
Chapter 2
2D Graphics

Abstract Objects can be drawn, edited and transformed in 2D and 3D spaces. One
can create objects ranging from simple 2D primitives to complex 3D environments.
Planar objects, sometimes called 2D shapes, are created on a single plane (usually the
xy-plane) while 3D objects utilize all three dimensions of space. Focusing on planar
objects, 2D primitives like lines, circles, etc. may be used to create more complex
shapes. Thus, it is important to know how to create/draw such primitives as groups of
pixels utilizing their equations; a process that is referred to as scan conversion (Work-
ing with graphics as mathematical equations is referred to as vector graphics while
working with them as a series of pixels is called raster graphics.). A line can be scan-
converted (i.e., expressed as a set of pixels that approximate its path) if we know its
endpoints, which define its equation. Likewise, a circle is scan-converted if we know
the location of its center as well as its radius; i.e., components that define its equation.
The same concept applies to other primitives. Different operations may be applied
to objects in 2D space. For example, an object can be clipped using a clip window or
a clip polygon to preserve a part of that object. (Some systems refer to the clipping
process as trimming.) Other operations that may be applied to such objects are called
transformations. Such operations include translating (i.e., moving), rotating, scaling,
stretching, reflecting (i.e., mirroring) and shearing the objects. In this chapter, we
will look at how to create 2D primitives like lines and circles. Also, wewill talk about
polygons and polylines and how to clip line segments and polygons. We will dedi-
cate Chap. 3 to talk about different transformations in 2D space. 3D object creation
and operations will be discussed in subsequent chapters. Before starting the discus-
sion, we should mention that there are two different Cartesian coordinate systems
that could be used. These are left-handed and right-handed coordinate systems (see
Sect. B.1.1). In the right-handed coordinate system, the origin is at the lower left
corner of the screen and the y-axis is pointing upwards. On the contrary, in the left-
handed coordinate system, the origin is at the upper left corner of the screen and
the y-axis is pointing downwards. In this chapter, we will show a line drawn in both
systems only once. Afterwards, we will stick to the right-handed coordinate system
to avoid confusion. (The usual convention working with raster images is to use the

R. Elias, Digital Media, DOI: 10.1007/978-3-319-05137-6_2, 9
© Springer International Publishing Switzerland 2014

http://dx.doi.org/10.1007/978-3-319-05137-6_3

10 2 2D Graphics

left-handed coordinate system where the origin is at the upper left corner and the
y-axis is pointing downwards. However, switching between the left- and right-hand
coordinate system is easy and can be done using Eq. (B.7).)

2.1 Lines

Drawing a line on a computer screen given its two endpoints is done by intensifying
(or turning on) pixels along the path of this line. Figure 2.1a depicts an example of a
line starting at pixel [x0, y0]T and ending at pixel [x1, y1]T where these pairs indicate
the column and row numbers of the pixel respectively. The pixels to be intensified
(i.e., those that are shaded in Fig. 2.1) could be exactly on or close to the linear path.
Such a line can be expressed as

y − y0 = y1 − y0
x1 − x0
︸ ︷︷ ︸

slope

(x − x0). (2.1)

This can be written as
y = m(x − x0) + y0, (2.2)

where m = Δy
Δx = y1−y0

x1−x0
is the slope of the line.

Note that the coordinate system used in Fig. 2.1a is a right-handed coordinate
system where the origin is at the lower left corner of the screen and the y-axis is
pointing upwards. (This is the coordinate system that will be used throughout this
book unless otherwise specified.) Alternatively, the same line is drawn using a left-
handed coordinate system in Fig. 2.1b where the origin is at the upper left corner
and the y-axis is pointing downwards. Consequently, the slope of the line (i.e., m)
in these cases is <1. Practically, the cases where the line is horizontal, vertical or
having a slope of ±1 are handled as special cases.

2.1.1 Digital Differential Analyzer Algorithm

A simple and direct way to draw the line is performed by looping or iterating through
Eq. (2.2), incrementing the value of x from x0 to x1 (i.e., moving from one column to
the next) and obtaining the corresponding y to plot the pixel [x, y]T . There are some
remarks to be mentioned here.

1. The x-value is an integer value as it is a column number; however, the resulting
y-value could be a floating point number. In this case, the y-valuemust be rounded
to the nearest integer in order to have the value �y + 0.5� where �.� denotes the
floor operation.

2.1 Lines 11

Fig. 2.1 A 2D line as a path
from [x0, y0]T to [x1, y1]T .

The slope of this line is <1.
a The line is drawn using
the right-handed coordinate
system where the y-axis is
pointing upwards. b The line
is drawn using the left-handed
coordinate system where the
y-axis is pointing downwards

2. At each iteration, the slope m is re-calculated although the slope is a constant
number that does not change for the entire line. This could be time consuming.
Thus, the value m should be pre-calculated before looping.

Using Eq. (2.2) at iteration i, we can write

yi = m(xi − x0) + y0 = mxi + y0 − mx0
︸ ︷︷ ︸

B

, (2.3)

where B = y0 − mx0 is the y-intercept, which is a constant value for the line. Since
the x increment is 1, the subsequent value of y is obtained as

yi+1 = mxi+1 + B = m(xi + 1) + B = mxi + B
︸ ︷︷ ︸

yi

+ m = yi + m. (2.4)

12 2 2D Graphics

This means that subsequent y-values can be calculated by adding the value of the
slope m to the previous y-value at each iteration. Thus, for |m| ≤ 1 as in Fig. 2.1, the
algorithm can be written as follows:

Algorithm 2.1 DDA1 algorithm

Input: x0, y0, x1, y1
1: m = Δy

Δx = y1−y0
x1−x0

2: y = y0
3: for (x = x0 to x1) do
4: Plot [x, �y + 0.5�]T

5: y = y + m
6: end for

end

This algorithm is referred to as the digital differential analyzer (DDA) algorithm.
Note that for |m| ≤ 1, a fraction is added to the previous y-value each time. This
means that, after rounding, y maymaintain the same value as in the previous iteration
or be incremented by 1.

Example 2.1: [DDA line drawing algorithm]
Using the DDA line drawing algorithm, determine the pixels along a line segment

that goes from [3, 4]T to [8, 6]T .

Solution 2.1: According to Algorithm 2.1, the first step is to calculate the slope m
where

m = Δy

Δx
= y1 − y0

x1 − x0
= 6 − 4

8 − 3
= 0.4.

The second step is to loop along the x-direction from 3 to 8 using a step size of 1
and get the corresponding y-value by adding the value m to the previous y as listed
in the following table:

3: x 4: �y + 0.5� 4: Plot 5: y

3 4 [3, 4]T 4.0 + 0.4 = 4.4
4 4 [4, 4]T 4.4 + 0.4 = 4.8
5 5 [5, 5]T 4.8 + 0.4 = 5.2
6 5 [6, 5]T 5.2 + 0.4 = 5.6
7 6 [7, 6]T 5.6 + 0.4 = 6.0
8 6 [8, 6]T 6.0 + 0.4 = 6.4

Each exact value of y appearing in the last column is rounded and used in the next
row to plot a pixel. Thus, the line segment is approximated by the pixels [3, 4]T ,

[4, 4]T , [5, 5]T , [6, 5]T , [7, 6]T and [8, 6]T . �
Algorithm 2.1 assumes that |m| ≤ 1. On the other hand, if |m| > 1, it can be

written that

2.1 Lines 13

xi = 1

m
(yi − B) . (2.5)

Consequently, xi+1 is calculated as by incrementing the value of y by 1; so, we can
write

xi+1 = 1

m
(yi+1 − B) = 1

m
(yi + 1 − B) = 1

m
(yi − B)

︸ ︷︷ ︸

xi

+ 1

m
= xi + 1

m
. (2.6)

Thus, the roles of x and y are reversed by assigning an increment of 1 to y and an
increment of 1

m to x; consequently, the DDA algorithm can be modified as follows:

Algorithm 2.2 DDA2 algorithm

Input: x0, y0, x1, y1
1: m = Δy

Δx = y1−y0
x1−x0

2: x = x0
3: for (y = y0 to y1) do
4: Plot [�x + 0.5�, y]T

5: x = x + 1
m

6: end for

end

2.1.2 Bresenham’s Algorithm

In Example 2.1, notice that a difference could arise between the accurate value of y
and its integer value to be used for plotting or displaying the pixel. This difference
represents an error value. Also, note that the y-value is incremented by 1 only if the
fraction included in the accurate value of y is≥0.5; otherwise, y remains unchanged.

This suggests that each time x is incremented, the slope m can be added to an
error value (indicating the vertical distance between the rounded y-value and the
exact y-value) and if the new error is ≥0.5 (i.e., the line gets closer to the next y-
value), y is incremented by 1 while the error is decremented by 1. This idea is listed
in Algorithm 2.3.

Algorithm 2.3 Modified DDA algorithm

Input: x0, y0, x1, y1
1: m = Δy

Δx = y1−y0
x1−x0

2: y = y0
3: error = 0
4: for (x = x0 to x1) do
5: Plot [x, y]T

14 2 2D Graphics

6: error = error + m
7: if (error ≥ 0.5) then
8: y = y + 1
9: error = error − 1
10: end if
11: end for

end

Example 2.2: [DDA and Bresenham’s algorithm] Re-solve Example 2.1 using
Algorithm 2.3

Solution 2.2: The values are shown in the next table where the initial values for x,
y and error are x0, y0 and 0 respectively.

4: x 5: y 5: Plot 6: error 8: y 9: error

3 4 [3, 4]T 0 + 0.4 = 0.4
4 4 [4, 4]T 0.4 + 0.4 = 0.8 4 + 1 = 5 0.8 − 1 = −0.2
5 5 [5, 5]T −0.2 + 0.4 = 0.2
6 5 [6, 5]T 0.2 + 0.4 = 0.6 5 + 1 = 6 0.6 − 1 = −0.4
7 6 [7, 6]T −0.4 + 0.4 = 0
8 6 [8, 6]T 0 + 0.4 = 0.4

�
Algorithm 2.3 does not handle the general case of a line and cannot be used to

draw an arbitrary line. In particular, there are three cases that need to be considered
to generalize it. In a right-handed coordinate system, these cases are:

1. if the line goes up but the slope m > 1 or |Δy| > |Δx| (i.e., a steep line) as shown
in Fig. 2.2a;

2. if the line slopes upwards but heads in the opposite direction where x0 > x1 as
shown in Fig. 2.2b; and

3. if the line goes down where y0 > y1 as shown in Fig. 2.2c.

The solutions to the three cases mentioned above are the following:

1. If the line is steep, reflect it about the line y = x in order to obtain a line with
smaller slope (i.e., with m < 1). This is done by swapping x0 with y0 and x1 with
y1. The x and y parameters are swapped again for plotting (i.e., to plot [y, x]T).

2. If the line slopes upwards but heads in the opposite direction, swap the endpoints
[x0, y0]T and [x1, y1]T .

3. If the line goes down, decrement y by 1 instead of incrementing it (i.e., step y by
−1 instead of 1).

Algorithm 2.4 accommodates these changes.

2.1 Lines 15

Fig. 2.2 Cases considered to generalize the line algorithm. a If the slope is >1. b If the line slopes
upwards but heads in the opposite direction. c If the line goes down

Algorithm 2.4 Modified Algorithm 2.3

Input: x0, y0, x1, y1
1: Δx = x1 − x0
2: Δy = y1 − y0
3: steep =

∣

∣

∣

Δy
Δx

∣

∣

∣ > 1

4: if (steep = TRUE) then ⇐= Fig. 2.2a
5: swap (x0, y0)
6: swap (x1, y1)
7: end if
8:

9: if (x0 > x1) then ⇐= Fig. 2.2b
10: swap (x0, x1)
11: swap (y0, y1)
12: end if
13:

14: if (y0 > y1) then ⇐= Fig. 2.2c
15: δy = −1
16: else
17: δy = 1
18: end if
19:

20: m = |Δy|
Δx = |y1−y0|

x1−x0
21: y = y0
22: error = 0
23:

24: for (x = x0 to x1) do
25: if (steep = TRUE) then
26: Plot [y, x]T

27: else
28: Plot [x, y]T

29: end if

16 2 2D Graphics

30: error = error + m
31: if (error ≥ 0.5) then
32: y = y + δy
33: error = error − 1
34: end if
35: end for

end

The main source of problem with Algorithm 2.4 is that it works with floating-
point numbers (e.g., m and error), which slows the process down and may result
in error accumulation. Working with integer numbers will be much faster and more
accurate. Switching to integers can be achieved easily by multiplying m and error by
the denominator of the slope; i.e., Δx. Also, both sides of the condition error ≥0.5
are doubled to get rid of the fraction. Such an algorithm is referred to as Bresenham’s
algorithm (Bresenham 1965). It is listed in Algorithm 2.5.

Algorithm 2.5 Bresenham’s algorithm

Input: x0, y0, x1, y1
1: steep = |y1 − y0| > |x1 − x0|
2: if (steep = TRUE) then
3: swap (x0, y0)
4: swap (x1, y1)
5: end if
6:

7: if (x0 > x1) then
8: swap (x0, x1)
9: swap (y0, y1)
10: end if
11:

12: if (y0 > y1) then
13: δy = −1
14: else
15: δy = 1
16: end if
17:

18: Δx = x1 − x0
19: Δy = |y1 − y0|
20: y = y0
21: error = 0
22:

23: for (x = x0 to x1) do
24: if (steep = TRUE) then
25: Plot [y, x]T

26: else

2.1 Lines 17

27: Plot [x, y]T

28: end if
29: error = error + Δy
30: if (2 × error ≥ Δx) then
31: y = y + δy
32: error = error − Δx
33: end if
34: end for

end

Note that Bresenham’s algorithm can be tuned for integer computations of
circumferential pixels in circles.

Example 2.3: [Bresenham’s line drawing algorithm] You are asked to draw a line
segment between the points [1, 1]T and [4, 3]T .Use Bresenham’s line drawing algo-
rithm to specify the locations of pixels that should approximate the line.

Solution 2.3: We will follow the steps of Algorithm 2.5. The line is not steep as
|y1 − y0| < |x1 − x0|. The y-step is 1 as y0 < y1. We have

δy = 1,
Δx = x1 − x0 = 4 − 1 = 3,
Δy = y1 − y0 = 3 − 1 = 2,

y = 1,
error = 0.

The following table shows the loop along the x-direction from 1 to 4 (i.e., the loop
that starts at Line 23 in Algorithm 2.5):

23: x 27: Plot 29: error 31: y 32: error

1 [1, 1]T 0 + 2 = 2 1 + 1 = 2 2 − 3 = −1
2 [2, 2]T −1 + 2 = 1
3 [3, 2]T 1 + 2 = 3 2 + 1 = 3 3 − 3 = 0
4 [4, 3]T 0 + 2 = 2 3 + 1 = 4 2 − 3 = −1

Thus, the line is approximated by the pixels [1, 1]T , [2, 2]T , [3, 2]T and [4, 3]T . �

2.1.3 The Midpoint Algorithm

Themidpoint algorithm (Pitteway 1967; Aken 1984; Van Aken and Novak 1985) can
be used instead of Bresenham’s algorithm to approximate straight lines. Actually,
it produces the same line pixels; however, a difference does exist. In Bresenham’s

18 2 2D Graphics

Fig. 2.3 ṁ = [x0 + 1, y0 +
1
2]T is the midpoint between
[x0 + 1, y0]T and [x0 + 1,
y0 + 1]T

algorithm, the smallest y-difference between the actual accurate y-value and the
rounded integer y-value is used to pick up the nearest pixel to approximate the line.
On the other hand, in the midpoint technique, we determine which side of the linear
equation the midpoint between pixels lies.

Consider Fig. 2.3 where a line is to be drawn from [x0, y0]T to [x1, y1]T .When x is
incremented at the second iteration as done before, the exact intersection happens at
point ṗ. Thus, there will be two choices for the pixels to be picked up at x = x0 + 1;
these choices are ṗ1 and ṗ2 (hatched in Fig. 2.3). The main idea of the previous
formulation is to calculate the distances from ṗ to ṗ1 and from ṗ to ṗ2. According
to the smaller distance, a pixel will be selected. Hence, ṗ1 is selected in our case.

In the midpoint algorithm, the equation of the line spanning from [x0, y0]T to
[x1, y1]T is expressed [as in Eq. (2.3)] as

y = mx + B = Δy

Δx
x + B, (2.7)

where m is the slope;Δx = x1−x0;Δy = y1−y0; and B is the y-intercept. Equation
(2.7) can be re-written in implicit form (i.e., ax + by + c = 0) as

Δy
︸︷︷︸

a

x −Δx
︸︷︷︸

b

y + ΔxB
︸︷︷︸

c

= 0, (2.8)

where a = Δy; b = −Δx; and c = ΔxB. Now, the midpoint ṁ = [x0 + 1, y0 + 1
2]T

between [x0 + 1, y0]T and [x0 + 1, y0 + 1]T is applied to Eq. (2.8) to get

F

(

x0 + 1, y0 + 1

2

)

= dṁ = Δy(x0 + 1) − Δx

(

y0 + 1

2

)

+ ΔxB

= a(x0 + 1) + b

(

y0 + 1

2

)

+ c.

(2.9)

2.1 Lines 19

There are three possibilities for dṁ:

dṁ =
⎧

⎨

⎩

+ve, the line is passing above ṁ; thus, ṗ2 is selected;
−ve, the line is passing below ṁ; thus, ṗ1 is selected;

0, the midpoint ṁ is exactly on the line; thus, select either ṗ1 or ṗ2.

Choosing the pixel in the next column depends on whether ṗ1 or ṗ2 has been chosen.
Assume that ṗ1 is selected. The midpoint [x0 + 2, y0 + 1

2]T between [x0 + 2, y0]T

and [x0 + 2, y0 + 1]T is applied to Eq. (2.8) to get

F

(

x0 + 2, y0 + 1

2

)

= a(x0 + 2) + b

(

y0 + 1

2

)

+ c

= a(x0 + 1) + b

(

y0 + 1

2

)

+ c
︸ ︷︷ ︸

dṁ

+ a

= dṁ + a

= dṁ + Δy.

(2.10)

On the other hand, if ṗ2 is selected, the midpoint [x0 + 2, y0 + 3
2]T between

[x0 + 2, y0 + 1]T and [x0 + 2, y0 + 2]T is applied to Eq. (2.8) to get

F

(

x0 + 2, y0 + 3

2

)

= a(x0 + 2) + b

(

y0 + 3

2

)

+ c

= a(x0 + 1) + b

(

y0 + 1

2

)

+ c
︸ ︷︷ ︸

dṁ

+ a + b

= dṁ + a + b

= dṁ + Δy − Δx.

(2.11)

This means that the subsequent sign of dṁ can be obtained by incrementing it by
either Δy if ṗ1 is selected or Δy − Δx if ṗ2 is selected. An initial value for dṁ can
be obtained using the start point [x0, y0]T and Eq. (2.9). So,

F

(

x0 + 1, y0 + 1

2

)

= a(x0 + 1) + b

(

y0 + 1

2

)

+ c

= ax0 + by0 + c
︸ ︷︷ ︸

F (x0,y0)

+a + b

2
,

(2.12)

where a + b
2 = Δy − Δx

2 is the initial estimate of dṁ. The midpoint algorithm is
listed in Algorithm 2.6.

20 2 2D Graphics

Algorithm 2.6 Midpoint algorithm—floating-point version

Input: x0, y0, x1, y1
1: Δx = x1 − x0
2: Δy = y1 − y0
3: dṁ = Δy − Δx

2
4: dṁ(ṗ1) = Δy
5: dṁ(ṗ2) = Δy − Δx
6: y = y0
7:

8: for (x = x0 to x1) do
9: Plot [x, y]T

10: if (dṁ ≤ 0) then
11: dṁ = dṁ + dṁ(ṗ1)

12: else
13: dṁ = dṁ + dṁ(ṗ2)

14: y = y + 1
15: end if
16: end for

end

Algorithm 2.6 uses floating-point numbers which slows the process down. This can
be easily overcome as listed in Algorithm 2.7.

Algorithm 2.7 Midpoint algorithm – integer version

Input: x0, y0, x1, y1
1: Δx = x1 − x0
2: Δy = y1 − y0
3: dṁ = 2Δy − Δx
4: dṁ(ṗ1) = 2Δy
5: dṁ(ṗ2) = 2Δy − 2Δx
6: y = y0
7:

8: for (x = x0 to x1) do
9: Plot [x, y]T

10: if (dṁ ≤ 0) then
11: dṁ = dṁ + dṁ(ṗ1)

12: else
13: dṁ = dṁ + dṁ(ṗ2)

14: y = y + 1
15: end if
16: end for

end

2.1 Lines 21

Example 2.4: [Midpoint line drawing algorithm]
You are asked to draw a line segment between the points [1, 1]T and [4, 3]T . Use

the midpoint line drawing algorithm to specify the locations of pixels that should
approximate the line.

Solution 2.4: We will follow the steps of Algorithm 2.7. So,

Δx = x1 − x0 = 4 − 1 = 3,
Δy = y1 − y0 = 3 − 1 = 2,

dṁ = 2Δy − Δx = 2 × 2 − 3 = 1,
dṁ(ṗ1) = 2Δy = 2 × 2 = 4,

dṁ(ṗ2) = 2Δy − 2Δx = 2 × 2 − 2 × 3 = −2,
y = 1.

The following table shows the loop along the x-direction from 1 to 4 (i.e., the loop
that starts at Line 8 in Algorithm 2.7):

8: x 9: Plot 11: dṁ 13: dṁ 14: y

1 [1, 1]T 1 − 2 = −1 1 + 1 = 2
2 [2, 2]T −1 + 4 = 3
3 [3, 2]T 3 − 2 = 1 2 + 1 = 3
4 [4, 3]T 1 − 2 = −1 3 + 1 = 4

Thus, the line is approximated by the pixels [1, 1]T , [2, 2]T , [3, 2]T and [4, 3]T . This
is the same result obtained by Bresenham’s algorithm in Example 2.3. �

2.2 Circles

As shown in Fig. 2.4, a pixel [x, y]T on the circumference of a circle can be estimated
if the center [x0, y0]T , the radius r and the angle θ are known. The location of the
pixel [x, y]T is obtained using trigonometric functions as

x = x0 + r cos(θ),

y = y0 + r sin(θ),
(2.13)

which represent the parametric form of a circle where the parameter is the angle θ.

In order to draw the whole circle, Eq. (2.13) can be used iteratively with different
θ -values going from 0◦ to 360◦ (i.e., θ ∈ [0◦, 360◦) or 0 ≤ θ < 2π).1 The problem
with this approach is that working with trigonometric functions is time-consuming.
The calculations could be very slow especially if the angle increment is small. On
the other hand, if the angle increment is large, the algorithm will be fast; however,

1 [0◦, 360◦) represents a half-open interval where 0◦ is included while 360◦ is excluded.

22 2 2D Graphics

Fig. 2.4 A pixel [x, y]T on
the circumference of a circle
can be estimated if the center
[x0, y0]T , the radius r and the
angle θ are known

some circumferential pixels may be missed. Also, if the radius value is too large,
some pixels may be skipped as well. There must be a more efficient way to draw a
circle.

2.2.1 Two-Way Symmetry Algorithm

A circle equation may be expressed as

(x − x0)
2 + (y − y0)

2 = r2, (2.14)

where [x0, y0]T is the center point of the circle, r is its radius in pixels and [x, y]T is
a point on the circumference. Equation (2.14) can be re-written in an explicit form
to solve for y in terms of x as

y = y0 ±
√

r2 − (x − x0)2. (2.15)

This explicit circle equation can be used to draw the circle by iterating along x-
direction. Assuming that the center of the circle [x0, y0]T is at the origin [0, 0]T , the
x-values lie in the interval [−r, r]. Each iteration results in two values for y which
makes it faster than the previous method. Hence, comes the term two-way symmetry
approach. However, discontinuities may appear with this approach when the slope

is <1 (i.e.,
∣

∣

∣

y−y0
x−x0

∣

∣

∣ < 1). An example showing a quarter of a circle is shown in

Fig. 2.5 where discontinuities appear. Note that there is only one pixel marked for
each x in this upper quarter of the circle.

Algorithm 2.8 calculates the points comprising a circle centered at the origin and
then moves the points estimated by the amount [x0, y0]T (i.e., the center of the circle)
to get the correct positions.

2.2 Circles 23

Fig. 2.5 Two-way symmetry
approach results in discon-

tinuities where
∣

∣

∣

y−y0
x−x0

∣

∣

∣ < 1.

Pixels selected to represent
this quarter are shaded

Algorithm 2.8 Two-way symmetry algorithm

Input: x0, y0, r
1: Plot [x0 + r, y0]T

2: Plot [x0 − r, y0]T

3: for (x = −r + 1 to r − 1) do
4: y = �√r2 − x2 + 0.5�
5: Plot [x0 + x, y0 + y]T

6: Plot [x0 + x, y0 − y]T

7: end for

end

Note that the start and endpoints of the horizontal diameter are treated as special
cases before entering the loop. This is to avoid reflecting these points about them-
selves. Also, be careful that Algorithm 2.8 does not check if the points estimated
lie inside the boundaries of the screen or viewport. In order to accommodate this
constraint for a point [x, y]T , check if x ≥ 0, y ≥ 0, x < xmax and y < ymax where
xmax and ymax are the width and height of the screen or viewport in pixels.

Example 2.5: [2-way symmetry algorithm]
A circle having a radius of 5 pixels and centered at [3, 4]T is to be drawn on

a computer screen. Use the 2-way symmetry algorithm to determine what pixels
should constitute the circle.

Solution 2.5: The start and endpoints of the horizontal diameter are [8, 4]T and
[−2, 4]T . The rest of the points are listed in the following table:

24 2 2D Graphics

3: x 4: y 5: Plot 6: Plot

−4 �√52 − (−4)2 + 0.5� = 3 [−1, 7]T [−1, 1]T

−3 �√52 − (−3)2 + 0.5� = 4 [0, 8]T [0, 0]T

−2 �√52 − (−2)2 + 0.5� = 5 [1, 9]T [1,−1]T

−1 �√52 − (−1)2 + 0.5� = 5 [2, 9]T [2,−1]T

0 �√52 − 02 + 0.5� = 5 [3, 9]T [3,−1]T

1 �√52 − 12 + 0.5� = 5 [4, 9]T [4,−1]T

2 �√52 − 22 + 0.5� = 5 [5, 9]T [5,−1]T

3 �√52 − 32 + 0.5� = 4 [6, 8]T [6, 0]T

4 �√52 − 42 + 0.5� = 3 [7, 7]T [7, 1]T

Of course, all points with negative coordinates are disregarded. Hence, the points
considered are [8, 4]T , [0, 8]T , [0, 0]T , [1, 9]T , [2, 9]T , [3, 9]T , [4, 9]T , [5, 9]T ,

[6, 8]T , [6, 0]T , [7, 7]T and [7, 1]T . �

2.2.2 Four-Way Symmetry Algorithm

The symmetry of the circle can be utilized such that the circle may be split into
four quadrants. In this four-way symmetry approach, the pixels of only one quadrant
are estimated as done with the two-way symmetry approach while the pixels in
the remaining three quadrants are mirrored/reflected. In this case, the number of
iterations is reduced along the x-direction if compared with the two-way symmetry
approach to almost half the number of iterations. Thismakes this approach faster than
the previous one; however, it keeps the same problem of discontinuities as shown
in Fig. 2.6 where the upper two quadrants of a circle are drawn using the four-way
symmetry approach.

Assuming that the center of the circle [x0, y0]T is at the origin [0, 0]T , Eq. (2.15)
can be used to get a point [x, y]T on the circumference. This is followed by mirroring
this point to obtain three other points [x,−y]T , [−x, y]T and [−x,−y]T in the other
three quadrants. In this case, the x-values lie within the interval [0, r]. In the general
case where the circle is centered at an arbitrary point [x0, y0]T , we calculate the
points of the circle as if it is centered at the origin and then move the points estimated
by the vector [x0, y0]T that represents the center point to get the correct positions.
Algorithm 2.9 lists the four-way symmetry algorithm.

Algorithm 2.9 Four-way symmetry algorithm

Input: x0, y0, r
1: Plot [x0, y0 + r]T

2: Plot [x0, y0 − r]T

3: Plot [x0 + r, y0]T

4: Plot [x0 − r, y0]T

5: for (x = 1 to r − 1) do

2.2 Circles 25

Fig. 2.6 Four-way symmetry approach. Only two quadrants are shown

6: y = �√r2 − x2 + 0.5�
7: Plot [x0 + x, y0 + y]T

8: Plot [x0 + x, y0 − y]T

9: Plot [x0 − x, y0 + y]T

10: Plot [x0 − x, y0 − y]T

11: end for

end

Note that the start and endpoints of each quadrant are treated as special cases
before entering the loop as done before with the two-way symmetry approach.
This is to avoid reflecting these points about themselves. Also, you may tune
Algorithm 2.9 to check if the points estimated lie inside the boundaries of the screen
or viewport as mentioned before with the two-way symmetry approach.

Example 2.6: [4-way symmetry algorithm]
A circle having a radius of 5 pixels and centered at [3, 4]T is to be drawn on

a computer screen. Use the 4-way symmetry algorithm to determine what pixels
should constitute the circle.

Solution 2.6: The start and endpoints of each quadrant are [3, 9]T , [3,−1]T , [8, 4]T

and [−2, 4]T . The rest of the points are listed in the following table:

5: x 6: y 7: Plot 8: Plot 9: Plot 10: Plot

1 �√52 − 12 + 0.5� = 5 [4, 9]T [4,−1]T [2, 9]T [2,−1]T

2 �√52 − 22 + 0.5� = 5 [5, 9]T [5,−1]T [1, 9]T [1,−1]T

3 �√52 − 32 + 0.5� = 4 [6, 8]T [6, 0]T [0, 8]T [0, 0]T

4 �√52 − 42 + 0.5� = 3 [7, 7]T [7, 1]T [−1, 7]T [−1, 1]T

26 2 2D Graphics

Fig. 2.7 Eight-way symmetry approach. Only four octants are shown

We discard all points with negative coordinates. Hence, the points considered are
[3, 9]T , [8, 4]T , [4, 9]T , [2, 9]T , [5, 9]T , [1, 9]T , [6, 8]T , [6, 0]T , [0, 8]T , [0, 0]T ,

[7, 7]T and [7, 1]. Note that those are the same points obtained in Example 2.5 using
the 2-way symmetry algorithm but with less number of iterations. �

2.2.3 Eight-Way Symmetry Algorithm

The four-way symmetry approach can be further enhanced by splitting the circle
into eight octants instead of only four quadrants. This is referred to as the eight-way
symmetry approach in which the pixels of only one octant are estimated as done
before while the pixels in the remaining seven octants are mirrored/reflected. In this
case, the number of loop iterations is reduced more than before. This makes this
approach much faster than the previous ones. In addition, it avoids the problem of
discontinuities as shown in Fig. 2.7 where the upper four octants of a circle are drawn
using the eight-way symmetry approach.

Assuming that the center of the circle [x0, y0]T is at the origin [0, 0]T , Eq. (2.15)
can be used to get a point [x, y]T on the circumference. This is followed by mirror-
ing this point to obtain seven other points [x,−y]T , [−x, y]T , [−x,−y]T , [y, x]T ,

[y,−x]T , [−y, x]T and [−y,−x]T in the other seven octants. Note that the x-values

within the loop lie in the interval
[

1,
⌊

r√
2

⌋]

.

If the circle is centered at an arbitrary point [x0, y0]T , we calculate the points
comprising the circle as if it is centered at the origin and then move the points
estimated by the amount [x0, y0]T to get the correct positions. Algorithm 2.10 lists

2.2 Circles 27

the eight-way symmetry algorithm, which results in better and faster-to-generate
circles.

Algorithm 2.10 Eight-way symmetry algorithm

Input: x0, y0, r
1: Plot [x0, y0 + r]T

2: Plot [x0, y0 − r]T

3: Plot [x0 + r, y0]T

4: Plot [x0 − r, y0]T

5: x = 1
6: y = �√r2 − x2 + 0.5�
7:

8: while (x < y) do
9: Plot [x0 + x, y0 + y]T

10: Plot [x0 + x, y0 − y]T

11: Plot [x0 − x, y0 + y]T

12: Plot [x0 − x, y0 − y]T

13: Plot [x0 + y, y0 + x]T

14: Plot [x0 + y, y0 − x]T

15: Plot [x0 − y, y0 + x]T

16: Plot [x0 − y, y0 − x]T

17: x = x + 1
18: y = �√r2 − x2 + 0.5�
19: end while
20:

21: if x = y then
22: Plot [x0 + x, y0 + y]T

23: Plot [x0 + x, y0 − y]T

24: Plot [x0 − x, y0 + y]T

25: Plot [x0 − x, y0 − y]T

26: end if

end

Notice that the start and endpoints of each octant are treated as special cases
as done with the two- and four-way symmetry approaches to avoid reflecting these
points about themselves. (Check Lines 1–4 and 22–25.) You may also check if the
points estimated lie inside the boundaries of the screen or viewport by testing if
x ≥ 0, y ≥ 0, x < xmax and y < ymax where xmax and ymax are the width and height
of the screen in pixels.

Example 2.7: [8-way symmetry algorithm]
A circle having a radius of 5 pixels and centered at [3, 4]T is to be drawn on

a computer screen. Use the 8-way symmetry algorithm to determine what pixels
should constitute the circle.

28 2 2D Graphics

Fig. 2.8 ṁ = [x + 1, y + 1
2]T

is the midpoint between
[x + 1, y]T and [x + 1, y + 1]T

Solution 2.7: The start and endpoints of each quadrant are [3, 9]T , [3,−1]T , [8, 4]T

and [−2, 4]T . The rest of the points are listed in the following table:

5/17: x 6/18: y 9: Plot 10: Plot 11: Plot 12: Plot 13: Plot 14: Plot 15: Plot 16: Plot

1 5 [4, 9]T [4,−1]T [2, 9]T [2,−1]T [8, 5]T [8, 3]T [−2, 5]T [−2, 3]T

2 5 [5, 9]T [5,−1]T [1, 9]T [1,−1]T [8, 6]T [8, 2]T [−2, 6]T [−2, 2]T

3 4 [6, 8]T [6, 0]T [0, 8]T [0, 0]T [7, 7]T [7, 1]T [−1, 7]T [−1, 1]T

4 3 no iteration as x > y

After neglecting all points with negative coordinates, the points considered are
[3, 9]T , [8, 4]T , [4, 9]T , [2, 9]T , [8, 5]T , [8, 3]T , [5, 9]T , [1, 9]T , [8, 6]T , [8, 2]T ,

[6, 8]T , [6, 0]T , [0, 8]T , [0, 0]T , [7, 7]T and [7, 1]T . Notice that the discontinuity
problem has been overcome in this case. (Check out points [8, 2]T , [8, 3]T , [8, 5]T

and [8, 6]T .) In addition, calculations have been done with a faster algorithm.
Also, notice that the number of iterations along the x-direction may be calculated

as
⌊

r√
2

⌋

=
⌊

5√
2

⌋

= 3. �

2.2.4 The Midpoint Algorithm

The midpoint algorithm used to draw lines in Sect. 2.1.3 can be modified to draw
circles (Foley et al. 1995). Similar to the 8-way symmetry algorithm (Sect. 2.2.3),
only one octant is considered. The rest of the circle is obtained by symmetry as done
before. Similar to the midpoint technique used to draw lines, we determine on which
side of the circle equation the midpoint between pixels lies.

Consider Fig. 2.8 where a part of a circle is shown and where a pixel [x, y]T is
determined to belong to the circle. When x is incremented at the next iteration as
done before, the exact intersection happens at point ṗ. Thus, there will be two choices
for the pixels to be picked up at x + 1; these choices are ṗ1 and ṗ2.

2.2 Circles 29

The implicit form of a circle equation is given by

F (x, y) = x2 + y2 − r2 = 0, (2.16)

where r is the radius of the circle and [x, y]T is a point on the circle. Now, themidpoint
ṁ = [x + 1, y + 1

2]T between [x + 1, y]T and [x + 1, y + 1]T is applied to Eq. (2.16)
to get

F

(

x + 1, y + 1

2

)

= dṁ = (x + 1)2 +
(

y + 1

2

)2

− r2. (2.17)

There are three possibilities for dṁ:

dṁ =
⎧

⎨

⎩

+ve, ṁ is outside the circle; thus, ṗ2 is selected;
−ve, ṁ is inside the circle; thus, ṗ1 is selected;

0, the midpoint ṁ is exactly on the circle; thus, select either ṗ1 or ṗ2.

Choosing the pixel in the next column depends onwhether ṗ1 or ṗ2 has been selected.
Assume that ṗ1 is selected. The midpoint [x + 2, y + 1

2]T between [x + 2, y]T and
[x + 2, y + 1]T is applied to Eq. (2.16) to get

F

(

x + 2, y + 1

2

)

= (x + 2)2 +
(

y + 1

2

)2

− r2

= (x + 1)2 +
(

y + 1

2

)2

− r2

︸ ︷︷ ︸

dṁ

+ 2x + 3

= dṁ + 2x + 3.

(2.18)

On the other hand, if ṗ2 is selected, themidpoint [x+2, y+ 3
2]T between [x+2, y+1]T

and [x + 2, y + 2]T is applied to Eq. (2.16) to get

F

(

x + 2, y + 3

2

)

= (x + 2)2 +
(

y + 3

2

)2

− r2

= (x + 1)2 +
(

y + 1

2

)2

− r2

︸ ︷︷ ︸

dṁ

+ 2x + 2y + 5

= dṁ + 2x + 2y + 5.

(2.19)

This means that the subsequent sign of dṁ can be obtained by incrementing it by
either 2x + 3 if ṗ1 is selected or 2x + 2y + 5 if ṗ2 is selected where [x, y]T is the
previous point on the circle (i.e., the increments are functions rather than constants
as in line midpoint algorithm). Assuming that the center point is at the origin, an
initial value for dṁ can be obtained using the lowest point [0,−r]T and Eq. (2.17)

30 2 2D Graphics

where the next midpoint lies at [1,−r + 1
2]T . So,

F

(

1,−r + 1

2

)

= 12 +
(

−r + 1

2

)2

− r2

= 5

4
− r

︸ ︷︷ ︸

dṁ

,
(2.20)

where 5
4 − r is the initial estimate of dṁ. The midpoint algorithm for circles is listed

in Algorithm 2.11. This algorithm assumes that the center of the circle is at [x0, y0]T .

Algorithm 2.11 Midpoint algorithm for circles – floating-point version

Input: x0, y0, r
1: dṁ = 5

4 − r
2: x = 0
3: y = −r
4:

5: Plot [x0, y0 + r]T

6: Plot [x0, y0 − r]T

7: Plot [x0 + r, y0]T

8: Plot [x0 − r, y0]T

9:

10: while (x < −(y + 1)) do
11: if (dṁ < 0) then
12: dṁ = dṁ + 2x + 3
13: else
14: dṁ = dṁ + 2x + 2y + 5
15: y = y + 1
16: end if
17: x = x + 1
18: Plot [x0 + x, y0 + y]T

19: Plot [x0 + x, y0 − y]T

20: Plot [x0 − x, y0 + y]T

21: Plot [x0 − x, y0 − y]T

22: Plot [x0 + y, y0 + x]T

23: Plot [x0 + y, y0 − x]T

24: Plot [x0 − y, y0 + x]T

25: Plot [x0 − y, y0 − x]T

26: end while

end

Notice that checking for the number of iterations
⌊

r√
2

⌋

may be used to replace

the condition of the “while” loop on Line 10. (See Problem 2.8.)

2.2 Circles 31

Algorithm 2.11 uses floating-point numbers which slows the process down. The
initial value of dṁ contains a fraction; thus, a new variable hṁ = dṁ − 1

4 is
used (Foley et al. 1995) to replace the value of dṁ by hṁ + 1

4 . Hence, Line 1 in
Algorithm 2.11 can be hṁ = 1 − r. In addition, the condition dṁ < 0 of Line 11 is
changed to hṁ < − 1

4 . However, notice that hṁ is initialized to an integer (i.e., 1− r)
and is incremented by integers (either by 2x +3 or by 2x +2y +5). So, the condition
hṁ < − 1

4 can be modified to hṁ < 0. Algorithm 2.12 applies all these changes.

Algorithm 2.12 Midpoint algorithm for circles – integer version

Input: x0, y0, r
1: hṁ = 1 − r
2: x = 0
3: y = −r
4:

5: Plot [x0, y0 + r]T

6: Plot [x0, y0 − r]T

7: Plot [x0 + r, y0]T

8: Plot [x0 − r, y0]T

9:

10: while (x < −(y + 1)) do
11: if (hṁ < 0) then
12: hṁ = hṁ + 2x + 3
13: else
14: hṁ = hṁ + 2x + 2y + 5
15: y = y + 1
16: end if
17: x = x + 1
18: Plot [x0 + x, y0 + y]T

19: Plot [x0 + x, y0 − y]T

20: Plot [x0 − x, y0 + y]T

21: Plot [x0 − x, y0 − y]T

22: Plot [x0 + y, y0 + x]T

23: Plot [x0 + y, y0 − x]T

24: Plot [x0 − y, y0 + x]T

25: Plot [x0 − y, y0 − x]T

26: end while

end

Example 2.8: [Midpoint circle drawing algorithm]
A circle having a radius of 5 pixels and centered at [3, 4]T is to be drawn on

a computer screen. Use the midpoint algorithm to determine what pixels should
approximate the circle.

Solution 2.8: The initial value of hṁ is given by

32 2 2D Graphics

hṁ = 1 − r = 1 − 5 = −4.

The initial values for x and y are 0 and −5 respectively. The start and endpoints of
each quadrant are [3, 9]T , [3,−1]T , [8, 4]T and [−2, 4]T . The rest of the points are
listed in the following table:

10: x 12/14: 15: y 17: x 18: 19: 20: 21: 22: 23: 24: 25:
hṁ Plot Plot Plot Plot Plot Plot Plot Plot

0 −1 1 [4,−1]T [4, 9]T [2,−1]T [2, 9]T [−2, 5]T [−2, 3]T [8, 5]T [8, 3]
1 4 2 [5,−1]T [5, 9]T [1,−1]T [1, 9]T [−2, 6]T [−2, 2]T [8, 6]T [8, 2]
2 3 −4 3 [6, 0]T [6, 8]T [0, 0]T [0, 8]T [−1, 7]T [−1, 1]T [7, 7]T [7, 1]
3 no iteration as x = −(y + 1)

Of course, all points with negative coordinates are disregarded. Hence, the points
considered are [3, 9]T , [8, 4]T , [4, 9]T , [2, 9]T , [8, 5]T , [8, 3]T , [5, 9]T , [1, 9]T ,

[8, 6]T , [8, 2]T , [6, 0]T , [6, 8]T , [0, 0]T , [0, 8]T , [7, 7]T and [7, 1]T .Note that those
are the same points obtained in Example 2.7 using the 8-way symmetry algorithm
but produced by a faster integer algorithm. �

2.3 Polygons

A2D polygon is a closed planar path composed of a number of sequential straight line
segments. Each line segment is called a side or an edge. The intersections between
line segments are called vertices. The end vertex of the last edge is the start vertex
of the first edge. A polygon encloses an area.

A polyline is similar to a polygon except that the end vertex of the last edge does
not have to be the start vertex of the first edge. Hence, unlike polygons, no area is
expected to emerge for a polyline.

2.3.1 Convexity Versus Concavity

A polygon may be convex or concave. Examples of convex and concave polygons
are shown in Fig. 2.9. A polygon is convex if the line connecting any two interior
points is included completely in the interior of the polygon. Each interior angle in a
convex polygon must be ≤180◦; otherwise, the polygon is considered concave.

A 2D polygon is stored as a set of vertex coordinates (i.e., [xi, yi]T where i is the
vertex number). These coordinates can be used to determine whether the polygon
is convex or concave. Cross product or linear equations of the edges can be used to
answer the question of convexity/concavity of a polygon.

2.3 Polygons 33

Fig. 2.9 Examples of polygons. a Convex polygon where any interior angle is ≤180◦. b Concave
polygon where at least one of the interior angles is >180◦

Cross product: This method proceeds as follows:

1. For each edge:

a. Define a vector for the edge ei connecting the vertices v̇i and v̇i+1. This is
expressed as

ei = v̇i+1 − v̇i. (2.21)

b. Compute the 2D cross product (Sect. A.4.3.4) along consecutive edges ei−1
and ei as

ei−1 × ei = [v̇i − v̇i−1] × [v̇i+1 − v̇i]
=

[

xi − xi−1
yi − yi−1

]

×
[

xi+1 − xi

yi+1 − yi

]

= (xi − xi−1)(yi+1 − yi) − (yi − yi−1)(xi+1 − xi).

(2.22)

2. The polygon is convex if and only if all signs of cross products along all edges
are the same; otherwise, the polygon is concave.

Linear equations: This method proceeds as follows:

1. For each edge:

a. Estimate the linear equation of the edge connecting the vertices v̇i = [xi, yi]T

and v̇i+1 = [xi+1, yi+1]T . This is expressed in explicit form as

y = yi+1 − yi

xi+1 − xi
(x − xi) + yi (2.23)

or in ax + by + c = 0 implicit form as

(yi+1 − yi)
︸ ︷︷ ︸

a

x + (xi − xi+1)
︸ ︷︷ ︸

b

y + yixi+1 − xiyi+1
︸ ︷︷ ︸

c

= 0. (2.24)

Another way to get the same equation is to calculate the cross product
(Sect. A.4.3.4) of the homogeneous points (Sect. B.7) vi = [xi, yi, 1]T and
vi+1 = [xi+1, yi+1, 1]T . Thus,

34 2 2D Graphics

⎡

⎣

a
b
c

⎤

⎦ = vi × vi+1 =
⎡

⎣

xi

yi

1

⎤

⎦ ×
⎡

⎣

xi+1
yi+1
1

⎤

⎦ . (2.25)

b. Apply each of the remaining vertices to the linear equation estimated above.

2. The polygon is convex if and only if all signs obtained are the same for each
single edge; otherwise, the polygon is concave.

Example 2.9: [Polygon concavity/convexity]
At least two different methods may be used to decide whether or not a 2D polygon

is concave or convex. Apply each of them to the 2D polygon specified by the vertices
[0, 0]T , [5, 0]T , [−1, 5]T and [−1,−5]T . Based on your calculations, determine
whether this polygon is concave or convex.

Solution 2.9: This problem can be solved using 2D cross product or using linear
equations.

1. Using 2D cross product:

a. Substitute v̇i−1 = [−1,−5]T , v̇i = [0, 0]T and v̇i+1 = [5, 0]T in Eq. (2.22)
and calculate ei−1 × ei as

ei−1 × ei = [v̇i − v̇i−1] × [v̇i+1 − v̇i]
= (xi − xi−1)(yi+1 − yi) − (yi − yi−1)(xi+1 − xi)

= (0 − (−1))(0 − 0) − (0 − (−5))(5 − 0) = −25 ⇒ −ve.

b. Substitute v̇i−1 = [0, 0]T , v̇i = [5, 0]T and v̇i+1 = [−1, 5]T in Eq. (2.22)
and calculate ei−1 × ei as

ei−1 × ei = [v̇i − v̇i−1] × [v̇i+1 − v̇i]
= (xi − xi−1)(yi+1 − yi) − (yi − yi−1)(xi+1 − xi)

= (5 − 0)(5 − 0) − (0 − 0)(−1 − 5) = +25 ⇒ +ve.

The substitutions result in different signs. This implies that it is a concave polygon.
2. Using linear equations:

a. Consider the linear equation given the points [xi, yi]T = [−1,−5]T and
[xi+1, yi+1]T = [0, 0]T . Using Eq. (2.23), we have

y = yi+1 − yi

xi+1 − xi
(x − xi) + yi

y = 5x + 5 − 5

y − 5x = 0.

2.3 Polygons 35

b. Apply the other two points ([5, 0]T and [−1, 5]T) to the previous equation to
get

y − 5x = 0

0 − 5(5) = −25 ⇒ −ve,

5 − 5(−1) = +10 ⇒ +ve.

The substitutions result in different signs. This implies that it is a concave
polygon. �

2.4 Line Clipping

Given a 2D line or a group of 2D lines, a clip rectangle or window can be used to clip
those lines so that only lines or portions of lines inside the clip window are preserved
while the other lines or portions of lines are removed. Such an approach is referred
to as a 2D line clipping algorithm. It should be noted that even though there are many
algorithms for rectangle and polygon clipping, a line clipping algorithm can be used
repeatedly to clip polygons of any shape approximated by line segments.

An example of line clipping is shown in Fig. 2.10 where lines preserved after
clipping appear thicker. There are three distinctive cases that may be observed:

1. Both endpoints of the line are inside the clip rectangle as line ȧḃ shown in
Fig. 2.10.

2. One endpoint is inside the clip rectangle while the other endpoint is outside the

rectangle as line ċḋ shown in Fig. 2.10.

3. Both endpoints of the line are outside the clip rectangle as lines ėḟ and ġḣ shown
in Fig. 2.10.

Dealing with each of the previous cases is different.

Both endpoints are inside the clip rectangle: A line is completely inside a clip
rectangle or window if both endpoints are inside the window. Assume that the clip
rectangle spans from [xmin, ymin]T to [xmax, ymax]T and a line goes from [x0, y0]T

to [x1, y1]T , the line is preserved and trivially accepted if all the following eight
inequalities hold:

xmin ≤ x0 ≤ xmax,

ymin ≤ y0 ≤ ymax,

xmin ≤ x1 ≤ xmax,

ymin ≤ y1 ≤ ymax.

(2.26)

Only one endpoint is inside the clip rectangle: A portion of the line is inside the
clip rectangle in case only one endpoint is inside the clip rectangle. Assume that the
clip rectangle spans from [xmin, ymin]T to [xmax, ymax]T and a line goes from [x0, y0]T

to [x1, y1]T . Perform the following steps:

36 2 2D Graphics

Fig. 2.10 Example of 2D line
clipping. Lines remained after
clipping appear thicker

1. Check if only one endpoint falls inside the clip rectangle. The endpoint [x0, y0]T

is inside the clip rectangle if the following tests are true:

xmin ≤ x0 ≤ xmax,

ymin ≤ y0 ≤ ymax.
(2.27)

The endpoint [x1, y1]T is inside the clip rectangle if the following tests are true:

xmin ≤ x1 ≤ xmax,

ymin ≤ y1 ≤ ymax.
(2.28)

Note that either Inequality (2.27) or Inequality (2.28) must be true but not both;
otherwise, we will go back to the first case where both endpoints are inside the
clip rectangle. (Note that either Inequality (2.27) or Inequality (2.28) can be used
to keep or neglect isolated points; a process that is referred to as point clipping.)

2. Detect the intersection point between the line and the clip rectangle. Many meth-
ods exist to detect line intersections. The most suitable method in this situation is
using the linear parametric form. There are four intersection points between the
line and each of the clip rectangle edges to be detected. The intersection point
[x, y]T along the line that goes from [x0, y0]T to [x1, y1]T can be expressed in
parametric form as

[

x
y

]

=
[

x0
y0

]

+ tline

[

x1 − x0
y1 − y0

]

, (2.29)

where tline is a parameter that determines the location of the point [x, y]T along
the line such that tline ∈ [0, 1]. The intersection point [x, y]T along the lower
and upper horizontal clip rectangle edges can be expressed in parametric forms
respectively as

[

x
y

]

=
[

xmin

ymin

]

+ tedge1

[

xmax − xmin

ymin − ymin

]

(2.30)

2.4 Line Clipping 37

and
[

x
y

]

=
[

xmin

ymax

]

+ tedge2

[

xmax − xmin

ymax − ymax

]

, (2.31)

where tedge1 and tedge2 are parameters that determine the location of the inter-
section point [x, y]T along the clip rectangle lower and upper edges respectively
such that tedge1 ∈ [0, 1] and tedge2 ∈ [0, 1]. Note that a value of either 0 or 1
means that the line is going through a corner of the clip rectangle. Similarly, the
intersection point [x, y]T along the left and right vertical clip rectangle edges can
be expressed in parametric forms respectively as

[

x
y

]

=
[

xmin

ymin

]

+ tedge3

[

xmin − xmin

ymax − ymin

]

(2.32)

and
[

x
y

]

=
[

xmax

ymin

]

+ tedge4

[

xmax − xmax

ymax − ymin

]

, (2.33)

where tedge3 and tedge4 are parameters that determine the location of the point
[x, y]T along the edges such that tedge3 ∈ [0, 1] and tedge4 ∈ [0, 1]. To obtain the
point [x, y]T , solve Eq. (2.29) with each of Eqs. (2.30)–(2.33).

3. Check which intersection point [x, y]T falls inside the boundaries of the clip
rectangle. Intersection points may occur at line and/or edge extensions. If this is
the case, the following will be true: tline /∈ [0, 1] and/or tedgei /∈ [0, 1] where i is
the edge number. Thus, checking the value of tline and tedgei against the interval
[0,1] determines whether the intersection point falls within the clip rectangle.
Another way to determine if an intersection point [x, y]T falls within the clip
rectangle is by checking

xmin ≤ x ≤ xmax,

ymin ≤ y ≤ ymax,
(2.34)

which must be true so that the point [x, y]T is determined as falling within the
clip rectangle.

Finally, the portion of the line from the intersection point to the inside endpoint is
kept while the rest of the line is removed.

Both endpoints are outside the clip rectangle: If both endpoints are outside the

clip rectangle, the line may be completely outside the clip rectangle as line ġḣ in

Fig. 2.10 or part of the line is inside the clip rectangle as line ėḟ in the same figure.
In this case, the intersection points between the line and the clip rectangle must be
detected as in the previous case. However, in the current case we must differentiate
between two type of intersection points.

1. The first type appears in white squares in Fig. 2.10. These intersection points fall
within the boundaries of the clip rectangle (i.e., tedgei ∈ [0, 1] where i is the edge

38 2 2D Graphics

Fig. 2.11 Three lines clipped
by a rectangle

number). The portion of the line connecting these intersection points is inside the
clip rectangle and must be kept.

2. The second type appears in white circles in Fig. 2.10. These intersection points
are located outside the boundaries of the clip rectangle (i.e., tedgei /∈ [0, 1] where
i is the edge number). The whole line must be removed.

The previous brute-force idea is inefficient and expensive as many calculations must
be performed. The next example clarifies this claim.

Example 2.10: [Line clipping]

Figure 2.11 shows three line segments ȧḃ, ċḋ and ėḟ where ȧ = [7, 4]T , ḃ =
[12, 10]T , ċ = [4, 4]T , ḋ = [7, 2]T , ė = [2, 6]T and ḟ = [10, 15]T . If a clip
rectangle spanning from [3, 3]T to [15, 12]T is used to clip these lines, what lines or
portions of lines are preserved and kept?

Solution 2.10: Working with line ȧḃ: Check if endpoints fall within the boundaries
of the clip rectangle:

xmin ≤ xȧ ≤ xmax =⇒ 3 ≤ 7 ≤ 15 =⇒ true,
ymin ≤ yȧ ≤ ymax =⇒ 3 ≤ 4 ≤ 12 =⇒ true,
xmin ≤ xḃ ≤ xmax =⇒ 3 ≤ 12 ≤ 15 =⇒ true,
ymin ≤ yḃ ≤ ymax =⇒ 3 ≤ 10 ≤ 12 =⇒ true.

As all inequalities result in true condition, we conclude that the line ȧḃ falls com-
pletely within the boundaries of the clip rectangle and must be preserved.

2.4 Line Clipping 39

Working with line ċḋ: Check if endpoints fall within the boundaries of the clip
rectangle:

xmin ≤ xċ ≤ xmax =⇒ 3 ≤ 4 ≤ 15 =⇒ true,
ymin ≤ yċ ≤ ymax =⇒ 3 ≤ 4 ≤ 12 =⇒ true,
xmin ≤ xḋ ≤ xmax =⇒ 3 ≤ 7 ≤ 15 =⇒ true,
ymin ≤ yḋ ≤ ymax =⇒ 3 ≤ 2 ≤ 12 =⇒ false.

Hence, the endpoint ċ falls within the clip rectangle while the endpoint ḋ is outside
it. Now, check the intersection point between the line and the lower horizontal edge:

[

xċ
yċ

]

+ tline

[

xḋ − xċ
yḋ − yċ

]

=
[

xmin

ymin

]

+ tedge1

[

xmax − xmin

ymin − ymin

]

[

4
4

]

+ tline

[

7 − 4
2 − 4

]

=
[

3
3

]

+ tedge1

[

15 − 3
3 − 3

]

or
4 + 3 tline = 3 + 12 tedge1

4 − 2 tline = 3.

Solving these two equations results in values of 1
2 and 2.5

12 for tline and tedge1 respec-
tively. Since tline ∈ [0, 1] and tedge1 ∈ [0, 1], the intersection point falls within the
boundaries of the clip rectangle. Thus, using the line equation and tline = 1

2 , the
intersection point [x, y]T will be

[

x
y

]

=
[

xċ
yċ

]

+ tline

[

xḋ − xċ
yḋ − yċ

]

=
[

4
4

]

+ 1

2

[

7 − 4
2 − 4

]

=
[

5.5
3

]

.

The same point is obtained when using tedge1 = 2.5
12 with the parametric form of the

edge. That is
[

x
y

]

=
[

xmin

ymin

]

+ tedge1

[

xmax − xmin

ymin − ymin

]

=
[

3
3

]

+ 2.5

12

[

15 − 3
3 − 3

]

=
[

5.5
3

]

.

Because there is one endpoint inside the clip rectangle and one endpoint outside it,
there is atmost one intersection point that falls inside the borders of the clip rectangle.
In other words, there is no need to check for intersection points with the rest of the
edges. As [4, 4]T is the inside point, then the portion from [4, 4]T to [5.5, 3]T is kept
while the rest of the line (i.e., from [5.5, 3]T to [7, 2]T) is removed.

40 2 2D Graphics

Working with line ėḟ : Check if endpoints fall within the boundaries of the clip
rectangle:

xmin ≤ xė ≤ xmax =⇒ 3 ≤ 2 ≤ 15 =⇒ false,
ymin ≤ yė ≤ ymax =⇒ 3 ≤ 6 ≤ 12 =⇒ true,
xmin ≤ xḟ ≤ xmax =⇒ 3 ≤ 10 ≤ 15 =⇒ true,
ymin ≤ yḟ ≤ ymax =⇒ 3 ≤ 15 ≤ 12 =⇒ false.

Thus, both endpoints are outside the clip rectangle. Hence, the line ėḟ may be com-
pletely outside the clip rectangle or intersects its boundaries at two intersection points.
We check the intersection point between the line and the lower horizontal edge:

[

xė
yė

]

+ tline

[

xḟ − xė
yḟ − yė

]

=
[

xmin

ymin

]

+ tedge1

[

xmax − xmin

ymin − ymin

]

[

2
6

]

+ tline

[

10 − 2
15 − 6

]

=
[

3
3

]

+ tedge1

[

15 − 3
3 − 3

]

or
2 + 8 tline = 3 + 12 tedge1

6 + 9 tline = 3.

The value of tline is − 1
3 , which does not belong to the interval [0,1]; hence, this

intersection point is outside the clip rectangle. Check the next possible intersection
between the line and the upper horizontal edge:

[

xė
yė

]

+ tline

[

xḟ − xė
yḟ − yė

]

=
[

xmin

ymax

]

+ tedge2

[

xmax − xmin

ymax − ymax

]

[

2
6

]

+ tline

[

10 − 2
15 − 6

]

=
[

3
12

]

+ tedge2

[

15 − 3
12 − 12

]

or
2 + 8 tline = 3 + 12 tedge2

6 + 9 tline = 12.

Solving these two equations results in values of 2
3 and 13

36 for tline and tedge2 respec-
tively. Since tline ∈ [0, 1] and tedge2 ∈ [0, 1], the intersection point falls within the
boundaries of the clip rectangle. Thus, using the line equation with tline = 2

3 , the
intersection point [x, y]T will be

[

x
y

]

=
[

xė
yė

]

+ tline

[

xḟ − xė
yḟ − yė

]

=
[

2
6

]

+ 2

3

[

10 − 2
15 − 6

]

=
[

7.3333
12

]

.

2.4 Line Clipping 41

The same point is obtained when using tedge2 = 13
36 with the parametric form of the

edge. That is
[

x
y

]

=
[

xmin

ymax

]

+ tedge2

[

xmax − xmin

ymax − ymax

]

=
[

3
12

]

+ 13

36

[

15 − 3
12 − 12

]

=
[

7.3333
12

]

.

Because both endpoints are outside the clip rectangle and tedge2 is neither 0 nor 1,
we expect that there is only one more intersection point that falls inside the borders
of the clip rectangle. So, we will go for the third edge (i.e., the left vertical edge):

[

xė
yė

]

+ tline

[

xḟ − xė
yḟ − yė

]

=
[

xmin

ymin

]

+ tedge3

[

xmin − xmin

ymax − ymin

]

[

2
6

]

+ tline

[

10 − 2
15 − 6

]

=
[

3
3

]

+ tedge3

[

3 − 3
12 − 3

]

or
2 + 8 tline = 3

6 + 9 tline = 3 + 9 tedge3.

Solving these two equations results in values of 1
8 and 11

24 for tline and tedge3 respec-
tively. Since tline ∈ [0, 1] and tedge2 ∈ [0, 1], the intersection point falls within
the boundaries of the clip rectangle. So, using the line equation with tline = 1

8 , the
intersection point [x, y]T will be estimated as

[

x
y

]

=
[

xė
yė

]

+ tline

[

xḟ − xė
yḟ − yė

]

=
[

2
6

]

+ 1

8

[

10 − 2
15 − 6

]

=
[

3
7.125

]

.

The same point is obtained when using tedge3 = 11
24 with the parametric form of the

edge. That is
[

x
y

]

=
[

xmin

ymin

]

+ tedge3

[

xmin − xmin

ymax − ymin

]

=
[

3
3

]

+ 11

24

[

3 − 3
12 − 3

]

=
[

3
7.125

]

.

So, the portion from [3, 7.125]T to [7.3333, 12]T is kept while the portions from
[2, 6]T to [3, 7.125]T and from [7.3333, 12]T to [10, 15]T are removed. �
In the literature, there are many 2D line clipping algorithms such as Liang-Barsky
algorithm (Liang and Barsky 1984), Nicholl-Lee-Nicholl algorithm (Nicholl et al.

42 2 2D Graphics

Fig. 2.12 The space is divided
into nine regions where the
middle region represents
the clip rectangle, window,
polygon or the viewport. Each
region is assigned a 4-bit
outcode

Table 2.1 Assigning outcodes for the nine regions

Bit Value Meaning

3 = 1, if region is above the top edge if y > ymax

= 0, otherwise if y ≤ ymax

2 = 1, if region is below the bottom edge if y < ymin

= 0, otherwise if y ≥ ymin

1 = 1, if region is right to the right edge if x > xmax

= 0, otherwise if x ≤ xmax

0 = 1, if region is left to the left edge if x < xmin

= 0, otherwise if x ≥ xmin

Bit 3 represents the most-significant bit while bit 0 represents the
least-significant bit

1987), Cyrus-Beck algorithm (Cyrus and Beck 1978) and Cohen-Sutherland algo-
rithm. We will discuss the Cohen-Sutherland algorithm in more details below.

2.4.1 Cohen-Sutherland Algorithm

In Cohen-Sutherland clipping algorithm, the 2D space is divided into nine regions
where the middle region represents the clip rectangle, window, polygon or the view-
port as shown in Fig. 2.12.

Each region is assigned a 4-bit outcode. Each binary digit indicates where the
region is with respect to the clip rectangle that is assigned the outcode 0000. The
bits are arranged from left to right as top, bottom, right and left. Assuming that the
clip rectangle spans from [xmin, ymin]T to [xmax, ymax]T as shown in Fig. 2.12, a point
[x, y]T is assigned the bit values listed in Table 2.1 starting from the most-significant
bit to the least-significant bit. For example, 1010 represents any point in the top right
region while 0110 represents any point in the bottom right region. The outcodes are
shown in Fig. 2.12. Note that in some implementations of this algorithm, the bits
are arranged from left to right as left, right, bottom and top instead of top, bottom,
right and left (which we are using). Also, some implementations deals with the

2.4 Line Clipping 43

Table 2.2 OR truth table and
AND truth table

a b a OR b a AND b

0 0 0 0
0 1 1 0
1 0 1 0
1 1 1 1

y-axis as pointing downwards. However, these discrepancies should not affect the
final outcome of clipped lines.
The Cohen-Sutherland clipping algorithm clips a line as follows:

1. Determine the outcode for each endpoint. An outcode for a point [x, y]T is
obtained by retrieving the sign bit of the following values:

Bit 3 =⇒ ymax − y,
Bit 2 =⇒ y − ymin,

Bit 1 =⇒ xmax − x,
Bit 0 =⇒ x − xmin,

(2.35)

where bit 3 represents the most-significant bit while bit 0 represents the least-
significant bit. A sign bit is 1 for negative values and 0 otherwise. An alternative
way to calculate the outcode is by ORing values. If outcode is initialized to 0000,
it will take the following values:

outcode =
{

outcode OR 1000, if y > ymax;
outcode OR 0100, if y < ymin,

then

outcode =
{

outcode OR 0010, if x > xmax;
outcode OR 0001, if x < xmin.

(2.36)

An algorithm to obtain the outcode for a point [x, y]T given the lower left and
upper right corners (i.e., [xmin, ymin]T and [xmax, ymax]T) of the clip rectangle is
listed in Algorithm 2.13.

2. Consider the two outcodes determined above.
a. If both endpoints are in the clip rectangle (i.e., having the same outcode

of 0000), bitwise-OR the bits. This results in a value of 0000. In this case,
trivially accept the line. The OR truth table is listed in Table 2.2.

b. Otherwise, if both endpoints are outside the clip rectangle (i.e., having out-
codes other than 0000), bitwise-AND the bits. If this results in a value other
than 0000, trivially reject the line. The AND truth table is listed in Table 2.2.

c. Otherwise, segment the line using the edges of the clip rectangle:
i. Find an endpoint [x0, y0]T that is outside the clip rectangle (i.e., an

outpoint) where its outcode �= 0000 (at least one endpoint is outside the
clip rectangle).

ii. Find the intersection point [x, y]T between the line and the clip rectan-
gle. If the outpoint is [x0, y0]T and the other endpoint is [x1, y1]T , the
intersection point is given by:

44 2 2D Graphics

ṗtop =
[

x
y

]

=
[

x0 + ymax−y0
m

ymax

]

,

ṗbottom =
[

x
y

]

=
[

x0 + ymin−y0
m

ymin

]

, (2.37)

ṗright =
[

x
y

]

=
[

xmax

y0 + m(xmax − x0)

]

,

ṗleft =
[

x
y

]

=
[

xmin

y0 + m(xmin − x0)

]

,

where ṗtop, ṗbottom, ṗright and ṗleft are the intersection points with the
top, bottom, right and left edges of the clip rectangle respectively;
[xmin, ymin]T and [xmax, ymax]T are the lower left and upper right points
of the clip rectangle respectively; and m is the line slope.

iii. The portion from the outpoint to the intersection point should be
removed or rejected. The outpoint is replaced by the intersection point.
Re-estimate the outcode for the outpoint.

iv. Go to Step 2.

3. If trivially accepted, draw the line.

Algorithm 2.14 lists the steps of the Cohen-Sutherland clipping algorithm (Foley
et al. 1995).

Algorithm 2.13 Outcode calculation algorithm

Input: x, y, xmin, xmax , ymin, ymax

Output: outcode
1: outcode = 0000
2: if (y > ymax) then
3: outcode = outcode OR 1000
4: else if (y < ymin) then
5: outcode = outcode OR 0100
6: end if
7: if (x > xmax) then
8: outcode = outcode OR 0010
9: else if (x < xmin) then
10: outcode = outcode OR 0001
11: end if
12: return outcode

end

2.4 Line Clipping 45

Algorithm 2.14 Cohen-Sutherland clipping algorithm

Input: x0, y0, x1, y1, xmin, ymin, xmax , ymax

1: outcode0 = Call Algorithm 2.13 for [x0, y0]T

2: outcode1 = Call Algorithm 2.13 for [x1, y1]T

3: done = FALSE
4: in = FALSE
5:

6: while (done = FALSE) do
7: if (outcode0 OR outcode1 = 0000) then
8: done = TRUE
9: in = TRUE
10: else if (outcode0 AND outcode1 �= 0000) then
11: done = TRUE
12: else
13: m = y1−y0

x1−x0
14: if (outcode0 �= 0000) then
15: outcode = outcode0
16: else
17: outcode = outcode1
18: end if
19:

20: if (outcode AND 1000 �= 0000) then
21: x = x0 + ymax−y0

m
22: y = ymax

23: else if (outcode AND 0100 �= 0000) then
24: x = x0 + ymin−y0

m
25: y = ymin

26: else if (outcode AND 0010 �= 0000) then
27: x = xmax

28: y = y0 + m(xmax − x0)
29: else
30: x = xmin

31: y = y0 + m(xmin − x0)
32: end if
33:

34: if (outcode = outcode0) then
35: x0 = x
36: y0 = y
37: outcode0 = Call Algorithm 2.13 for [x0, y0]T

38: else
39: x1 = x
40: y1 = y
41: outcode1 = Call Algorithm 2.13 for [x1, y1]T

42: end if

46 2 2D Graphics

43: end if
44: end while
45:

46: if (in = TRUE) then
47: Call Algorithm 2.7 with parameters x0, y0, x1, y1
48: end if

end

One point to be mentioned here is that Algorithm 2.14 computes the slope m on
Line 13. This operation may be repeated for the same line if it intersects the clip
rectangle more than once. In this case, it is better to compute the slope before the
loop. However, if the slope is computed before the loop and the line is trivially
accepted or trivially rejected, the slope will be computed but will never be used.

Example 2.11: [Cohen-Sutherland clipping algorithm—outcodes]

Figure 2.13 shows four line segments ȧḃ, ċḋ, ėḟ and ġḣ where ȧ = [2, 6]T , ḃ =
[4, 10]T , ċ = [7, 18]T , ḋ = [10, 10]T , ė = [10, 1]T , ḟ = [18, 10]T , ġ = [12, 12]T

and ḣ = [14, 10]T . If a clip rectangle spanning from [5, 3]T to [15, 15]T is used to
clip these lines utilizing the Cohen-Sutherland clipping algorithm, get the outcodes
for each of the endpoints.

Solution 2.11: Applying Algorithm 2.13 and since [xmin, ymin]T = [5, 3]T and
[xmax, ymax]T = [15, 15]T , the outcodes are listed in the following table:

Point [x, y]T Condition Outcode

ȧ [2, 6]T x < xmin 0001
ḃ [4, 10]T x < xmin 0001
ċ [7, 18]T y > ymax 1000
ḋ [10, 10]T within 0000
ė [10, 1]T y < ymin 0100
ḟ [18, 10]T x > xmax 0010
ġ [12, 12]T within 0000
ḣ [14, 10]T within 0000

�

Example 2.12: [Cohen-Sutherland clipping algorithm—line category] In Example
2.11, determine which lines are trivially accepted/rejected and which lines need
intersection determination.

2.4 Line Clipping 47

Fig. 2.13 Four lines clipped by a rectangle

Solution 2.12: In order to determine line categories, we apply the first part of
Algorithm 2.14 (i.e., performing ORing and ANDing operations).

Line ORing ANDing Decision

ȧḃ 0001 0001 Trivially reject

ċḋ 1000 0000 Intersections

ėḟ 0110 0000 Intersections

ġḣ 0000 Trivially accept

Hence, only ċḋ and ėḟ need further intersection determination. �

Example 2.13: [Cohen-Sutherland clipping algorithm—intersection points] In
Example 2.11, if the lines to be clipped intersect the clip rectangle, determine the
intersection points between those lines and clip rectangle.

Solution 2.13: As we found in Example 2.12, intersections will be performed only

for ċḋ and ėḟ .

Working with line ċḋ: The slope is obtained as

m = yḋ − yċ

xḋ − xċ
= 10 − 18

10 − 7
= −8

3
= −2.6667.

48 2 2D Graphics

We get the outpoint which has the outcode that is not equal to 0000 as

outcode = outcodeċ = 1000.

Since
outcode AND 1000 = 1000,

then the line extending from the outpoint (i.e., ċ) to ḋ intersects the top edge of
the clip rectangle. The intersection point i̇ between the line and the clip rectangle is
obtained as

xi̇ = xċ + ymax − yċ

m
= 7 + 15 − 18

−8/3
= 8

1

8
= 8.125,

yi̇ = ymax = 15.

Thus, the intersection point i̇ is [8.125, 15]T . The intersection points between ėḟ and
the clip rectangle are obtained similarly. They are listed in the table below.

Line Outpoint m Edge Intersection

ċḋ ċ − 8
3 Top i̇ = [8.125, 15]T

ėḟ ė 9
8 Bottom j̇ = [11.7778, 3]T

j̇ḟ ḟ 9
8 Right k̇ = [15, 6.625]T

�

Example 2.14: [Cohen-Sutherland clipping algorithm]

Figure 2.11 shows three line segments ȧḃ, ċḋ and ėḟ where ȧ = [7, 4]T , ḃ =
[12, 10]T , ċ = [4, 4]T , ḋ = [7, 2]T , ė = [2, 6]T and ḟ = [10, 15]T . If a clip
rectangle spanning from [3, 3]T to [15, 12]T is used to clip these lines utilizing the
Cohen-Sutherland clipping algorithm, what lines or portions of lines are preserved
and kept?

Solution 2.14: Working with line ȧḃ:

1. Get the outcodes for the endpoints ȧ and ḃ:

outcodeȧ = 0000,
outcodeḃ = 0000.

2. Perform a bitwise-ORing operation between outcodeȧ and outcodeḃ:

outcodeȧ OR outcodeḃ = 0000 OR 0000 = 0000.

2.4 Line Clipping 49

Since the result of the bitwise-ORing operation is 0000, both endpoints are in the
clip rectangle.

3. Therefore, the line ȧḃ is trivially accepted.

Working with line ċḋ:

1. Get the outcodes for the endpoints ċ and ḋ:

outcodeċ = 0000,
outcodeḋ = 0100.

2.

a. Perform a bitwise-ORing operation between outcodeċ and outcodeḋ:

outcodeċ OR outcodeḋ = 0000 OR 0100 = 0100.

b. Since the bitwise-ORing operation results in a value that is not 0000, perform
a bitwise-ANDing operation between outcodeċ and outcodeḋ:

outcodeċ AND outcodeḋ = 0000 AND 0100 = 0000.

c.
i. Since the bitwise-ANDing operation results in 0000, get the slope m of

the line, which is computed as

m = yḋ − yċ

xḋ − xċ
= 2 − 4

7 − 4
= −2

3
= −0.6667.

ii. Get the outpoint which has the outcode that is not equal to 0000 as

outcodeḋ = 0100.

iii. Since
outcodeḋ AND 0100 = 0100,

then the line extending from the outpoint (i.e., ḋ) to ċ intersects the
bottom edge of the clip rectangle. Split the line at the intersection point
between the line and the clip rectangle. Utilizing the value of m, the
intersection point [x, y]T is obtained as

x = xḋ + ymin − yḋ

m
= 7 + 3 − 2

−2/3
= 5.5,

y = ymin = 3.

In other words, the intersection point is [5.5, 3]T . Let us call this
point ġ.

50 2 2D Graphics

iv. Remove the part between ḋ = [7, 2]T and ġ = [5.5, 3]T . The outcode
for the intersection point now is

outcodeġ = 0000.

v. The line to be tested now is extending from ċ = [4, 4]T to ġ = [5.5, 3]T .

The outcode for each of its endpoints is 0000.

3. The procedure is applied again to line ċġ. Hence, line ċġ is trivially accepted.

Working with line ėḟ :

1. Get the outcodes for the endpoints ė and ḟ :

outcodeė = 0001,
outcodeḟ = 1000.

2.

a. Perform a bitwise-ORing operation between outcodeė and outcodeḟ :

outcodeė OR outcodeḟ = 0001 OR 1000 = 1001.

b. Since the bitwise-ORing operation results in a value that is not 0000, perform
a bitwise-ANDing operation between outcodeė and outcodeḟ :

outcodeė AND outcodeḟ = 0001 AND 1000 = 0000.

c.
i. Since the bitwise-ANDing operation results in 0000, get the slope m of

the line that is obtained as

m = yḟ − yė

xḟ − xė
= 15 − 6

10 − 2
= 9

8
= 1.125.

ii. check the first point (i.e., ė = [2, 6]T) if it has an outcode that is not
equal to 0000 as

outcodeė = 0001.

iii. Since
outcodeė AND 0001 = 0001,

then the line intersects the left edge of the clip rectangle. Split the line at
the intersection point between the line and the clip rectangle. Utilizing
the slope m, the intersection point [x, y]T is estimated as

2.4 Line Clipping 51

x = xmin = 3,
y = yė + m(xmin − xė) = 6 + 9

8 (3 − 2) = 71
8 = 7.125.

In other words, the intersection point is [3, 7.125]T .Let us call this point
ḣ.

iv. Remove the part between ė = [2, 6]T and ḣ = [3, 7.125]T .The outcode
for the intersection point now is

outcodeḣ = 0000.

v. The line to be tested now is extending from ḣ = [3, 7.125]T to ḟ =
[10, 15]T .

Working with line ḣḟ :

a. Perform a bitwise-ORing operation between outcodeḣ and outcodeḟ :

outcodeḣ OR outcodeḟ = 0000 OR 1000 = 1000.

b. Since the bitwise-ORing operation results in a value that is not 0000, perform
a bitwise-ANDing operation between outcodeḣ and outcodeḟ :

outcodeḣ AND outcodeḟ = 0000 AND 1000 = 0000.

c.
i. Since the bitwise-ANDing operation results in 0000, get the slope m of

the line that is obtained as

m = 9

8
= 1.125.

ii. Get the outpoint (i.e., ḟ) as it has an outcode that is not equal to 0000 as

outcodeḟ = 1000.

iii. Since
outcodeḟ AND 1000 = 1000,

then the line intersects the top edge of the clip rectangle. Split the line
at the intersection point between the line and the clip rectangle. Using
the slope m, the intersection point is estimated as

x = xḟ + ymax − yḟ

m
= 10 + 12 − 15

9/8
= 7

1

3
= 7.3333,

y = ymax = 12.

52 2 2D Graphics

Fig. 2.14 In a left-handed
coordinate system, the y-axis
is pointing downwards. The
space is divided into nine
regions where the middle
region represents the clip
rectangle, window, polygon or
the viewport. Each region is
assigned a 4-bit outcode

In other words, the intersection point is [7.3333, 12]T . Let us call this
point i̇.

iv. Remove the part between ḟ = [10, 15]T and i̇ = [7.3333, 12]T . The
outcode for the intersection point now is

outcodei̇ = 0000.

v. The line to be tested now is extending from ḣ = [3, 7.125]T to i̇ =
[7.3333, 12]T . The outcode for each of its endpoints is 0000.

3. The procedure is applied again to line ḣi̇. Hence, line ḣi̇ is trivially accepted.

Thus, the preserved lines are

1. ȧḃ: extending from ȧ = [7, 4]T to ḃ = [12, 10]T ;
2. ċġ: extending from ċ = [4, 4]T to ġ = [5.5, 3]T ; and

3. ḣi̇: extending from ḣ = [3, 7.125]T to i̇ = [7.3333, 12]T . �
Example 2.15: [Cohen-Sutherland clipping algorithm—outcodes in a left-handed
coordinate system]
Assume that a left-handed coordinate system is used to assign outcode values to
different regions of the Cohen-Sutherland clipping algorithm. Modify Table 2.1 so
that each region keeps its outcode (e.g., the upper left region is assigned 1001, the
lower right region is assigned 0110, etc.).

Solution 2.15: Since the y-axis is pointing downwards in a left-handed coordinate
system as shown in Fig. 2.14, Table 2.1 is modified as follows:

�

2.5 Polygon Clipping

A2Dpolygon represented by a set of three ormore vertices (v̇i|i ∈ {0, 1, 2, . . . , n−1}
where n is the number of vertices) can be clipped by another polygon. The output

2.5 Polygon Clipping 53

Bit Value Meaning

3 = 1, if region is above the top edge if y < ymin
= 0, otherwise if y ≥ ymin

2 = 1, if region is below the bottom edge if y > ymax
= 0, otherwise if y ≤ ymax

1 = 1, if region is right to the right edge if x > xmax
= 0, otherwise if x ≤ xmax

0 = 1, if region is left to the left edge if x < xmin
= 0, otherwise if x ≥ xmin

of this clipping process is one or more polygons. The polygon after clipping may
include vertices that are not part of the original vertices (i.e., new vertices may be
created).

There are many 2D polygon clippers or polygon clipping algorithms such as
Sutherland-Hodgman algorithm (Sutherland and Hodgman 1974), Patrick-Gilles
Maillot algorithm (Maillot 1992), and Weiler-Atherton algorithm. We will discuss
the Weiler-Atherton algorithm in more details.

2.5.1 Weiler-Atherton Algorithm

In Weiler-Atherton algorithm (Weiler and Atherton 1977), there are two types of
polygons; a subject polygon that is to be clipped and a clip polygon or window
as shown in Fig. 2.15a. The goal is to obtain the subject polygon after clipping as
shown in Fig. 2.15b. In this algorithm, polygons are clockwise-oriented while holes
are counter-clockwise-oriented. (Some researchers work with counter-clockwise-
oriented polygons; however, this should not make a difference in the final outcome.)
Also, in this algorithm, a polygon is represented as a circular list of vertices. The
algorithm can be summarized by walking along the polygon boundaries as follows:

1. Compute the intersection points between the subject and clip polygons as depicted
in Fig. 2.15c. Many methods to estimate the intersection points may be used. For
example, given a subject edge v̇1v̇2 bounded by [xv̇1 , yv̇1]T and [xv̇2 , yv̇2]T and a
clipping horizontal (or vertical) edge ċ1ċ2 bounded by [xċ1 , yċ1]T and [xċ2 , yċ2]T ,

the intersection point ṗ = [x, y]T may be estimated as done in Eq. (2.37). Alter-
natively, cross product (Sect. A.4.3.3) of homogeneous points (Sect. B.7) can also
be used with lines with general slope values as

p = [v1 × v2] × [c1 × c2], (2.38)

where × denotes the cross product; and p, v1, v2, c1 and c2 are the homogeneous
representation of the intersection point, subject polygon vertices and clip polygon
vertices (i.e., p = [x, y, 1]T , v1 = [xv1 , yv1 , 1]T , v2 = [xv2 , yv2 , 1]T , c1 =
[xc1, yc1 , 1]T and c2 = [xc2 , yc2 , 1]T).

54 2 2D Graphics

Fig. 2.15 Weiler-Atherton algorithm. a The original subject and clip polygons. b The subject
polygon after clipping. cThe intersectionpoints between the subject and clip polygons are computed.
d Points where subject polygon enters clipping window are represented by white circles. e Out-to-
in: Record clipped point and follow subject polygon boundary in a clockwise direction. f In-to-out:
Record clipped point and follow clip polygon boundary in a clockwise direction

When a new intersection is detected, a new false vertex is added to the circular
lists of the vertices representing the polygons. Links are established to permit
travelling between polygons.

2. Walking along the boundaries of the subject polygon in a clockwise direction,
mark points where the subject polygon enters the clip polygon. These points are
represented in Fig. 2.15d as white circles where the previous subject vertex is
outside the clip polygon and/or the following subject vertex is inside the clip
polygon. The points where the subject polygon leaves the clip polygon are rep-
resented as black circles; i.e., when the previous subject vertex is inside the clip

2.5 Polygon Clipping 55

polygon and/or the following subject vertex is outside the clip polygon. (Onemay
prefer towalking along the boundaries of the clip polygon and detect intersections
where clip polygon enters and leaves the subject polygon.) Note that intersections
alternate from entering to leaving as the number of intersections is always even.

3. There are two types of point pairs; out-to-in and in-to-out:

a. Out-to-in pair (i.e., fromwhite to black circles):At awhite circle (i.e., entering
point), follow the subject polygon vertices in its circular list until the next
leaving intersection. Figure 2.15e shows this case as following the subject
polygon boundary in a clockwise direction.

b. In-to-out pair (i.e., from black to white circles): At a black circle (i.e., leaving
point), follow the clip polygon vertices in its circular list until the next enter-
ing intersection. Figure 2.15f shows this case as following the clip polygon
boundary in a clockwise direction.

4. Repeat Step 3 until there are no more pairs to process.

The result of the above operation is the subject polygon after clipping as shown in
Fig. 2.15b. The process is summarized in Algorithm 2.15.

Algorithm 2.15 Weiler-Atherton algorithm

Input: Circular lists of vertices representing the subject and clip polygons
Output: Lists of vertices representing the clipped polygons
1: Get intersections between subject and clip polygons and add them to both lists.
2: Along the subject polygon, determine entering and leaving intersections.
3: while more vertices to process do
4: If an entering or subject vertex is encountered, follow the subject circular

list.
5: If a leaving or clip vertex is encountered, follow the clip circular list.
6: A loop of vertices is complete when arriving at the start vertex.
7: end while

end

Example 2.16: [Weiler-Atherton clipping—circular lists and insertion of false ver-
tices]

Consider an irregular subject polygon to be clipped by a rectangular clip polygon
as shown in Fig. 2.16. What are the steps that should be followed to populate circular
lists for both the subject and clip polygons?

Solution 2.16: The steps are shown in Fig. 2.17.

1. To simplify the discussion, the vertices of both subject and clip polygons are
numbered as shown in Fig. 2.17a and two circular lists are created; one for each
polygon. The sequence of vertices of the subject polygon in a clockwise order
is “0,” “1,” “2,” “3” and “4.” The sequence of vertices of the clip polygon in a
clockwise order is “a,” “b,” “c” and “d.” The circular lists are shown in Fig. 2.17b.

56 2 2D Graphics

Fig. 2.16 An irregular subject
polygon is to be clipped by a
rectangular clip polygon

2. The first intersection marked “e” is detected (Fig. 2.17c) and a new false vertex
is linked to both lists as shown in Fig. 2.17d. The subject sequence now becomes
“0,” “e,” “1,” “2,” “3” and “4” and the clip sequence becomes “a,” “e,” “b,” “c”
and “d.”

3. Along the clockwise direction, the next intersection marked “f” is detected (Fig.
2.17e) and a new false vertex is linked to both lists as shown in Fig. 2.17f. Notice
that “f” is between “1” and “2” in the subject polygon and between “d” and “a”
in the clip polygon. Thus, the subject sequence now becomes “0,” “e,” “1,” “f,”
“2,” “3” and “4” and the clip sequence becomes “a,” “e,” “b,” “c,” “d” and “f.”

4. The following intersection marked “g” is detected (Fig. 2.17g) and a new false
vertex is linked to both lists as shown in Fig. 2.17h. The subject sequence now
becomes “0,” “e,” “1,” “f,” “2,” “g,” “3” and “4” and the clip sequence becomes
“a,” “e,” “b,” “c,” “d,” “f” and “g.”

5. The next intersection marked “h” is detected (Fig. 2.17i) and a new false vertex
is linked to both lists as shown in Fig. 2.17j. The subject sequence now becomes
“0,” “e,” “1,” “f,” “2,” “g,” “3,” “h” and “4” and the clip sequence becomes “a,”
“e,” “b,” “c,” “d,” “f”, “g” and “h.”

In Fig. 2.17, the false vertices “e,” “f,” “g” and “h” are shown in gray. Also, in order
tomake the distinction clear, the edges and links of the subject polygon are illustrated
as solid lines while the edges and links of the clip polygon are illustrated as dashed
lines. Notice that this whole process is represented by Line 1 in Algorithm 2.15. �

Example 2.17: [Weiler-Atherton clipping—clipped loops]
Building on Example 2.16, determine the clipped polygon parts (i.e., loops of

vertices).

Solution 2.17: The steps are shown in Fig. 2.18.

1. The entering and leaving vertices are determined. In Fig. 2.18a, b, the entering
vertices “e” and “g” are marked in white and the leaving vertices “f” and “h” are
marked in black.

2. Starting at the entering vertex “e,” the subject polygon border is followed as
shown in Fig. 2.18c. This process is performed on the subject polygon circular
list by following the link out of that vertex. This is shown in Fig. 2.18d.

2.5 Polygon Clipping 57

(a) (b)

(c) (d)

(e) (f)

Fig. 2.17 Getting intersection points and establishing circular lists for subject and clip polygons.
This process is represented by Line 1 in Algorithm 2.15

3. Continuing from the subject vertex “1,” the subject polygon is followed as in the
previous step. This is shown in Fig. 2.18e, f.

4. At the leaving vertex “f,” the clip polygon border is followed as shown in
Fig. 2.18g. This process is performed on the clip polygon circular list by fol-
lowing the link out of that vertex. This is shown in Fig. 2.18h.

58 2 2D Graphics

(g) (h)

(i) (j)

Fig. 2.17 (continued)

5. As in Step 2 above, from the entering vertex “g,” the subject polygon border is
followed as shown in Fig. 2.18i. This process is performed on the subject polygon
circular list by following the link out of that vertex. This is shown in Fig. 2.18j.

6. As in Step 3, continuing from the subject vertex “3,” the subject polygon is
followed as shown in Fig. 2.18k, l.

7. As in Step 4, at the leaving vertex “h,” the clip polygon is followed as shown in
Fig. 2.18m, n.

8. The loop is complete by following the clip path from the clip vertex “a” to the
entering vertex “e,” which is the start vertex in Step 1.

9. The final loop (i.e., the clipped part of the polygon) now is “e,” “1,” “f,” “g,” “3,”
“h,” “a” and “e.”

All the above steps appear as thick edges/arrows in Fig. 2.18. �

2.6 Problems

Problem 2.1: [Bresenham’s line drawing algorithm]
Bresenham’s algorithm is used to draw a line segment from [28, 8]T to [26, 14]T .

Determine whether the following pixels are part of the displayed line: [28, 9]T ,

[27, 9]T , [27, 10]T , [28, 10]T , [26, 12]T , [27, 13]T , [26, 13]T , [27, 14]T , [27, 11]T

and [27, 12]T .

2.6 Problems 59

(a) (b)

(c) (d)

(e) (f)

Fig. 2.18 Determining the clipped polygon parts. This process is represented by Line 2 through
Line 7 in Algorithm 2.15

Problem 2.2: [8-way symmetry algorithm]
Figure 2.19a shows the upper left corner of a computer screen. The horizontal

and vertical axes are shown with values representing pixel locations. Suppose that
a curve spanning from [5, 15]T to [15, 5]T is drawn as two circle quadrants. The
centers of the circles are shown as black dots. Use the 8-way symmetry algorithm to
determine what pixels should constitute the curve.

60 2 2D Graphics

(g) (h)

(i) (j)

(k) (l)

Fig. 2.18 (continued)

2.6 Problems 61

(m) (n)

(o) (p)

Fig. 2.18 (continued)

Problem 2.3: [4-way symmetry algorithm]
Re-solve Problem 2.2 using the 4-way symmetry algorithm.

Problem 2.4: [Line and circle drawing algorithms]
Figure 2.19b shows the upper left corner of a computer screen. The horizontal

and vertical axes are shown with values representing pixel locations. Suppose that
the curve shown consists of three segments two of them are line segments and the
third is one-eighth of a circle whose center is shown as a black dot. Use a line
drawing algorithm (of your choice) and a circle drawing algorithm (of your choice)
to determine what pixels should contribute to the curve.

Problem 2.5: [8-way symmetry algorithm]
A circle having a radius of 5 pixels and centered at [4, 6]T is to be drawn on

a computer screen. Use the 8-way symmetry algorithm to determine whether the
following pixels are part of the displayed circle: [9, 6]T , [9, 5]T , [9, 4]T , [9, 3]T ,

[4, 11]T , [4, 1]T , [7, 10]T , [1, 2]T , [3, 1]T and [1, 3]T .

Problem 2.6: [4-way symmetry algorithm]
Re-solve Problem 2.5 using the 4-way symmetry algorithm.

62 2 2D Graphics

Fig. 2.19 The upper left corner of a computer screen

Problem 2.7: [8-way symmetry algorithm]

Modify Algorithm 2.10 to use a “for” loop that goes from x = 1 to x =
⌊

r√
2

⌋

where �.� is the floor operation.
Problem 2.8: [Midpoint algorithm for circles]

Modify Algorithm 2.11 so that the condition of the “while” loop is

(

x <

⌊

r√
2

⌋)

,

where x is the horizontal counter; and r is the radius of the circle.

Problem 2.9: [Midpoint and 8-way symmetry algorithms for circles]
In order to draw a circle, Algorithm 2.12 starts from the point at the bottom of the

circle while Algorithm 2.10 starts from the point at the top. Modify Algorithm 2.12
to start from the top.

Problem 2.10: [Polygon concavity/convexity]
Consider the polygon defined by the vertices [3, 3]T , [6, 3]T , [8, 2]T and [6, 6]T .

Determine if this polygon is convex or concave.

Problem 2.11: [Polygon concavity/convexity]
Given a 2D polygon specified by the vertices [−3, 0]T , [3,−1]T , [1, 0]T and

[4, 2]T , test whether it is convex or concave.

Problem 2.12: [Cohen-Sutherland clipping algorithm—left-handed coordinate sys-
tem]

Suppose that a clip window is indicated by its upper left and lower right corners
[100, 50]T and [300, 200]T . Test whether each of the following line segments can
be trivially accepted in the window, trivially rejected or needs further processing:

1. A line extending from [171, 88]T to [233, 171]T .

2. A line extending from [150, 101]T to [233, 39]T .

3. A line extending from [52, 15]T to [98, 45]T .

2.6 Problems 63

Fig. 2.20 A subject polygon
to be clipped by a clip polygon

Problem 2.13: [Cohen-Sutherland clipping algorithm—left-handed coordinate sys-
tem]

Use the Cohen-Sutherland algorithm to determine what lines or portions of lines
are preserved and kept in Problem 2.12.

Problem 2.14: [Line clipping]
Given a clip rectangle spanning from [3, 3]T to [15, 12]T , use the brute-force

algorithm discussed in this chapter to determine what lines or parts of lines are
preserved and kept among the following:

1. A line extending from [15, 12]T to [17, 10]T .

2. A line extending from [16, 9]T to [10, 10]T .

3. A line extending from [5, 5]T to [9, 8]T .

4. A line extending from [12, 14]T to [7, 2]T .

Problem 2.15: [Line intersection—parametric equation]
Using the parametric equation of a line, determine the intersection point between

the two line segments ṗ1ṗ2 and ṗ3ṗ4 where ṗ1 = [1, 1]T , ṗ2 = [9, 9]T , ṗ3 = [9, 1]T

and ṗ4 = [1, 9]T .

Problem 2.16: [Line intersection—homogeneous coordinates]
Re-solve Problem 2.15 using homogeneous coordinates (see Sect. B.7).

Problem 2.17: [Line intersection]
Use three different methods to determine the intersection point between the two

line segments ṗ1ṗ2 and ṗ3ṗ4 where ṗ1 = [1, 1]T , ṗ2 = [3, 3]T , ṗ3 = [1, 3]T and
ṗ4 = [3, 1]T .

Problem 2.18: [Weiler-Atherton clipping—circular lists and insertion of false ver-
tices]

Consider the subject and clip polygons shown in Fig. 2.20. What are the steps that
should be followed to populate circular lists for both the subject and clip polygons?

Problem 2.19: [Weiler-Atherton clipping—clipped loops]
Determine the clipped polygon parts (i.e., loops of vertices) in Problem 2.18.

64 2 2D Graphics

Fig. 2.21 A subject polygon
to be clipped by a clip polygon

Problem 2.20: [Weiler-Atherton clipping—circular lists and insertion of false ver-
tices]

Consider the subject and clip polygons shown in Fig. 2.21. What are the steps that
should be followed to populate circular lists for both the subject and clip polygons?

Problem 2.21: [Weiler-Atherton clipping—clipped loops]
Determine the clipped polygon parts (i.e., loops of vertices) in Problem 2.20.

References

Aken, J.V. 1984.An efficient ellipse-drawing algorithm. IEEE Computer Graphics and Applications
4(9): 24–35.

Bresenham, J.E. 1965. Algorithm for computer control of a digital plotter. IBM Systems Journal
4(1): 25–30.

Cyrus, M., and J. Beck. 1978. Generalized two- and three-dimensional clipping. Computers and
Graphics 3(1): 23–28.

Foley, J.D., A. van Dam, S.K. Feiner, and J. Hughes. 1995. Computer Graphics: Principles and
Practice in C, 2nd ed. The systems programming series. Addison-Wesley, Reading, MA.

Liang,Y.-D., andB.A.Barsky. 1984.Anewconcept andmethod for line clipping.ACM Transactions
on Graphics (TOG) 3(1): 1–22.

Maillot, P.-G. 1992. A new, fast method for 2d polygon clipping: analysis and software implemen-
tation. ACM Transactions on Graphics (TOG) 11(3): 276–290.

Nicholl, T.M., D.T. Lee, and R.A. Nicholl. 1987. An efficient new algorithm for 2-d line clipping:
its development and analysis. ACM SIGGRAPH Computer Graphics 21(4): 253–262.

Pitteway, M. 1967. Algorithm for drawing ellipses or hyperbolae with a digital plotter. Computer
Journal 10(3): 282–289.

Sutherland, I.E., and G.W. Hodgman. 1974. Reentrant polygon clipping. Communications of the
ACM 17(1): 32–42.

VanAken, J., andM.Novak. 1985. Curve-drawing algorithms for raster displays.ACM Transactions
on Graphics 4(2): 147–169.

Weiler, K., and P. Atherton. 1977. Hidden surface removal using polygon area sorting. ACM SIG-
GRAPH Computer Graphics 11(2): 214–222.

http://www.springer.com/978-3-319-05136-9

	2 2D Graphics
	2.1 Lines
	2.1.1 Digital Differential Analyzer Algorithm
	2.1.2 Bresenham's Algorithm
	2.1.3 The Midpoint Algorithm

	2.2 Circles
	2.2.1 Two-Way Symmetry Algorithm
	2.2.2 Four-Way Symmetry Algorithm
	2.2.3 Eight-Way Symmetry Algorithm
	2.2.4 The Midpoint Algorithm

	2.3 Polygons
	2.3.1 Convexity Versus Concavity

	2.4 Line Clipping
	2.4.1 Cohen-Sutherland Algorithm

	2.5 Polygon Clipping
	2.5.1 Weiler-Atherton Algorithm

	2.6 Problems
	References

