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Abstract. The existence of large medical image databases have made
large amounts of neuroimaging data accessible and freely available to the
research community. In this paper, we harness both the vast quantity of
unlabeled anatomical MR brain scans from the 1000 Functional Connec-
tomes Project (FCP1000) database and the smaller, but richly-annotated
brain images from the LONI Probabilistic Brain Atlas (LPBA40) data-
base to learn a statistical deformation model (SDM) of the nonrigid
transformations in a semi-supervised learning (SSL) framework. We make
use of 39 LPBA40 labeled MR datasets to create a set of supervised reg-
istrations and augment these results with a set of unsupervised registra-
tions using 1247 unlabeled MRIs from the FCP1000. We show through
leave-one-out cross validation that SSL of a nonrigid SDM results in a
registration algorithm with significantly improved accuracy compared to
standard, intensity-based registration, and does so with a 99 % reduction
in transformation dimensionality.

Keywords: Image registration · Nonrigid · Semi-supervised learning ·
Statistical deformation model · Principal component analysis

1 Introduction

Nonrigid spatial normalization of different subjects to a common reference space
has utility in a variety of medical imaging applications, for instance in pop-
ulation studies of functional brain imaging [5] and in atlas-based brain seg-
mentation [1]. However, nonrigid image registration of different subjects is a
challenging task made difficult, in part, by highly variable anatomical structure.
Accurate anatomical alignment requires nonrigid transformations with a large
number of degrees of freedom (DoFs). Inter-subject image registration with such
high-dimensionality is an ill-posed optimization problem.

Statistical deformations models (SDMs) have the potential to reduce the
dimensionality of the nonrigid transformations by learning the subspace or man-
ifold in which these transformations exist. SDMs attempt to analyze anatomical
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Fig. 1. Our semi-supervised learning approach makes use of both a small number of
gold-standard, manually-annotated image samples and a large number of unlabeled
image samples. We use the labeled VOIs in the M annotated images to perform a type
of supervised nonrigid registration, from which we create a reference atlas composed
of average anatomy and majority-vote label images. We then nonrigidly register the N
unlabeled images to the atlas in an unsupervised manner using standard, intensity-only
registration. Finally, we perform a principal component analysis of the supervised and
unsupervised transformations to learn a statistical deformation model.

variation by modeling the nonrigid image deformations from a set of training
images. Rueckert et al. [10] proposed principal component analysis (PCA) of non-
rigid deformations to create a low-dimensional, linear orthonormal basis of high-
dimensional registrations. Other authors have made use of PCA-based SDMs
in this manner for low-dimensional image registration [7] and as a registration
regularization prior [15]. However, if the SDM is not trained using accurate regis-
trations, the utility of the model is questionable. Onofrey et al. [8] demonstrate
improved PCA SDM performance by training with a set of richly-annotated
images. Regardless of training the SDM with labeled or unlabeled data, previ-
ous PCA-based SDMs offer relatively underwhelming registration performance
due to PCA’s inability to model the high-dimensional transformation’s variance
with orders of magnitude fewer number of training samples.

Thankfully, large medical image databases containing vast amounts of
neuroimaging data, such as the 1000 Functional Connectomes Project Inter-
national Neuroimaging Data-Sharing Initiative [2] (FCP1000), offer an accessi-
ble and freely available source of SDM training samples. In contrast, smaller
databases like the UCLA Laboratory of Neuroimaging (LONI) Probabilistic
Brain Atlas (LPBA40) [12] contain relatively few images, but incorporate richly-
annotated information, such as gold-standard manually-segmented volumes of
interest (VOIs). Datasets containing such rich information are labor intensive
and expensive to create. In this paper, we leverage both the vast quantity of
unlabeled anatomical MR brain scans from the FCP1000 dataset and the small,
but labeled brain images from the LPBA40 dataset to learn a SDM of nonrigid
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registration in a semi-supervised learning (SSL) framework. The concepts of
using both labeled and unlabeled training data for SSL are widely applicable for
classification problems [3], but its use for image registration is novel, to the best
of our knowledge. As illustrated in Fig. 1, we make use of 39 of the LPBA40’s
labeled MR datasets to create a set of supervised registrations. We augment this
supervised sample set with a second set of unsupervised registrations using 1247
unlabeled MRIs from the FCP1000. To the best of our knowledge, no prior work
has made use 1286 MRIs to learn a SDM for image registration. We show through
leave-one-out cross validation that semi-supervised learning (SSL) our nonrigid
statistical deformation model (SDM) results in a nonrigid registration algorithm
with significantly improved accuracy compared to standard, intensity-based reg-
istration, and does so with a 99 % reduction in transformation dimensionality.

2 Methods

Our proposed SSL nonrigid registration framework requires both supervised and
unsupervised training registration samples. For both types of registrations, we
use a free-form deformation (FFD) transformation model [11]. The FFD B-
spline control point displacements parameterize a dense nonrigid deformation
field T (x) ∈ R

3 at all voxels x ∈ Ω ⊂ R
3, where Ω is the reference image volume

in three dimensions. We rewrite this transformation as a column vector of P
concatenated FFD control point displacements, d ∈ R

3P .
We denote the set of nonrigid transformations computed using a super-

vised registration procedure Ds = {dm|m = 1, . . . , M} and the set of nonrigid
transformations estimated using an unsupervised registration approach Du =
{dM+n|n = 1, . . . , N}. Sections 2.1 and 2.2 describe our supervised and unsu-
pervised registration methodologies, respectively. We registered all M+N sample
images to a common reference space (described in Sect. 2.1) with 181×217×181
volume with 1 mm3 resolution. For an FFD with 5 mm control point spacing, this
volume required P = 60, 236 control points, thus each deformation had 180,708
DoFs in 3D. Together, the sets Ds and Du comprise our SDM’s SSL training
set. Section 2.3 describes our SDM and how we subsequently used that SDM to
nonrigidly register images not included in the training set.

2.1 Supervised Nonrigid Registration

To create our set of supervised nonrigid registrations Ds, we make use of a
database containing gold-standard, manually-segmented VOIs to constrain our
deformations with respect to these VOIs [8]. The LPBA40 database [12] con-
tains 40 anatomical, skull-stripped brain MR images Ii, i = 1, . . . , 40, with 56
annotated VOIs. In order to calculate our nonrigid registrations using a com-
mon reference domain, we first register all 40 images to the MNI Colin 27 brain.
We then select subject 1 to be used as an initial reference template image I1
for nonrigid registration of the remaining subjects. Using an integrated inten-
sity and point-feature nonrigid registration algorithm [9], we nonrigidly register
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the remaining M = 39 subjects to our reference. This algorithm uses a FFD
transformation model with 5 mm control point spacing and minimizes the sum
of squared differences (SSD) similarity measure while penalizing misalignment
of the VOI surface points according to the robust point matching algorithm [4].
The labeled image data allows for accurate normalization of anatomical image
intensities, which motivates using SSD for these registrations. We denote these
transformations Ti�1, i = 2, . . . , 40 (i � j denotes nonrigid registration from
space i to j). Our choice of reference image biases the registrations to that
subject’s particular anatomy. To correct for this, we compute the mean transfor-
mation T̄ = 1

M

∑40
i=2 Ti�1 and apply the inverse transformation T̄−1 to subject

1 to create a deformation bias-corrected (DBC) image IDBC = T̄−1 ◦ I1, where ◦
is the transformation operator. We then re-register the M subjects to IDBC using
the same integrated nonrigid registration as before, and denote these transfor-
mations Ti�DBC. As this set of transformations leverages annotated VOIs and
we constrain our registration procedure to align these VOIs, the FFD control
point displacements of these transformations constitute our set of supervised
registrations Ds = {dm|m = 1, . . . , M}.

In addition to creating Ds, we also create an atlas composed of an anatomical
image IAtlas = 1

M−1

∑40
i=2 Ti�DBC ◦ Ii and a corresponding VOI label image

found using a majority-vote of the 39 transformed subject VOIs. IAtlas is a
representative template image for the set of nonrigid FFD transformations with
5 mm control point spacing. We thus use IAtlas as the reference image for our
unsupervised registrations described in the following section.

2.2 Unsupervised Nonrigid Registration

We require a large number of unsupervised samples to supplement our small set
of supervised registrations. From the FCP1000 database [2], we culled N = 1247
unlabeled, anatomical brain MR images of healthy, normal subjects. First, we
register all images to our common reference space, IAtlas, using an affine trans-
formation Tn→Atlas, n = 1, . . . , N (i → j denotes rigid registration from space i
to j) by maximizing the normalized mutual information (NMI) similarity met-
ric [13]. Following affine registration, we then estimate the nonrigid deformation
of all N brains to IAtlas.

Using the same FFD nonrigid transformation model with 5 mm control point
spacing as in Sect. 2.1, we nonrigidly register each subject by maximizing NMI.
However, unlike the skull-stripped LPBA40 images in Sect. 2.1, these images have
no manual correction, and thus artifacts, e.g. the optic nerve, remain in some
images (as can be seen in Fig. 1). Such artifacts present challenges for intensity-
based registration methods. Rather than manually correcting these poor seg-
mentations, we perform weighted nonrigid registration [14] that preferentially
weights the brain region during the calculation of NMI. For this, we create a
brain weight mask image by first dilating IAtlas’s brain mask and then smooth-
ing with a Gaussian kernel. The resulting transformations Tn�Atlas and their
respective FFD control point displacements comprise our set of unsupervised
registrations Du = {dM+n|n = 1, . . . , N}.
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2.3 Semi-supervised Statistical Deformation Model Registration

Using both the supervised and unsupervised registration sets, Ds and Du,
respectively, we create a statistical deformation model (SDM) of nonrigid FFD
transformation [10]. A principal component analysis of the deformations di, i =
1, . . . ,M + N gives a linear approximation of the deformation distribution

d = d̄ + Φw (1)

where d̄ = 1
M+N

∑M+N
i=1 di is the mean deformation of the M + N training reg-

istrations, Φ = (φ1| . . . |φK) ∈ R
3P×K is the matrix of orthogonal eigenvectors,

and w ∈ R
K is a vector of model coefficients. The number of training samples

determines the number of eigenvectors such that K = min{M + N, 3P}. The k-
th eigenvalue λk estimates the sample variance along the eigenvector φk, and we
sort them in decreasing order λ1 ≥ λ2 ≥ . . . ≥ λK . A SDM using Kv parameters
accounts for 0 ≤ v ≤ 100% of the model’s cumulative variance

Kv∑

k=1

λk ≤ v

K∑

k=1

λk.

Thus, using the first Kv coefficients of w in Eq. 1 provides a low-dimensional
parameterization (Kv DoFs) of a high-dimensional FFD d, which we denote
TSDMv

(x;w) for all points x in the reference image domain Ω.
To nonrigidly register a new image I to our reference image IAtlas, we use

the SDM from Eq. 1 to optimize the cost function

T̂SDMv
= arg max

w
J(IAtlas, TSDMv

(·;w) ◦ I). (2)

Here, J is the NMI similarity metric evaluated throughout the image volume.
We solve Eq. 2 using conjugate gradient optimization with a hierarchical multi-
resolution image pyramid.

3 Results and Discussion

We tested our SSL SDM by performing a series of leave-one-out tests. For each
supervised registration di ∈ Ds, we recomputed the SDM in Sect. 2.3 by leaving
the i-th deformation out of Eq. 1. We did not recompute IAtlas as in Sect. 2.1
for each leave-one-out test because the single subject’s exclusion had negligi-
ble effect on the mean intensity image. Section 3.1 presents results showing the
SDM’s ability to reconstruct each of the i = 1, . . . , 39 deformations. Section 3.2
then shows how well the SDM registered di’s corresponding anatomical image
Ii in the LPBA40 dataset to IAtlas using Eq. 2. For comparison, we created
another SDM using standard, unsupervised-only registration training samples.
We trained this unsupervised SDM with N + M training samples by replacing
the LPBA40 supervised registrations in Ds with unsupervised registrations of
the same images using our methodology from Sect. 2.2. We also compared our
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results to standard, intensity-only FFD registration using 5 mm control point
spacing, which we denote FFD5.

To evaluate registration accuracy in both sections, we calculated the mean
Dice overlap (MDO) of the V = 56 VOIs with respect to the atlas labels

MDOi =
1
V

∑

v∈V

2|(Ii)v ∩ (IAtlas)v|
|(Ii)v| + |(IAtlas)v|

where (A)v denotes the v-th VOI from image A. We found MDO to be a suitable
summary statistic to quantify registration performance rather than analyze each
individual VOI Dice overlap separately. Furthermore, since our supervised reg-
istration framework constrained VOI boundaries to align and a certain amount
of registration uncertainty remains at locations away from those boundaries,
our use of Dice overlap more appropriately measures accurate alignment of VOI
boundaries than a residual sum of square transformation error.

We implemented our code on the GPU using the CUDA parallel program-
ming platform as part of BioImage Suite [6]. The eigensystem in Eq. 1 may be
precomputed ahead of the registration, and can then be loaded into the algo-
rithm to avoid unnecessarily repetitious PCA computation. We compared the
computation time of our approach to standard FFD5.

3.1 SSL SDM Reconstructions

For each leave-one-out test, we tested the SDM’s ability to reconstruct the i-th
subject’s deformation di by rewriting Eq. 1 and solving

d̂i = d̄i + ΦiΦT
i (di − d̄i)

where d̂i is a least-squares approximation to di, and we calculated d̄i and Φi

using dj ,∀j 
= i. We resliced image Ii using d̂i and computed the MDOi. Figure 2
compares the reconstruction performance of the SSL SDM and the unsupervised
SDM using different numbers of unsupervised registration training samples, 0 ≤
N ≤ 1247. We selected the N samples sequentially, without randomization.
Figure 2 also shows how the SSL SDMs performed using only supervised samples,
i.e. N = 0.

As to be expected, reconstruction performance increased with the number
of samples. However, the inclusion of only a small number of supervised reg-
istration samples, M = 38 in the case of leave-one-out testing, significantly
increased the reconstructive capabilities of the SDM. This observed increase in
SDM reconstruction performance is the result of the supervised training sam-
ples increasing the PCA model space’s variance. Using standard FFD5 registra-
tion as a reference for comparison (MDO =78.09 ± 1.26, shown in Table 1), the
SSL SDM had approximately the same level of registration performance using
N = 400 unsupervised samples, and significantly better performance using the
full N = 1247 unsupervised samples. On the other hand, the unsupervised SDM
required N = 1285 samples to achieve the equivalent performance as FFD5.
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Fig. 2. Mean dice overlap values for leave-one-out transformation reconstructions as
a function of the number of training samples. The inclusion of a few, 39, supervised
registration samples significantly increased the SDM’s reconstruction abilities. These
results represent an upper bound for SDM registration performance. The plotted values
are the mean with error bars of one standard deviation.

We also noted that the MDO curves in Fig. 2 appeared to be continuing to
increase with inclusion of additional training samples. These reconstructions pro-
vided a theoretical upper bound for SDM registration performance, and Sect. 3.2
presents how well our proposed SDM effectively registered images in practice.

3.2 SSL SDM Registration

Having shown theoretical improvements, we now demonstrate that our approach
also works in practice. For each of the 39 leave-one-out test cases, we compared
registration using 4 methods: (i) SSL SDM with M = 38, N = 1247 train-
ing samples, (ii) unsupervised SDM with M = 0, N = 1285 training samples,
(iii) supervised SDM with M = 38, N = 0 training samples, and (iv) stan-
dard, intensity FFD5. For each of the SDM’s, we registered Ii using the first Kv

eigenvectors that contained the first v = 25, 50, 75, 90, 95, 99, 100% percentage
of variance (for the supervised SDM, we replaced v = 25 with 33 % to avoid
using 0 eigenvectors) and computed MDOi. For each percentage of variance
v, SSL SDM required Kv = 5, 19, 76, 228, 390, 800, 1285 eigenvectors, respec-
tively, as shown on the left of Fig. 3. Similarly, the unsupervised SDM required
Kv = 4, 19, 77, 236, 405, 817, 1285 eigenvectors and the supervised SDM required
Kv = 1, 2, 11, 23, 29, 35, 38 eigenvectors. The number of eigenvectors defined the
dimensionality of the nonrigid deformation. Figure 3 plots the cumulative vari-
ance v of the SSL SDM as function of the number of eigenvectors used, Kv.

Figure 3 also shows MDO as function of v for each of the three SDM types.
As seen in Sect. 3.1, SSL SDM significantly outperformed unsupervised SDM for
all values of v (p ≤ 8.9 × 10−8, two-tailed paired t-test). The supervised SDM
performed worse than both SSL and unsupervised SDMs, with the exception
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Fig. 3. The left plot shows SSL SDM’s cumulative variance as function of the number
of eigenvectors. On the right, we show SDM registration performance using mean dice
overlap as a function of SDM cumulative variance. We plot results for SDMs trained
using: (i) SSL with M = 38, N = 1247 samples, (ii) unsupervised learning with N =
1285 samples, and (iii) supervised learning with M = 38 samples.

Table 1. Leave-one-out registration results comparing our proposed SSL SDM reg-
istration method using 100 % of the variance, i.e. all PCA eigenvectors, with SDMs
using supervised and unsupervised training samples alone, as well as standard, inten-
sity FFD registration using 5 mm control point spacing. Reported values are mean±std
MDO and minimum MDO for 39 subjects. Computational times were measured using
an NVIDIA GeForce GTX 580 GPU.

Method DoFs MDO Min MDO Compute Time (m)

SSL SDM 1285 78.35± 1.19 75.90 36.62 ± 7.60
Unsupervised SDM 1285 77.28 ± 1.22 73.85 33.10 ± 5.74
Supervised SDM 38 74.77 ± 1.23 70.83 0.55 ± 0.07
Intensity FFD5 180,708 78.09 ± 1.26 74.08 73.85 ± 1.39

of using v = 0.33, i.e. a single eigenvector. These results were to be expected
given the small number of training samples, M = 38, and the large percentage
of cumulative variance modeled by the first eigenvector. However, we observed
that the SSL SDM was unable to fully achieve the theoretical reconstructive
performance of the SDM. While our registration algorithm’s performance closely
followed that of the SSL reconstructions, our use of NMI as a similarity metric
appeared to yield a non-convex cost function with local minima that prevented
our algorithm from attaining the SDM’s theoretical performance bound at a
global minimum.

Table 1 highlights the results of our tests using v = 100 % for each of the
registration methods. In terms of MDO, our SSL SDM performed significantly
better than FFD5, unsupervised SDM, and supervised SDM using two-tailed,
paired t-tests (p ≤ 0.02). Most impressively, the SDM achieved more accurate
registration than FFD5 while reducing the dimensionality of the nonrigid defor-
mation from 180,708 to 1285, a 99 % reduction in DoFs. This translated to a
50 % speedup in mean computation time. Also of note is SSL SDM’s worst case
performance, with minimum MDO 75.90, being higher than FFD5’s minimum
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Fig. 4. Exemplar subjects and their respective registrations using our semi-supervised
learning (SSL) SDM during leave-one-out tests. We show example images drawn from
both the supervised (LPBA40) and unsupervised (FCP1000) training datasets. The
first row shows the original images after affine registration to our atlas reference (not
pictured). The second row shows the same images after SSL SDM registration using
1285 eigenvectors. The third row overlays a 5 mm isotropic grid to visualize the nonrigid
deformation.

MDO 74.08. By constraining the registration transformation to be from the
learned space of deformations, the SDM prevented the registration from becom-
ing stuck in worse local minima. Figure 4 illustrates the SSL SDM registration
results for some exemplar images drawn from both the supervised (LPBA40)
and unsupervised (FCP1000) training data.

4 Conclusion

We demonstrate the utility of using an existing large-scale medical image data-
base to augment the learning of nonrigid SDMs. By training a SDM in a semi-
supervised manner using both a small set of accurate, supervised registrations
and a large set of registrations of unknown quality, we show significantly improved
registration performance with a 99 % reduction in registration DoFs. The con-
straints afforded by the learned SDM not only serve to better register images but
also to avoid poor registration that could otherwise occur with unconstrained
and unsupervised registration algorithms. While our registration algorithm in
Eq. 2 does not bias the deformations towards the mean deformation, it may be
of interest to implement the algorithm in a Bayesian framework and compare
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registration performance and robustness. We plan to further validate our algo-
rithm using other databases that contain annotated brain images and to test the
SDM’s generalizability.

Our future work aims to explore methods for nonlinear dimensionality reduc-
tion, and compare these results to that of linear PCA. However, the results pre-
sented in this paper show that, while simple, PCA is indeed effective at modeling
the high-dimensional space of nonrigid brain deformations, and that the limiting
factor for a PCA-based SDM is the number of training samples used. Both our
theoretical and actual SSL SDM registration results suggest that the space of
nonrigid deformations between subjects is of surprisingly low dimensionality.
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