(H2) Each matrix Ai admits n − m stable eigenvalues.
(H3) Bi = B, i = 1, . . . , r .

Define the following change of coordinates,

y j (t) = Fj x(t) j ∈ [1, r ]

The corresponding dynamical system is then,

ẏ j (t) = Fj ẋ(t)

=
r∑

i=1

hi (z(t))Fj (Ai + B Fi ) x(t)

If there exist matrices Hi j ∈ IRm×m such that,

Fj (Ai + B Fi ) = Hi j Fj ; i = 1, . . . , r

Then, dynamical system (2.8) is transformed into the following reduced order
dynamical system,

ẏ j (t) =
r∑

i=1

hi (z(t))Hi j y j (t) (2.22)

With the same transformation, set D j defined by:

D j = {x ∈ IRn/ − q2 ≤ Fj x ≤ q1; q1, q2 ∈ IRm}; (2.23)
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is transformed into the following set,

� j = {y j ∈ IRn/ − q2 ≤ y j ≤ q1; q1, q2 ∈ IRm}; (2.24)

Now, we are able to apply the result of positive invariance into the set � j w.r.t
each system (2.22).

Theorem 2.4 Each set � j is positively invariant w.r.t the corresponding system
(2.22) if there exist, r matrices Hi j ∈ IRm×m such that:

Fj (Ai + B Fi ) = Hi j Fj ; i = 1, . . . , r; (2.25)

H̃i j q ≤ 0; i = 1, . . . , r (2.26)

where, matrices H̃i j and vector q are defined by Theorem 2.3.

Proof According to Theorem 2.3, the necessary and sufficient condition of domain
� j to be positively invariant w.r.t the dynamical system (2.22) is given by,

L̃q ≤ 0 (2.27)

where L = ∑r
i=1 hi (z(t))Hi j . Recall that hi (z(t)) > 0. According to the definition

of L̃ , it is easy to obtain,

L̃q ≤
r∑

i=1

hi (z(t))H̃i j q

Taking into account of conditions (2.26), condition (2.27) holds. Then, the set � j is
positively invariant w.r.t system (2.22). ��
Define now the common set for all the sets D j by,

D =
r⋂

j=1

D j (2.28)

Corollary 2.1 If each set � j is positively invariant w.r.t system (2.22), then the
global control (2.6) is admissible for all x0 ∈ D .

Proof Let each set � j be positively invariant w.r.t system (2.22). This implies that,

−q2 ≤ Fj x ≤ q1,∀ j ∈ [1, r ],∀x0 ∈ D,∀t

By taking into account (2.4), it follows that the global control satisfies,

−q2 ≤
r∑

j=1

h j (t)Fj x ≤ q1, ∀t,∀x0 ∈ D ��
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It is worth noting that the direct idea is to ensure that the following set,

� =
⎧
⎨

⎩x ∈ IRn/ − q2 ≤
r∑

j=1

h j (z(t))Fj x ≤ q1,

⎫
⎬

⎭ (2.29)

is positively invariant w.r.t the system (2.22). However, this property is very difficult
to obtain.

The problem now is to stabilize the global system. The stability of the global
system with constrained control is then stated by the following result,

Theorem 2.5 If there exist matrices Hi j ∈ IRm×m and a common definite positive
matrix P ∈ IRn×n such that:

Fj (Ai + B Fi ) = Hi j Fj ; i = 1, . . . , r; j = 1, . . . , r (2.30)

H̃i j q ≤ 0; i = 1, . . . , r; j = 1, . . . , r (2.31)

(Ai + B Fi )
TP + P(Ai + B Fi ) < 0; i = 1, . . . , r (2.32)

then, the system (2.8) is asymptotically stable ∀x0 ∈ D .

Proof According to Theorem 2.5 conditions (2.30) and (2.31) ensure that each set
�i defined by (2.24) is positively invariant w.r.t every system (2.22). By virtue of
Corollary 2.1, global control (2.6) is also admissible ∀x0 ∈ D allowing to system
(2.8) to be valid despite the presence of saturations. Since all matrices Fi are assumed
to be computed according to (2.30) and (2.31), then global system in the closed-loop
(2.8) is asymptotically stable if condition (2.32) holds ∀x0 ∈ D . ��
Remark 2.2 In order to compute matrices Hi j and Fj , one can follow two steps:

(i) For a given j ∈ [1, r ], give matrix Hj j such that condition (2.31) is satisfied.
Compute matrix Fj by using the resolution given by [24]. The obtained matrix
is unique and of full rank. Note that one can take all matrices Hj j identical, i.e,
Hj j = H0. In this case, all the matrices in closed-loop A j + B Fj will have the
same spectrum.

(ii) The computation of matrices Hi j , i �= j is given by Lemma 2.1

Pose Ri j = Fj (Ai + B Fi ).

Lemma 2.1 [25] Matrix Hi j , i �= j solution of equation (2.30) exists if and only if,

rank

[
Ri j

Fj

]
= m, (2.33)

where,
Ri j ∈ IRm×n, Fj ∈ IRm×n, rankF = m
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In this case and without loss of generality, it is always possible to decompose

matrix Fj , which is of full rank, as follows: Fj =
[

F1
j F2

j

]
,

where F1
j ∈ IRm×m, rankF1

j = m, F2
j ∈ IRm×(n−m).

Decompose matrix Ri j ,

Ri j =
[

R1
i j R2

i j

]
, R1

i j ∈ IRm×m, R2
i j ∈ IRm×(n−m).

Hence, matrix Hi j will be given by,

Hi j = R1
i j

(
F1

j

)−1
(2.34)

The following algorithmpresents the necessary steps to use the result of Theorem2.5.

Algorithm 2.1

• Step1: Give r matrices Hj j satisfying conditions (2.31). One can resolve the fol-
lowing linear programming for each j:

(L P1)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

min ε

s.t.[
H1 H2
H2 H1

] [
q1
q2

]
≤ −ε

[
δ1
δ2

]

ε > 0
H1(i, i) < 0, H2(i, i) = 0;
H1(i, j) > 0, H2(i, j) > 0, i �= j

(2.35)

where δ1 and δ2 are design positive vectors. Each matrix H is given by H =
H1 − H2.

• Step 2:Compute gain matrices Fj solution of equations Fj (A j + B Fj ) =
Hj j Fj ; j = 1, . . . , r by using the method given in [24]. Note that solution Fj

is of full rank.
• Step 3: Compute matrices Hi j ; i �= j = 1, . . . , r; given by (2.34).
• Step 4: If conditions (2.31) for i �= j = 1, . . . , r. are satisfied continue, else return

to Step 1 to change matrices Hj j .
• Step 5: Compute matrices Ai + B Fi ; i = 1, . . . , r .
• Step 6: Compute matrix P by resolving the LMI constraints (2.32).

2.4.1 Example

Consider the following constrained nonlinear system,

ÿ + a1(1 − y2)ẏ + a2y(t) = b1u(t)
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with, a1 = 2.2165, b1 = a2 = 12.7388 and −10 ≤ u ≤ 15. This system admits the
following state representation,

{
ẋ1(t) = x2(t)
ẋ2(t) = −a2x1(t) − a1x2(t) + a1x21 (t)x2(t) + b1u(t)

Now we give the exact representation of the nonlinear system by a T–S fuzzy model.
For this, assume that x1(t) ∈ [−γ, γ ], then one can write,

x21 (t) = M1
1 (x1(t)) · 0 + M2

1 (x1(t)) · γ 2

with,

M1
1 (x1(t)) = γ 2 − x21 (t)

γ 2 = h1(t)

M2
1 (x1(t)) = 1 − M1

1 (x1(t)) = x21 (t)

γ 2 = h2(t)

The fuzzy model which represents exactly the nonlinear system is given by,

If x1(t) is M1
1 Then ẋ(t) = A1x(t) + B1u(t);−10 ≤ u ≤ 15

If x1(t) is M2
1 Then ẋ(t) = A2x(t) + B2u(t);−10 ≤ u ≤ 15

where matrices A1, A2, B1 and B2 are given by,

A1 =
[

0 1
−a2 −a1

]
; A2 =

[
0 1

−a2 −a1(1 − γ 2)

]
;

B1 = B2 =
[
0
b1

]
.

Note that matrix A1 admits two complex eigenvalues and matrix A2 admits two
unstable eigenvalues for γ = 3. For this, we apply the technique of augmentation
described previously.

Let matrices H1 and H2 be chosen according to conditions (2.21) with
ϕ1 = 15;ϕ2 = 10 as follows,

H1 =
[−2 1

0 −3

]
; H2 =

[−3 1
0 −3.5

]

The resolution of the algebraic equations (2.20) leads to the following solutions,

K1 =
[
0.529 −0.2185
2.369 1.1845

]
; K2 =

[
0.1758 −1.9022
20.5005 6.8335

]
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Fig. 2.1 Evolution of the nonlinear system in open-loop

The matrices Hi j ; i �= j are given by:

H12 =
[−1.6607 1.339

−1.839 −4.839

]
; H21 =

[−3 0.5825
0 −2

]

Note that these matrices satisfy condition (2.31).

H̃12g =

⎡

⎢⎢⎣

−4.82
−54.196
−3.214
−20.80

⎤

⎥⎥⎦ ; H̃21g =

⎡

⎢⎢⎣

−36.26
−30.00
−24.175

−20

⎤

⎥⎥⎦

The matrices in closed-loop are as follows:

G11 =
[

0 1
−6 −5

]
; G22 =

[
0 1

−10.5 −6.5

]

A feasible solution to LMIs (2.32) is presented

P =
[
0.904 0.0456
0.0456 0.0754

]

The results of simulation are given by the following figures.
Figure2.1 plots the evolution of the nonlinear system, while Fig. 2.2 presents the

common set of positive invariance togetherwith the set� defined by (2.29). Figure2.3
plots the evolution of the state of the system in closed-loop inside the common set of
positive invariance for different initial states. Finally, Fig. 2.4 presents the evolution
of the corresponding control.
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Fig. 2.2 Common set of positive invariance and the set �
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Fig. 2.3 Evolution of the state of the system in closed-loop inside the common set of positive
invariance for different initial states
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Fig. 2.4 Evolution of the control of the system for x0 = [−1.0019 4.9189]T
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2.5 Conditions of Stabilizability Using Uncertainty Approach

In this section, we propose sufficient conditions of asymptotic stability for the system
with constrained control, by using both a common Lyapunov and a piecewise Lya-
punov function. These results are based on the technique of rewriting equivalently
fuzzy system (2.1) under the form of r like uncertainty subsystems as proposed in
[19]. The results of this section were published in [4].

Consider the nonlinear system with constrained control that can be described by
the T–S fuzzy model (2.1). Following the idea of [19], one can divide the input
space into fuzzy subspaces and build a linear model, called the local model, in each
subspace. Then, the membership function is used to connect smoothly the local
models together to form a global fuzzy model of the nonlinear system. Let us define
the r subspaces in the state space as follows:

S j = {x/h j (x) ≥ hi (x), i = 1, 2, . . . , r, i �= j}, j = 1, 2, . . . , r (2.36)

The characteristic function of S j is defined by:

η j =
⎧
⎨

⎩
1, x ∈ S j

0, x /∈ S j
;

r∑

j=1

η j = 1 (2.37)

See Fig. 2.6 of the Example for a repartition of the state space on two subspaces S1
and S2 related to the corresponding membership function.

On every S j subspace, the fuzzy system can be denoted by:

ẋ(t) = (A j + 
A j (t))x(t) + (B j + 
B j (t))u(t) (2.38)

with,


A j (t) =
r∑

i=1,i �= j

hi (z(t))(Ai − A j );


B j (t) =
r∑

i=1,i �= j

hi (z(t))(Bi − B j ) (2.39)

It is assumed that if the j th subsystem is in the j th subspace, it will stay in this
subspace for a t j > τ, τ > 0 time is a fixed constant. The number of traversing time
instants among the regions is also assumed to be finite.

Remark 2.3 It is useful to note that 
A j (t) and 
B j (t) are known at any time and
the studied system is not an uncertain system. However, in order to obtain simpler
stability conditions, this technique assumes that terms 
A j (t) and 
B j (t) are like
uncertain terms and are bounded.
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Following the idea of [19], we assume that an upper bound of each like uncertainty
term is known and is given by,

−E1 j ≤ 
A j (t) ≤ E1 j ; E1 j ≥ 0, ∀t 
 0; j = 1, . . . , r (2.40)

−E2 j ≤ 
B j (t) ≤ E2 j ; E2 j ≥ 0, ∀t 
 0; j = 1, . . . , r (2.41)

This type of inequality bounds can always be transformed to the following
quadratic bounds,

[
A j (t)]T[
A j (t)] ≤ ET
1 j E1 j , ∀t 
 0; j = 1, . . . , r (2.42)

[
B j (t)]T[
B j (t)] ≤ ET
2 j E2 j , ∀t 
 0; j = 1, . . . , r (2.43)

Note that the details about the estimation of the upper bounds according to
(2.40)–(2.41) are widely developed in [19]. We obtain r distinct linear time-varying
subsystems. The stabilization problem of fuzzy system (2.1) without saturation con-
straints has been studied in [19] by using extreme subsystems obtainedwith the upper
bounds of the like uncertainty terms (2.40)–(2.41). In our case, the upper uncertainty
bounds are also used to obtain asymptotic stability conditions,while the like uncertain
subsystems are used directly to built necessary and sufficient conditions of positive
invariance.

The control is constrained as follows:

u ∈ � = {
u ∈ IRm/ − q2 ≤ u ≤ q1; q1, q2 ∈ IRm} . (2.44)

The idea of this approach is to choose on every S j , j ∈ 1, . . . , r subspace, fuzzy
subsystem (2.38) and consider that the interaction of the corresponding system with
all the remainder r −1 subsystems is taken into account by uncertainty terms
A j (t)
and 
B j (t). The objective is then to design for such a subsystem a feedback control
given by:

u(t) = Fj x(t), x(t) ∈ S j (2.45)

which guarantees the asymptotic stability of the like uncertain subsystem (2.38)
despite the presence of the saturations (2.44). The subsystem in closed-loop is
given by:

ẋ(t) = [
(A j + B j Fj ) + (
A j (t) + 
B j (t)Fj )

]
x(t) (2.46)

Note that the control in system (2.1) can be considered in this approach as a switching
control formed by all the subsystem controls and given by,

u(t) =
r∑

j=1

η j Fj x(t) (2.47)

In the constrained case, we follow the approach proposed in [9, 10, 23]. Recall
that this approach consists in giving conditions allowing the choice of a stabilizing
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controller (2.45) in such a way that model (2.46) remains valid every time. This is
only possible if the state is constrained to evolve in a specified region defined by

D j = {x ∈ IRn/ − q2 ≤ Fj x ≤ q1; q1, q2 ∈ IRm}; (2.48)

Note that these domains are convex and unbounded for m < n.
The result of stabilizability of the fuzzy systemwithout constrained control, using

the idea of [19] based on the upper extreme subsystems to obtain conditions of
asymptotic stability for the fuzzy system (2.1), is reminded below according to the
following definition.

Definition 2.2 The system (2.1) is said to be quadratically stabilizable if there exists
a control law (2.6), a positive symmetric matrix P and a scalar γ > 0 such that the
following condition is satisfied:

V̇ (x(t)) = x(t)T
{
[A(z) + B(z)F(z)]T P

+ P [A(z) + B(z)F(z)]} x(t) ≤ −γ ‖x‖2 (2.49)

∀x(t) ∈ IRn , ∀t > 0 where V (x) = xTPx is a Lyapunov function.

It is worth noting that if the system (2.1) is quadratically stabilizable, then function
V (x) is a Lyapunov function for the closed-loop system (2.7). Then, equilibrium
point x = 0 will be uniformly asymptotically stable.

Lemma 2.2 [19]: Fuzzy system (2.1) is quadratically stabilizable if and only if there
exists a set of feedback gains (F1, F2, . . . , Fr ) such that the following closed-loop
subsystems with the accurate upper bounds are quadratically stable:

ẋ(t) = (A j + E j1)x(t) + (B j + E j2)Fj x(t), x(t) ∈ S j , j = 1, . . . , r (2.50)

Reminding that the stability result obtained by [19] is based on the use of
Lemma 2.2 and a piecewise Lyapunov function candidate, as used by [20], given by,

V (x(t)) = xT(t)
( r∑

j=1

η j Pj

)
x(t) (2.51)

In our case, we first consider a common Lyapunov function for the application of
Lemma 2.2, that is, P1 = · · · = Pr . In this case, function (2.51) becomes V (x) =
xTPx . Define its level set by the following,

ε(P, ρ) =
{

x |xTPx ≤ ρ, ρ � 0
}

(2.52)

The use of lemma 2.2 and the result of [26] enable us to state the main result of
this chapter concerning the asymptotic stability of fuzzy system (2.1) with satura-
tions (2.5).
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Theorem 2.6 If there exist a symmetric positive definite matrix P ∈ IRnxn and a
positive scalar ρ such that:

(A j + B j Fj )
TP + P(A j + B j Fj ) +

(E j1 + E j2Fj )
TP + P(E j1 + E j2Fj ) < 0; (2.53)

j = 1, . . . , r;

ε(P, ρ) ⊂ D j , j = 1, . . . , r, (2.54)

then, fuzzy system (2.1) with feedback control (2.47) is asymptotically stable ∀x0 ∈
ε(P, ρ).

Proof Conditions (2.53) imply that function V (x) = xTPx is a common Lyapunov
function of all the upper bound extreme subsystems (2.50). Reminding that level
set ε(P, ρ) of the common Lyapunov function is positively invariant w.r.t the upper
bound extreme subsystems. According to lemma 2.2 and definition 2.2, this set is also
a level set (region of stability) for uncertain subsystems (2.46), that is, set ε(P, ρ)

is also positively invariant w.r.t uncertain subsystems (2.46). Thus, the control is
always admissible i.e., −q2 ≤ Fj x(t) ≤ q1,∀t 
 0 by virtue of conditions (2.54).
Consequently, each control u(t) = Fj x(t) is admissible ∀x0 ∈ ε(P, ρ) and linear
subsystem (2.46) is always valid inside this region of linear behavior. Hence, it is
obvious that by applying the switching control (2.47) to the like uncertain fuzzy
system (2.38), the control remains admissible by virtue of the following,

−q2 ≤ Fj x(t) ≤ q1, ∀t 
 0,

implies

−q2 ≤
r∑

j=1

η j Fj x(t) ≤ q1, ∀t 
 0; j = 1, . . . , r

where η j is defined by (2.37). In order to guarantee that this implication remains sat-
isfied even if the state switches from a subspace S j to a different subspace Si , i �= j ,
it is necessary to take the initial state inside the common domain ε(P, ρ). The posi-
tive invariance property of the set ε(P, ρ), implies that all the uncertain subsystems
(2.46) remain linear despite the presence of the saturations. This fact allows the appli-
cation of Lemma 2.2 and Definition 2.2 to these like uncertain subsystems to obtain
r upper bound extreme subsystems by using the assumptions (2.39). If in addition
the feedback controllers Fj satisfy conditions (2.53), then global fuzzy system (2.1)
with feedback control (2.47) is asymptotically stable at origin ∀x0 ∈ ε(P, ρ) despite
the presence of saturations. ��

Note that another condition (2.53)were presented by [19] based on thewell-known
separation lemma

XTY + Y TX ≤ εXTX + 1

ε
Y TY
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for any positive scalar ε and matrices X, Y . In our case, condition (2.53) is easily
resolved by the LMI technique.

It is worth noting that to include a symmetric ellipsoid inside a nonsymmetrical
polyhedral, it is sufficient to realize this only inside the symmetrical part of the
polyhedral. This means in our case, to realize (2.54) only with q̄ = min(q1, q2). It
is well known that to obtain condition (2.54), one has only to satisfy the following
inequalities [27],

ρFi
j P−1(Fi

j )
T ≤ q̄2

i , j = 1, . . . , r; i = 1, . . . , m, (2.55)

where Fi
j is the i th row of matrix Fj , q̄ = min(q1, q2). These inequalities can be

transformed by the use of Schur complement to the following LMI,

[
βi Y i

j
∗ X

]
≥ 0, i = 1, . . . , m (2.56)

where Y i
j is the i th row of matrix Y j = Fj X , X = P−1 and βi = q̄2

i /ρ.
The result of Theorem 2.6 is now used for control synthesis.

Theorem 2.7 If there exist a symmetric matrix X, r matrices Y1, . . . , Yr and a
positive scalar ρ solutions of the following LMIs:

X (A j + E1 j )
T + Y T

j (B j + E2 j )
T + (A j + E1 j )X + (B j + E2 j )Y j < 0,

(2.57)

[
βi Y i

j
∗ X

]
≥ 0, (2.58)

X > 0,

j = 1, . . . , r; i = 1, . . . , m

where βi = q̄2
i /ρ, Y i

j is the i th row of matrix Y j ;
then, fuzzy system (2.1) with feedback control (2.47) with,

Fj = Y j X−1 (2.59)

P = X−1 (2.60)

is asymptotically stable at origin ∀x0 ∈ ε(P, ρ).

Proof Follows readily from Theorem 2.6. ��
This result is easily applied to design controllers: solving LMIs (2.57)–(2.58)

by any common available software (in our case we used the Matlab LMI control
toolbox), matrix P , and controllers gains Fi can be computed easily according to
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equalities (2.59) and (2.60). Nevertheless, a common Lyapunov function for all the
r upper bound extreme subsystems does not always exists. We can then attempt to
use a piecewise Lyapunov function candidate as used by [19]. The use of this type
of function is not easy when the system is, in addition, with constrained control. The
following result proposes a sufficient condition of asymptotic stability based on a
piecewise function.

Define the following polyhedral set,

�(δ) = {
x ∈ IRn/ − δ ≤ x ≤ δ; δ � 0

}
(2.61)

In this approach, we would like to design all controller gains Fj such that all the
level sets associated to matrices Pj , j = 1, . . . , r contain the same �(δ) polyhedra.
This is possible if we add the following constraint to our problem,

�(δ) ⊂ ε(Pj , ρ j ); j = 1, . . . , r. (2.62)

Remark 2.4 Condition (2.62) can also be given under LMI form. For this, redefine
polyhedral set �(δ) in the equivalent form,

�(δ) = cov{v1, v2, . . . , vκ },

where vl ∈ IRn states for the vertex of the bounded polyhedron �(δ). Note that
κ = 2n . With this, condition (2.62) is equivalent to,

vTl Pjvl ≤ ρ j , l = 1, . . . , κ; j = 1, . . . , r.

By virtue of Schur complement, the latter is equivalent to,

[
ρ j vTl∗ X j

]
≥ 0, (2.63)

j = 1, . . . , r; l = 1, . . . , κ. (2.64)

with X j = P−1
j .

The following result ensures to realize this objective.

Theorem 2.8 For given positive scalars ρ1, . . . , ρr and positive vector δ, if there
exist symmetric definite positive matrices X1, . . . , Xr and matrices Y1, . . . , Yr , solu-
tions of the following LMIs:

X j (A j + E1 j )
T + Y T

j (B j + E2 j )
T +

(A j + E1 j )X j + (B j + E2 j )Y j < 0, (2.65)
[

q̄2
i /ρ j Y i

j
∗ X j

]
≥ 0,
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[
ρ j vTl∗ X j

]
≥ 0, (2.66)

X j > 0,

j = 1, . . . , r; i = 1, . . . , m; l = 1, . . . , κ.

such that, the matrices in closed-loop satisfy,

Âcjδ + |Ecj |δ ≤ 0, (2.67)

where, Acj = A j + B j Y j X−1
j ; Ecj = E1 j + E2 j Y j X−1

j and v1, . . . , vκ the corre-
sponding vertices to vector δ ;
then, the fuzzy system (2.1) with the feedback control (2.47) is asymptotically stable
at the origin ∀x0 ∈ �(δ).

Proof Based on Lemma 2.2 and the use of piecewise Lyapunov function candidate
(2.51), the feasibility of LMIs (2.65)–(2.66), give symmetric positive definite matri-
ces Pj = X−1

j and gain controllers Fj = Y j X−1
j ensuring the asymptotic stability

at the origin of fuzzy system (2.1) with feedback control (2.47) which is always
admissible by virtue of conditions (2.66), that is, each level set ε(Pj , ρ j ) ⊂ D j .
Note also, that all obtained level sets ε(Pj , ρ j ) ⊃ �(δ). The new problem in this
approach with a piecewise function and a switching control, is, even if inside any
level set ε(Pj , ρ j ), the control is admissible, this property may be lost when a switch
occurs according to strategy (2.37). This problem can be solved if we can ensure
for the system that common set �(δ) is positively invariant w.r.t the all r uncertain
subsystems (2.38). This fact is realized with condition (2.67), which is a direct appli-
cation of Theorem 2.1. In this case, the state of the system belongs to inside all the
sets D j , that is, the state feedback control is always admissible, ∀x0 ∈ �(δ). ��

The result of this theorem can be used in two steps: the first step consists in
computing the solutions of LMIs (2.65)–(2.66). With these solutions, matrices in
closed-loop are computed. The second step consists in testing conditions (2.67) with
vector δ as a design parameter.

2.5.1 Examples

In this section, we apply our results to two examples. The first one is the one studied
in [19].

Example 2.1 Consider the problem of balancing an inverted pendulum on a cart
presented by Fig. 2.5.

The equations of the motion for the pendulum are,

ẋ1 = x2
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Fig. 2.5 Inverted pendulum
system

ẋ2 = gsin(x1) − am plx22sin(2x1)/2 − acos(x1)u

4l/3 − am plcos2(x1)

where x1 denotes the angle of the pendulum from the vertical, and x2 is the angular
velocity. g is the gravity acceleration, m p the mass of the pendulum, mc is the mass
of the cart, 2l is the length of the pendulum and u is the force applied to the cart.
a = 1/(m p + mc). The following data are chosen: m p = 2kg; mc = 8 kg and
2l = 1m. We also add the following saturation on the control,

−3000 ≤ u ≤ 3500

The following fuzzy model is used to design a fuzzy controller.

Rule 1: IF x1(t) is about 0

THEN ẋ(t) = A1x(t) + B1u(t)

Rule 2: IF x1(t) is about ± π/2

THEN ẋ(t) = A2x(t) + B2u(t)
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with,

A1 =
[

0 1
17.2941 0

]
; A2 =

[
0 1

9.3648 0.

]
;

B1 =
[

0
−0.1765

]
; B2 =

[
0

−0.0054

]

The membership functions and the upper bounds as used by [19] are as follows:

M1
1 (x1(t)) =

(
1 − 1

1 + e−7(x1(t)−π/4)

)
·
(

1

1 + e−7(x1(t)+π/4)

)

= h1(t)

M2
1 (x1(t)) = 1 − M1

1 (x1(t)) = h2(t)

E11 = E12 = 0.1|A1 − A2|; E21 = E22 = 0.01|B1 − B2|.

By applying Theorem 2.7, we find the following result.

P =
[
14.9944 4.7034
4.7034 1.4756

]
;

The obtained gain controllers are given by,

F1 = [
849.7047 253.0999

] ; F2 = [
3156.8 990.5

]

Common set ε(P, ρ = 10) of asymptotic stability is given by Figure 2.6 together
with sets D j .

Figure 2.6 presents the evolution of the state of the system in closed-loop (in red
color) inside the set of asymptotic stability ε(P, ρ) (in magneta color ) for different
initial states, the evolution of the control and the membership function together with
the sets S1 and S2.

The application of Theorem 2.8 leads to nonfeasible LMIs due to the structure
of matrices A1, A2, B1, B2 which are under Compagnon form. With any feedback
controller, the matrices of the system in closed-loop remain under the same form.
Hence, condition (2.67) cannot be satisfied. To overcome this problem, one has to
apply any non singular transformation to the initial linear subsystems.

Example 2.2 Consider now the following constrained nonlinear system,

ẋ1(t) = −2.1x1 + 1.5x2(t) + 2.5u1(t) + 0.5u2(t)

ẋ2(t) = 3.5x1(t) − 0.5
[
0.5 + ln(x21 + 1)

]
x2(t) + u1(t) − 1.5u2(t)
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Fig. 2.6 Evolution of the
state, control and membership
functions
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where the control is constrained as follows:

−q2 ≤ u ≤ q1; q1 =
[
35
45

]
; q2 =

[
40
45

]

Now we give the exact approximation of the nonlinear system by a T–S model. For
this, assume that x1(t) ∈ [−γ, γ ], then one can write,

ln(x21 + 1) = M1
1 (x1(t)) · 0 + M2

1 (x1(t)) · ln(γ 2 + 1) (2.68)
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with,

M1
1 (x1(t)) = ln(γ 2 + 1) − ln(x21 + 1)

ln(γ 2 + 1)
= h1(t)

M2
1 (x1(t)) = 1 − M1

1 (x1(t)) = ln(x21 + 1)

ln(γ 2 + 1)
= h2(t)

The fuzzy model which represents exactly the nonlinear system is given by:

If x1(t) is M1
1 Then ẋ(t) = A1x(t) + B1u(t);−q2 ≤ u ≤ q1

If x1(t) is M2
1 Then ẋ(t) = A2x(t) + B2u(t);−q2 ≤ u ≤ q1

where matrices A1, A2, B1 and B2 are given by,

A1 =
[−2.1 1.5

3.5 −0.25

]
; A2 =

[−2.1 1.5
3.5 −0.5(0.5 + ln(γ 2 + 1))

]
;

B1 = B2 =
[
2.5 0.5
1 −1.5

]
.

For this fuzzy system composed of two subsystems, one can take the following upper
bounds:

E11 = 0.5|A2 − A1|; E21 = 0; E12 = 0.5|A1 − A2|; E22 = 0.

Choose γ = 12.
The asymptotic stability is guaranteed by the existence of one symmetric positive

definite matrix by resolving the LMI (2.57)–(2.58):

P =
[

0.0224 −0.0016
−0.0016 0.0127

]
;

The obtained gain controllers are given by,

F1 =
[−0.1243 −1.0373

0.5409 0.5891

]
; F2 =

[−0.2354 −0.6114
0.8910 −0.4031

]
.

Common set ε(P, ρ = 10) of asymptotic stability is given by Fig. 2.7 together
with sets D j .

Figure 2.7 presents the evolution of the state of the system in closed-loop inside the
set (in blue) of asymptotic stability ε(P, ρ) for different initial states, the evolution
of the control for an initial state inside ε(P, ρ) and the membership function together
with the sets S1 and S2.

Now, we apply the results of Theorem 2.8. The resolution of LMIs (2.65)–(2.66)
leads to the following solutions only for a reduced upper bound and interval of
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Fig. 2.7 Evolution of the
sate, control, and membership
functions
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evolution of x1: :

E11 = 0.25|A2 − A1|; E21 = 0; E12 = 0.25|A1 − A2|; E22 = 0; γ = 8.5.

P1 =
[

0.0141 −0.0005
−0.0005 0.0066

]
; P2 =

[
0.0132 −0.0053

−0.0053 0.0085

]
.
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Fig. 2.8 Evolution of the state and control

The obtained controller gains are given by,

F1 =
[
0.0184 −0.7839
0.9094 0.0645

]
; F2 =

[
0.2772 −0.5679
0.8088 −0.4785

]
.

For given polyhedral set �(δ), with δ = [1.2735 4.7475]T, condition (2.67) is
also satisfied.

(
Âc1 + |Ec1|

)
δ =

[−0.0070
−0.0761

]
;
(

Âc2 + |Ec2|
)

δ =
[−0.5216

−4.8546

]
.

Common set �(δ) of positive invariance is given by Fig. 2.8 together with setsD j

and ε(Pj , ρ j ); ρ1 = 8, ρ2 = 9.
Figure2.8 presents the evolution of the state of the system in closed-loop inside the

common set of positive invariance �(δ) for different initial states, the time evolution
of the control for an initial state inside the common set of positive invariance �(δ).

The study of these two examples shows that the result of Theorem 2.7 are less
conservative than the results of Theorem 2.8. This fact is due to themore constraining
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condition (2.67) which is needed with the use of a piecewise Lyapunov function can-
didate. Consequently, a commonLyapunov function, when it exists, is more adequate
to the design of fuzzy controllers for a nonlinear systems with constrained control.

2.6 Improved Conditions of Stabilizability

In this section, we follow the approach proposed in [10, 23, 26]. This approach uses
the following piecewise smooth quadratic Lyapunov function candidate:

V (x(t)) = xT(t)Px(t) (2.69)

where P = ∑r
j=1 η j Pj . Let us define the level set of this function by:

ε(P, ρ) = {
x ∈ IRn

∣∣V (x) ≤ ρ; ρ � 0
}

In the previous section, the samemethodologywas usedwith a commonLyapunov
function for all the r upper bound extreme subsystems and a piecewise Lyapunov
function. Controller gains Fj were designed such that all the level sets associated
to matrices Pj , j = 1, . . . , r contain a same predefined polyhedral � to ensure the
asymptotic stability inside a common region. Nevertheless, in this section, we show
that even if a piecewise Lyapunov function is used, no common region is needed
at all to guarantee the asymptotic stability of the fuzzy system despite the presence
of constraints on the control.The aim of this approach consists in giving conditions
allowing the choice of stabilizing controller (2.45) in such a way that:

• V (x(t)) is Lyaponuv function of the fuzzy system.
• There exist a positive scalar ρ such that ε(P, ρ) ⊆ ⋂

D j .

Hence, for all x ∈ ε(P, ρ) the system trajectory converges to the origin and the
control never saturates.

For this, we remind below the result of stabilizability of the unconstrained fuzzy
system, using the idea of [19] based on the upper extreme subsystems. The conditions
of asymptotic stability for fuzzy system (2.1) are given according to Definition 2.2.

The use of Lemma 2.2 and the result of [26] enable us to state the main result of
this paper concerning the asymptotic stability of the fuzzy system (2.1) with satura-
tions (2.5).

Theorem 2.9 If there exist a set of symmetric positives definite matrix Pi ∈ IRn×n

and a positive scalar ρ such that:

(A j + B j Fj )
TPj + Pj (A j + B j Fj ) + (E j1 + E j2Fj )

TPj

+ Pj (E j1 + E j2Fj ) < 0; j = 1, . . . , r; (2.70)

ε(P, ρ) ⊂ D j , j = 1, . . . , r, (2.71)
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then, the fuzzy system (2.1) with the feedback control (2.47) is asymptotically stable
∀x0 ∈ ε(P, ρ).

Proof Conditions (2.70) imply that function V (x) = xTPx is a Lyapunov functions
of all the upper bound extreme subsystems (2.50). Reminding that level set ε(P, ρ) of
the Lyapunov function is positively invariant w.r.t the upper bound extreme subsys-
tems. According to Lemma 2.2 and Definition 2.2, this set is also a level set (region
of stability) for uncertain subsystems (2.46), that is, set ε(P, ρ) is also positively
invariant w.r.t uncertain subsystems (2.46). Thus, the control is always admissible,
i.e., −q2 ≤ Fj x(t) ≤ q1,∀t 
 0 by virtue of conditions (2.54). Consequently, each
control u(t) = Fj x(t) is admissible ∀x0 ∈ ε(P, ρ) and linear subsystem (2.46) is
always valid inside this region of linear behavior. Hence, it is obvious that by apply-
ing switching control (2.47) to uncertain fuzzy system (2.38), the control remains
admissible by virtue of the following,

−q2 ≤ Fj x(t) ≤ q1, ∀t 
 0 implies

−q2 ≤
r∑

j=1

η j Fj x(t) ≤ q1, ∀t 
 0; j = 1, . . . , r

where η is defined by (2.37). In order to guarantee that this implication remains
satisfied even if the state switches from a subspace S j to another subspace Si , i �= j ,
it is necessary to take the initial state inside common domain ε(P, ρ). The positive
invariance property of the set ε(P, ρ), implies that all the uncertain subsystems (2.46)
remain linear despite the presence of the saturations. This fact allows the application
of the Lemma 2.2 and Definition 2.2 to these uncertain subsystems to obtain r upper
bound extreme subsystems by using assumptions (2.39). If in addition feedback
controllers Fj satisfy conditions (2.70), then global fuzzy system (2.1) with the
feedback control (2.47) is asymptotically stable at the origin ∀x0 ∈ ε(P, ρ) despite
the presence of saturations. ��

It is worth noting that to include a symmetric ellipsoid inside a nonsymmetrical
polyhedral, it is sufficient to realize this only inside the symmetrical part of the
polyhedral. This means in our case, to realize (2.54) only with q̄ = min(q1, q2). It
is well known that to obtain condition (2.54), one has only to satisfy the following
inequalities [27],

ρFi
j P−1(Fi

j )
T ≤ q̄2

i , j = 1, . . . , r; i = 1, . . . , m, (2.72)

where Fi
j is the i th row of matrix Fj , q̄ = min(q1, q2). These inequalities can be

transformed by the use of Schur complement to the following LMI,

[
βi Y i

j
∗ X

]
≥ 0, i = 1, . . . , m (2.73)

where Y i
j is the i th row of matrix Y j = Fj X , X = P−1 and βi = q̄2

i /ρ.
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The result of Theorem 2.9 is now used for the control synthesis.

Theorem 2.10 For given positive scalars ρ, if there exist symmetric definite positive
matrices X1, . . . , Xr and matrices Y1, . . . , Yr , solutions of the following LMIs:

X j (A j + E1 j )
T + Y T

j (B j + E2 j )
T + (A j + E1 j )X j + (B j + E2 j )Y j < 0,

(2.74)

[
βi Y i

j
∗ Xs

]
≥ 0, (2.75)

Xs > 0,

j = 1, . . . , r; i = 1, . . . , r; s = 1, . . . , r

where βi = q̄2
i /ρ, Y i

j is the ith row of matrix Y j ;
then, fuzzy system (2.1) with feedback control (2.47) with,

Fj = Y j X−1 (2.76)

Pi = X−1
i (2.77)

is asymptotically stable at the origin ∀x0 ∈ ε(P, ρ).

Proof Follows readily from Theorem 2.9. ��
This result is easily applied to design controllers: solving LMIs (2.74)–(2.75) by any
common available software (in our casewe usedMatlab LMI control toolbox), matri-
ces Pi and the controllers gains Fi can be computed easily according to equalities
(2.76) and (2.77).

2.6.1 Example

Let us consider the same constrained nonlinear system studied in Example 2.2.
Solving the LMI (2.74)–(2.75) for γ = 15 we find:

P1 =
[
0.1044 0.0050
0.0050 0.0356

]
; P2 =

[
0.0796 −0.0395

−0.0395 0.0511

]

The obtained gain controllers are given by,

F1 =
[−0.3501 −0.7210

1.0798 0.1654

]
; F2 =

[
0.1946 −0.4226
0.7014 −0.4580

]

The set of positive invariance ε(P, ρ) is depicted in Fig. 2.9 together with setsD j

while Figs. 2.10, 2.11 present the evolution of the states and the control, respectively.
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Figure2.9 plots the set �(ρ) together with sets ε(P1, ρ1) and ε(P2, ρ2) noted
�(P1, ρ1) and�(P2, ρ2) respectively. Figure2.10 presents the evolution of the state
of the system in closed-loop inside the common set of positive invariance �(ρ) for
different initial states. The corresponding control is depicted in Fig2.11.

2.7 Stabilization of Saturated Discrete-Time T–S Fuzzy Systems

The objective of this section is to extend the results of [17] to discrete-time T–S fuzzy
systems subject to actuator saturations. Thus, two directions are explored, based on
two different methods, one direct and one indirect, leading to two different sets of
LMIs. It is then shown, by application to a real plant model, that the indirect method,
which uses the idea in [28] is less restrictive than the direct one, that uses [17]. The
results of this section were published in [21]. The case of discrete-time T–S fuzzy
systems is considered in this section.

2.7.1 Preliminaries

This section presents some preliminary results on which our work is based. Define
the following subset of IRn :

L (F) = {
x ∈ IRn|∣∣Fl x | ≤ 1, l ∈ [1, m]

}
, (2.78)

with F ∈ IRm×n and Fl stands for the lth row of matrix F . L (F) is a polyhedral
set where the saturations do not occur. Further, the set ε(P, ρ) defined by (2.52),
which is an ellipsoid, will be used as a level set of the Lyapunov function V (x(k)) =
xT(k)Px(k).

Lemma 2.3 [16] Let F, H ∈ IRm×n be given matrices, for x ∈ IRn, if x ∈ L (H)

then
sat(Fx) = co

{
Di Fx + D−

i H x : i ∈ [
1, 2m]} ,

with Di ∈ V where

V = {
G ∈ IRm×m/G = diag {ζ1, . . . , ζl , . . . ζm}} ,

with ζl = 1 or 0, D−
i = i − Di and co stands for the convex hull function.

The main idea of [16] based on Lemma 2.3, is to build a third set with matrix
H asL (H). This polyhedral set will be the set where saturations of the control are
allowed without destabilizing the system. It is generally shown that set L (H) is
larger than set L (F) [16].

Lemma 2.4 [17] Suppose that matrices Gi ∈ IRm×n i = 1, 2, ..., r and a positive
semi-definite matrix P ∈ IRm×m are given:
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if
r∑

i=1

hi (k) = 1, 0 ≤ hi (k) ≤ 1,

then
(

r∑

i=1

hi (k)GT
i

)
P

(
r∑

i=1

hi (k)Gi

)
≤

r∑

i=1

hi (k)GT
i PGi .

Lemma 2.5 [29] Let x ∈ IRn, H ∈ R
m×n , P = PT ∈ IRn×n such that rank(H) =

σ < n. The following statements are equivalent:
(i) xTPx < 0,∀x �= 0, H x = 0
(i i) ∃X ∈ IRn×m : P + X H + HTXT < 0.

2.7.2 Problem Statement

This section presents the problem to be solved. Consider the discrete-time T–S fuzzy
system described by:

x(k + 1) = A(z)x(k) + B(z)sat(u(k)), (2.79)

where

A(z) =
r∑

i=1

hi (k)Ai , B(z) =
r∑

i=1

hi (k)Bi ,

The saturation function is defined as follows:

sat(ui (k)) =
⎧
⎨

⎩

1, if ui (k) > 1
u(k), if − 1 ≤ ui (k) ≤ 1
−1 if ui (k) < −1

(2.80)

Based on the Parallel Distribution Control (PDC) structure [2], we consider the
following fuzzy control law for the T–S fuzzy system (2.79):

u(k) =
r∑

i=1

hi (k)Fi x(k). (2.81)

The objective of this work is to develop sufficient conditions of asymptotic sta-
bility of the T–S fuzzy system in closed-loop in presence of saturated control. These
conditions will enable one to obtain a large set of initial values where the saturations
of the control are allowed.
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2.7.3 Conditions of Stabilizability

This section presents the main results that consist of two sufficient conditions of
asymptotic stability of the T–S system in closed-loop, under the form of two sets of
LMIs.

2.7.3.1 Direct Method

In this subsection, a directmethod is used to derive sufficient conditions of asymptotic
stability based on a common quadratic Lyapunv function candidate.

Theorem 2.11 For a given fuzzy system (2.79), suppose that local state feedback
control matrices Fj , j = 1, ..., r, are given. Ellipsoid ε(P, ρ) is a contractively
invariant set of the closed-loop system under the fuzzy control law (2.81) if there
exist matrices Hj ∈ IRm×n, j ∈ [1, r ] such that

AT
i js P Ai js − P < 0, ∀i, j ∈ [1, r ], ∀s ∈ [1, 2m] (2.82)

ε(P, ρ) ⊂
r⋂

j=1

L (Hj ), (2.83)

where

Ai js = Ai + Bi [Ds Fj + D−
s Hj ].

Proof For any x ∈ ⋂r
j=1L (Hj ), since

∑r
i=1 hi (k) = 1 and0 ≤ hi (k) ≤ 1wehave

that:

x(k) ∈ L

⎛

⎝
r∑

j=1

h j (k)Hj

⎞

⎠ .

Then by Lemma 2.3,

sat(u(k)) =
2m∑

s=1

δs(k)

⎡

⎣Ds

r∑

j=1

h j (k)Fj + D−
s

r∑

j=1

h j (k)Hj

⎤

⎦ x(k),

with u(k) = ∑r
j=1 h j (k)Fj x(k), hence, one can have the system in closed-loop as

follows:

x(k + 1) =
r∑

i=1

r∑

j=1

2m∑

s=1

νi js(k)Ai js x(k),

with Ai js = Ai + Bi
[
Ds Fj + D−

s Hj
]
, and νi js(k) = hi (k)h j (k)δs(k).
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Then, (2.79) becomes

x(k + 1) = A(z)x(k),

where

A(z) =
r∑

i=1

r∑

j=1

2m∑

s=1

νi js(k)Ai js . (2.84)

Select Lyapunov function candidate

V (x(k)) = xT(k)Px(k).

Computing its rate of increase gives


V (x(k)) = xT(k)
[

A(z)TP A(z) − P
]

x(k)

= xT(k)

⎡

⎣

⎛

⎝
r∑

i=1

r∑

j=1

2m∑

s=1

νi js(k)AT
i js

⎞

⎠ P

×
⎛

⎝
r∑

i=1

r∑

j=1

2m∑

s=1

νi js(k)Ai js

⎞

⎠ − P

⎤

⎦ x(k)

= xT (k)

⎡

⎣

⎛

⎝
r∑

i=1

r∑

j=1

2m∑

s=1

hi (k)h j (k)δs(k)AT
i js

⎞

⎠ P

×
⎛

⎝
r∑

i=1

r∑

j=1

2m∑

s=1

hi (k)h j (k)δs(k)Ai js

⎞

⎠ − P

⎤

⎦ x(k)

for all

x(k) ∈
r⋂

j=1

L (Hj ).

By applying Lemma 2.4:


V (x(k)) ≤ xT(k)

⎡

⎣
r∑

i=1

r∑

j=1

2m∑

s=1

νi js(k)AT
i js P Ai js − P

⎤

⎦ x(k).
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This inequality is equivalent to


V (x(k)) ≤ xT(k)

⎡

⎣
r∑

i=1

r∑

j=1

2m∑

s=1

νi js(k)
(

AT
i js P Ai js − P

)
⎤

⎦ x(k).

It is easy to see that 
V (x(k)) < 0 if

AT
i js P Ai js − P < 0,∀i, j ∈ [1, r ], ∀s ∈ [1, 2m]

and

ε(P, ρ) ⊂
r⋂

j=1

L (Hj ). ��

In order to synthesize the controller, we give the following result:

Corollary 2.2 For a given fuzzy system (2.79), if there exist a symmetric positive
definite matrix Q ∈ R

n×n and matrices Y j ∈ IRm×n, Z j ∈ IRm×n, j ∈ [1, r ] and
X ∈ IRn×n such that

[
XT + X − Q

[
Ai + Bi (DsY j + D−

s Z j )
]T

∗ Q

]

> 0 (2.85)

∀i, j ∈ [1, r ], ∀s ∈ [1, 2m]

and

[ 1
ρ

Z jl

∗ XT + X − Q

]
≥ 0 (2.86)

∀ j ∈ [1, r ], ∀l ∈ [1, m],

where * denotes the transpose of the off-diagonal element, Z jl stands for the lth row
of matrix Z j , then ellipsoid ε(P, ρ) is a contractively invariant set of closed-loop
system (2.79), with

Fi = Yi X−1, Hi = Zi X−1 and P = Q−1

Proof Assume that conditions (2.85)–(2.86) hold. Then the inequality (2.82) in 2.11
is equivalent to:

XT AT
i js P Ai js X − XTP X < 0,

∀i, j ∈ [1, r ], ∀s ∈ [1, 2m], and for all nonsingular matrix X ∈ IRn×n .
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Let Q = P−1 then we have

XT AT
i js Q−1Ai js X − XTQ−1X < 0,

∀i, j ∈ [1, r ], ∀s ∈ [1, 2m].

By Schur complement, it is equivalent to:

[
XTQ−1X XT AT

i js
∗ Q

]
> 0,

∀i, j ∈ [1, r ], ∀s ∈ [1, 2m]. (2.87)

Since (X − Q)TQ−1(X − Q) > 0, it follows that XTQ−1X ≥ XT + X − Q. Then

V (x(k)) < 0 if

[
XT + X − Q XT

[
Ai + Bi (Es Fj + E−

s Hj )
]T

∗ Q

]
> 0,

∀i, j ∈ [1, r ], ∀s ∈ [1, 2m]. (2.88)

To obtain an LMI, let Y j = Fj X and Z j = Hj X . Then condition (2.88) will be
equivalent to

[
XT + X − Q

[
Ai X + Bi (EsY j + E−

s Z j )
]T

∗ Q

]
> 0,

∀i, j ∈ [1, r ], ∀s ∈ [1, 2m].

Now, consider the condition (2.83) in Theorem 2.11, which is equivalent to [27]:

Hjl P−1HT
jl � 1

ρ
, ∀ j ∈ [1, r ], ∀l ∈ [1, m],

where Hjl is the lth row of Hj . This inequality is equivalent to
Hjl X X−1P−1X−TXTHT

jl � 1
ρ
, for any nonsingular matrix X ∈ IRn×n .

By Schur complement, one obtains equivalently

[ 1
ρ

Hjl X
∗ XTP X

]
≥ 0.

As Q = P−1, then one can have

[ 1
ρ

Hjl X
∗ XTQ−1X

]
≥ 0.
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Thus, if
[ 1

ρ
Hjl X

∗ XT + X − Q

]
≥ 0,

then, inequality (2.83) of Theorem 2.11 is satisfied, hence the result is obtained. Note
that condition (2.88) implies XT + X > 0, that is, X is nonsingular. ��

2.7.3.2 Indirect Method

In this subsection, an indirect method is used to derive sufficient conditions of
asymptotic stability by using a common quadratic Lyapunov function.

Theorem 2.12 For given fuzzy system (2.79), suppose that local state feedback con-
trol matrices Fj , j = 1, ..., r, are given. Ellipsoid ε(P, ρ) is a contractively invari-
ant set of the closed-loop system under fuzzy control law (2.81) if there exist matrices
Hj ∈ IRm×n, j ∈ [1, r ], N1 and N2 ∈ IRn×n such that

[
N1Ai js + AT

i js NT
1 − P AT

i js NT
2 − N1

∗ P − N1 − N2

]
< 0 (2.89)

∀i, j ∈ [1, r ], ∀s ∈ [1, 2m]

and

ε(P, ρ) ⊂
r⋂

j=1

L (Hj ), (2.90)

where Ai js = Ai + Bi
[
Ds Fj + D−

s Hj
]
.

Proof Let V (x(k)) = xT(k)Px(k). Then


V (x(k)) = xT(k + 1)Px(k + 1) − xT(k)Px(k) < 0

is equivalent to
{

xT(k + 1)Px(k + 1) − xT(k)Px(k) < 0
x(k + 1) = A(z)x(k)

,

which is also equivalent to

(�)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

[
xT(k) xT(k + 1)

] [−P 0
0 P

] [
x(k)

x(k + 1)

]
< 0

[
A(z) −i

] [ x(k)

x(k + 1)

]
= 0
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By virtue of Lemma 2.5, (�) is also equivalent to:
there exists a matrix X such that:

[−P 0
0 P

]
+ X

[
AT(z) −i

] + [
A(z) −i

]T
X T < 0

Let X =
[

N1
N2

]
then 
V (x(k)) < 0 if:

[−P 0
0 P

]
+
[

N1
N2

] [
A(z) −i

] +
[

AT(z)
−i

] [
NT
1 NT

2

]
< 0.

By using (2.84) one can get

r∑

i=1

r∑

j=1

2m∑

s=1

νi js(k)

[−P + N1Ai js + AT
i js NT

1 −N1 + AT
i js NT

2
N2Ai js − NT

1 P − N2 − NT
2

]
< 0,

where νi js(k) = hi (k)h j (k)δs(k). A sufficient condition to have 
V (x(k)) < 0 is

[−P + N1Ai js + AT
i js NT

1 AT
i js NT

2 − N1

∗ P − N2 − NT
2

]
< 0 ��

In order to synthesize the controller, we give the following result:

Corollary 2.3 For a given fuzzy system (2.84) and a given σ ∈ IR, if there exist a
symmetric positive definite matrix Q ∈ IRn×n and matrices Y j , Z j ∈ IRm×n, j ∈
[1, r ] and X ∈ IRn×n such that

[
�i js + �T

i js − Q −σ X + �T
i js

∗ σ 2Q − σ X − σ XT

]
< 0 (2.91)

∀i, j ∈ [1, r ], ∀s ∈ [1, 2m]

and [ 1
ρ

(Z j )l

∗ Q

]
≥ 0 , ∀ j ∈ [1, r ], ∀l ∈ [1, m], (2.92)

where �i js = Ai X + Bi
[
DsY j + D−

s Z j
]
,

then the ellipsoid ε(Q−1, ρ) is a contractively invariant set of the closed-loop system
(2.79), with

Fi = Yi X−1, Hi = Zi X−1 and P = X−TQ X−1.

Proof In (2.89) let Ni = X−T
i , i = 1, 2. Pre and post -multiplying inequality (2.89)

by diag(XT
1 , XT

2 ) and diag(X1, X2), respectively, one can get equivalently:
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[
�i js XT

1 AT
i js − X2

∗ XT
2 P X2 − X2 − XT

2

]
< 0,

∀i, j ∈ [1, r ], ∀s ∈ [1, 2m]

where �i js = Ai js X1 + XT
1 AT

i js − XT
1 P X1. Let X2 = σ X1 and Q = XT

1 P X1.
Then,

[
�i js σ X1 + XT

1 AT
i js

Ai js X1 − β XT
1 σ 2Q − σ X1 − σ XT

1

]
< 0,

∀i, j ∈ [1, r ], ∀s ∈ [1, 2m].

Let X1 = X then (2.91) is obtained. Note that (2.91) implies that matrix X is
nonsingular.
Further, one can show that the inequality (2.90) is equivalent to [30]:
Hjl P−1HT

jl � 1
ρ
where Hjl is the lth row of Hj . That is,

Hjl X X−1P−1X−TXTHT
jl � 1

ρ
.

By Schur complement, one gets

[ 1
ρ

Hjl X
∗ XTP X

]
≥ 0.

Since Q = XTP X and Z j = Hj X then

[ 1
ρ

Z jl

∗ Q

]
≥ 0,

where Z jl is the lth row of Z j . ��

2.7.4 Study of a Real Plant Model

In order to illustrate the obtained results, consider the balancing-up control of a
simulated truck trailer proposed in [31] and given by Fig. 2.12.

The discrete-time state space model of the truck trailer is given by:

x1(k + 1) = (1 − (v · Te/L))x1(k) + (v · Te/L)u(k)

x2(k + 1) = x2(k) + (v · Te/L)x1(k)

x3(k + 1) = x3(k) + v · Te · sin[x2(k) + (v · Te/2L)x1(k)], (2.93)
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Fig. 2.12 Truck trailer system

where Te stands for the sampling time, v the speed of bucking up of the engine, L and l
are indicated in Fig. 2.12. The membership functions of this model are represented as

M1
1 (z(k)) = sin(z(k))

z(k)
, M2

1 (z(k)) = 1 − M1
1 (z(k)).

The nonlinear model of the vehicle can be described by the two following rules
as described in [32]:
Rule 1:

if

z(k) = x2(k) + v · Te.x1(k)

2L

is about 0, then

x(k + 1) = A1x(k) + B1u(k)

Rule 2:
if

z(k) = x2(k) + v · Te.x1(k)

2L

is about π : or−π , then

x(k + 1) = A2x(k) + B2u(k)
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Where:

A1 =
⎡

⎣
1 − v · Te/L 0 0

v · Te/L 1 0
v2 · T 2

e /2L v · Te 1

⎤

⎦ , B1 =
⎡

⎣
v · Te/ l

0
0

⎤

⎦

A2 =
⎡

⎣
1 − v · Te/L 0 0

v · Te/L 1 0
d · v2 · T 2

e /2L d · v · Te 1

⎤

⎦ , B2 =
⎡

⎣
v · Te/ l

0
0

⎤

⎦ ,

with x = [x1 x2 x3]T, l = 2.8m, L = 5.5m, v = −1m/s, Te = 2 s, d =
0.01/π. The use of Corollary 2.2, leads to the following results obtained with the
LMI toolbox of Matlab:

H1 = H2 = [
1.2609 −0.6759 0.0711

]

F1 = F2 = [
2.4052 −1.3751 0.1456

]

P =
⎡

⎣
4.5391 −4.0483 0.4266

−4.0483 6.2350 −0.6541
0.4266 −0.6541 0.1545

⎤

⎦ .

The use of Corollary 2.3, leads to the following results obtainedwith the LMI toolbox
of Matlab:

H1 = H2 = [−0.0832 −0.0900 −0.0335
]

F1 = F2 = [−4.5087 −5.5010 −0.4179
]

P =
⎡

⎣
0.0232 0.0107 0.0034
0.0107 0.0424 −0.0029
0.0034 −0.0029 0.0091

⎤

⎦ .

The results of both corollaries are shown in Figure 2.13.
Figure 2.13 plots the inclusion of the ellipsoid set inside the polyhedral set given

by direct and indirect method.

Comment 2.1 It is obvious that the use of Lemma 2.5 introduces an additional
degree of freedom with the parameter h leading to less conservative LMIs as reported
by [28] for linear systems. The obtained ellipsoid sets of asymptotic stability obtained
with these two methods, for the studied example, are presented in Fig.2.13. It is clear
that the one corresponding to the second method is less conservative than expected,
even the LMIs are applied without any optimization program.
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Fig. 2.13 Inclusion of the ellipsoid inside the polyhedral set given by direct (in black) and indirect
method (in gray)

2.8 Conclusion

In this chapter, the problem of constrained nonlinear systems represented by fuzzy
systems has been studied. The positive invariance tool has been used. Sufficient con-
ditions of asymptotic stability have been obtained despite the presence of saturations
on the control by using a common Lyapunov function and a piecewise Lyapunov
function successively. The used approach is the one followed in [19] with uncer-
tain subsystems and upper bound subsystems. The obtained results are successfully
applied to two nonlinear systems with constrained control, represented by T–S fuzzy
models. This leads to the characterization of a symmetric ellipsoid and a polyhedral
common region of positive invariance and asymptotic stability successively. It is also
shown that a common Lyapunov function, when it exists, leads to a less conserva-
tive region of positive invariance and asymptotic stability when the system is with
constrained control. Improved conditions of stabilizability are also presented. It was
shown that even a piecewise Lyapunov function is used, no common region is needed
at all to guarantee the asymptotic stability of the fuzzy system despite the presence
of constraints on the control. Hence, a set of Linear Matrix Inequalities (LMIs) is
proposed to built stabilizing controllers.

This chapter also presents stability analysis and design methods for nonlinear
systems with actuator saturation. T–S fuzzy models with actuator saturation are used
to describe the nonlinear system. Two different methods, one direct and one indirect
are used to derive sufficient conditions of asymptotic stability of T–S fuzzy systems
with saturated control. Finally, these design methodologies are illustrated by their
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application to the stabilization of a balancing-up truck trailer. It is shown that the
indirect method leads to less conservative LMIs since it leads to more larger stability
domains.
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