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Abstract. This paper presents a theory of test modeling by using regular
expressions for software behaviors. Unlike the earlier modeling theory of
regular expression, the proposed theory is used to build a test model which can
derive effective test sequences easily. We firstly establish an expression alge-
braic system by means of transition sequences and a set of operators. And we
then give the modeling method for behaviors of software under test based on
this algebraic system. Some examples are also given for illustrating our test
modeling method. Compared with the finite state machine model, the expres-
sion model is more expressive for the concurrent system and can provide the
accurate and concise description of software behaviors.
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1 Introduction

Software testing is a critical activity to assure software quality [1]. However, earlier
studies have shown that software testing can consume more than fifty percent of the
development costs [2]. Therefore automating software testing as a long-term goal has
been highlighted in the industry for many years. Model-based testing [3–5], as a
method of automatic test, has been widely studied to generate abstract test sequences.
The finite state machine (FSM [6, 7]), a formal notation for describing software
behaviors, is often employed for test modeling and test generation, forming a series of
test generation methods [8–10].

For a concurrent system, however, it is hard to build a model by FSM due to the
limitation of the expressive power of FSM. Therefore the other modeling methods
have been suggested for modeling concurrent systems. For example, Petri nets [11,
12] was used for modeling software behaviors and generating test cases for accessi-
bility test [13]. However, Petri nets easily causes the state-space explosion problem
[14] when the system is complex. Regular expressions are also used to build the model
of distributed systems, such as path expressions [15], behavior expressions [16] and
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extended regular expression [17]. Garg et al. [16, 18] proposed an algebraic model
called concurrent regular expressions for modeling and analysis of distributed sys-
tems. However, this algebraic model is suitable for model checking and not for test
generation because it lacks of the essential path information, which consists of the
initial node, the terminal node and path sequences. Ravi et al. [19] proposed a novel
methodology for high-level testability analysis and optimization of register-transfer
level controller/data path circuits based on regular expressions. Qian et al. [20] pre-
sented a method to generate test sequences from regular expressions describing
software behaviors. This method firstly uses the FSM to build the model of software
behaviors. And then the FSM is converted into a regular expression according to three
construction rules. Finally, test sequences are obtained from this regular expression.
However, the suggested expression model does not have the capability for describing
concurrent operations because regular expressions are derived from FSM.

In this paper, we suggest constructing the test model by regular expressions for
software behaviors. Referring to the modeling theories of concurrent regular
expressions in [16, 18] and that of FSM in [7, 21], we set up an expression algebraic
system. And some examples are employed for illustrating our modeling approaches.

The rest of this paper is organized as follows. Section 2 presents the expression
algebraic system. Section 3 introduces the method of test modeling by regular
expressions. Some examples of test modeling are presented in Sect. 4. Section 5
discusses the advantages and disadvantages between the traditional test generation
method and our test generation method. Section 6 concludes the whole paper.

2 Expression Algebraic System

Before we introduce the expression algebraic system, the definition of FSM needs to
be introduced so that we can build the bridge between the regular expression and
FSM.

A finite-state machine (FSM) [22, 23] M ¼ \S; I;O; f ; g; s0 [ consists of a finite
set S of states, a finite input alphabet I, a finite output alphabet O, a transition function
f that assigns to each state and input pair a new state, an output function g that assigns
to each state and input pair an output, and an initial state s0. According to the defi-
nition of FSM, we give the definitions of both transition and transition sequence.

Definition 1 (transition): A transition of FSM is defined by t ¼ s1; i=o; s2ð Þ, where
f s1; ið Þ ¼ s2; i 2 I; g s1; ið Þ ¼ o; o 2 O; s1 is the pre-state of t, s2 is the next-state of t,
i is the transition condition of t and o is the output result of t.

Definition 2 (transition sequence): For any transition a, the syntax of the transition
sequence ts can be defined via Backus-Naur form:

ts ::¼ e j a j a:ts j ts:a j ts:ts;

Where e denotes the empty and ts is any transition sequence.

Let R be a nonempty set of transition sequences in FSM, and e ¼ a0 for any a 2 R.
Let #ts denote the number of transitions in ts.
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Definition 3 (software regular expression): A software regular expression
describing software behaviors is an expression consisting of symbols from R and the
operators |, +,., *, a (), �, and ||, which are defined as follows:

| denotes the choice operator;
. denotes the concatenation operator;
* is the Kleene closure;
+ is the positive closure;
a is a positive integer which denotes the alpha closure;
() denotes the range;
� denotes the synchronization;
|| indicates the concurrent operator

In Defintion 3, the descriptions of four operators |,., * and ? refer to the statements
in [16, 20]. We set the priority of operators high to low: (), *, ? and a,., � and ||, |.

Definition 4 (expression algebraic system): An expression algebraic system con-
sists of both R and the operators |, +,., *, a (), �, and ||, denoted as \ R, |, +,., *, a (), �,
|| [ , and e is the identity element of this system.

3 Test Modeling

In this section, we do not take account of the inputs and outputs on transitions and all
transitions are directly labeled on the edges of the graphs.

3.1 Concatenation Operator

A software behavior model with the concatenation operator shown in Fig. 1 can be
described by t1.t2, where t1 and t2 are two transitions, and t2 is occurred after t1. The
concatenation operator satisfies the following properties:

(1) 8a; b 2 R � a:b 6¼ b:a) a 6¼ b ^ a 6¼ e ^ b 6¼ e
(2) 8a; b; c 2 R � a:b:c ¼ a:bð Þ:c ¼ a: b:cð Þ
(3) 8a 2 R � a:e ¼ e:a ¼ a

3.2 Choice Operator

Let the symbol | denote the choice operator. In the model shown in Fig. 2, the
transitions t3 and t2 are alternative. So the model can be described by t1.(t3|t2), where t3

s0 s2s1
t1 t2

Fig. 1. The software behavior model with the concatenation operator.
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or t2 is executed in accordance with the different inputs on s1. The choice operator
satisfies the following properties:

(1) 8a; b 2 R � ajb) a _ b:
(2) 8a; b 2 R � ajb ¼ bja Commutativityð Þ
(3) 8a; b; c 2 R � ajbjc ¼ ajbð Þjc ¼ aj bjcð Þ Associativityð Þ
(4) 8a 2 R � aje ¼ eja ¼ a
(5) 8a 2 R � aja ¼ a Identityð Þ
(6) 8a; b1; b2; . . .; bn 2 R � a: b1jb2j. . .jbnð Þ ¼ a:b1ja:b2j. . .ja:bn Distributivityð Þ
(7) 8a1; a2; . . .; an; b 2 R � a1ja2j. . .janð Þ:b ¼ a1:bja2:bj. . .jan:b Distributivityð Þ

3.3 Kleene Closure

Let the symbol * denotes the Kleene closure. Then the model shown in Fig. 3 can be
described as t1.t2

*.t3, where t2 can be executed repeatedly. The Kleene closure satisfies
the following properties:

(1) 8a 2 R � a� ¼
S

i¼0;1;...
ai

(2) 8a 2 R � a�ð Þ�¼ a� Absorptionð Þ
(3) ai 2 R ^ 1� i� n � a1ja2j. . .janð Þ�¼ a�1ja�2j. . .ja�n Distributivityð Þ
(4) e� ¼ e

3.4 Positive Closure

Let the symbol ? denote the positive closure. E.g., a+ denotes that a is executed at
least once. The model of a temperature control system is shown in Fig. 4, where

– s0 is the initial state,
– s2 is the terminal state,

s0 s2s1
t1 t2

s3

t3

Fig. 2. The software behavior model with the choice operator.

s0 s2s1
t1 t3

t2

Fig. 3. The software behavior model with the Kleene closure.
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– t0 denotes that the engine of the temperature control system is launched,
– t2 denotes the heating-up process when the temperature on s1 is lower than the given

threshold x,
– t3 denoted that the engine stops working,
– t4 denotes the cooling process when the temperature on s2 is still greater than x,
– t5 denoted the warming process is triggered and the system will return to s1.

This model can be described by t1: tþ2 :t3:t
þ
4 :t5

� ��
:tþ2 :t3:t

þ
4 . The positive closure

satisfies the following properties:

(1) 8a 2 R � aþ ¼
S

i¼1;2;...
ai

(2) 8a 2 R � aþ ¼ a:a� ¼ a�:a
(3) 8a 2 R � a:aþ ¼ aþ:a ¼ aþ

(4) 8a 2 R � aþð Þþ¼ aþ Absorptionð Þ
(5) ai 2 R ^ 1� i� n � a1ja2j. . .janð Þþ¼ aþ1 jaþ2 j. . .jaþn Distributivityð Þ
(6) eþ ¼ e

3.5 Alpha-closure

Let a be the alpha-closure, which denotes a maximum cycle times. E.g., ba denotes
that the transition b is executed repeatedly a times. The model of an online bank login
system is shown in Fig. 5. If the user types the wrong username or password for three

s0 s2
t1 t3

t2
s1

t4

t5

Fig. 4. The software behavior model with the positive closure.

s0 s1

s2

t1
t2

t3

Fig. 5. The software behavior model with the alpha-closure.
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times, the system will be automatically locked for 24 h. The symbols in this model
denote as follows:

– s0 denotes the login page,
– s1 is the main page,
– s2 denotes the locked page,
– t1 denotes the self-check on s0,
– t2 denotes the login success,
– t3 denotes the login failure.

According to the above description of system, there exists a ¼ 3 and this system
can be described by t3

1:t3jt2jt1:t2jt2
1:t2. The alpha-closure satisfies the following

Properties:

(1) 8a 2 R � aa ¼ a:a. . .a
zfflfflffl}|fflfflffl{

a

(2) 8a 2 R � a:aa ¼ aa:a ¼ aa

(3) ai 2 R ^ 1� i� n � a1ja2j. . .janð Þa¼ aa
1jaa

2j. . .jaa
n Distributivityð Þ

(4) 8a 2 R � a�ð Þa¼ ðaaÞ� ¼ aa Absorptionð Þ
(5) 8a 2 R � aþð Þa¼ ðaaÞþ ¼ aa Absorptionð Þ
(6) ea ¼ e

3.6 Synchronous Operator

Let the symbol � denote the synchronous operator, which can describe the synchro-
nization between two or more transition sequences. E.g., a � b denotes that both a and
b are synchronized in the system. A simple model of the bus scheduling system at the
terminal station is shown in Fig. 6. In this system, buses entering and leaving the
station are synchronous. The symbols in this model denote as follows:

– s0 denotes the initial state of the terminal station,
– s1 denotes the state of the terminal station after a period of time,
– t1 denotes the sequences of the buses entering the station,
– t2 denotes the sequences of the buses leaving the station.

This model can be described by t1 � t2. The synchronous operator satisfies the
following Properties:

(1) 8a; b 2 R � a � b ¼ b � a Commutativityð Þ
(2) 8a 2 R � a � e ¼ a

s0 s1

t1

t2

Fig. 6. The software behavior model with the synchronous operator.
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(3) 8a; b; c 2 R � a � b � c ¼ ða � bÞ � c ¼ a � ðb � cÞ Associativityð Þ
(4) 8a; b 2 R �#a ¼ #b ¼ 1) a � b ¼ a:bjb:a
(5) 8a; b; c 2 R � a � b:c ¼ a � bð Þ:cð Þj b: a � cð Þð Þ
(6) 8a; b; c 2 R � a:b � c ¼ a � cð Þ:bð Þj a: b � cð Þð Þ
(7) 8a; b1; . . .; bn 2 R � a � b1jb2j. . .jbnð Þ

¼ a � b1ð Þj a � b2ð Þj. . .j a � bnð Þ Distributivityð Þ

Theorem 1
8a; b; c; d 2 R �#a ¼ #b ¼ #c ¼ #d ¼ 1) ða:b � c:d ¼ a:b:c:dja:c:b:dj

a:c:d:bjc:a:b:djc:a:d:bjc:d:a:bÞ:

Proof. According to the Property (5) of � ,

a:b � c:d ¼ a:b � cð Þ:dð Þj c: a:b � dð Þð Þ ð1Þ

By the Property (6) of � ,

a:b � c ¼ a � cð Þ:bja: b � cð Þ ð2Þ

By the Property (4) of � and #a ¼ #b ¼ #c ¼ #d ¼ 1,

a � c ¼ a:cjc:a ð3Þ

b � c ¼ b:cjc:b ð4Þ

From Eqs. (2)–(4) and the Properties (3) and (7) of |,

a:b � c ¼ a:cjc:að Þ:bja: b:cjc:bð Þ
¼ a:c:bjc:a:bð Þ a:b:cja:b:cð Þ
¼ a:c:bjc:a:bja:b:cja:c:b ð5Þ

By the Property (6) of � ,

a:b � d ¼ a � dð Þ:bja: b � dð Þ ð6Þ

According to the Property (4) of � and #a ¼ #b ¼ #c ¼ #d ¼ 1,

a � d ¼ a:djd:a ð7Þ

b � d ¼ b:djd:b ð8Þ

From Eqs. (6)–(8) and the Properties (3) and (7) of |,

a:b � d ¼ a:djd:að Þ:bja: b:djd:bð Þ
¼ a:d:bjd:a:bð Þj a:b:dja:d:bð Þ
¼ a:d:bjd:a:bja:b:d ð9Þ
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By the Properties (3), (6) and (7) of |,

a:b � cð Þ:d ¼ a:c:bjc:a:bja:b:cja:c:bð Þ:d
¼ a:c:b:djc:a:b:dja:b:c:dja:c:b:d ð10Þ

c: a:b � dð Þ ¼ c: a:d:bjd:a:bja:b:dja:d:bð Þ
¼ c:a:d:bjc:d:a:bjc:a:b:d ð11Þ

From Eqs. (1) (10) and (11),
a:b � c:d ¼ a:c:b:djc:a:b:dja:b:c:dja:c:b:djc:a:d:bjc:d:a:bjc:a:b:d

¼ a:c:b:djc:a:b:dja:b:c:dja:c:b:djc:a:d:bjc:d:a:b
h

Theorem 2: The synchronous operator between any two transition sequences is equal
to the Choice Operator of the Finite Transition Sequences, denoted as COFTS.

Proof. Assume that two transition sequences are A ¼ a1:a2. . .ai and B ¼ b1:b2. . .bj,
where ak 1� k� ið Þ and bl 1� l� jð Þ are two transitions. The Proof of Theorem 2
includes two phases: (1) let i = 1 and then prove A � B ¼ a1 � b1:b2. . .bj

� �
is

COFTS, and (2) prove A � B ¼ a1:a2. . .aið Þ � b1:b2. . .bj

� �
is COFTS.

Base case 1: i = 1 and j = 1.
According to the Property (4) of � and the assumption that a1 and b1 are two

transitions,
A � B ¼ a1 � b1 ¼ a1:b1jb1:a1; ð12Þ

which are the choice operation of two transition sequences.

Base case 2: i = 1 and j = 2.
According to the Properties (4) and (5) of � and the Properties (3), (6) and (7) of |,

A � B ¼ a1 � b1:b2

¼ a1 � b1ð Þ:b2ð Þj b1: a1 � b2ð Þð Þ
¼ a1:b1jb1:a1ð Þ:b2ð Þ ðb1:ða1:b2j jb2:a1ÞÞ
¼ a1:b1:b2 b1:a1:b2j jb1:a1:b2jb1:b2:a1 ð13Þ

which are the choice operation of four transition sequences.

Inductive hypothesis 1. Assume that Theorem 2 is true for i = 1 and j = m–1. That is,

A � B ¼ C1jC2j. . .jCk; ð14Þ

where C1…Ck are transition sequences and k is a finite positive integer.
We need to prove A� B is also COFTS for i = 1 and j = m. Assume

B1 = b1.b2…bm–1. Then according to the property (5) of � ,

A � B ¼ a1 � B1:bm

¼ ða1 � B1Þ:bmj B1:ða1 � bmÞ ð15Þ
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According to Inductive hypothesis 1,

a1 � B1 ¼ C1 C2j j. . .jCk ð16Þ

By the property (4) of � , and both a1 and bm are two transitions,

a1 � bm ¼ a1:bmjbm:a1 ð17Þ

which is COFTS.
Hence according to the Property (6) of |,

B1: a1 � bmð Þ ¼ B1: a1:bmjbm:a1ð Þ
¼ ðb1:b2. . .bm�1Þ:ða1:bmjbm:a1Þ
¼ b1:b2. . .bm�1:a1:bmjb1:b2. . .bm�1:bm:a1 ð18Þ

which is COFTS.
From Eqs. (15), (17)–(18),

A � B ¼ a1:bmjbm:a1jb1:b2. . .bm�1:a1:bmjb1:b2. . .bm�1:bm:a1 ð19Þ

which is COFTS.

Hence theorem 2 is true for i ¼ 1 and any j: ð20Þ

Inductive hypothesis 2. Assume that Theorem 2 is true for i = n–1 and any j. That is,

A � B ¼ D1jD2 . . .j jDl; ð21Þ

where D1…Dl are transition sequences and l is a finite positive integer.
We need to prove A � B is also COFTS for i = n and any j. Assume A1 ¼

a1:a2. . .an�1. Then according to the property (6) of � ,

A � B ¼ A1:an � B

¼ A1:an � b1:b2. . .bj

¼ ðA1 � b1:b2. . .bjÞ:anjA1:ðan � b1:b2. . .bjÞ ð22Þ

According to Inductive hypothesis 2,

ðA1 � b1:b2. . .bjÞ ¼ D1jD2 . . .j jDl ð23Þ

which is COFTS.
From (22) and the Property (7) of |,

ðA1 � b1:b2. . .bjÞ:an ¼ ðD1jD2 . . .j jDlÞ:an

¼ D1:anjD2:an . . .j jDl:an ð24Þ

which is COFTS.
By (20), an � b1.b2…bj is COFTS. Assume that

an � b1:b2. . .bj ¼ K1jK2 . . .j jKp ð25Þ

where K1…Kp are transition sequences and p is a finite positive integer.
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Then according to the Property (6) of |,

A1:ðan � b1:b2. . .bjÞ ¼ A1:ðK1jK2j. . .jKpÞ
¼ A1:K1jA1:K2j. . .jA1:Kp ð26Þ

which is COFTS.
From Eqs. (24) and (26), A� B is also COFTS for i = n and any j. To sum up,

Theorem 2 is proved. h

According to Theorem 2, we always make use of the choice operator of finite
transition sequences to denote the synchronous operations among some transition
sequences.

3.6.1 Concurrent Operator
Let the symbol || denote the concurrent operator. a || b denotes a or b is a single
occurrence, or the synchronous occurrence denoted as a� b. The model described as
the stock trading requests is shown in Fig. 7. In the stock trading system, the trading
requests that the buyers and the sellers are concurrent. The symbols in the model are
described as follows:

– s0 denotes the current state of the stock trading,
– s1 denotes the next state of the stock trading,
– t1 denotes the sequences of the buyer requests,
– t2 denotes the sequences of the seller requests,
– t3 denotes the next state is converted into the current state.

The model shown in Fig. 7 can be described by ððt1jjt2Þ:t3Þ�. The concurrent
operator satisfies the following properties:

(1) a b ¼ aj jbj ja � b8a; b 2 R
(2) a b ¼ bj jj ja8a; b 2 R Commutativityð Þ
(3) ajje ¼ ejja ¼ a8a 2 R Commutativity and Identityð Þ
(4) a bj jj jc ¼ ajjbð Þ c ¼ aj jj j bjjcð Þ8a,b,c 2 R Associativityð Þ
(5) a1 a2j j. . .janð Þ b ¼ ða1j jj jbÞ ða2j j bÞj j. . . ðanj jjbÞ8a1; . . .; an; b 2 R Distributionð Þ

Corollary 1: The concurrent operation of any two transition sequences is COFTS.

Proof. Assume that two transition sequences are A and B. Then A || B = A | B |
A� B. According to Theorem 2, A� B is COFTS, hence A || B is also COFTS.
Corollary 1 is proved. h

s1

t1
t2s0

t3

Fig. 7. The software behavior model with the concurrent operator.
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Corollary 2: The concurrent operations among finite transition sequences are
COFTS.

Proof. Assume that there are a suite of test sequences A1, A2, …, and Ai, where i is a
finite positive integer. Then Corollary 2 can be rewritten as A1|| A2|| …||Ai is COFTS.

Base case: i = 1
Since A1 is a transition sequence, Corollary 2 is true.

Base case: i = 2
By Corollary 1, A1||A2 is COFTS, hence Corollary 2 is true.

Inductive hypothesis. Assume that Corollary 2 is true for i = n-1. That is,

A1 A2j jj j. . . An�1 ¼ B1j jB2j j. . .jBk; ð27Þ

where Bi (1 B iBk) is a transition sequence.
We need to prove A1|| A2|| …||An is also COFTS for i = n.
By Inductive hypothesis and the property (5) of ||,

A1 A2j jj j. . . An ¼ ðA1j jj jA2 . . .j jj jAn�1ÞjjAn

¼ B1 B2j j. . .jBkð ÞjjAn

¼ B1jjAnð Þ ðB2j j AnÞj j. . . ðBkj jjAnÞ ð28Þ

By Corollary 1,

BijjAnð1� i� nÞ is COFTS: ð29Þ

From (27)–(29),

A1 A2j jj j . . .jjAn is COFTS: ð30Þ

To sum up, Corollary 2 is proved. h

According to Corollary 2, any one of regular expressions with concurrent opera-
tors can be denoted as the choice operation of finite transition sequences.

4 Modeling Capability

Using the expression algebraic system, we can construct the model of the complex
system. Now we consider building the expression models for two complex systems
with the different software requirements.

Figure 8 shows two FSM models. Assume that there exist many different software
requirements for two models shown in Fig. 8.

Case 1: Software requirements for the model shown in Fig. 8 (a) include that

– s0 is the start state,
– s3 is the terminal state,
– t1.t3 and t2.t4 are choice,
– t5 is a return transition.
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Therefore the system in Case 1 can be described by (t1.t3 | t2.t4).(t5.(t1.t3 | t2.t4))*.
Case 2: Software requirements for the model shown in Fig. 8 (a) include that

– s0 is the start state,
– S3 is the terminal state,
– t1.t3 and t2.t4 are concurrent,
– t5 must be executed at least once.

Therefore the system in Case 2 can be described by (t1.t3 || t2.t4).(t5.(t1.t3||t2.t4))+.
Case 3: Software requirements for the model shown in Fig. 8 (b) include that

– s0 is the start state
– s2 is the terminal state.

Therefore the system in Case 3 can be described by t1.(t2
*.(t4.t1.t2

*)*).t3.
Case 4: Software requirements for the model shown in Fig. 8 (b) include that

– s0 is the start state
– s2 is the terminal state.
– t2 and t4 are choice.

Therefore the system in Case 4 can be described by t1.(t2
* | (t4.t1) *).t3.

Discussion 1: Through Cases 1–4, we find the fact that the FSM model can’t
distinguish the system with the nice distinctions in software requirements, while the
expression model can distinguish them. Therefore the modeling capability of regular
expressions is more expressive than that of the FSM.

5 Test Sequences

In the traditional test generation method, a graph (or FSM) is usually transformed to a
test tree. And then all paths from the root to all leaves in this tree are produced.
According to this method, we obtain two test sequences (as test paths) t1.t3.t5 and
t2.t4.t5 from the test tree shown in Fig. 9 (b) for the model shown in Fig. 9 (a).
However, t1.t3.t5 and t2.t4.t5 are two ineffective test segments because the last state s0

in two sequences is not the terminal state s3 of the system shown in Fig. 9(a).
Now we demonstrate the method of test sequence generation from regular

expressions.

s0 s2s1s0

s1

s2 s3

(a) (b)

t1 t3

t2 t4

t5

t1
t2

t3

t4

Fig. 8. Two models of the complex systems.
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Assume that software requirements satisfy case 1 in Sect. 4. The model shown in
Fig. 9 (a) can be described by (t1.t3 | t2.t4).(t5.(t1.t3 | t2.t4))*. Then we assign 0, 1 and k
for * in regular expression. Hence

t1:t3 j t2:t4ð Þ: t5: t1:t3 j t2:t4ð Þð Þ�¼ t1:t3 j t2:t4ð Þ: t5: t1:t3 j t2:t4ð Þð Þ0 j ðt1:t3 j
t2:t4Þ:ðt5:ðt1:t3 j t2:t4ÞÞ1 j ðt1:t3 j t2:t4Þ: t5: t1:t3 j t2:t4ð Þð Þk

¼ t1:t3 j t2:t4ð Þ:e j ðt1:t3 j t2:t4Þ: t5: t1:t3 j t2:t4ð Þð Þ j ðt1:t3 j t2:t4Þ: t5: t1:t3 j t2:t4ð Þð Þk

¼ t1:t3 j t2:t4ð Þ j ðt1:t3 j t2:t4Þ: t5: t1:t3 j t2:t4ð Þð Þ j ðt1:t3 j t2:t4Þ: t5: t1:t3 j t2:t4ð Þð Þk j ðt1:t3 j
t2:t4Þ: t5: t1:t3 j t2:t4ð Þð Þk

¼ t1:t3 j t2:t4 j t1:t3: t5: t1:t3 j t2:t4ð Þð Þ j t2:t4:ðt5:ðt1:t3 j t2:t4ð ÞÞ j t1:t3:ðt5:ðt1:t3 j
t2:t4ÞÞk j t2:t4:ðt5:ðt1:t3 j t2:t4ÞÞk

¼ t1:t3 j t2:t4 j t1:t3:t5:t1:t3 j t1:t3:t5:t2:t4 j t2:t4:t5:t1:t3 j t2:t4:t5:t2:t4 j t1:t3:

t5:t1:t3ð Þk j t5:t2:t4ð Þk
� �

j t2:t4:ð t5:t1:t3ð Þk j t5:t2:t4ð ÞkÞ

¼ t1:t3 j t2:t4 j t1:t3:t5:t1:t3 j t1:t3:t5:t2:t4 j t2:t4:t5:t1:t3 j t2:t4:t5:t2:t4 j
t1:t3: t5:t1:t3ð Þk j t1:t3: t5:t2:t4ð Þk j t2:t4: t5:t1:t3ð Þk j t2:t4: t5:t2:t4ð Þk

Discussion 2: (1) Sometimes, test sequences generated from the traditional method
can’t be taken as the effective test paths. For example, the terminal node in test path
t1.t3.t5 is s0 which deviates from the actual software requirements. (2) Test coverage of
test sequences generated from the traditional method is not complete, resulting in the
low fault detection capability. (3) Based on the operations in the algebraic system, we
can obtain test sequences from regular expressions. And all operations can be auto-
matically achieved. (4) Test sequences derived from our method include all possible
paths, hence they have the higher fault detection capability than those derived from
the traditional method. (5) A shortcoming of our method is that the number of test
sequences is too much. Therefore the redundant test sequences need to be reduced
according to some techniques in Ref. [24].

s0

s1

s2 s3

t1 t3

t2 t4

t5

s0

s1 s2

s3 s3

s0 s0

t1 t2

t3 t4

t5 t5

(a) (b)

Fig. 9. The traditional test generation method.
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6 Conclusions

In this paper, we present an expression algebraic system to support test modeling. This
system consists of regular expressions denoted by transition sequences and operators,
including., |, *, +, a (), � and ||. Some examples are given to illustrate our modeling
method and test generation method. Compared with the FSM model, the expression
model not only is more expressive for the concurrent system, but also can generate
high quality test sequences from the model. In the future, we will plan to unify test
modeling and test generation into a frame by regular expressions. And we will also
research the techniques for reduced-order modeling and redundant reduction.
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