
Chapter 2
Investigations Concerning the Structure
of Complete Sets

Eric Allender

Abstract This chapter will discuss developments bearing on three related research
directions where Somenath Biswas has made pioneering contributions:

• Isomorphism of Complete Sets
• Creative Sets
• Universal Relations

Some open questions in each of these directions will be highlighted.
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2.1 Introduction

How many NP-complete sets are there?
Although there is a trivial and uninteresting answer to this question (namely: there

is a countably infinite number of NP-complete sets), there is a large body of work
investigating the proposition that in actuality there is precisely one NP-complete set
(modulo minor encoding details).

Let us clarify what is meant by “minor encoding details”: When we consider the
set SAT of satisfiable Boolean formulae, it is irrelevant if we encode formulae using
round parentheses () or square ones [], or if we write variables in italic font or in
bold face. Any of these choices would lead to a reasonable encoding of SAT; they
all yield encodings of SAT that are equivalent in some sense.
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One way to attempt to formalize this notion of “equivalence” is to say that two
sets A and B, A, B ⊆ {0, 1}∗, are p-isomorphic if there is a bijection f defined on
{0, 1}∗ computable and invertible in polynomial time, such that f (A) = B. This
approach leads to the famous Berman-Hartmanis conjecture [BH77], which asserts
that all of the sets that are NP-complete under ≤p

m reductions are p-isomorphic.
The isomorphism conjecture(s) will be discussed in more detail in Sect. 2.2. How-

ever, a bit of background about isomorphism of complete sets is necessary here, in
order to provide a coherent overview of the current paper. The Berman-Hartmanis
conjecture arose, at least in part, because of a cultural inheritance from the study of
computability theory. If we accept the rough idea that NP is analogous to the class
of computably-enumerable sets, and polynomial time is analogous to the class of
computable functions, then the Berman-Hartmanis conjecture is analogous to the
Myhill Isomorphism Theorem in computability theory, which states: All of the sets
that are complete for the class of computably-enumerable sets under ≤m-reductions
are computably-isomorphic to the Halting Problem. (For expositions of this work,
see [Rog67] or [Soa87].)

Central to the proof of theMyhill IsomorphismTheorem is the notion of a creative
set. We postpone until Sect. 2.3 the precise definition of “creativity,” but this is an
appropriate time to mention that the name was coined by Emil Post [Pos44], who
was profoundly influenced by certain consequences of Gödel’s incompleteness the-
orems. Post believed that there was a link between the notion of “mathematical
creativity” and the fact that there is a computable function that, given a set of consis-
tent axioms for arithmetic, will produce a true statement that cannot be proved from
those axioms. Post’s definition of creativity abstracts out this property of the set of
theorems provable from a list of axioms.

In the setting of recursion theory, the creative sets turn out to exactly coincide
with the sets that are complete for the class of computably enumerable sets under
≤m-reducibility, and this is useful in proving Myhill’s Isomorphism Theorem. Thus
it was natural for researchers to try to define a resource-bounded analog of creativity.
But it is not entirely clear what is the best way to define such an analog. Different
definitions were presented by various authors [JY85, Wan91], but the definition of
NP-creative sets by Agrawal and Biswas [AB96] provides several advantages over
other definitions. (For instance, all NP-creative sets are NP-complete; this is not
known for some other notions.) Just as all of the NP-complete sets in Garey and
Johnson [GJ79] are p-isomorphic to SAT, so also are they all NP-creative. Although
Agrawal and Biswas refrain from conjecturing that all NP-complete sets are NP-
creative, we may as well consider a “creativity” version of the Berman-Hartmanis
conjecture:

TheCreativity Hypothesis: The class of NP-creative sets coincides with the class
of sets that are NP-complete under ≤p

m reductions.
One might at first guess that, since SAT is NP-creative, then everything that is

p-isomorphic to SAT would also be NP-creative—but Agrawal and Biswas showed
that, if this is true, then the Creativity Hypothesis is true (and hence P �= NP).

Thus, NP-creativity and p-isomorphism yield two possibly different subclasses
of the NP-complete sets, each of which captures a notion of “naturalness” (in the
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sense that all of the currently-known “natural” examples of NP-complete sets are
both creative and p-isomorphic to SAT). Neither the Creativity Hypothesis nor the
Berman-Hartmanis Conjecture is known to imply the other. Section2.3 discusses
creativity in more detail.

The final section of this chapter highlights one additional direction in which
Somenath Biswas has pushed, in order to give additional insight into the struc-
ture underlying completeness. Although the Berman-Hartmanis conjecture focuses
on the NP-complete sets, let us not forget that much of the practical interest in
NP-completeness derives from the desire to find witnesses for membership in an NP-
complete set. That is, at a fundamental level, it is not a set, such as HAMILTONIAN-
CIRCUIT, that is of primary interest, but rather the corresponding relation consisting
of pairs (G, C) such that C is a Hamiltonian cycle in the graph G.

Is it possible that the (string, witness) relations for every NP-complete set are all
“the same” in some sense? Note that it is not at all obvious how to formulate this
sense of “sameness.” For instance, if there is a polynomial-time relation W (x, y)

consisting of witnesses y for string x , then there is a relation W ′(x, z) such that
W ′(x, z) is true if and only if W (x, y) holds, where y is the string that results by
deleting every second symbol of z. These two relations both serve aswitness relations
for the same set in NP, but they do give different numbers of witnesses for the same
string, and thus they fail to be “the same” on a fairly basic level. And yet, they do
contain exactly the same information, in some intuitive sense. Agrawal and Biswas
succeeded [AB92] in giving a useful definition of “universal relations”, in order to
capture the sense inwhich the defining relations for all knownNP-complete sets seem
to be “the same.” More recently, Chaudhary, Sinha, and Biswas have adapted this
notion for nondeterministic logspace [CSB07]. This topic is explored in Sect. 2.4.

2.2 The Isomorphism Conjecture(s)

An outstanding survey of recent developments related to isomorphisms of complete
sets is now available [Agr11], and the reader is urged to consult that source for amore
complete introduction to the topic and an in-depth discussion of the current state of
the field. The discussion here will focus on describing aspects of the topic that are
(1) related to the work of Somenath Biswas, or (2) related to some open questions
or developments that are not mentioned in [Agr11].

The winds of public opinion have blown back and forth, regarding the Berman-
HartmanisConjecture. It appears to have initially been viewed as fairly plausible.One
of thefirst published accounts questioningwhether the isomorphismconjecture is true
appears in thework of Joseph andYoung [JY85]. They defined a class ofNP-complete
sets they named the k-creative sets (which will also be discussed in Sect. 2.3), and
they explicitly conjectured that some k-creative sets are not p-isomorphic to SAT. In
particular, for any one-one length-increasing function f computable in polynomial
time, they defined a set K f , and they pointed out that, if f is suitably hard to invert,
then it is hard to see how K f can be p-isomorphic to SAT. Kurtz,Mahaney, and Royer
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subsequently elaborated on this intuition, and formulated theEncrypted Complete Set
Conjecture, which states that there is a one-one, length-increasing, one-way function
f such that SAT and f (SAT) are not p-isomorphic.
Several papers were then written, all of which tended to buttress support for

the Encrypted Complete Set Conjecture (all of which are discussed in the survey
[Agr11]). But then attention shifted to some interesting classes of restricted ≤p

m-
reductions; we will discuss some of these developments in more detail below—but
the general trend of these investigations has been to weaken our confidence in the
Encrypted Complete Set Conjecture. More recently, there has been a productive
series of investigations of more powerful classes of reductions, notably including
m-reductions computed in P/poly [AW09, Agr02] and in NP ∩ coNP [HHP07] (this
latter class of reductions is known as SNP-reductions). As a consequence, we now
know that some fairly plausible hypotheses imply that all sets complete for NP under
P/poly-reductions and SNP-reductions are P/poly-isomorphic and SNP-isomorphic,
respectively. Combined with the results about restricted ≤p

m reductions that will be
discussed below, the picture that emerges is that NP-complete sets are either provably
isomorphic or at least are reasonably likely to be isomorphic, bothwhen one considers
reductions strictly less powerful and more powerful than ≤p

m reductions. It remains
to be seen whether any of these lessons ultimately shed much light on the case of
≤p

m reductions themselves.

2.2.1 Restricted Reductions

It is debatable whether ≤p
m reductions really constitute the most important class

of reductions. There is a rich structure of complexity classes within P, and ≤p
m-

reducibility is essentially useless in elucidating this structure. Thiswas themotivation
for Jones et al. to introduce log-space reductions [Jon75]—but even in that pioneering
work, it was realized that a higher precision tool was necessary, in order to investigate
the structure of logspace, which is why Jones introduced what he called log-bounded
rudimentary reductions [Jon75]. This was several years before the modern study
of circuit complexity got under way, and it took a while before it was noticed that
log-bounded rudimentary reductions actually correspond to many-one reductions
computed by uniform AC0 circuits (that is, constant-depth polynomial-size families
of circuits of ANDandORgates) [AG91]. Ultimately, AC0 reductions have proved to
be the most useful notion of reducibility for investigating subclasses of P, surpassing
both NC1 reducibility [CM87] and 1-L reducibility (discussed below). However,
AC0 reducibility posed greater challenges initially, and thus progress was made first
with 1-L reducibility.
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2.2.2 1-L Reductions

1-L reductions are functions computed by logspace-bounded Turing machines that
make a single pass over their input tape (from left to right). They were introduced
by Hartmanis, Immerman, and Mahaney [HIM78, HM81] for many of the same
reasons that had led Jones to introduce log-bounded rudimentary reductions. 1-L
reductions offered the advantages of being significantlymore convenient and intuitive
(since the original formulation of log-bounded rudimentary reductions lacked the
intuitive appeal of the AC0 formulation). In this brief overview, we avoid giving
more detailed definitions of 1-L reductions, but it is appropriate to note that there are
some differences in the formulations as presented in [HIM78] and [HM81], and that
some of these formulations result in a class of reductions that is not closed under
composition (see [All88]).

1-L reductions are easy to invert, and this fact, combined with some diagonaliza-
tion techniques, enabled a proof that all sets complete for PSPACE under 1-L reduc-
tions are p-isomorphic [All88]. They are not isomorphic under 1-L isomorphisms
[BH92], but they are complete under isomorphisms computable in nondeterministic
logspace [HH93].

Agrawal and Biswas [AB96] succeeded in showing that, even for classes as small
as deterministic logspace (and indeed, for any class that is closed under logspace
reductions that produceoutput atmost linearly longer than the input) the sets complete
under 1-L reductions are complete under one-one, length-increasing, polynomial-
time invertible reductions. (Thus by [BH77] all such sets are p-isomorphic.) Finally,
Agrawal proved that all such sets are isomorphic via reductions computed by one-
way nondeterministic logspace (1-NL)machines [Agr96] (and the same paper proves
an analog of the Berman-Hartmanis conjecture for 1-NL reductions).

At this point, study of the structure of sets complete under 1-L reductions effec-
tively stopped.1 The major open questions had been solved. But this was merely
a prelude to a much more exciting and significant development in the history of
work on the isomorphism problem, focusing on reductions that are computable by
constant-depth circuits. Indeed, although there are problems (such as the PARITY
problem) that are computable by 1-L machines but are not computed by AC0 circuits
[FSS84], Agrawal had shown that, for essentially all complexity classes of interest,
all sets complete under 1-L reductions are complete under reductions computable in
AC0 [Agr96]. And whereas all functions computable by 1-L machines are easy to
invert, this is not the case for AC0. Thus, by considering AC0 reductions, the research
community was moving on to a richer class of complete sets, and was confronting
some of the essential issues raised by the Encrypted Complete Set Conjecture.

1 This is not to suggest that work on 1-L computation stopped. Indeed, much of the very large body
of work on streaming algorithms consists of the study of 1-L computation.
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2.2.3 Constant-Depth Circuits

Attention was first focused on AC0 isomorphisms by considering a very restricted
class of AC0 reductions: projections (which are reductions computed by circuits with
no gates, other than negation gates). Sets complete for NP (and other classes) under
uniform projections are isomorphic under uniform AC0 isomorphisms [ABI97].

The logical next step was to work on extending this result from projections to
NC0 functions (that is, functions computed by constant-depth circuits with fan-in
O(1), so that each output bit depends on only O(1) input bits—as contrasted with
projections, where each output bit depends on either zero or one input bit). As part
of this investigation, it was also discovered that, at least for the class NC1, the sets
complete under AC0 reductions are also complete under NC0 reductions, thereby
obtaining the first theorem showing that the sets complete under AC0 reductions
are all AC0 isomorphic [AA96]. Subsequently, the authors were joined by Rudich,
in showing that this holds not only for NC1, but also for NP and for most other
complexity classes of interest [AAR98].

These initial AC0 isomorphism theorems were proved only in the nonuniform
setting. After a series of intermediate steps improving the uniformity condition
[AAIPR01, Agr01], Agrawal succeeded in overcoming some daunting technical
difficulties, in presenting a Dlogtime-Uniform version of the isomorphism theorem
[Agr11], which stands as one of the crowning achievements of the study of the struc-
ture of complete sets. This work not only shows that a natural re-phrasing of the
Berman-Hartmanis Conjecture (in terms of AC0 reductions and isomorphisms) is
true, but also gives a convincing setting where the Encrypted Complete Set Conjec-
ture fails (since even when f is an AC0 function that provably cannot be inverted in
AC0, f (SAT) is still AC0-isomorphic to SAT).

2.2.4 Open Questions

Again, please refer to [Agr11] for several interesting open questions. Here are a few
additional questions relating to isomorphisms, that are not discussed there.

Two important problems that are not believed to be NP-complete are Factoring
and the Minimum Circuit Size Problem:

FACT = {(x, i, b) : the i th bit of the prime factorization of x is b}.
MCSP = {(χ f , s) : χ f denotes a string of length 2m (for some m) that is the

truth-table of a Boolean function f on m variables and s denotes an integer such
that f can be computed by a Boolean circuit of size at most s.}

(In the definition of FACT, the prime factorization is presented as pe1
1 , . . . , pek

k ,
where each exponent ei > 0, and pi < pi+1, so that each number has a unique
prime factorization.)
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I suspect that FACT is probably not complete for any reasonable complexity class
under AC0 reductions. In an earlier survey [All01] I outlined a possible approach
toward proving that this is the case. Namely, I noted that it would suffice to show that
there is no one-one length-increasing NC0 reduction from FACT×{0, 1}∗ to FACT
(or no isomorphism between these sets, computable and invertible in depth-three
AC0). All of my attempts to construct such a reduction have involved multiplication
in some form, and this is not computable in AC0. Perhaps, I suggested, one could
show that multiplication is inherent, in computing such a reduction. Now, however,
after some illuminating discussions withMichal Koucký, I no longer think that this is
a promising approach. One way to build a padding function would be to map the pair
((x, i, b), y) to the triple (z, i, b), where z = xy′, where y′ has binary representation
10�y10�y20� . . . yn−10�yn0�z′ where � is suitably large, and where z′ has logO(1) n
bits. If y′ is prime, then it will be the largest prime factor of z, and thus the initial
part of the prime factorizations of x and of z will be the same. The product xy′ can
be computed in AC0, because of the padding by 0� and because z′ is small. It is
reasonably likely that a value of z′ exists so that y′ will be prime, although number
theorists have not yet established that this holds. It would be very hard to show that
no such z′ can be found in uniform AC0. Thus it is reasonably likely that a padding
function for (a suitable encoding of) FACTdoes exist inAC0. This does not guarantee
that such a padding function can be found in NC0, but it does illustrate some of the
difficulties of pursuing this approach.

Kabanets and Cai have presented some arguments, suggesting that MCSP is not
complete for NP under ≤p

m reductions [KC00]. Can one obtain even stronger evi-
dence, suggesting that MCSP is not p-isomorphic to SAT? It is certainly not clear
that MCSP should have a padding function (i.e., a polynomial-time computable and
invertible function f mapping MCSP×{0, 1}∗ onto MCSP). It is even harder to see
how to construct a padding function if one fixes the circuit size s to be something
exponentially large, but still much smaller than 2m , such as this set:

MCSP2 = {χ f : χ f denotes a string of length 2m that is the truth-table of a Boolean
function f on m variables such that f can be computed by a Boolean circuit of size

at most 2m/2.}

As Kabanets and Cai observe [KC00], if MCSP2 has a padding function computed in
polynomial time, then BPP = P. The connection between the paddability of MCSP2
and the BPP versus P problem arises through the easy observation that any set C
isomorphic to SAT has a P-printable sets contained both in C and in C , combined
with the following equivalence (where the first condition listed is the well-studied
Impagliazzo-Wigderson derandomization hypothesis [IW97]):

• There is a set A ∈ E that requires circuits of size greater than 2n/2 for all large n
iff

• There is a P-printable set B contained in the complement of MCSP2 of the form
B = {χ f : χ f denotes a string of length 2m that is the truth-table of A=m}.
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The observations above do not provide much evidence against MCSP2 being
isomorphic to SAT; rather, they merely indicate that it will not be easy to prove that
it is isomorphic to SAT. What unlikely consequences would follow if MCSP2 (or
MCSP) turned out to be isomorphic to SAT?

2.3 Creative Sets

A set is defined to be creative if its complement is productive (and this holds for all
of the variants of “creativity” and “productivity” that have been considered). Thus,
in order to discuss creative sets, we must first define productive sets.

A set A is productive over a class of languages C if there is a function (a so-called
“productive function”) witnessing that A �∈ C, in some sense. In order to make this
definition precise, we must be explicit what notion of Turing machine indices I we
are using to represent elements of C, and what class of functions F we will allow
as productive functions. Thus we can say that A is (F, I )-productive if there is a
function f ∈ F such that, for every i ∈ I , f (i) ∈ A if and only if f (i) is not in
the language accepted by machine i . That is, given i , f finds an input on which A
differs from the i-th element of C.

Agrawal and Biswas define a set A to be NP-creative if its complement is
(polynomial-time,I )-productive, where I is an indexing of nondeterministic polyno-
mial-time Turing machines, where machine Mi has the property that, on all inputs,
it runs in time |i | [AB96]. It is far from obvious that this is an appropriate definition,
since these machines all run in O(1) time! Thus, in particular, {L(Mi ) : i ∈ I } is
not equal to NP, and does not even contain all of the sets in, say, AC0! Nevertheless,
Agrawal andBiswas are able to demonstrate that this definition yields at least asmany
sets as an earlier notion of creativity (the “k-creative” sets of [JY85], which were
re-dubbed “k-completely-creative” sets by Wang [Wan91] to distinguish them from
another creativity notion he introduced), and they also show that all NP-creative sets
are NP-complete (in contrast to the situation for the “k-creative” sets of [Wan91],
which are neither known to include sets such as SAT, nor to be contained in the
class of NP-complete sets). Figure2.1 indicates the inclusion relations among these
various classes of “creative” sets for NP.

However, when these creativeness definitions are adapted to larger complexity
classes (such as EXP), they all coincide exactly with the class of sets complete under
≤p

m reductions. (The issue boils down to a question of whether the complexity class
C can diagonalize over the class F of productive functions. This is true when C =
EXP, but is not known to be true for C = NP.)

Even though the definition of NP-creative sets is less intuitive than the defini-
tion of the class of sets that are p-isomorphic to SAT, Agrawal and Biswas make a
convincing argument that all “natural” NP-complete sets (including all of the NP-
complete sets listed in [GJ79]) areNP-creative. Thus there is somemerit in investigat-
ing the “Creativity Hypothesis” mentioned in the introduction—the hypothesis that
all NP-complete sets are NP-creative—as an alternative to the Berman-Hartmanis
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Fig. 2.1 Diagram, showing (likely) inclusions among classes of “creative” sets for NP. The region
labeled “[GJ]” indicates the list of “natural” NP-complete problems catalogued in [GJ79]. It is not
known to contain any of the k-creative sets defined by Joseph and Young [JY85], indicated by the
region labeled [JY]. This same class was called “k-completely-creative” by Wang [Wan91], who
also introduced another class of k-creative sets, indicated by the region labeled [Wang]; it is not
knownwhether all of those sets are NP-complete. The region labeled [AB] indicates the NP-creative
sets of Agrawal and Biswas [AB96]

conjecture. Proving that either of these conditions hold would entail proving P �=
NP. (In the case of the Creativity Hypothesis, Agrawal and Biswas show that any
NP-creative set is complete for NP under reductions that are “exponentially honest,”
in the sense that, for some constant c, 2c| f (x)| > |x | for all x [AB96]. Thus, in par-
ticular, no finite set can be NP-creative.) It is particularly interesting that Agrawal
and Biswas show that, if all of the sets that are p-isomorphic to SAT are NP-creative,
then the Creativity Hypothesis holds.

The Creativity Hypothesis has not received much attention. Here are some ques-
tions that might yield some interesting insights:

• Are all of the sets that are complete for NP under AC0 reductions NP-creative?
How about the sets that are complete under first-order projections? Or the sets that
are complete for NP under 1-L reductions?

• If one assumes that FACT or MCSP are NP-creative, can one derive stronger
conclusions than if one merely assumes that these sets are NP-complete?

• Agrawal and Biswas have shown that the complement of any NP-creative set con-
tains an infinite subset in NP. Consider a set such as {x : the time-n2-bounded
Kolmogorov complexity of x is greater than |x |/2}. Would we expect this set to
have an infinite NP-subset? (Actually, the answer is probably Yes! It is observed
in Sect. 2.2.4 that, under the Impagliazzo-Wigderson derandomization hypothesis,
this set even has a P-printable subset.) Can one derive strong and unlikely conclu-
sions from the assumption that this set is the complement of an NP-creative set?
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2.4 Universal Relations

All of the NP-complete sets that are p-isomorphic to SAT have a padding function,
and even the NP-complete sets that are not known to be p-isomorphic to SAT (such
as certain k-creative sets, and sets of the form f (SAT) where f is one-way) have
“padding” functions if we drop the requirement of invertibility (i.e., a reduction from
A ×�∗ to A that is one–one and length-increasing, but is not necessarily invertible).
Similarly, all known NP-complete sets are disjunctive-self-reducible. (A set A is
called “disjunctive-self-reducible” if there is a polynomial-time-computable function
that takes a string x as input, and produces a list y1, . . . , y|x |O(1) as output, such that
x ∈ A iff ∃i yi ∈ A.)

Agrawal and Biswas defined two operators on relations (which they name the join
and equivalence operators) that are related to paddability (without invertibility) and
disjunctive-self-reducibility, respectively (in the sense that if the witness relation for
a set A has the given operator computable in polynomial time, then A is paddable
or disjunctive-self-reducible, respectively). Remarkably, they were able to show that
the relations with these two operators are precisely the relations from which any
other NP-witness relation can be “recovered” in a fairly natural sense. (The details
of these definitions will not be repeated here; see [AB92]).

One thing that I particularly like about [AB92] is their presentation of a new class
of NP-complete sets. Let f be any one–one and size-increasing polynomial function.
They define a relation R f as follows: (z, w) ∈ R f if |w| = 4|z|3 and one of the
following three conditions hold:

1. |z| = 1 and w ∈ {0100, 0101, 0110, 0111, 1001, 1010, 1011}.
2. For some r > 0, w = #r x1#w1##x2#w2## . . . ##xn#wn , where

f (1#x1#x2# . . . #xn) = z and for all i ≤ n, (xi , wi ) ∈ R f .
3. For some r > 0, w = #r x#i1#i2# . . . #in# j1# . . . # jn##w′, where

f (1#x#i1# . . . #in# j1# . . . # jn) = z and for each k ≤ n, bits number ik and jk of
w′ are the same.

Agrawal and Biswas show that {x : ∃y(x, y) ∈ R f } is NP-complete. I know of no
direct way to see that this set is NP-complete; the proof of completeness presented
by Agrawal and Biswas follows because the relation R f is universal (because it has
the required join and equivalence operators). It would be interesting to know if there
is any example of a natural NP-complete problem, for which it is easier to prove
NP-completeness by presenting the join and equivalence operators, than to present
a traditional ≤p

m reduction.
The theory of Probabilistically-Checkable Proofs tells us that problems inNPhave

witness relationswith very special encoding structure. It would be interesting to know
if this body of knowledge can be merged with the theory of universal relations, to
obtain any new insights.

Figures 2.2, 2.3 and 2.4 shows inclusion relations among the different notions
considered in this survey, all of which present ways to give a mathematically precise
definition that can serve as a proxy for the vague concept of what it means to be a
“natural” NP-complete set:
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Fig. 2.2 Diagram, showing
inclusions among notions of
“natural” NP-complete sets
discussed in this survey

Fig. 2.3 Diagram, showing
inclusions among notions of
“natural” NP-complete sets,
if p-isomorphism preserves
NP-Creativity

Fig. 2.4 Diagram, showing
inclusions among notions of
“natural” NP-complete sets,
if all NP-Creative sets are
p-isomorphic

• being p-isomorphic to SAT.
• being NP-creative.
• having a universal relation.

Do all NP-creative sets have universal relations? (Note in this regard that Agrawal
and Biswas show that sets with universal relations are all complete for NP under
polynomially honest reductions (i.e., reductions f where there is a polynomial p
such that p(| f (x)|) ≥ |x | for all x [AB92]), whereas the NP-creative sets are only
known to be complete under exponentially honest reductions [AB96]. Thus it might
be better to askfirstwhether allNP-creative sets that are complete under polynomially
honest reductions have universal relations.)

Are the standard witness relations for MCSP and FACT universal? (Possibly this
question is easy to answer …) Note in this regard that Agrawal and Biswas show
that the standard witness relation for Graph Isomorphism is not universal—as well
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as a (somewhat nonstandard) witness relation for Simple Max Cut. They introduce
a more general notion of universal relations, which they call “generalized univer-
sal relations,” and show that the Simple Max Cut witness relation is generalized
universal. If one is able to show that the standard witness relations for MCSP and
FACT are not universal, then perhaps one can show that they are also not generalized
universal. This would provide some additional evidence that these problems are not
NP-complete.

Are there any additional implications that one can prove, regarding the Berman-
Hartmanis conjecture, the Creativity Hypothesis, and the question of whether all
NP-complete sets have universal witness relations?

(There has been some additional work by other authors, regarding universal rela-
tions. The reader is referred to [CSB07] for a discussion of this work.)

2.5 Conclusions

The notions of p-isomorphism, NP-creativity, and universality provide three ways to
identify properties that are shared by all of the “natural” NP-complete sets. Although
the work of Somenath Biswas and others has given us a body of interesting results
regarding these notions, a number of intriguing open questions remain.
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