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Abstract. In this paper we propose a novel method for performing
secure two-party computation. By merging together in a suitable way two
beautiful ideas of the 80’s and the 90’s, Yao’s garbled circuit construc-
tion and Naor and Shamir’s visual cryptography, respectively, we enable
Alice and Bob to securely evaluate a function f(·, ·) of their inputs, x
and y, through a pure physical process. Indeed, once Alice has prepared
a set of properly constructed transparencies, Bob computes the function
value f(x, y) by applying a sequence of simple steps which require the use
of a pair of scissors, superposing transparencies, and the human visual
system. A crypto-device for the function evaluation process is not needed
any more.

Keywords: Yao’s construction · Visual cryptography · Secure compu-
tation

1 Introduction

Yao’s Construction. Latins said: Verba volant, scripta manent. Yao’s construction
disproves the saying. Indeed, [31,32], the papers which usually are cited when
the construction is used or referred to, do not contain any description of it. It
has never been written down by the author, but only provided to the commu-
nity during an oral presentation (FOCS 1986). Fortunately, verba were captured
by other researchers, who used the construction in subsequent papers, first of
all [21]. Later on, it has been widely exploited in protocol design, but, apart
some notable exceptions, it has more or less been considered as a powerful tool
for establishing existential results. However, in the last years, since it has been
shown that fine-tuned implementations, for reasonable input sizes, are becom-
ing practical in many settings, new attention has been devoted to it. A version
of the construction has been clearly described and proved secure according to
precise definitions and assumptions in [28]. In a few other new recently intro-
duced cryptographic primitives and protocols, e.g., functional encryption [7] or
non-interactive verifiable computing [22], the construction plays a key role, and
in [4] it has been even proposed to move from a view of Yao’s construction as a
cryptographic tool to a view of the construction as a cryptographic goal, which
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can be achieved with several security properties and privacy degrees1. From a
certain point of view, Yao’s idea is living nowadays a sort of second life.

Roughly speaking, Yao’s construction, enables two parties, Alice and Bob, to
privately evaluate a boolean function f(·, ·) on their inputs, x and y, in such a
way that each party gets the result and, at the same time, preserves the privacy
of its own input, apart from what can be inferred about it by the other party
from its input and the function value f(x, y). For example, if the function f(·, ·)
is the xor function, given x xor y and one of the input, there is no way to
preserve the other input.

In a nutshell, the construction works as follows: the boolean function f(·, ·)
is represented through a boolean circuit C(·, ·) for which, for each x, y, it holds
that C(x, y) = f(x, y). Yao’s idea is to use the circuit as a conceptual guide for
the computation which, instead of a sequence of and, or and not operations
on strings of bits x and y, becomes a sequence of decryptions on sequences of
ciphertexts. More precisely, one of the party, say Alice, given C(·, ·), computes
a new object C̃, which is usually referred to as the garbled circuit [2], where:

– to each wire w of C(·, ·), are associated in C̃ two random keys, k0
w and k1

w,
which (secretly, the correspondence is not public) represent 0 and 1, and,

– to each gate G(·, ·) of C(·, ·), corresponds in C̃ a gate table G̃ with four rows,
each of which is a double encryption, obtained by using two different keys
ka

w1
and kb

w2
, for a, b ∈ {0, 1}, of a message which is itself a random key kc

w3
,

for c ∈ {0, 1}. In details, each double encryption Eab=Ekb
w2

(Eka
w1

(kc
w3

)) uses
one of the four possible pairs of keys (ka

w1
, kb

w2
), associated to the input wires

(w1, w2) of gate G(·, ·), and the message which is encrypted is the random
key kc

w3
, associated to the wire w3 of output of the gate G(·, ·) if and only if

G(a, b) = c. The four double encryptions E00, E01, E10 and E11 are stored in
the gate table rows in random order.

Once C̃ has been computed, Alice sends to Bob all the gate tables G̃ asso-
ciated to the circuit gates G(·, ·), and reveals the random keys k0

w and k1
w, asso-

ciated to all the output wires w, and their correspondences with the values 0
and 1. Moreover, for the input wires of the circuit, she sends to Bob the ran-
dom keys kx1

w1
, kx2

w2
, . . . , kxn

wn
corresponding to the bit-values of her own input

x = x1x2 . . . xn. To perform the computation represented by C̃, then Bob needs
only the keys associated to the input wires corresponding to his own input. This
issue is solved by means of executions of 1-out-of-2 oblivious transfer protocols
[18], through which Bob receives the random keys ky1

wn+1
, ky2

wn+2
, . . . , ky2n

w2n
corre-

sponding to the bit-values of his own input y = y1y2 . . . yn and nothing else, while
Alice from the transfer does not know which specific keys Bob has recovered.

Finally Bob, according to the topology of the original circuit C(·, ·), level
after level, decrypts one and only one entry from each gate table G̃ in C̃, until
he computes one and only one random key associated to each output wire.
The binary string which corresponds to the sequence of computed random keys,
1 The introduction of [4] offers a brief history of the construction and a nice accounting

of the research efforts which followed.
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associated to the output wires, is the value C(x, y). Bob sends the result of the
computation to Alice2.

It is easy to check that the computation is correct and, intuitively, that the
privacy of the inputs is preserved. The random keys held by Bob, the rows of
each G̃, and the random keys obtained decrypting a row in each G̃, do not leak
any information about the actual bits of Alice’s input value.

Visual Cryptography. Visual cryptography is a special type of secret sharing in
which the secret is an image and the shares are random-looking images printed
on transparencies. It was introduced by Naor and Shamir [27] and, in a different
form, by Kafri and Keren [24]. The captivating peculiarity of this type of secret
sharing is that the reconstruction of the secret is performed without any com-
putational machinery: it is enough to superpose the shares (transparencies) in
order to reconstruct the secret. Roughly speaking, for black-and-white images,
the bit value 0 is encoded as a transparent pixel, the bit value 1 is encoded
as a black pixel, and the reconstruction operation is an or and is performed
by the human visual system when the shares are superposed. Visual cryptogra-
phy has been extensively studied (e.g. [1,6,11,12,14,16,17,19,23]); we refer the
interested reader to [15] for a collection of surveys on several aspects of visual
cryptography. For the goal of this paper we will be using a particular type of
visual cryptography: probabilistic visual cryptography [13,30].

Our Contribution. In this paper we merge together Yao’s construction and prop-
erly defined visual cryptography schemes, in order to propose a method through
which Alice and Bob can securely evaluate a function f(·, ·) of their inputs, x
and y, through a pure physical process.

Our efforts were inspired and driven by the work of Kolesnikov [26], who
showed that a different approach to the function evaluation process in Yao’s
construction can be pursued. Roughly speaking, instead of constructing the gar-
bled circuit C̃ by using for each gate G(·, ·) a gate table G̃, containing a double
encryption for each possible input pair of keys, Kolesnikov showed that it is
possible to use secret sharing schemes designed to realize the functionalities
implemented by the logical gates. Such schemes were referred to as gate equiva-
lent secret sharing schemes (GESS, for short) [26]. Using a GESS, any time that
two shares, say sha

w1
and shb

w2
, associated to the input wires w1 and w2 of gate

G(·, ·), are combined through the reconstruction function of the GESS, the secret
sw3 , associated to the output wire w3 of gate G(·, ·) is recovered. It follows that
an explicit representation G̃ of G(·, ·) is not needed any more, because all the
information required to reconstruct the secret value associated to w3, depending
on the functionality of the target gate G(·, ·), is coded and, hence, implicitly
represented, into the shares sha

w1
and shb

w2
. Therefore, given the circuit C(·, ·),

and by applying a bottom-up process, which starts from the circuit output wires
and ends when the circuit input wires are reached, Alice can construct shares
associated to the circuit input wires which encode all the information needed
to evaluate C(·, ·) on every pair of inputs (x, y). Then, as in Yao’s construction,

2 A detailed description of Yao’s protocol can be found in [28].
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Alice sends directly to Bob the shares corresponding to the bit-values of her
own input x, while Bob, by means of executions of 1-out-of-2 oblivious transfer
protocols, receives the shares corresponding to the bit-values of his own input
y. Finally, Bob applies iteratively the GESS reconstruction functions, until the
secrets associated to the output wires, which correspond to the value C(x, y),
are obtained.

In this paper we provide a generalization of the above approach and a visual
implementation.

Notice that, the technique used by Kolesnikov [26], does not immediately
extend to visual secret sharing. In order to exploit visual secret sharing, some
technical details and issues need to be addressed. The most important ones are
two: (i) we need to define and construct a visual counterpart of a GESS scheme,
and (ii) propose a physical method to perform the oblivious transfer. Both of
them are goals of independent interests. We show that the GESS construction
provided in [26] is a special case of a general construction which uses multi-secret
sharing schemes, and that it can be instantiated by using a visual multi-secret
sharing scheme. We also provide a construction. Regarding the oblivious trans-
fer, even if physical metaphors have often been used for describing cryptographic
primitives and protocols, only few papers have dealt with physical implementa-
tions. To our knowledge, the state of the art is summarized in [29], which is the
first paper that rigorously addresses the issue of realizing cryptographic proto-
cols by using tamper-evident seals (sealed envelopes and locked boxes). We could
use an oblivious transfer protocol of [29], but since we discuss a simpler scenario,
we propose an easier construction which uses indistinguishable envelopes. The
main result we achieve can be (informally) stated as follows:

Theorem 1. Every two-party computation representable by means of a boolean
function f(·, ·) can be performed preserving the privacy of the inputs x and y
through a pure physical visual evaluation process.

2 Definitions and Tools

Let us start by setting up the notation and stating basic definitions. We follow
essentially the treatment of [20,28] (i.e., see Sect. 2 of [28] or Chap. 7 of [20]).

2.1 Notation

Efficient Algorithms. An efficient algorithm is a probabilistic algorithm running
in poly(k) time, where k is a security parameter. Efficient algorithms are referred
to as PPT algorithms.

Negligible Functions. A function f(·) is negligible if it vanishes faster than the
inverse of any fixed positive polynomial. That is, for any positive integer c, there
exists an integer k0 such that f(k) ≤ 1

kc , for any k ≥ k0. We denote by negl(k)
a negligible function.
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Algorithms and Random Variables. If A(·) is a probabilistic algorithm, then, for
any x, the notation A(x) refers to the random variable that assigns to the string
σ the probability that A, on input x, outputs σ.

Distribution Ensembles. If S is an infinite set, and X = {Xs}s∈S and Y =
{Ys}s∈S are distribution ensembles3, then we say the X and Y are identically
distributed, X

p≡ Y for short, if, for every distinguisher D and for every s ∈ S,
it holds that Pr[D(Xs) = 1] − Pr[D(Ys) = 1] is equal to 0. Similarly, if the Ds
are PPT algorithms, and for all sufficiently large (in the length of the security
parameter) s ∈ S it holds that |Pr[D(Xs) = 1] − Pr[D(Ys) = 1]| is a negligible
function negl(s) in s, we say that X and Y are computationally indistinguishable,
X

c≡ Y for short.

2.2 Secure Two-Party Computation

We consider two-party computation in presence of a static semi-honest adversary.
The adversary controls one of the parties and, although it follows the protocol
specification, it might try to learn extra information from the transcript of the
messages received during the execution.

A two-party computation is a random process that maps pairs of inputs to
pairs of outputs, one for each party. We refer to such a process as a function-
ality and denote it f : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ × {0, 1}∗, where f(x, y) =
(f1(x, y), f2(x, y)).

Let π be a two-party protocol for computing f . Intuitively, a protocol is
secure if whatever a party can compute participating in the protocol can also be
computed by himself by using only his own input and his own function value.
More formally, for i ∈ {1, 2}, denoting with the random variables viewπ

i (x, y), the
view (i.e., input, random coins, messages received...) that party i has during the
execution of π(x, y), by outputπi (x, y) the output of party i, and by outputπ(x, y)
the output of both parties, we state the following4:

Definition 1. Let f be a functionality. A protocol π computes f in a perfectly
(computationally) secure way, in presence of a static semi-honest adversary, if

{outputπ(x, y)}(x,y)∈{0,1}∗ = {f(x, y)}(x,y)∈{0,1}∗

3 A random variable is sufficient to represent the input, the output or any intermediate
computation of a randomized entity in a single protocol execution. However, since it
is of interest analyzing the behavior of protocol executions, according to input sizes
depending on the security parameter k, collections of random variables are needed:
an ensemble is exactly a family of random variables, where each of them, say Xs, is
uniquely identified by an index s, related to the security parameter k.

4 We deal in the following with a deterministic functionality.Hence, we state the sim-
plified versions of the definitions in [20,28]. Moreover, we also state the definition for
the unconditionally secure case. As we will show later, by using an unconditionally
secure physical implementation of the oblivious transfer, known to be possible [29],
the definition in the physical world is achieved by our protocol.
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and there exists (PPT) algorithms Sim1 and Sim2 such that:

{Sim1(x, f1(x, y))}(x,y)∈{0,1}∗
p/c≡ {viewπ

1 (x, y)}(x,y)∈{0,1}∗ ,

{Sim2(y, f2(x, y))}(x,y)∈{0,1}∗
p/c≡ {viewπ

2 (x, y)}(x,y)∈{0,1}∗ .

3 Visual Gate Evaluation Secret Sharing

In this section, building on the definitions and the constructions provided in
[26], we introduce the notion of visual gate evaluation secret sharing (VGESS,
for short), and we show how to construct a VGESS scheme. We proceed as
follows: (i) we recall some notions on secret and multi-secret sharing schemes
and their visual version, (ii) we recall the definition of GESS schemes [26], (iii)
we define a general construction for GESS schemes, GenGESS for short, in terms
of multi-secret sharing schemes. The construction in [26] ends up to be a special
instance of it. Finally, in order to take benefits from the general form, (iv) we
define VGESS and, by using a visual multi-secret sharing scheme, (v) we realize
an implementation.

3.1 Secret Sharing and Multi-Secret Sharing Schemes

Let us briefly introduce secret sharing and multi-secret sharing schemes5.
Roughly speaking, a secret sharing scheme is a method through which a

dealer shares a secret s among a set of parties, in such a way that, later on,
some subsets of parties can reconstruct the secret, while others do not get any
information about it. Similarly, a multi-secret sharing scheme enables the dealer
to share more than one secret among the set of parties, in such a way that
different subsets of parties reconstruct different secrets.

Let P = {1, . . . , n} be a set of n parties. A collection of subsets A ⊂ 2P is
monotone if A ∈ A and A ⊆ B imply that B ∈ A.

Definition 2. Access structure. An access structure on the set of parties P is
a pair (A,F) such that A ⊂ 2P is a monotone collection, F ⊂ 2P , and A∩F = ∅.

(A,F) is a specification of the sets which reconstruct the secret and of the
sets which do not get any information about it. Usually sets in A are called
authorized, while sets in F are called forbidden. Sets in 2P \ (A ∪ F) are sets for
which we do not care.

Let S, SH1, . . . , SHn be finite sets. The set S is usually referred to as the
set of secrets and the sets SH1, . . . , SHn as the sets of shares. Moreover, denote
5 We do not follow the traditional entropy-based characterization, e.g., [8,25], since in

our analysis we are not going to use the entropy function. A comprehensive study of
secret sharing schemes which does not use the language of information theory can
be found in [5]. See also a recent survey [3].
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with s and sh1, . . . , shn elements belonging to S and SH1, . . . , SHn, respectively,
and for each X = {i1, . . . , im} ⊆ P, with SHX = SHi1 × . . . × SHim and with
shX = (shi1 , . . . , shim). Using the above notation, we state the following:

Definition 3. Secret sharing scheme (SSS for short). Let S be a set of
secrets, where |S| ≥ 2. A secret sharing scheme Σ = (Shr,Rec) with secret
domain S realizing the access structure (A,F) is a pair of algorithms Shr and
Rec where

– Shr is a probabilistic algorithm which takes as input a secret s ∈ S and outputs
a set of shares sh1, . . . , shn.

– Rec is a deterministic algorithm which takes as input a set of shares shX for
X ⊆ P, and outputs either s ∈ S or ⊥

satisfying the following properties:

1. Correctness. For each A ∈ A, and for every secret s ∈ S, it holds that
Pr[Rec(Shr(s)A) = s] = 1

2. Privacy. For each F ∈ F , and for every s1 ∈ S and s2 ∈ S, it holds that
Pr[Shr(s1)F = shF ] = Pr[Shr(s2)F = shF ]

Property 1 guarantees that each authorized subset reconstructs the secret, while
property 2 that each forbidden subset does not get any information from its
subset of shares, since the subset is compatible with each possible secret with
the same probability. Moreover, the definition does not assume any probability
distribution on the set S, and can be weakened by not requiring perfect recon-
struction or by requiring just statistical or computational privacy. Definition 3
can also be easily extended to multi-secret (MSSS for short), i.e., the case in
which the dealer distributes more than one secret. Formally, it is necessary to
consider, instead of a single set of secrets S and a single access structure (A,F),
sets of secrets S1, . . . , S� and access structures (A1,F1), . . . , (A�,F�).

Remark. Notice that, in our construction we will consider a simple multi-secret
sharing scheme, a 2-MSSS: the set of parties is P = {1, 2, 3}, the sets of secrets
are two and are equal, i.e., S1 = S2 = S, and the access structures are defined by
A1 = {{1, 2}} ,F1 = {{1}, {2}, {3}} and A2 = {{1, 3}} ,F2 = {{1}, {2}, {3}} .

3.2 Visual Cryptography

Visual cryptography schemes can be deterministic or probabilistic. The schemes
introduced by Naor and Shamir are deterministic. The schemes introduced by
Kafri and Keren are probabilistic. Deterministic schemes need to associate to
each pixel of the secret image, a collection of m ≥ 2 pixels in the shares. Para-
meter m is called the pixel expansion of the scheme. For probabilistic schemes it
is possibile to have m = 1.

Given two images I1 and I2, with the same size, printed on transparencies,
we denote with Sup(I1, I2) the image that results from the superposition of the
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two images. Interpreting white as 0 and black as 1, for each pixel position (i, j),
we have that Sup(I1, I2) = I1(i, j) or I2(i, j).

Let us start with the definition6 of a probabilistic visual secret sharing scheme
for a set P = {1, 2} of two parties, with access structure defined by A = {{1, 2}}
and F = {{1}, {2}}.
Definition 4. Probabilistic (2, 2) -VCS. Let S be a set of secret images, such
that |S| ≥ 2. A probabilistic (2, 2)-VCS is a secret sharing scheme realizing the
access structure defined by A = {{1, 2}} and F = {{1}, {2}} where Shr and Rec
are such that

– Shr is a probabilistic algorithm which takes as input a secret I ∈ S and outputs
a pair of visual shares (sh1, sh2)

– Rec is the deterministic algorithm Sup(·, ·) which superposes sh1 to sh2

satisfying the following properties:

– Correctness: For each pixel position (i, j), if I(i, j) = • then Sup(sh1, sh2)
(i, j) = •, and if I(i, j) = ◦ then pr[Sup(sh1, sh2) (i, j) = ◦] > 0.

– Privacy: For each pixel position (i, j), regardless of the values of I(i, j),
pr[sh1(i, j) = ◦] = pr[sh2(i, j) = ◦], and, consequently, pr[sh1(i, j) = •] =
pr[sh2(i, j) = •].

Notice that, in the above definition we require that black pixels are recon-
structed perfectly.

In general, VCSs can be implemented by means of distribution matrices. Pre-
cisely, let n and m be two integers, where n represents the number of parties and
m is the pixel expansion. A scheme is usually defined by two collections C◦ and
C• of n × m matrices with elements in {◦, •}. The Shr algorithm, for each secret
pixel, chooses a distribution matrix M at random from C◦, if the secret pixel is
white, or from C•, if the secret pixel is black, and uses row i of M to construct
the pixel on the ith share. For example, the following collections of distribution
matrices can be used to realize a probabilistic (2, 2)-VCS:

C◦ =
{[◦

◦
]

,

[•
•
]}

C• =
{[◦

•
]

,

[•
◦
]}

More precisely, assuming that the set S of secret images contains all black-
and-white square images I of n × n pixels, and that R = {0, 1}, denoting the
distribution matrices in C◦ as C◦,0, C◦,1, and in C• as C•,0, C•,1, a probabilistic
(2, 2)-VCS, can be realized as follows:

6 In this abstract, to simplify the presentation of our approach, instead of providing
general definitions, we concentrate on specific definitions of VCS for the tools we
need in our construction.
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An example of application of the scheme is given in Fig. 1.

Fig. 1. Example of shares and superposition for a probabilistic (2, 2)-scheme.

The Probabilistic (2,2)-VCS satisfies Definition 4. More precisely:

Theorem 2. The Probabilistic (2, 2) -VCS construction realizes a probabilistic
(2,2)-VCS.

All proofs of our statements will appear in the full version of this paper.
We also remark that the Probabilistic (2,2) -VCS scheme is the same as the

random grid scheme of Kafri and Keren [24].
Let us now define a 2-MVCS i.e., a visual multi-secret sharing scheme for

a set P = {1, 2, 3} of three parties, with access structures defined by A1 =
{{1, 2}} ,F1 = {{1}, {2}, {3}} and A2 = {{1, 3}} ,F2 = {{1}, {2}, {3}}. The
scheme will be used to share 2 secret images I0 and I1 which will be recon-
structed, respectively, by A1 and A2.

Definition 5. Probabilistic 2-MVCS. Let S be a set of secret images, such
that |S| ≥ 2. A probabilistic 2-MVCS is a multi-secret sharing scheme with
domains S1 = S2 = S realizing the access structure defined by A1 = {{1, 2}} ,
F1 = {{1}, {2}, {3}} and A2 = {{1, 3}} ,F2 = {{1}, {2}, {3}}, where Shr and
Rec are such that

– Shr is a probabilistic algorithm which takes as input two secret images I0 ∈ S
and I1 ∈ S and outputs three visual shares (sh1, sh2, sh3).

– Rec is the deterministic algorithm Sup(·, ·) which superposes a pair of shares.

satisfying the following properties:
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– Correctness: For h = 0, 1, for each pixel position (i, j), if Ih(i, j) = •,
then Sup(sh1, sh2+h)(i, j) = •, and if Ih(i, j) = ◦, then pr[Sup(sh1, sh2+h)
(i, j) = ◦] > 0.

– Privacy: For each pixel position (i, j), pr[sh1(i, j) = ◦] = pr[sh2(i, j) = ◦] =
pr[sh3(i, j) = ◦], and, consequently, pr[sh1(i, j) = •] = pr[sh2(i, j) = •] =
pr[sh3(i, j) = •].

Notice that the definition does not state any requirement for the superposi-
tion of sh2 and sh3, that is we neither require a reconstruction nor an assurance
of no information leakage for the combination of the two shares: we simply don’t
care as in our application they will never appear at the same time.

By using in a suitable way the collections of distribution matrices C◦, C• of
the Probabilistic (2,2) -VCS, a Probabilistic 2 -MVCS can be realized as follows:

It is possible to show that the Probabilistic 2-MVCS satisfies Definition 5.
More precisely:

Theorem 3. The Probabilistic 2 -MVCS construction realizes a probabilistic 2-
MVCS.

3.3 GESS: Definition

At this point, we recall the definition of a GESS scheme given in [26]. Let
us define a selector v as a pair of bits, that is v ∈ V 2 = {0, 1} × {0, 1}.
A selection function Sel takes as input a pair of pairs and a selector, and
selects one element from each of the two pairs, according to the selector, i.e.,
Sel : (((a0, a1), (b0, b1)), (v1, v2)) → (av1 , bv2).

Given a gate G and a selector v = (v1, v2), we denote with G(v) the output
of gate G on input (v1, v2).

Definition 6. A gate evaluation secret sharing scheme for gate G is a pair of
algorithms (Shr,Rec) such that
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– Shr is a probabilistic algorithm which takes as input two secrets s0 ∈ S and
s1 ∈ S and outputs a tuple (t1, t2) where each ti, for i = 1, 2, consists of two
shares, i.e., t1 = (sh1,0, sh1,1) and t2 = (sh2,0, sh2,1)

– Rec is a deterministic algorithm which takes as input two shares and outputs
s ∈ S or ⊥

satisfying the following conditions:

– Correctness: For each s0 ∈ S and s1 ∈ S, and for any selector v ∈ V 2, it
holds that Rec(Sel(Shr(s0, s1), v)) = sG(v).

– Privacy: There exists a PPT algorithm Sim such that, for each s0 ∈ S

and s1 ∈ S, and for any selector v ∈ V 2, it holds that Sim(sG(v))
p≡

Sel(Shr(s0, s1), v).

3.4 A General Construction for GESS

A GESS for a gate G (GESSG, for short) can be implemented by using a
2-MSSS Σ = (ShrΣ , RecΣ). More precisely, we use two instances of Σ for a
set of parties P = {1, 2, 3}, denoted with the letters A and B to simplify the
presentation7. Instance A = (ShrA,RecA) and instance B = (ShrB ,RecB), with
ShrA = ShrB = ShrΣ and RecA = RecB = RecΣ , have secret domains S1 =
S2 = {s0, s1}, and both of them realize the pair of access structures defined by
A1 = {{1, 2}} ,F1 = {{1}, {2}, {3}} and A2 = {{1, 3}} ,F2 = {{1}, {2}, {3}} .

The construction is given in Table 1. In step 1, the two instances of Σ provide
shares which reconstruct sG(0,0) and sG(0,1) (instance A) and sG(1,0) and sG(1,1)

(instance B). Then, in step 2 the shares of A and B are viewed as sub-shares, and
are rearranged and concatenated in order to construct shares which reproduce
the functionality implemented by G. The random permutation bit b is used to
hide the correspondence first-part/second-part of the share associated to the
right wire and the secret which is reconstructed. Finally, in step 3, the shares
for the wires of G are given in output.

Notice that the construction generalizes the construction given in [26]. Indeed,
Kolesnikov’s construction is a special case, where, assuming that the secrets
s0, s1 are n-bit strings and R0 and R1 are also n-bit strings, chosen uniformly
at random, the shares produced by the two instances of the 2-MSSS are shA

1 =
R0, sh

A
2 = sG(0,0) ⊕ R0, sh

A
3 = sG(0,1) ⊕ R0, and shB

1 = R1, sh
B
2 = sG(1,0) ⊕

R1, sh
B
3 = sG(1,1) ⊕R1, where R0 and R1 is the fresh randomness used by A and

B, respectively, and the Rec(·, ·) function is the ⊕ (xor) function.
We show now that the general construction for GESSG satisfies Definition 6.

More precisely:

Theorem 4. The GenGESS construction realizes a GESSG.
7 We stress that the scheme is the same, and it is used twice with independent and

fresh randomness.
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Table 1. General construction for a GESS scheme with a multi-secret sharing scheme.

3.5 Visual GESS

Visual gate evaluation secret sharing schemes (VGESS, for short) are a visual
realization of a GESS scheme. More precisely, we state the following:

Definition 7. A visual gate evaluation secret sharing scheme for gate G
(VGESSG, for short) is a pair of algorithms (Shr,Rec) such that

– Shr is a probabilistic algorithm which takes in input two secret images I0 ∈ S
and I1 ∈ S and outputs a tuple (t1, t2) where each ti, for i = 1, 2, consists of
two visual shares, i.e., t1 = (sh1,0, sh1,1) and t2 = (sh2,0, sh2,1)

– Rec is the deterministic algorithm Sup(·, ·) which superposes a pair of shares.

satisfying the following conditions:

– Correctness: For each I0 ∈ S and I1 ∈ S, and for any selector v ∈ V 2, it
holds that, for each pixel position (i, j), if IG(v)(i, j) = •, then Sup(Sel((Shr(
I0, I1), v))(i, j) = •, and if IG(v)(i, j) = ◦, then pr[Sup(Sel((Shr(I0, I1), v))
(i, j) = ◦] > 0.

– Privacy: There exists a PPT algorithm Sim such that, for each I0 ∈ S

and I1 ∈ S, and for any selector v ∈ V 2, it holds that Sim(sG(v))
p≡ Sel(Shr

(s0, s1), v).
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It is possible to check that the general construction for GESSG, based on
a multi-secret sharing scheme, realizes a VGESSG if the multi-secret sharing
scheme therein used is substituted with a visual multi-secret sharing scheme.
Indeed, the following result holds:

Corollary 1. The GenGESS construction for a gate G realizes a VGESSG if the
2-MSSS is instanced with the Probabilistic 2-MVCS.

4 A Visual Two-Party Protocol

In this section we describe our visual two-party protocol. We start by showing
how to realize a physical oblivious transfer and then we provide a full specifica-
tion of the protocol.

4.1 Physical Oblivious Transfer

The 1-out-of-2 oblivious transfer (1-out-of-2-OT, for short) functionality [18]
is an extensively studied cryptographic primitive, which plays a key-role in
secure computation. Several implementations under general assumptions (e.g.,
enhanced trapdoor permutations) and specific assumptions (e.g., factoring,
discrete-log assumption) are available, secure w.r.t. semi-honest and malicious
adversaries, respectively. It is well known that the oblivious transfer is sufficient
for secure multi-party function evaluation. Actually, the protocol we are going
to propose is an unconditionally secure reduction of secure two-party function
evaluation to 1-out-of-2-OT.

Let Alice’s secrets be n-bit strings z0 and z1, let σ be Bob’s bit-choice,
and let ⊥ denote no output. The 1-out-of-2-OT functionality is specified by
((z0, z1, σ) → (⊥, zσ)). The construction we propose is partially inspired to the
approach pursued in [10], when the voter comes out from the booth.

A Physical 1-out-of-2 OT Protocol. Let us assume that the two secrets z0
and z1 are represented in form of transparencies, and Alice has two indistin-
guishable envelopes which perfectly hide the transparency inside. Alice and Bob
proceed as follows:

1. Alice puts the two secrets in the two envelopes, one in the first and one in
the second, and closes both of them. She also adds to each envelope a paper
post-it with number 0 and number 1, depending on the secret which is inside.
Then, she hands the two envelopes to Bob.

2. Bob turns his shoulders to Alice8, checks that the envelopes are identical,
takes the envelopes with the post-it corresponding to the secret he is interested
in, removes the post-it from both envelopes, turns again in front of Alice, and

8 If Alice thinks that Bob has had a career as illusionist, in order to be sure that Bob
does not substitute the envelope that will be destroyed with an identical but fake
one, might requests that Bob shows up in swimsuit.
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Table 2. V2PC protocol

inserts under Alice surveillance the remaining envelope in a paper-shredder
which reduces the envelop and its content in dust9.

Theorem 5. Assuming that indistinguishable envelopes which perfectly hide the
transparency inside can be used, then the Physical 1-out-of-2 OT protocol realizes
a physical perfectly secure 1-out-of-2-OT.

4.2 Our Visual Two-Party Protocol

The protocol is the same reduction of secure function evaluation to 1-out-of-2
OT given via Construction 1 in [26], but with VGESSs instead of GESSs.

V2PC Protocol. Let f : {0, 1}n×{0, 1}n → {0, 1}m be the target functionality
and let C(·, ·) be a boolean circuit that computes f(·, ·), i.e., C(·, ·) is such that,
for all inputs x, y ∈ {0, 1}n, it outputs C(x, y) = f(x, y). Let us also assume
9 An alternative could be that the envelope is burned in front of Alice. The key-

property that need to be satisfied is that the physical process should be irreversible,
the secret cannot be even partially recovered.
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that the circuit is composed of q wires, labeled uniquely with ω1, . . . , ωq, 2n of
which are input wires, say ω1, . . . , ω2n, and m of which are output wires, and �
gates, represented for h = 1, . . . , � by functions Gh : {0, 1} × {0, 1} → {0, 1}. No
circuit-output wire is also a gate-input wire. Along the same line of the original
Yao’s protocol, the description can be split in two phases: (i) shares construction
phase, and (ii) interactive computation phase, described in Table 2.

At this point, we have all the elements needed to state and prove the following
result:

Theorem 6. Let f : {0, 1}n × {0, 1}n → {0, 1}m be a boolean function, and let
C(·, ·) be a boolean circuit that computes f(·, ·), i.e., C(·, ·) is such that, for all
inputs x, y ∈ {0, 1}n, it holds that C(x, y) = f(x, y). Then, assuming indistin-
guishable envelopes can be used, the V2PC protocol computes f in a perfectly
secure way, in presence of a static semi-honest adversary.

4.3 Efficiency and Implementation Details

Two observations need to be done in order to use the V2PC Protocol.
First of all, notice that in the V2PC Protocol the size of the shares associated

to the right wire input gate, doubles at each level of the circuit. However, as
shown in [26], it is the best that can be done in a perfectly secure reduction of
secure function evaluation to OT which uses GESS schemes. It follows that the
construction can be used in real-world applications only for small-depth circuits.
Notice that the choice of using probabilistic visual cryptography schemes has
been done to avoid further increase in the size of the shares. Indeed, the use of
deterministic visual cryptography would have lead to an exponential extra factor
in the increase of the size.

Then, notice that the correctness property of the VGESS definition 7 requires
that the black area of the secret image will be reconstructed (deterministically)
with black pixels, while the white area will be reconstructed, with some proba-
bility, with at least one white pixel. The rationale behind the definition is that
in the reconstruction phase we will have to be able to visually distinguish the
final output value of the function. The quality of the reconstructed image heavily
depends on the depth of the circuit. Indeed, the more levels are in the circuit, the
more image superpositions have to be performed. For each intermediate image
reconstruction, the number of black pixels in the output can only increase. Thus,
the size of the image that we use to encode the values of the output (0 and 1),
must be sufficiently large in order to guarantee that the reconstruction of the
output will have, with some probability, at least one white pixel in the white
area of the original secret image. More specifically, denoting with d the depth of
the circuit, we have that the probability that a specific pixel in the reconstructed
white area is white is equal to (12 )d. Assume that our secret image is defined by
a matrix of t× t pixels and that our representation encodes the bit values, 0 and
1, as depicted in Fig. 2. The secret white area consists of t2/2 pixels. Hence, the
condition that we seek is that 1

2d
>> 1

t2/2 , which implies t >>
√

2d+1. In the
example which follows, where d = 2, we have chosen t = 8.



Secure Two-Party Computation: A Visual Way 33

5 A Simple Example

In this section we provide a simple example of application of the proposed
method. The secret function is

f((x1, x2), (y1, y2)) = (x1 and y1) or (x2 and y2)

where (x1, x2) is the private input of Alice and (y1, y2) is the private input of
Bob, with x1, x2, y1 and y2 being bits.

Image(0)≡ 0 Image(1)≡ 1 Permutation bit 0 Permutation bit 0 Permutation bit 1

Fig. 2. Bit representations: bit value, Image(0) and Image(1), and permutation bit,
prepended to a blank image.

Binary values are represented as two images consisting of 8 × 8 pixels, more
specifically we will use Image(0) and Image(1) shown in Fig. 2 to encode 0 and 1.

In the share construction phase of the V2PC protocol, Alice has to construct
a VGESS for each gate. Alice starts from gate G3. Gate G3 gives the output
value of f , which can be either 0 or 1. Alice constructs the VGESSG3 which
uses the two 2-MVCS A and B. The shares of scheme A reconstruct the secrets
sG3(0,0), sG3(0,1), and those of scheme B reconstruct sG3(1,0), sG3(1,1). Since G3 is
an or gate we have that scheme A reconstructs Image(0), Image(1), and scheme
B Image(1), Image(1).

To finish up the construction of the shares for VGESSG3 Alice has to choose,
at random, the permutation bit b. In the example we are constructing we assume
that the share of scheme A are placed on the left, so that b = 0 for ShA

1 and
clearly b = 1 for ShB

1 . The random bit will be visually represented as a 2-pixel
image which encodes 0 as one black pixel and one white pixel and 1 as two black
pixels10.

The 2-pixel image will be prepended to the share image (and will become part
of the share). Figure 2 shows the permutation bit prepended to a blank share.

Figure 3 (left) shows the shares for G3, including the permutation bit.
Now Alice can go on and consider gate G1. The output of G1 can be either

0||ShA
1 or 1||ShB

1 , where the first element is the permutation bit. Hence the
10 Notice that, for the permutation bit, we are using a deterministic (2, 2)-VCS with

pixel expansion m = 2. We have used this solution for the permutation bit because,
first of all it is possible to use a scheme with pixel expansion since each permutation
bit propagates only from one level of the circuit to the subsequent one, and secondly
because a scheme with pixel expansion allows a deterministic reconstruction.
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Fig. 3. Shares construction for gate G3 (left) and gate G1 (right).

secrets that we need to share are {0||ShA
1 , 1||ShB

1 }. Share ShA
1 corresponds to

the wire value 0, while share ShB
1 to the wire value 1. Since G1 is an and gate,

Alice will need to use two 2-MVCS schemes C and D such that scheme C
reconstructs sG1(0,0) = 0||ShA

1 and sG1(0,1) = 0||ShA
1 , and scheme B reconstructs

sG1(1,0) = 0||ShA
1 and sG1(1,1) = 1||ShB

1 .

Fig. 4. Shares construction for gate G2
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Fig. 5. Visual circuit for the computation of f

Also for gate G1 Alice has to choose the permutation bit that will allow the
correct reconstruction. Also in this case we decided to use b = 0. Figure 3 (right)
shows the shares for G1.

Finally Alice constructs the shares for G2. The output wire of G2 has to
be able to reconstruct either ShA

2 ||ShB
2 (when the wire value is 0) or ShA

3 ||ShB
3

(when the wire value 1). Gate G2 is an and gate, hence Alice will need to use two
2-MVCS schemes E and F such that scheme E reconstructs sG2(0,0) = ShA

2 ||ShB
2

and sG2(0,1) = ShA
2 ||ShB

2 , and scheme F reconstructs sG2(1,0) = shA
2 ||ShB

2 and
sG2(1,1) = ShA

3 ||ShB
3 .

Also for gate G2 Alice has to choose a permutation bit that will allow the
correct reconstruction. In this case we decided to use b = 1. Figure 4 shows the
shares for G2.

Fig. 6. An example of visual evaluation of the circuit for the computation of f for the
input ((1, 0), (1, 1))
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Alice has now completed the construction phase and all the shares that she
needs for the computation are the ones shown in Fig. 5. The figure shows for
each input wire the shares that correspond to the values 0 and 1. For example
for the left input wire of G1 the value 0 corresponds to share ShC

1 while the
value 1 corresponds to the share ShD

1 .
Notice that all the shares shown in the figure are known only to Alice so far.

At this point Alice chooses the shares that represent the values of her input. As
an example, assume that Alice’s input values are x1 = 0 and x2 = 1. Alice can
throw away ShD

1 and ShE
1 and keep ShC

1 , that represents x1 = 0, and ShF
1 , that

represents x2 = 1. Alice passes both shares, ShC
1 and ShF

1 to Bob. Then Alice
and Bob run two executions of the 1-out-of-2 physical OT protocol so that Alice
will pass to Bob only the shares that correspond to Bob’s input. As an example
assume that Bob’s input values are y1 = 1 and y2 = 1. After the execution of the
two 1-out-of-2 OT protocols, Bob has all the shares that correspond to his input
values and can perform the visual computation of f((1, 0), (1, 1)), as depicted
in Fig. 6.

6 Conclusions

Chapter 7 of [15] describes several applications of visual cryptography. In this
paper we have shown a new application: every two-party computation repre-
sentable by means of a boolean function f(·, ·) can be performed preserving the
privacy of the inputs x and y through a pure physical visual evaluation process.

Several extensions are possible: study non-trivial extensions to cope with
malicious adversaries or to the multi-party case, optimizations, use of different
visual cryptography schemes in order to achieve different properties, just to name
a few.
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of this paper, and an anonymous referee for hints and suggestions.
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