
Chapter 2
Methods from the Calculus

2.1 Introduction

In this chapter we revisit some facts from mathematical analysis and show how these
may be used to establish important inequalities. We begin by reviewing convergence
of real number sequences and continuity of real functions of a single variable.

2.2 Limits and Continuity

Convergent Sequences of Real Numbers

We say that a real sequence {xn} is bounded above if there exists M such that xn ≤ M
for all n. It is bounded below if there exists m such that xn ≥ m for all n, and it is
bounded if it is bounded above and bounded below (i.e., if there exists B such that
|xn| ≤ B for all n). Although unbounded sequences can be fascinating, our main
interest will be in bounded sequences.

We say that {xn} is a Cauchy sequence if for every positive number ε there exists
a positive integer N (dependent on ε) such that

|xn − xm| < ε whenever m, n > N .

A sequence {xn} is convergent and has limit x if for every ε > 0 there exists
N ∈ N such that

|xn − x| < ε (2.1)

whenever n > N. In this case we write

lim
n→∞ xn = x or xn → x as n → ∞ .

The limit of a convergent sequence is unique.
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34 2 Methods from the Calculus

Remark 2.1. We have xn → x if and only if for each ε > 0, the solution set with
respect to n of the inequality (2.1) contains an interval of the form (N(ε),∞). ��

We say that {xn} is increasing if xn+1 ≥ xn for all n, or decreasing if xn+1 ≤ xn

for all n. If strict inequality holds we use the terms strictly increasing or decreasing,
respectively. An increasing sequence of real numbers is convergent if and only if it is
bounded above, and a decreasing sequence is convergent if and only if it is bounded
below. Let {xn} be a bounded sequence. Define

an = inf
k≥n

xk , bn = sup
k≥n

xk .

Then {an} is increasing and bounded above, while {bn} is decreasing and bounded
below. The two numbers defined respectively by

lim
n→∞

xn = lim
n→∞ an , lim

n→∞ xn = lim
n→∞ bn ,

are the limit inferior and the limit superior of {xn}. Although we have

a1 ≤ a2 ≤ a3 ≤ · · · ≤ b3 ≤ b2 ≤ b1 ,

we are not guaranteed that {xn} is convergent. The sequence {(−1)k}, for example,
oscillates between −1 (its limit inferior) and +1 (its limit superior). However, if the
limit inferior and the limit superior of a bounded sequence happen to coincide as a
number x, then the sequence has limit x.

Sequences receive extensive coverage in any standard calculus text. There are
many useful results in the subject (e.g., the various tests for convergence and diver-
gence) and a number of these serve as interesting applications of inequalities (e.g.,
the comparison tests). We will assume a working knowledge of the basic theorems
on sequence limits (the limit of a sum is the sum of the limits, etc.). The following
two results, however, are central to our purposes.

Lemma 2.1 (Limit Passage). If {xn} and {yn} are real sequences such that xn → x
and yn → y as n → ∞ with xn ≤ yn for all n, then x ≤ y.

Proof. Let ε > 0 be given and choose N1 and N2 so that n ≥ max(N1, N2) implies
x − ε/2 < xn and yn < y + ε/2. The inequality x − ε/2 < xn ≤ yn < y + ε/2 shows
that x − y < ε, and since ε > 0 is arbitrary we have x − y ≤ 0. Hence x ≤ y. ��

Note that, in general, an inequality may be blunted by a limit passage. That is,
we may have xn < yn for all n but x ≤ y. Consider xn = 0 and yn = 1/n, for example.

Lemma 2.2 (Squeeze Principle). If an → L and cn → L as n → ∞ and there exists
N such that an ≤ bn ≤ cn for all n > N, then bn → L as n → ∞.

Proof. Let ε > 0 be given. There exists M such that n > M implies

L − ε < an ≤ bn ≤ cn < L + ε .

Hence |bn − L| ≤ ε for all n > M. ��
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Example 2.1. In Russia, the squeeze principle is commonly called the policemen
theorem: {an} and {cn} are described as “policeman” sequences who funnel “crim-
inal” sequence {bn} toward a police station. Let us combine the squeeze principle
with a nonreversible transformation. We can discard almost all the terms from the
binomial expansion

(1 + x)n = 1 + nx +
n(n − 1)

2!
x2 + · · · (2.2)

and write, for instance,

(1 + x)n >
n(n − 1)

2
x2 (x > 0, n ∈ N, n > 1) . (2.3)

To show that
lim
n→∞

n
an

= 0 (a > 1) , (2.4)

we can use (2.3) to write

n
an

=
n

[1 + (a − 1)]n
<

n
n(n − 1)

2
(a − 1)2

=
2

(n − 1)(a − 1)2
.

Then

0 <
n
an

<
2

(n − 1)(a − 1)2
(n > 1)

and Lemma 2.2 gives (2.4). ��

Limits and Continuity for Real Functions of a Single Variable

Let f = f (x) be a real-valued function of the real variable x. We say that f has
limit L as x → x0 if for every ε > 0 there exists δ > 0 (dependent on ε) such that
| f (x) − L| < ε whenever |x − x0| < δ. We assume a working knowledge of the basic
limit theorems for functions (the limit of a product is the product of the limits, and
so on). Lemmas 2.1 and 2.2 have their counterparts for functions. For example, if
g(x) → L and h(x) → L as x → x0, with g(x) ≤ f (x) ≤ h(x), then f (x) → L as
x → x0. To be complete, however, we would have to state several additional cases
for functions. For instance, f has limit L as x → +∞ if for every ε > 0 there exists N
such that | f (x) − L| < ε whenever x > N. The squeeze principle could be rephrased
accordingly.

The statement that f is continuous at x = x0 means that for every ε > 0, there is a
δ > 0 such that | f (x)− f (x0)| < ε whenever |x− x0| < δ. We say that f is continuous
on an interval I if f is continuous at every x ∈ I (with suitable modifications made
for continuity at endpoints of closed intervals). Two useful facts about continuity
are the following.
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Lemma 2.3 (Persistence of Sign). Suppose f is continuous at x = x0 and f (x0) is
nonzero. Then there is an open interval containing x0 such that f (x) is nonzero at
every point of the interval.

Proof. Assume f (x0) > 0 (otherwise replace f by − f ). Let ε = f (x0). There exists
δ > 0 such that |x − x0| < δ implies | f (x) − f (x0)| < ε, so if x ∈ (x0 − δ, x0 + δ) then
−ε < f (x) − f (x0) < ε. Hence f (x0) − ε < f (x) < f (x0) + ε or, since f (x0) = ε, we
have 0 < f (x). ��
Theorem 2.1 (Sequential Continuity). A function f is continuous at x0 if and only
if f (xn) → f (x0) whenever xn → x0.

Proof. Suppose f is continuous at x0 and xn → x0. Let ε > 0. There exists δ > 0
such that |x − x0| < δ implies | f (x) − f (x0)| < ε. Now suppose xn → x0. Choose N
such that n > N implies |xn−x0| < δ. For this N, n > N implies | f (xn)− f (x0)| < ε and
therefore f (xn) → f (x0). Conversely, suppose f (xn) → f (x0) whenever xn → x0.
To show that f is continuous at x0, we suppose f is not continuous at x0 and seek a
contradiction. There exists ε > 0 such that for any δ > 0, there exists some x with
|x − x0| < δ but | f (x) − f (x0)| ≥ ε. In particular we may choose a sequence δi = 1/i
and xi with |xi − x0| < δi but | f (xi) − f (x0)| ≥ ε for all i ∈ N. Then xi → x0, but it is
false that f (xi) → f (x0). ��

Theorem 2.1, sometimes called Heine’s theorem, provides a notion of continuity
equivalent to the less intuitive ε-δ definition. However, the ε-δ definition can be more
convenient in proving continuity of a particular function, as it reduces to solving the
inequality | f (x)− f (x0)| < ε and demonstrating that the solution contains the interval
|x − x0| < δ for some small δ. Note that to prove that f is not continuous at x0, it
suffices to exhibit a sequence xk → x0 such that f (xk) � f (x0) as k → ∞.

The consequences of continuity on a closed interval are particularly important.
We state the following without proof, referring the reader to any standard calcu-
lus text for details. One of these consequences is known as the intermediate value
property.

Theorem 2.2. If f is continuous on [a, b], then f (x) assumes every value between
f (a) and f (b), f (x) is bounded on [a, b], and f (x) takes on its supremum and its
infimum in [a, b].

Finally, we review concepts relating to monotonicity and extrema. A function f
is increasing on I if f (x2) ≥ f (x1) whenever x2 > x1 for all x1, x2 ∈ I. Similarly, f is
decreasing if f (x2) ≤ f (x1) whenever x2 > x1. If strict inequality holds we use the
terms strictly increasing or decreasing, respectively. Let x0 ∈ I. If f (x0) ≥ f (x) for
all x ∈ I, then f has a maximum on I equal to f (x0). The definition of minimum is
analogous.
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2.3 Basic Results for Integrals

The formal definition of the Riemann integral appears in Problem 2.2. It is helpful
to keep in mind that f = f (x) is integrable on [a, b] if it is continuous or monotonic
on [a, b].

Several useful inequalities for integrals can be established by forming Riemann
sums. Given an integral ∫ b

a
f (x) dx ,

we use the notation Δx = (b − a)/n and xi = a + iΔx for i = 0, . . . , n, and write the
corresponding Riemann sum as

n∑
i=1

f (xi)Δx .

Once an inequality is established for such a sum, we may let n → ∞ and, being
assured of convergence of the Riemann sums to the integral, apply Lemma 2.1 in
order to obtain an inequality involving the integral.

Theorem 2.3. If f and g are integrable on [a, b] with f (x) ≤ g(x), then

∫ b

a
f (x) dx ≤

∫ b

a
g(x) dx .

Proof. With the notation described above, we form Riemann sums for the integrals.
It is seen that

n∑
i=1

f (xi)Δx ≤
n∑

i=1

g(xi)Δx .

The result follows as n → ∞ by Lemma 2.1. ��
Example 2.2. A simple observation shows that

∫ ∞

t

e−x2

x2n
dx =

∫ ∞

t

xe−x2

x2n+1
dx ≤

∫ ∞

t

xe−x2

t2n+1
dx =

e−t2

2t2n+1
.

We used the fact that 1/x2n+1 ≤ 1/t2n+1 for x ∈ [t,∞). ��
Corollary 2.1 (Simple Estimate). If f is integrable on [a, b] with m ≤ f (x) ≤ M,
then

m(b − a) ≤
∫ b

a
f (x) dx ≤ M(b − a) . (2.5)

Consequently, the average value of f over [a, b] lies between m and M.
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Example 2.3. We have

(b − a)
√

ca3 + d <

∫ b

a

√
cx3 + d dx < (b − a)

√
cb3 + d

for any positive constants a, b, c, d with a < b. ��

Corollary 2.2 (Modulus Inequality). If f is integrable on [a, b], then

∣∣∣∣∣
∫ b

a
f (x) dx

∣∣∣∣∣ ≤
∫ b

a
| f (x)| dx . (2.6)

This follows from the inequalities −| f (x)| ≤ f (x) ≤ | f (x)| and plays the role of the
triangle inequality for integrals.

If continuity is assumed in the integrand function f , the persistence of sign prop-
erty leads to the next result.

Lemma 2.4. Let f be continuous on [a, b] and suppose f (x) ≥ 0 on [a, b] with
f (x0) > 0 for some x0 ∈ [a, b]. Then

∫ b

a
f (x) dx > 0 .

Proof. If x0 ∈ (a, b), there is an open interval about x0 where f (x) > 0. Choose
a smaller closed interval where f (x) > 0, say I = [x0 − δ, x0 + δ]. Let m be the
minimum value of f (x) in I. Then

∫ b

a
f (x) dx ≥ m(2δ) > 0 .

If x0 is an endpoint, then f (x) is also positive at an interior point so the argument
still applies. ��

A class of results known as mean value theorems are also useful. We give two of
these and refer the reader to Problem 2.5 for other examples.

Theorem 2.4 (Second Mean Value Theorem for Integrals). If f is continuous on
[a, b], and g is integrable and never changes sign on [a, b], then for some ξ ∈ [a, b]

∫ b

a
f (x)g(x) dx = f (ξ)

∫ b

a
g(x) dx . (2.7)

Proof. Assume that g(x) ≥ 0 on [a, b]; otherwise, replace g(x) by −g(x). Let M and
m denote the maximum and minimum values, respectively, of f (x) on [a, b]. Then

mg(x) ≤ f (x)g(x) ≤ Mg(x)
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for all x, hence

m
∫ b

a
g(x) dx ≤

∫ b

a
f (x)g(x) dx ≤ M

∫ b

a
g(x) dx .

If
∫ b

a
g(x) dx = 0 then any choice of ξ will do. Otherwise

m ≤
∫ b

a
f (x)g(x) dx∫ b

a
g(x) dx

≤ M .

By the intermediate value property applied to f ,

f (ξ) =

∫ b

a
f (x)g(x) dx∫ b

a
g(x) dx

for some ξ ∈ [a, b], and (2.7) follows.

Corollary 2.3 (First Mean Value Theorem for Integrals). If f is continuous on
[a, b], then for some ξ ∈ [a, b]

∫ b

a
f (x) dx = f (ξ)(b − a) .

Hence f (ξ) equals the average value of f (x) on [a, b].

Example 2.4. Consider the integral

I =
∫ 1

0

x5

(x + 25)1/2
dx .

On the interval [0, 1] we have x5 ≥ 0; hence by Theorem 2.4 there exists ξ ∈ [0, 1]
such that

I =
1

6(ξ + 25)1/2
.

Therefore 1/(6
√

26) ≤ I ≤ 1/30. ��
Through a process reminiscent of the integral test for series, we can obtain other

inequalities involving integrals.

Example 2.5. The function f (x) = xp (−1 < p < 0) is strictly decreasing on (0,∞).
From Fig. 2.1 it is apparent that

∫ n+1

1
xp dx <

n∑
k=1

kp <

∫ n

0
xp dx .
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Fig. 2.1 Comparing a sum to two integrals (Example 2.5 with n = 4)

Hence, after carrying out the integrations, we get

(n + 1)p+1 − 1
p + 1

<
n∑

k=1

kp <
np+1

p + 1
.

��
Integration along a contour in the complex plane follows many rules analogous

to those for real integration, with little modification. In particular, Corollary 2.2
extends to the complex case: if g(z) is integrable on contour C, then

∣∣∣∣∣
∫

C
g(z) dz

∣∣∣∣∣ ≤
∫

C
|g(z)| |dz| .

Example 2.6. Suppose C is of finite length L. If there is a number M > 0 such that
|g(z)| < M for all z ∈ C, then

∣∣∣∣∣
∫

C
g(z) dz

∣∣∣∣∣ ≤
∫

C
|g(z)| |dz| <

∫
C

M |dz| = M
∫

C
|dz| = ML . (2.8)

This is sometimes called the Darboux inequality. ��

2.4 Results from the Differential Calculus

A function f is said to be n times continuously differentiable on an interval I if the
first n derivatives of f exist and are continuous on I. We first recall the Fundamental
Theorem of Calculus. A proof may be found in any standard calculus text.

Theorem 2.5. If f is continuous on [a, b] and F′(x) = f (x), then

∫ b

a
f (x) dx = F(b) − F(a) .
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The next result is a source of series expansions that are useful in approximating
functions and, as we shall see, in generating inequalities.

Theorem 2.6 (Taylor’s Theorem). Let x > a, suppose f is n times continuously
differentiable on [a, x], and suppose f (n+1)(x) exists on (a, x). Then

f (x) = f (a) + f ′(a)(x − a) + · · · + f (n)(a)
n!

(x − a)n +
f (n+1)(ξ)
(n + 1)!

(x − a)n+1

for some ξ strictly between a and x.

Proof. The first n + 1 terms constitute the Taylor polynomial of degree n for f (x)
about the point a; the last term is called the remainder term. To simplify the proof,
assume f is n + 1 times continuously differentiable on [a, b]. By Theorem 2.5,

f (x) − f (a) =
∫ x

a
f ′(t) dt .

Integrate by parts with u = f ′(t), du = f ′′(t) dt, v = −(x − t), and dv = dt; then
∫ x

a
f ′(t) dt = f ′(a)(x − a) +

∫ x

a
f ′′(t)(x − t) dt .

Repeat with u = f ′′(t), du = f ′′′(t) dt, v = −(x − t)2/2, dv = (x − t) dt, and continue
the process until

f (x) = f (a) + f ′(a)(x − a) + · · · + f (n)(a)
n!

(x − a)n +
1
n!

∫ x

a
f (n+1)(t)(x − t)n dt .

Because (x − t)n never changes sign in the interval with endpoints a and x, by (2.7)
the remainder term can be rewritten

1
n!

∫ x

a
f (n+1)(t)(x − t)n dt =

f (n+1)(ξ)
n!

∫ x

a
(x − t)n dt =

f (n+1)(ξ)
(n + 1)!

(x − a)n+1

for some ξ between a and x. ��
We can sometimes establish inequalities through inspection of series expansions.

Example 2.7. From the Taylor series

ex =

∞∑
n=0

xn

n!

we see that

ex > 1 + x + 1
2 x2 (x > 0) .
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Even more simply we have ex > 1 + x, but we can replace x by x/n to get the less
obvious result

ex >
(
1 +

x
n

)n
(x > 0, n ∈ N) .

If z ∈ C, relation (1.17) yields

| sin z| =
∣∣∣∣∣

∞∑
n=1

(−1)n−1 z2n−1

(2n − 1)!

∣∣∣∣∣ ≤
∞∑

n=1

∣∣∣∣∣ (−1)n−1 z2n−1

(2n − 1)!

∣∣∣∣∣ =
∞∑

n=1

|z|2n−1

(2n − 1)!

and we have | sin z| ≤ sinh |z|. ��
The next two results, although important in their own right, can be viewed as

immediate consequences of Taylor’s theorem.

Corollary 2.4 (Mean Value Theorem). Suppose f is continuous on [a, b] and dif-
ferentiable in (a, b). Then there exists ξ ∈ (a, b) such that

f (b) = f (a) + f ′(ξ)(b − a) . (2.9)

Intuitively, there is a point in (a, b) such that the slope of the line tangent to f (x)
at that point equals the slope of the secant line connecting the function values at the
endpoints of [a, b]. See Fig. 2.2.

Fig. 2.2 Mean value theorem. The heavier dashed line is tangent to y = f (x) at x = ξ

Example 2.8. We can verify the inequality

tan x > x (0 < x < π/2) (2.10)

by applying Corollary 2.4 with f (x) = tan x, a = 0, and b = x < π/2; i.e., by
asserting that

tan x − tan 0 =
1

cos2 ξ
(x − 0) for some ξ ∈ (0, x)
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and noting that 0 < cos2 ξ < 1. Similarly, we have sin x < x for x > 0 so that

sin x < x < tan x (0 < x < π/2) .

Applying Corollary 2.4 to the natural log, we obtain

ln(1 + x) − ln 1 =
1
ξ

[(1 + x) − 1] for some ξ ∈ (1, 1 + x) .

Therefore
x

1 + x
< ln(1 + x) < x (x > 0) . (2.11)

This is the logarithmic inequality. It also holds for −1 < x < 0. ��

Corollary 2.5 (Rolle’s Theorem). If f is continuous on [a, b] and differentiable in
(a, b) with f (b) = f (a) = 0, then there exists ξ ∈ (a, b) such that f ′(ξ) = 0.

Rolle’s theorem indicates that between every two zeros of a continuous function
the derivative has at least one zero.

Theorem 2.7 (Conditions for Monotonicity). If f is continuous on [a, b] and dif-
ferentiable in (a, b) with f ′(x) ≥ 0, then f is increasing on [a, b]. If f ′(x) > 0, then
f is strictly increasing. Corresponding statements hold for decreasing functions, for
which f ′(x) ≤ 0.

Proof. We prove only the first part of the theorem, and leave the rest for the reader.
Suppose a ≤ x1 < x2 ≤ b. By Corollary 2.4, there is a number ξ ∈ (x1, x2) such that
f (x2) − f (x1) = f ′(ξ)(x2 − x1). But f ′(ξ) ≥ 0 by hypothesis and x2 − x1 > 0, so
f (x2) − f (x1) ≥ 0. Hence f (x2) ≥ f (x1) whenever x2 > x1 on [a, b]. ��
Example 2.9. The average of a positive, increasing function is increasing. For let
f (x) be increasing on [0, a]. Then for every x ∈ (0, a] we have

f (x) ≥ max
u∈[0,x]

f (u) = max
u∈[0,x]

f (u) · 1
x

∫ x

0
du ≥ 1

x

∫ x

0
f (u) du .

Hence

f (x) − 1
x

∫ x

0
f (u) du ≥ 0 so that

1
x2

(
x f (x) −

∫ x

0
f (u) du

)
≥ 0 .

By the quotient rule for differentiation,

d
dx

(1
x

∫ x

0
f (u) du

)
≥ 0

as required. ��
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Theorem 2.8 (Cauchy’s Mean Value Theorem). Suppose f , g are continuous on
[a, b] and differentiable in (a, b). Then there exists ξ ∈ (a, b) such that

[ f (b) − f (a)] g′(ξ) = [g(b) − g(a)] f ′(ξ) .

Proof. Call A = f (b) − f (a), B = −[g(b) − g(a)], C = −B f (a) − Ag(a), and apply
Rolle’s theorem to h(x) = Ag(x) + B f (x) + C. ��

The following is useful for establishing the monotonicity of the ratio of two
functions.

Theorem 2.9 (l’Hôpital’s Monotone Rule). Suppose f , g are continuous on [a, b]
and differentiable in (a, b) with g′(x) � 0 in (a, b). Let f ′(x)/g′(x) be increasing (or
decreasing) on (a, b). Then the functions

f (x) − f (a)
g(x) − g(a)

and
f (x) − f (b)
g(x) − g(b)

(2.12)

are also increasing (or decreasing) on (a, b). If f ′(x)/g′(x) is strictly increasing (or
decreasing) so are the functions (2.12).

Proof. (See [3]). We may assume g′(x) > 0 on (a, b). (If not, multiply f and g
by −1.) By Theorem 2.8, for x ∈ (a, b) there exists y ∈ (a, x) with

f (x) − f (a)
g(x) − g(a)

=
f ′(y)
g′(y)

≤ f ′(x)
g′(x)

, so f ′(x) ≥ g′(x)
f (x) − f (a)
g(x) − g(a)

.

Now use the quotient rule and the last expression to deduce that the derivative of
[ f (x) − f (a)]/[g(x) − g(a)] is nonnegative, hence Theorem 2.7 applies. ��

By l’Hôpital’s rule, to evaluate a ratio of the indeterminate form 0/0 we differ-
entiate both numerator and denominator and try to evaluate again. Theorem 2.9 is
almost as easily remembered. To establish that a ratio is monotone on an interval
using Theorem 2.9, we verify that we get 0/0 at one of the endpoints, then differen-
tiate numerator and denominator and check that the resulting quotient is monotone
(making sure the new denominator is nonzero on the open interval).

Theorem 2.10 (Second Derivative Test). Assume f is twice continuously differen-
tiable in (a, b). Let x0 ∈ (a, b), and suppose that f ′(x0) = 0 and f ′′(x0) > 0. Then
f has a local minimum at x0. That is, there exists δ > 0 such that 0 < |x − x0| < δ
implies f (x) > f (x0).

Proof. Because f ′′(x0) > 0, by Lemma 2.3 there exists δ > 0 such that f ′′(x) > 0
if |x − x0| < δ. Now let 0 < |Δx| < δ. By Theorem 2.6 there exists some ξ strictly
between x0 and x0 + Δx such that

f (x0 + Δx) = f (x0) + f ′(x0)Δx + 1
2 f ′′(ξ)(Δx)2 . (2.13)

Since f ′(x0) = 0 and f ′′(ξ) > 0 the result follows by inspection. Note that if we
assume f ′(x0) = 0 and f ′′(x0) < 0, then f has a local maximum at x0. We will state
and prove the theorem for n variables later. ��
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Differentiation is a handy device for checking many proposed inequalities. One
plan is as follows. Suppose the proposed inequality is of the general form

g(x) < h(x) (x > x0) , (2.14)

where g(x0) = h(x0) and the functions g(x) and h(x) have known derivatives. Defin-
ing f (x) = h(x) − g(x), we have f (x0) = 0. If we can further show that f ′(x) > 0 for
x > x0, then (2.14) is established.

Example 2.10. We can prove that for x > 0 we have

xr ≤ rx + (1 − r) (0 < r < 1) . (2.15)

Defining f (x) = (1 − r) + rx − xr, we find f (1) = 0 and

f ′(x) = r − rxr−1 = r
(
1 − 1

x1−r

)
.

For x > 1 we have f ′(x) > 0; for 0 < x < 1 we have f ′(x) < 0. Hence (2.15) holds,
with equality if and only if x = 1. Similarly, for x > 0 we have

xr ≥ rx + (1 − r) (r < 0 or r > 1) . (2.16)

Beckenbach and Bellman [7] call these inequalities “remarkable” as they can be
used to derive the AM–GM, Hölder, and Minkowski inequalities of Chap. 3. ��
Example 2.11. For 0 < x < π/2, relation (2.10) yields

d
dx

(sin x
x

)
= cos x

( x − tan x
x2

)
< 0

so sin x/x is strictly decreasing. Because sin x/x → 2/π as x → π/2, we conclude
that

sin x > 2x/π (0 < x < π/2) . (2.17)

This is Jordan’s inequality (Fig. 2.3). The role of concavity suggested here will be
exploited further in Sect. 3.9. ��

Inequalities are often obtained by solving constrained optimization problems via
the Lagrange multiplier technique. The main idea is as follows. To prove an inequal-
ity of the form

f (x, y) ≤ g(x, y) , (2.18)

we can try to maximize the function f = f (x, y) subject to the condition g(x, y) = k
where k is a constant. If for any permissible k the constrained maximum value of
f (x, y) is fmax and if fmax ≤ k, then (2.18) is proved.

Alternatively, we could try to minimize the right member g(x, y) subject to the
condition f (x, y) = c with c a constant. If for any permissible c the constrained min-
imum value of g(x, y) is gmin and if gmin ≥ c, then (2.18) is likewise established. Let
us carry out this procedure to prove a standard inequality obtained (by a different
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Fig. 2.3 Jordan’s inequality (2.17)

approach) in the next chapter. The desired result is a special case of Young’s in-
equality. It states that if p and q are positive numbers for which p−1 + q−1 = 1, then
the inequality

xy ≤ xp

p
+

yq

q
(2.19)

holds for all nonnegative numbers x and y.
We will minimize the right member

g(x, y) =
xp

p
+

yq

q
(2.20)

subject to the constraint that the left member

f (x, y) = xy = c, a constant. (2.21)

Because (2.19) holds trivially when either x or y is zero, we can assume c � 0.
Carrying out the usual Lagrange multiplier technique, we form the Lagrangian func-
tion with a multiplier −λ (negative sign arbitrary but taken for convenience) as

F(x, y) =
xp

p
+

yq

q
− λxy

and differentiate this function with respect to x and y, respectively, to obtain the
equations

xp−1 − λy = 0 , (2.22)

yq−1 − λx = 0 . (2.23)
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We then solve the system consisting of (2.22)–(2.23) and the constraint (2.21). The
solution is straightforward; we find a constrained stationary point for g(x, y) at

(xs, ys) = (c1/p, c1/q) .

Furthermore, g(xs, ys) = c. Because g(x, y) in (2.20) is not bounded above when
subject to a constraint of the form (2.21), it is clear that (xs, ys) is actually the con-
strained minimum of g(x, y) corresponding to a given value of c.

Finally, any point (x, y) with x > 0 and y > 0 has a hyperbola of the form xy = c
passing through it. The relation

g(x, y) =
xp

p
+

yq

q
≥ gmin = c = xy

gives Young’s inequality (2.19).

2.5 Problems

2.1. The following exercises involve monotonicity.

(a) Show that if n ∈ N then

ln(n + 1) >
1
n

n∑
k=1

ln k .

(b) Show that if φ, ψ, and f are increasing functions with φ(x) ≤ f (x) ≤ ψ(x), then

φ(φ(x)) ≤ f ( f (x)) ≤ ψ(ψ(x)) .

(c) [56, 65] Show that if f is increasing on [a, b], then

1
x − a

∫ x

a
f (u) du ≤ 1

b − a

∫ b

a
f (u) du ≤ 1

b − x

∫ b

x
f (u) du (2.24)

for any x ∈ (a, b).

2.2. The following exercises involve the definition of integration. Recall from calculus that f is
integrable on [a, b] and ∫ b

a
f (x) dx = I

means that given ε > 0 there exists some δ > 0 such that if

a = x0 < x1 < · · · < xn = b

and if xi − xi−1 < δ for i = 1, . . . , n and if ξi ∈ [xi−1 , xi] for i = 1, . . . , n, then

∣∣∣∣∣
n∑

i=1

f (ξi)(xi − xi−1) − I
∣∣∣∣∣ < δ .
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Note as a special case that if f is integrable on [a, b], then

lim
n→∞

n∑
i=1

f (a + iΔx)Δx =

∫ b

a
f (x) dx where Δx = (b − a)/n .

(a) Show that if f is integrable on [a, b], then f is bounded on [a, b].

(b) Show that if f is integrable on [a, b], then F given by

F(x) =
∫ x

a
f (t) dt

is continuous on [a, b].

(c) Define f (x) = x−1/2 if 0 < x ≤ 1 and f (0) = 0. Does
∫ 1

0
f (x) dx exist?

2.3. The exercises below also involve integration.

(a) Put simple lower and upper bounds on the family of integrals

I(α, β) =
∫ 1

0

dx
(xβ + 1)α

(α, β ≥ 0) .

(b) Show that ∫ π/2

0
ln(1/ sin t) dt < ∞ .

(c) A function f is of exponential order on [0,∞) if there exist positive numbers b and C such
that | f (t)| ≤ Cebt for t ≥ 0. Show that the Laplace transform of f given by

F(s) =
∫ ∞

0
f (t)e−st dt

exists if f is of exponential order.

(d) Verify that ∫ π/2

0
(sin x)2n+1 dx ≤

∫ π/2

0
(sin x)2n dx ≤

∫ π/2

0
(sin x)2n−1 dx

and establish Wallis’s product

π

2
=

2
1
· 2

3
· 4

3
· 4

5
· 6

5
· 6

7
· · · · · 2m

2m − 1
· 2m

2m + 1
· · · · .

(e) Show that

lim
T→∞

∫ T

0

sin x
x

dx

exists and is between 1 and 3.

(f) Prove that if g is continuous on [a, b] with g(x) ≥ 0 and
∫ b

a
g(x) dx = 0, then g(x) ≡ 0 on

[a, b].

(g) Let p ∈ R, p > 0. Use the fact that ln x =
∫ x

1
dt/t and the squeeze principle to show that

lim
x→∞(ln x)/(xp) = 0 .
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2.4. Let f and g be functions integrable on (a, b), with 0 ≤ g(t) ≤ 1 and f decreasing on (a, b).
Prove Steffensen’s inequality [7, 56]

∫ b

b−λ
f (t) dt ≤

∫ b

a
f (t)g(t) dt ≤

∫ a+λ

a
f (t) dt where λ =

∫ b

a
g(t) dt .

2.5. Prove the following statements. Parts (a) and (b) are challenging; according to Hobson [37],
they were first given by Bonnet circa 1850.

(a) Let f be a monotonic decreasing, nonnegative function on [a, b], and let g be integrable on
[a, b]. Then for some ξ with a ≤ ξ ≤ b,

∫ b

a
f (x)g(x) dx = f (a)

∫ ξ

a
g(x) dx .

(b) Let f be a monotonic increasing, nonnegative function on [a, b], and let g be integrable on
[a, b]. Then for some η with a ≤ η ≤ b,

∫ b

a
f (x)g(x) dx = f (b)

∫ b

η

g(x) dx .

(c) Let f be bounded and monotonic on [a, b], and let g be integrable on [a, b]. Then for some ξ
with a ≤ ξ ≤ b,

∫ b

a
f (x)g(x) dx = f (a)

∫ ξ

a
g(x) dx + f (b)

∫ b

ξ

g(x) dx .

This is also called the second mean value theorem for integrals, particularly in older books.

(d) Let f be a monotonic function integrable on [a, b], and suppose that f (a) f (b) ≥ 0 and
| f (a)| ≥ | f (b)|. Then, if g is a real function integrable on [a, b],

∣∣∣∣∣
∫ b

a
f (x)g(x) dx

∣∣∣∣∣ ≤ | f (a)| · max
a≤ξ≤b

∣∣∣∣∣
∫ ξ

a
g(x) dx

∣∣∣∣∣ .
This is Ostrowski’s inequality for integrals.

2.6. Use graphical approaches to complete the following.

(a) Show that if f is increasing on [0,∞), then

∫ n

0
f (x) dx ≤

n∑
k=1

f (k) ≤
∫ n+1

1
f (x) dx .

Use this to find upper and lower bounds on
∑n

k=1 k2.

(b) Show that ∫ n

1
ln x dx < ln(n!) <

∫ n+1

1
ln x dx (n ∈ N, n > 1) .

(c) Sketch the curve y = 1/x for x > 0, and consider the area bounded by this curve, the x-axis,
and the lines x = a and x = b (b > a). Compare this with the areas of two trapezoids and
obtain

2(b − a)
b + a

< ln
b
a
<

b2 − a2

2ab
.

(d) (Integral test inequality [13].) Show that if f is decreasing on [1,∞) then
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n∑
k=2

f (k) ≤
∫ n

1
f (x) dx ≤

n−1∑
k=1

f (k) .

(e) Show that if f is increasing on [1,∞), then

n−1∑
k=1

f (k) ≤
∫ n

1
f (x) dx ≤

n∑
k=2

f (k) .

(f) Show that

1 +
1
23

+
1
33

+ · · · + 1
n3

<
5
4
.

(g) Euler’s constant C is defined by

C = lim
n→∞Cn = lim

n→∞

( n∑
j=1

1
j
− ln n

)
.

Verify that C exists and is positive by showing that Cn is strictly decreasing with lower bound
1/2.

2.7. Use differentiation to prove the results below [1, 57, 69]. Assume n ∈ N.

(a) ln x ≤ x − 1 for x > 0, with equality if and only if x = 1,

(b) ln x ≤ n(x1/n − 1) for x > 0, with equality if and only if x = 1,

(c) xn + (n − 1) ≥ x for x ≥ 0,

(d) 2 ln(sec x) < sin x tan x for 0 < x < π/2,

(e) sinh x ≥ x for x ≥ 0,

(f) |x ln x| ≤ e−1 for 0 ≤ x ≤ 1,

(g) ex < (1 − x)−1 for x < 1 and x � 0,

(h) πe < eπ (more generally [13], ex > xe for any x � e),

(i) (s + t)a ≤ sa + ta ≤ 21−a(s + t)a for s, t > 0 and 0 < a ≤ 1,

(j) 21−b(s + t)b ≤ sb + tb ≤ (s + t)b for s, t > 0 and b ≥ 1,

(k) ex ≥ (ex/a)a for x > a and a > 0,

(l) xx ≥ ex−1 for x > 0,

(m) cos x ≥ 1 − x2/2 for x ≥ 0,

(n) sin x ≥ x − x3/3! for x ≥ 0.

2.8. Use Corollary 2.4 to derive the following inequalities [57, 69]:

(a) sin x < x for x > 0,

(b) x/(1 + x2) < tan−1 x < x for x > 0,

(c) 1 + (x/2
√

1 + x) <
√

1 + x < 1 + x/2 for x > 0,

(d) ex(y − x) < ey − ex < ey(y − x) for y > x,

(e) (1 + x)a ≤ 1 + ax(1 + x)a−1 for a > 1 and x > −1, with equality if and only if x = 0,

(f) 1 + x > ex/(1+x) for x > −1 and x � 0,

(g) (y − x)/ cos2 x < tan y − tan x < (y − x)/ cos2 y for 0 ≤ x < y < π/2,

(h) ex < (yy/xx)1/(y−x) < ey for 0 < x < y.
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2.9. Derive a nonstrict version of (2.10) by integration.

2.10. The following are applications of l’Hôpital’s monotone rule.

(a) For a > 1 and x > −1, x � 0, define

h(x) =
(1 + x)a − 1

x
.

Use l’Hôpital’s rule to define h(0) = a. Use Theorem 2.9 to show that h(x) is increasing on
[−1,∞) and hence that

(1 + x)a ≥ 1 + ax

with equality if and only if x = 0 (cf., Example 2.10).

(b) Show that

h(x) =
ln cosh x

ln((sinh x)/x)

is decreasing on (0,∞).

(c) Prove that for x ∈ (0, 1),

π <
sin πx

x(1 − x)
≤ 4 .

(d) Prove that 1 > sin x/x > 2/π on (0, π/2) (cf., Example 2.11.)

2.11. Use series expansions to establish the following inequalities:

(a) | cos z| ≤ cosh |z| for z ∈ C,

(b) | ln(1 + x)| ≤ − ln(1 − |x|) if |x| < 1,

(c)
∏∞

n=1(1 + an) ≤ exp
(∑∞

n=1 an
)

if 0 ≤ an < 1 for all n,

(d) ex > 1 + xn/n! for n ∈ N and x > 0,

(e) x < ex − 1 < x/(1 − x) for x < 1 and x � 0.

2.12. Show that if n is an integer greater than 1 and a, b are positive with a > b, then

bn−1 <
an − bn

n(a − b)
< an−1 .

Use this to prove that no positive real number can have more than one positive nth root.

2.13. Prove the following generalized version of Rolle’s theorem. Let g be n times continuously
differentiable on [a, b], and let x0 < x1 < · · · < xn be n+1 points in [a, b]. Suppose g(x0) = g(x1) =
· · · = g(xn) = 0. Then there exists ξ ∈ [a, b] such that g(n)(ξ) = 0.

2.14. A set A is said to be dense in a set B if every element of B is the limit of a sequence of
elements belonging to A. Show that if f (x) and g(x) are continuous on B with f (x) ≤ g(x) for every
x in some dense subset of B, then f (x) ≤ g(x) for all x ∈ B. Explain how this idea could be used to
extend to real arguments an inequality proved for rational arguments.

2.15. (A simple caution.) Given a valid inequality between two functions, is it generally possible
to obtain another valid inequality by direct differentiation? Is it true, for instance, that f ′(x) > g′(x)
whenever f (x) > g(x)? Note, however, that if f ′(x) > g′(x) on [a, b], then we do have f (b)− f (a) >
g(b) − g(a).

2.16. Use Lagrange multipliers to show that

xn + yn

2
≥
( x + y

2

)n

for n ≥ 1 and x, y ≥ 0.
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