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    Abstract     Synthetic approaches towards pyrroles, bearing fl uorine atoms and 
trifl uoromethyl group, are overviewed in this chapter. Literature data are surveyed 
accordingly to reaction type used to obtain the fl uorinated pyrrole moiety. Properties 
as well as some applications of fl uorinated are also reviewed.  

  Keywords     Pyrroles   •   Fluorine   •   Trifl uoromethyl group   •   Synthesis   •   Fluorinated 
heterocycles  

1         Introduction 

 Pyrroles constitute the core of a large number of alkaloids and many other 
physiologically active compounds, which make them strongly attractive as 
synthetic targets for further investigation. Fluoropyrrole derivatives are important 
anti-infl ammatory agents [ 1 ], stable GnRH receptor antagonists [ 2 ], inhibitors of 
HCV NS5B polymerase [ 3 ], Angiotensin II receptor antagonists used in therapy for 
treating hypertension [ 4 ]. Fluorinated pyrrole derivative chlorfenapyr, discovered 
in 1988, was commercialized in 1995 as a broad-spectrum insecticide [ 5 ].
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    This chapter summarizes the major synthetic pathways towards fl uoro- and 
trifl uoromethylpyrroles. Biological properties and applications of these compounds 
are also included. The chapter is organized according to the reaction type used to 
gain the target fl uorinated pyrrole.  

2     Synthesis of Fluorinated Pyrroles 

2.1     Fluorination/Trifl uoromethylation Methods 

2.1.1     Electrophilic Fluorination 

 Direct fl uorination of pyrrole ring was examined in several works to give a simple 
pathway to fl uoropyrroles. However, high reactivity of pyrrole ring towards 
electrophiles, resulting in their easy polymerization, leads to fl uoropyrroles obtained 
in low or moderate yields, which is a disadvantage of this approach. Except the 
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fl uorination with elemental fl uorine, this method provides regioselectively 
2- fl uoropyrroles. Thus, treatment of N-methylpyrrole  1a  with F 2  under carefully 
controlled conditions in CHCl 3  afforded both 2- and 3-fl uoropyrroles  2,3  together 
with fl uoromethylpyrrole  4  (the yields are not given) [ 6 ].
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    Direct fl uorination of pyrroles  5  without NH-protection can be performed 
with substrates bearing electron-withdrawing substituents, using xenon difl uoride. 
The transformation gives substituted 2-fl uoropyrroles  6  in moderate yields [ 7 ].
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    Fluorination of N-substituted pyrroles  7,9  with xenon difl uoride was also 
performed to give substituted products at α-position  8,10  in moderate yields [ 8 ].
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    The fi rst synthesis of 2-fl uoropyrrole  2b  and N-methylated analogue  2a  was 
performed in gas phase by electron ionization of SF 6 . SF 3  +  species are formed under 
these conditions providing approach to generate a gentle and effective electrophilic 
monofl uorinating reagent for fi ve-membered heterocyclic compounds [ 9 ].
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    A more convenient method of fl uorination is based on the Lewis acid catalyzed 
reaction with N-fl uorobenzenesulfonimide (NFSI). The reaction is catalyzed by ZrCl 4  
and gives 2-fl uoropyrrole  2b  in 53 % yield. The use of a large amount of catalyst can 
increase the yield of the product; but the amount of unknown by-products also 
increases [ 10 ].
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    Fluorination of a series of 2-acylpyrroles  12  was also performed using Selectfl uor. 
Treatment of mono- and nonbrominated 2-acylpyrroles  12  with Selectfl uor in 
MeCN under microwave irradiation leads to fl uorination of the pyrrole ring at the 
5-position. The corresponding fl uoropyrroles  13  were isolated in moderate yields. 
However noticeable amounts of starting materials were also isolated, making real 
yields much higher [ 11 ]. Fluoropyrroles thus obtained were used for the synthesis 
of fl uoroanalogue of hymenidin (see    Sect.  3  of this chapter).
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    Direct anodic fl uorination of 1,2-disubstituted pyrroles  14  gives 5-fl uoropyrroles  16  
and/or fl uorinated adducts  15 ,  17 , pyrrolin-2-ones  18 . The transformation is performed 
with platinum plate electrode in acetonitrile containing supporting fl uoride salts 
Et 3 N-nHF [ 12 ]. The structure of product depends on supporting fl uoride salts.
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    It is known, that convenient approach to fl uorinated fi ve-membered heterocycles, 
including pyrroles, is based on the metallation-fl uorination reactions [ 13 ]. 
Thus, 100 % regioselective lithiation of the starting N-methylpyrrole  19  followed 
by a treatment of the corresponding organolithium derivative with NFSI gives 
2-fl uoro- 5- n -octyl-N-methylpyrrole  20  in 40 % yield [ 13 ]. Similarly, starting from 
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bromopyrrole  21 , highly substituted fl uoropyrrole  22  was prepared with admixture 
of pyrrole  23  [ 14 ].

   

N

1) n-BuLi, TMEDA, r. t.

2) -10 °C, NFSI
40%

Nn-C8H17 n-C8H17

Me Me

F

19 20

N R

CNBr

F3C

EtO

1) t-BuLi, THF, -78°C

R=4-ClC6H4

N R

CNF

F3C

EtO

N R

CNH

F3C

EtO4  :  1

31%

21 22 23
2) NFSI

  

    Reaction of NFSI with lithiopyrrole derivative obtained by Br-Li exchange from 
3-bromopyrrole  24  afforded the desired 3-fl uoro-l-(triisopropylsilyl)pyrrole  25  in 
50 % yield and 1-(triisopropylsilyl)pyrrole  26  as a major by-product [ 14 ,  15 ]. The 
conversion of Grignard reagents into the corresponding fl uorinated products using a 
Br–Mg exchange and a subsequent fl uorination procedure with NFSI represents 
convenient modifi cation of this method providing the fl uoropyrrole  25  in 43 % 
yield [ 16 ].
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    All methods above described are based on the direct fl uorination of heterocycle 
or lithiation followed by fl uorination via formal substitution of hydrogen. However, 
various pyrrole derivatives such as carboxylic acids and halopyrroles can be also 
used as starting compounds for electrophilic fl uorination-decarboxylation. Thus, 
reaction of α-pyrrolecarboxylic acids  27 , in which the ring is highly substituted 
by electron-withdrawing or electron-donating groups, with Selectfl uor gives the 
corresponding α-fl uoropyrroles  28  in 32–47 % yields [ 17 ].
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    Another possibility for the synthesis of fl uorinated pyrroles is the use of their 
nonaromatic precursors. Thus, 3,3-difl uoro-1-pyrrolines  30  were prepared via 
electrophilic fl uorination of the corresponding 1-pyrrolines  29  by Selectfl uor. 
Reaction of the difl uoropyrrolines  30  with sodium alkoxides yielded fl uorinated 
5-(alkoxymethyl) pyrroles  31  in good yields [ 18 ].
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    Effective pathway towards 3-fl uoropyrrole  37  was elaborated on the base of 
easily available methyl  trans -4-hydroxy-L-prolinate  32 . After Boc-protection of 
this compound followed by oxidation with PDC, ketone obtained  34 , was converted 
into difl uoride  35  by the reaction with DAST. N-Boc deprotection of  35  with 
trifl uoroacetic acid afforded, after basic treatment, free base  36  which was aromatized 
by activated manganese dioxide into methyl 4-fl uoro-1H-pyrrole-2-carboxylate  37  
[ 15 ,  19 ].
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2.1.2         Electrophilic Trifl uoromethylation 

 Electrophilic aromatic substitution is also a general method towards trifl uorometh-
ylated pyrroles. Umemoto et al. investigated a variety of sulfonium, telluronium, 
selenonium and oxonium salts as sources of the trifl uoromethyl cation. Thus, the 
sulfonium salt  39  was applied for pyrrole trifl uoromethylation. The 2-CF 3 -pyrrole 
 38b  was obtained regioselectively in 90 % yield [ 20 ]. Several other sulfonium 
salts  40  were also used for pyrrole trifl uoromethylation [ 21 ]. Highest yields were 
obtained with the most electrophilic salts bearing electron-withdrawing groups in 
the benzene rings. Perfect regioselectivity was also achieved then hypervalent 
iodine reagent  41  was used for electrophilic trifl uoromethylation of pyrroles [ 22 ]. 
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High yields of the target pyrroles and simplicity of experimental technique are 
signifi cant advantages of electrophilic trifl uoromethylation.
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2.1.3        Nucleophilic Fluorination 

 In contrast to fl uorination using electrophiles, nucleophilic fl uorination is much 
rarely presented in the literature. A photochemical modifi cation of the Schiemann 
reaction has been used for the preparation of 3-fl uoropyrroles. Thus, treatment of 
aminopyrrole derivative  42  with NaNO 2  in fl uoroboric acid afforded the diazonium 
tetrafl uoroborate  43 . Irradiation of this compound with a high pressure mercury 
lamp gave 3-fl uoropyrrole  44  in 17–25 % yield [ 23 ].
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    2-Fluoropyrrole  2a  was obtained in good yield through the intermediate iodo-
nium salt  46 , starting from stannane  45  [ 24 ]. The reaction represents an example of 
nucleophilic substitution in iodonium salts by fl uoride ion. Similarly, chlorine atom 
in pyrrole  47  activated by electron-withdrawing CO 2 Et and acyl groups was substi-
tuted by fl uoride in DMSO under microwave irradiation to give fl uoropyrrole  48  [ 25 ]. 
The yields of products obtained were not reported.
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2.1.4        Nucleophilic Trifl uoromethylation 

 2-Trifl uromethyl pyrroles can be also synthesized by nucleophilic trifl uoromethylation. 
In few works the  ipso -substitution of iodide in compounds  49  by the trifl uoromethyl 
group was reported using a mixture of FSO 2 CF 2 CO 2 Et and CuBr 2  as the source of 
the unstable intermediate trifl uoromethyl anion [ 26 ]. No yields of compounds  50  
were given.
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    Copper-mediated oxidative cross-coupling of 2-pyrrolylboronic acid  51  with 
TMSCF 3  provided another selective approach to 2-trifl uoromethylpyrrole. Reaction 
proceeds in mild conditions to give  N -TIPS-2-trifl uoromethylpyrrole  52  in 48 % 
yield [ 27 ].
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    Various trifl uoromethylated metalloporphyrins  54  were prepared in high yields 
by the reaction of brominated metalloporphyrins  53  (copper and nickel complexes) 
with stoichiometric amounts of FSO 2 CF 2 COOMe/CuI in the presence of catalytic 
amounts of a palladium catalyst [ 28 ]. Similarly, the (CF 3 ) 2 Cd-CF 3 CdBr-CuBr system 
was used as a source of trifl uoromethyl anion in the synthesis of some porphyrin 
derivatives [ 29 ].
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2.1.5        Radical Trifl uoromethylation 

 The direct trifl uoromethylation of the pyrrole ring is a widely used approach to 
synthesize trifl uoromethylated products [ 30 ]. The  N -methylpyrrole  1a  reacted regi-
oselectively with CF 3 Br in acetonitrile under UV irradiation (Hg lamp) giving the 
2-CF 3 -pyrrole  38a  in 6 % yield. Under similar conditions, the reactions of pyrroles 
 1a,1b  with CF 3 I in acetonitrile [ 31 ] resulted in higher yields. Trifl uoromethylation 
of  1b  proceeded regioselectively in 2-position to give  38b  in 33 % yield, while  38a  
was isolated in 36 % yield [ 31 ] (Table  1 , entries 1 and 2). However, excess of CF 3 I 
(2.5 equiv.) was needed to complete the conversion of  1a . This resulted in the 
admixture of the bis-trifl uoromethylation product  56a  (7 %). In contrast, 
 N -benzyl- and  N -( p -tolyl)substituted pyrroles  1d  and  1e  afforded the corresponding 
derivatives  38d  and  38e  in 71 % and 91 % yields, respectively [ 32 ] (Table  1 , 
entries 3 and 4).

   
N
R

CF3N
R

N
R

CF3

1 38 55
N
R

CF3F3C
56

[ CF3 ]

  

     Similarly, in case of the methylthio derivatives  57  maximal yields of  58  were 
obtained using 2.5 equiv. of CF 3 I. However, full consumption of starting material 
was not achieved and formation of side products  59  was observed [ 31 ].

         Table 1    Synthesis of regioisomeric trifl uoromethylpyrroles   

 Entry  Educt  1   R  CF 3  source  CF 3   Yield  38  (%)  Yield  55  or  56 , (%)  References 

 2   1a   Me  CF 3 I  CF 3   36  7 ( 56 )  [ 31 ] 
 1   1b   H  CF 3 I  CF 3   33  –  [ 31 ] 
 3   1d   Bn  CF 3 I  CF 3   71  –  [ 32 ] 
 4   1e    p -Tol  CF 3 I  CF 3   91  –  [ 32 ] 
 5   1b   H  CF 2 I 2   CF 3   42  2 ( 55 )  [ 33 ] 
 6   1a   Me  CF 2 I 2   CF 3   46  3 ( 55 )  [ 33 ] 
 7   1b   H  (CF 3 CO 2 ) 2   CF 3   72  –  [ 34 ] 
 8   1b   H   70   CF 3   51  –  [ 35 ] 
 9   1b   H  Te(CF 3 ) 2   CF 3   (25:  1( 38b )) a   [ 36 ] 
 13   1a   Me  CF 3 Br  CF 3   52 b   –  [ 37 ] 
 10   1b   H  CF 3 Br  CF 3   15 b   –  [ 37 ] 
 11   1b   H  CF 3 Br  CF 3   47 c   –  [ 37 ] 
 12   1b   H  CF 3 Br  CF 3   65 d   8 ( 55 )  [ 38 ] 

   a Yield not given 
 Reducing systems:  b Zn/SO 2 ,  c Na 2 S 2 O 4 ,  d HCO 2 Na/SO 2   
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    Several other photochemical trifl uoromethylations by CF 3 I were reported. 
The regioisomeric substitution products  61  and  62  were formed [ 32 ] from the tricyclic 
pyrrole  60,  whereas regioselective α-trifl uoromethylation was observed for pyrroles 
 63  and  65  to give 2-CF 3 -pyrroles  64  [ 4 ] and  66  [ 8 ] in moderate and good yields.
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    Surprisingly, the reaction of CF 2 I 2  with pyrrole ( 1b ) and  N -methylpyrrole ( 1a ) 
gave the trifl uoromethylated products  38b  and  38a  in moderate yields under UV 
irradiation in DMF (Table  1 , entries 5 and 6) [ 33 ]. In contrast the related reaction 
with 2,5-dimethylpyrrole  67  gave the trifl uoromethylated dimer  68  instead of the 
desired 2,5-dimethyl-3-trifl uoromethylpyrrole.
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47%
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N
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CF3

1 38 55

CF2I2, hv

CF2I2, hv

3%
2%42%
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    Bis(perfl uoroalkanoyl)peroxides were also applied for radical trifl uoromethylation 
of pyrrole  2b  [ 34 ]. Performing the reaction in freon 113 at −30 °С was found to be 
optimal for all peroxides. In this way 2-CF 3 -pyrrole  38b  was regioselectively 
synthesized in 72 % yield (Table  1 , entry 7). Lower yields were obtained both at 
higher temperature and in diethyl ether as a solvent. 
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 The  N -nitrososulfonamide  70  was shown to be a convenient reagent for radical 
trifl uoromethylation. UV irradiation of  1b  with  70  in the presence of diacetyl as a 
sensitizer led to  38b  in 51 % yield (Table  1 , entry 8). Distinct advantage of this 
method is easy handling of the solid  70  instead of gaseous CF 3 I or of the quite 
unstable bis(perfl uoro-alkanoyl)peroxides.  70  is assessable from trifl uoronitroso-
methane  69  in a one-pot procedure [ 35 ]. Te(CF 3 ) 2  was also used as a trifl uoromethyl 
radical source for trifl uoromethylation. The reaction proceeded under UV irradiation 
and led to a 25:1 mixture of pyrroles  1b  and  2b  (Table  1 , entry 9) [ 36 ].

   

CF3NO
NH2OH

-75 °C

PhSO2Cl

t-BuOK N
CF3

SO2Ph

ON
57% 7069

[CF3-N=N-OH]

  

    Besides UV irradiation, different reductive systems (Zn/SO 2  couple or Na 2 S 2 O 4 ) 
can be used for the initiation of trifl uoromethyl radical formation [ 37 ]. Using these 
systems, compound  38b  was synthesized in low or moderate yields (Table  1 , entries 
10 and 11).  38a  was prepared analogously (entry 13). Initiation by HCO 2 Na/SO 2  
improved the yield of  38b  up to 65 %, but the admixture of 8 % of the regioisomer  55b  
was found (entry 12) [ 38 ].

   

2 SO2 2 SO2 (SO2-SO2)2

SO2 CF3Br SO2 Br CF3

reducing agent

  

    Trifl uoromethylation of pyrroles under oxidative conditions was also reported. 
Thus, the DMSO-CF 3 I-FeSO 4 -H 2 O 2  and DMSO-CF 3 I-Cp 2 Fe-H 2 O 2  systems were 
applied to prepare the 2-CF 3 -pyrroles  71  [ 39 ],  72  [ 40 ],  2b, 73  [ 41 ] regioselectively in 
good to high yields. Similarly, using the combination CF 3 SO 2 Na/ t -BuOOH/Cu(OTf) 2  
in acetonitrile/water, the 2-trifl uoromethyl- N -acylpyrrole  38f  was prepared in 35 % 
yield [ 42 ].

   

N

R2

R1

2019

N
R2

R1 CF3ii: CF3SO2Na, t-BuO2H, Cu(OTf)2
MeCN/H2O, 20 °C

iii:  CF3I, Cp2Fe, H2O2, DMSO

 i: CF3I, FeSO4, 30% H2O2, DMSO

(i) 74 43%
(i) 75 43%

(ii) 38f 35%

71 R1 = 4-MeSO2C6H4, R2 = 4-FC6H4

72 R1 = 2-MeO-5-ClC6H3, R2 = 4-MeCO2C6H4

2f R1 = H, R2 = Ac

2b R1 =R2=H

73 R1 =Ac, R2=Me,

(i) 38b 96%
(iii) 76 79%

  

    Direct fluorination/trifluoromethylation are very synthetically attractive 
approaches to prepare fl uorinated pyrroles due to it is not necessary to construct 
the heterocyclic core. Especially this methods are convenient for the synthesis 
of fl uoropyrroles. In contrast, synthesis of trifl uoropyrroles is restricted by lower 
regioselectivity, moderate yields and the application of gaseous CF 3 I or quite unstable 
(bis(trifl uoroacetyl)peroxides).   
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2.2     Heterocyclizations Leading to Fluorinated Pyrroles 

2.2.1    Synthesis of Fluoropyrroles by [3 + 2] Cycloaddition Reactions 

 Application of cycloaddition reactions is one of the most prominent strategies in 
synthesis of cyclic systems. 1,3-Dipolar cycloaddition of azomethine ylides to 
unsaturated compounds gives rise to a number of pyrrole syntheses. For example, 
azomethine ylide, generating by the thermal ring-opening of 2-carbomethoxyl-
t- butyl-aziridine  77a , reacts with chlorotrifl uoroethene to give a mixture of diaste-
reoisomeric chlorofl uoropyrrolidines  78 . Treatment of those with sodium methoxide 
resulted in formation of 3,4-difl uoropyrrole derivative  79  in high yield [ 43 ].

   

CO2MeN

F
F

F
Cl

CO2MeN

FF

N

CO2Me
i

i: FClC=CF2, 200 °C, 2 h; ii: MeONa, MeOH

ii

40% 73%

77a
78 79

  

    Imines  80  react with difl uorocarbene in the presence of dimethyl acetylenedi-
carboxylate (DMAD) producing 2-fl uoropyrroles  83  in 11–78 % yields. This domino 
process was assumed to occur via difl uorocarbene attack on the nitrogen lone pair 
resulting in formation of azomethine ylides  81 , 1,3-dipolar cycloaddition of the 
latter one to DMAD, and dehydrofl uorination of pyrrolines  82  thus formed [ 44 ]. 
Difl uorocarbene can be generated by reduction of dibromodifl uoromethane with 
lead powder in the presence of tetrabutylammonium bromide (Method A) or using 
active lead obtained by reduction of aqueous lead acetate with sodium borohydride 
(Method B). This reaction can be also performed as intramolecular version to form 
substituted 2-fl uoropyrroles  85 ,  86  [ 45 ].

   

R1
N

N CF2 N
R2

R1

F F

F

R2

F
R1

N

MeO2C

F-HF

R2

R1

R
2

MeO2C CO2Me CO2Me

80 83

DMAD

81 82 11-78%

A: CF2Br2-Pb-NH4Br

B: CF2Br2-Pb(OAc)2-NaBH4

A or B

N
R1

O
:CF2

R2

O

N

F

-HF

R1
86

R2
O

N
FR1

59

:CF2

-HF

R1=Ph, Me, tBu,
4-BrC6H4; R2=H, Br

31-81%63%

R1=4-BrC6H4

84

R1= Ph, 2,4-Cl2C6H3,

4-BrC6H4, 4-MeOC6H4,

3-NO2C6H4, 4-ClC6H4,

PhC≡C,(E)-PhCH=CH,

2-furyl, anthracen-9-ylR2=Ph, 4-MeOC6H4, 4-ClC6H4

85

  

    Benzimidazolium N-ylides  90 , generated in situ from bromides  87 , react with 
fl uoroalkenes  88  in DMF in the presence of K 2 CO 3  and Et 3 N, to give fl uorinated 
H-pyrrolo[1,2-a]benzimidazoles  89 . The mechanism of the reaction includes 
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1,3-dipolar [3 + 2] cycloaddition with formation of pyrrolines  91 , followed by base 
induced elimination-aromatization [ 46 ].

   

F

F

X

F

base
- HBr

N

N

R

Ph

N

N

Ph

F

X

R F

F

base
-2HF

N

N

R

Br

F

F

X
TEA, K2CO3

N

N
F

Ph Ph

F

Y+

R

DMF
47-79%

X = Cl, Br, F, CF3; R = COPh, COOEt, CN; Y=F, CF3

87 88

90 91

89

  

2.2.2        Synthesis of Trifl uoropyrroles by [3 + 2] Cycloaddition Reactions 

 Azomethine ylides were also used as dipols for the preparation of CF 3 -pyrroles by 
1,3-dipolar cycloaddition. The ylides  93  and  94  prepared  in situ  from aziridine  92  
in refl uxing xylene, with excess of  N -methyl-maleimide gave an 1:1 mixture of the 
diastereomeric pyrrolidines  95  and  96 . The reactions of  92  with monosubstituted 
ethenes (styrene, methyl acrylate, acrylonitrile) proceeded regio- and stereoselectively 
giving only one of the possible isomers. In contrast, the electron-rich vinyl butyl 
ether led to both possible stereoisomers  97  and  98  in almost 1:1 ratio [ 47 ].

   

N

Me

PhO
92

93(E),94(Z)

Me
N O

Me
NO O

N
Me O

Ph

Me
NO O

N
Me O

Ph

46  :  54

58%

95 96

xylene,
reflux, 20h

R

97 98

MeN

F3C

F3C
F3C

F3C

F3C

F3C

PhOC

O

N
Me

R

Ph

O
N
Me

R

Ph

O

R = Ph;          81% (100:0)

R = CO2Me; 39% (100:0)

R = CN;   83% (0:100)

R = OBu; 89% (47:53)

Δ

  

    The reaction of  92  with methylpropiolate was not regioselective and led to a 4:1:2 
mixture of the pyrroline  99  and the isomeric pyrroles  100  and  101 . The pyrroline  99  
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was shown to be an intermediate, which on refl uxing in xylene was aromatized 
into  100 . The regioisomeric pyrroline leading to  101  was not isolated [ 47 ].

   

N
Me O

Ph

99 100

MeO2C

MeO2C

N
Me O

Ph

CO2MeCO2Me

N
Me O

Ph

101
xylene, reflux

20h
92

MeN

F3C

F3C F3C F3C

PhOC

4 : 1 : 2   

    The addition of azomethine ylides  102  formed by heating of the aziridines  77a,b  
(R =  t -Bu) to the trifl uoromethylated alkenes  103  led to mixtures of the diastereomeric 
pyrrolidines  104  and  105 . Subsequent elimination of HF by treatment with sodium 
methoxide in methanol gave predominantly the pyrrole  106  and minor amount of 
the regioisomer  107  [ 43 ]. 3,4-Bis(trifl uoromethyl)pyrrole  108  with a free nitrogen 
atom was obtained using  N -trimethylsilyl aziridine  77c  [ 48 ].

   

N
R

N
R

R1

N
R

Y

N
R

Y CF3

CF3 CF3

R1

R1R1

R1

R1

N
R

Y

N
R

Y

X X X X

MeONa

R1 = CN, CO2Me;  Y = CF3, H, F
R = t-Bu;  X = H, F

77a-c 102
103

105

106 107
N
H

CO2tBu

(40%)108

R = TMS; R1 = CO2t-Bu;
X = F; Y = CF3

t-BuOK

104

Y

XX

F3C

F3C F3C

F3C

Δ

  

    The reaction of azomethine ylide formed from the aziridine  77a  with trifl uoro-
methylaryl acetylenes gave a mixture of dihydropyrroles  109  and  110 , which formed 
a 1:3 mixture of pyrroles  111  and  112  by oxidation with DDQ [ 49 ].

   

N

t-Bu

N

Ar

77a 110

Ar
xylene, 130 °C

N

Ar CF3

CO2MeCO2Me

CO2Me

tBu tBu

N

F3C

F3C

F3C

Ar

CO2Me N

Ar CF3

CO2Me

tBu tBu

DDQ, CCl4
35°C

~1  :   375-85%

109

112111   

    This methodology was further developed using imidoylchlorides  113  as precursors 
of azomethine ylides [ 50 ], which were generated by treatment with bases. 
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Application of the isomeric chloroimines  114  led to the same pyrroles  116  [ 51 ]. 
The generation of ylides was also possible from dichloroimines  115 , that allowed to 
involve alkenes without any vinylic halogen atoms. The yields were not given [ 52 ].

   

Ar

Cl

N

H

Y X

Z

N

Z

Me

Y

Ar

113

116

Ar N

Cl

114
Ar N CF3CF3CF3

CF3

H

Y H

Z

Ar = 4-ClC6H4;  X = Cl, Br, I; Y = H, CnF2n
+1; Z = CN, NO2, CO2R

ClCl

115

or

DBU or Et3N DBU or Et3N

  

    The 1,3-dipolar cycloaddition of acetylenes and alkenes with oxazolones is 
widely used for the construction of the pyrrole ring. The presence of a CF 3 -group in 
the 1,3-dipolar component opens a pathway to 2-CF 3 -pyrroles, while the application 
of trifl uoromethylated dipolarophiles provides 3-CF 3 -pyrroles. For example, the 
dimethyl pyrroledicarboxylate  120  was synthesized in 78 % yield by the reaction of 
the CF 3 -containing oxazolone  118 , prepared from proline  117  and trifl uoroacetic 
anhydride (TFAA), with dimethyl acetylene dicarboxylate (DMAD) [ 53 ].

   

NH

OHO

N
O

O

N
O

O

F3C

N

CF3CF3

CO2Me

CO2Me

CO2Me

CO2Me

-CO260°C

78%
119 120

TFAA

117 118

DMAD

  

    Derivatives of other amino acids were also used for the preparation of 
pyrroles [ 54 ]. Accordingly, the reaction of the unstable  122 , generated in situ from 
 N -phenylglycine  121 , with ethyl propiolate gave an inseparable 9:1 mixture of  123  
and  124  in 58 % yield. Similarly, the pyrroles  127  were synthesized from trifl uoro-
acetylated sarcosine  125  and the acetylenes  126  [ 55 ].

   

N

Ph

Ph

CO2EtCO2Et

N

Ph

CF3CF3

CF3

CF3

Ph

EtO2C

9  :  1

58%
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N
O

Ph

O
122 123 124

Cl

F

R

Cl

F

R1

N
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CF3

R = OH, R1 = OAc; R = R1 = CO2Me

127

Ac2O

xylene
reflux

CO2H

NHPh
TFAA
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N

O

O

OH

126
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    If electron defi cient terminal alkenes  129  as dipolarophiles were treated with 
appropriately protected arylglycine derivatives  128 , the dihydropyrroles  130  were 
formed as cycloadducts [ 56 ]. However, aromatization was easily possible by treatment 
with oxidants such as bromine or chlorine. Depending on the amount of halogen, 
pyrroles  131 , monohalopyrroles  132  or dihalopyrroles  133  can be synthesized. Using 
that strategy, compound  131  (Ar = 4-ClC 6 H 4 , X = Br) was prepared starting from the 
corresponding  128  in three steps in 30 % overall yield. This compound is a useful 
starting material to synthesize the broad-spectrum insecticide chlorfenapyr and 
analogues [ 57 ].

   

HO2C

NAr

Alk

O

CF3

CF3 CF3 CF3

R

Ac2O
N

R

CF3Ar

Alk

R = CN, NO2, CO2R

1eq X2

N

NC

Ar

Me

N

NC

Ar

Me

X

N

NC

Ar

X

X

X = Cl, Br
130

131 132 133

2eq X2 3eq X2

128
129

  

    The reaction of oxazolones  134  with electron-defi cient alkenes  135  in the 
presence of a base (DBU or Et 3 N) gave the pyrroles  136  in good yields [ 58 ]. 
These base promoted cyclocondensations involve a tandem Michael addition of 
oxazolones  134  to electron-defi cient alkenes  135  followed by intramolecular 
cyclization and decarboxylation. This method opened up a convenient pathway 
to synthesize 2- trifl uoromethylpyrroles containing electron-withdrawing groups 
in 4-position. When the reactions were performed in MeCN and Et 3 N at refl ux, 
yields rose up to 86–94 % in case of the 4-chlorophenyl substituent [ 59 ]. Instead 
of the alkenes their saturated bromo precursors were also successfully applied [ 60 ]. 
The synthetic scope of this reaction was signifi cantly expanded using reactions 
of oxazolones  137  with nitroalkenes  138.  The 2-CF 3 -pyrroles  139  bearing numerous 
combinations of aryl, alkyl, alkoxy, nitro and cyano groups can be prepared by 
this method [ 61 ].
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O

N

O

R1 N
H

EWG

R1 CF3CF3

CF3CF3

H2C
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X
DBU or Et3N

55-87%

R
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X = Cl, Br
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134 136
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N
H

O2N
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H
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Alk, CF3, OAlk
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O

N

O

Ar
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    The reaction of oxazolones  134  with DMAD led to adducts  140 , which were 
transformed into pyrroles  141  after decarboxylation [ 58 ].

   

N
H

CO2MeCO2Me

Ar CF3

CF3
MeO2CMeO2C

Ar = Ph            61%
Ar = 4-ClC6H4  56%

O
NHAr CF3

O

NaOH

Py, Ac2O

CH2Cl2

O

NAr

O

DMAD

134 140
141

  

    The reaction of the oxazolone  142  (bearing two substituents at C-2 atom) with 
DMAD led to the nonaromatic pyrroline  143 , which after passing through a column 
with active Al 2 O 3  gave the pyrrole  144  by elimination of methyl vinyl ketone with 
aromatization. Treatment of  142  with methyl propargylate produced a 3:2 mixture 
of the regioisomers  145  and  146 , while the reaction with acrylonitrile led to the 
pyrroline  147  in 25 % yield [ 62 ].
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    Besides alkyl and aryl oxazolones and their salts, also 5-aminooxazoles  149  [ 63 ] 
as well as the amides of aminooxazoles  151  [ 64 ] were used to synthesize trifl uoro-
methylated pyrroles by cycloaddition. This is not surprising taking into account that 
the aminooxazoles  149  and amides  151  are formal tautomers of the oxazolone imines. 
Accordingly, a number of CF 3 -pyrroles  150  and  152  bearing electron- withdrawing 
groups at the 4-position have been prepared by this method.
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    Mesoionic oxazolones  154 , prepared from  153 , allowed the synthesis of 3-CF 3 - 
pyrroles. Thus, their reactions with fl uorinated derivatives of ethyl propiolate  155  
led to the alkyl pyrrole-3-carboxylates  156  [ 65 ]. Similarly, the reaction of com-
pound  157  with hexafl uorobut-2-yne gave the pyrrole  158  [ 66 ].
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    The reaction of the oxazolones  159  with the trifl uoromethylated chloroalkenones 
 160  proceeded regioselectively via the intermediate bicyclic pyrrolidines  161 , 
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which in the presence of triethylamine eliminated HCl and CO 2 , forming the 
pyrroles  162  in moderate to high yields [ 67 ].

   

N

F3C COR
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R
1

R

R=Me, Ph; R1=Ph, Me; R2=Ph, OBu
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N

O

R1
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    Starting from the analogous fused-ring oxazolones  163  and  166  derived 
from cyclic amino acids, the reaction with the ketone  160  (R 2  = Ph, OBu) 
afforded mixtures of the regioisomeric dihydropyrrolizines  164  and  165  and the 
dihydropyrrolo[1,2-b]isoquinolines  167  and  168 , respectively, in high overall 
yields [ 67 ]. In all cases the isomers  164  and  167  dominate in the mixtures.

   

N
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O

R1
164163

N

CF3
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R1
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COR2

CF3
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15%
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36%
7%
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N
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CF3

R1

17%
65%
50%

-

21%

24%   

    An interesting approach to  N -[2-(alkylamino)aryl]-3-trifl uoromethylpyrroles 
 175  was elaborated by Zhang et al. [ 68 ]. The benzimidazolium salt  169  gave the 
pyrrole  175  in 53 % yield by treatment with ethyl 3,3,4,4,4-pentafl uorobutyrate  169 . 
Initially the ylide  171  and the activated alkene  172  are formed, which subsequent 
1,3-dipolar cycloaddition forms  173 . Elimination of HF continues the reaction to 
give the intermediate  174 , which by proton migration and ring opening leads to the 
fi nal pyrrole  175  [ 68 ].
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    Another mesoionic system used as dipolarophile was a cyclic system of anhydro-
2- hydroxythiazolo[1,3-b]benzothiazol hydroxide  177 . This compound was prepared 
 in situ  from thionobenzothiazole  176  by reaction with acetic anhydride. The subse-
quent reaction with hexafl uorobut-2-yne led to the tricyclic 3,4-bis(trifl uoromethyl)
pyrrole  178  [ 69 ].

   

N

S
S

CO2H

Ac2O

70-75°C
S

N

S

O

F3C CF3

N

S

CF3

CF3

176 177 178

29%

  

    An elegant approach to the “alkaloid-like” heterocycle  182  with a pyrrole moiety 
was developed using the nitrone  179  in a [3 + 2]-cycloaddition with ethyl 
4,4,4- trifl uorobut-2-ynoate ( 180 ) to give fi rst the 3-methyl-2,3-dihydroisoxazole  181  
at 80 °C in toluene. Refl uxing in toluene converted  181  to the 3- trifl uoromethylpyrrole 
 182  through a sequence of ring-opening and ring-closure steps with an azomethine-
type ylide as a key intermediate. This reaction can also be performed in one step 
without isolation of  181  [ 70 ].
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Me

CF3
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43%
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    A number of approaches to tetrakis(trifl uoromethyl)-pyrroles was developed 
using tetrakis(trifl uoro-methyl)-Dewar-thiophene ( 183 ) [ 71 ]. The 1,3-dipolar cyclo- 
addition with azides led to the tricyclic thiiranes  184 . Subsequent desulfurization by 
treatment with PPh 3  afforded the cyclobutenes  185  in good to quantitative yields. 
The result of thermolysis of  185  was strongly depended on the substituent on the 
amine nitrogen. Pyrroles  188  were formed in high yields (cases  a  and  d ), while only 
cyclopropene  189 , or a mixture of  188  and  189  (cases  b  and  c ) were isolated. Pyrrole 
 188a  was also synthesized by the reaction of  183  with aniline in 19 % yield [ 72 ]. 

V. Nenajdenko et al.



75

An alternative approach to the pyrroles  188  is based on thermolysis of compounds 
 184  [ 71 ]. The thietimines  187  were formed in high yields via the thiirane  186 , 
which was isolated and characterized in case of the phenyl compound  186a . 
The conversion of the thietimines  187  into the pyrroles  188a  and  188b  was performed 
by thermolysis, photolysis or by treatment with triphenyl phosphine.
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    Generated by thermally induced SO 2  extrusion from dioxothiazoles  190  (for the 
synthesis of  190  see Sect.  2.2.7 ) under microwave irradiation, azafulvenium 
methides  191  reacts with dipolarophiles to give CF 3 -pyrroles  192 – 195 . Thus, reaction 
of  191a  with N-phenylmaleimide (NPM) leads to polycyclic CF 3 -pyrrole derivative 
 192  in high yield. Phenyl substituted azafulvenium methide  191b  reacts with NPM 
to give pyrrole  195  and admixture of 2-styrylpyrrole  194 , which is formed via 
competitive 1,7-electrocyclization process and can be obtained exclusively by 
decomposition of  190b  in the absence of NPM [ 73 ].
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    Addition of azafulvenium methides to the triple bond was also realized. Thus, 
reaction with DMAD afforded bicyclic CF 3 -pyrrole  196  in 61 % yield. In case of 
unsymmetrical ethyl 3-phenylpropiolate the reaction gives a mixture of 1,3- and 
1,7-cycloadducts  196  and  197 , respectively, in 72 % overall yield with a ratio of 
82:18 [ 73 ].

   

O2S
N

CF3

R

MW, 10 min
240-245 �C
1,2,4-TCB

190a R=H

CO2EtR

N

F3C

Me

R

CO2Et
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EtO2C196 197

R=CO2Et 61%

R=Ph 72%(82:18)   

    [3 + 2] Cycloaddition reactions open an access to both 2- and 3- trifl uoromethylated 
pyrroles with wide range of additional substituents in pyrrole ring, therefore the 
method is very useful and general for synthesis of fl uorinated pyrroles.  

2.2.3      Synthesis of Trifl uoromethyl Pyrroles by [4 + 2] Cycloaddition: 
Cycloreversion Reactions 

 The sequence of Diels-Alder reactions of nonfl uorinated pyrroles with hexafl uorobut-
2- yne followed by retro Diels-Alder reactions (extrusion of acetylene) was also 
used for trifl uoromethylpyrrole synthesis. However, the 7-azanorbornadiene system 
was found to be quite thermostable [ 74 ], which undergoes cycloreversion only at 
very high temperature resulting in low yields of trifl uoromethylated pyrroles. Hence, 
additional steps were necessary. For instance, the reduction of the bicyclo[2.2.1]
hepta-2,5-diene  199  (formed from  198  and hexafl uorobut-2-yne) to  200 , followed by 
a cycloreversion, afforded the 3,4-bis(trifl uoromethyl)pyrrole  201 . Subsequent basic 
hydrolysis gave the target pyrrole  202 . All reactions proceeded almost quantitatively 
to give  202  in 83 % overall yield [ 75 ].
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    Another variation to facilitate the cycloreversion of trifl uoromethylated 
7- azabicyclo[2.2.1]heptadienes is their transformation to polycyclic isoxazolines by 
1,3-dipolar cycloaddition with nitrile oxides followed by elimination of isoxazole. 
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Accordingly, the reaction of  203  with benzonitrile oxide ( 204 ) led to the isoxazolines 
 205  and  206.  Subsequent retro Diels-Alder reaction of  205  afforded the desired 
pyrrole  207  in 52 % yield by elimination of the isoxazole  208 . The isomeric isoxa-
zoline  206  gave the pyrrole  1f  in very low yield [ 48 ].
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    An analogous pathway was used for the synthesis of the pyrrole  217  [ 76 ]. 
The “double” Diels-Alder adducts  211  and  212  of dipyrrolomethane ( 210 ) were treated 
with the electron-defi cient diene 3,6-di(2-pyridyl)-1,2,4,5-tetrazine ( 213 ) to give the 
cycloadducts  214  and  215 . The decay of these compounds proceeded with extrusion 
of 3,6-di(2-pyridyl)-1,2-pyridazine ( 216 ) and gave the pyrrole  217 . No yield was given.
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2.2.4        Synthesis Based on Carbonyl Compounds 

 The use of carbonyl function is classic approach in heterocyclic synthesis. In case 
of fl uorinated pyrroles this approach was frequently used. Convenient method for 
synthesis of pyrroles  221  is based on the reaction of fl uorinated δ-keto acid esters or 
amides  220  with ammonia. In case of methyl and ethyl esters amidolysis was 
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observed to give the corresponding amides [ 77 ]. Starting dicarbonyl compounds 
 220  are easily available through the radical addition of CF 2 I-ketones  218  to alkyl 
acrylates  219  [ 78 ]. Similarly, the reaction of ethyl-4,4-difl uoro-2-iodo-5-oxo-
5-phenylpentanoate  220a  with primary amines in a one-pot scheme produces a 
series of β-fl uoropyrrole derivatives  224  at ambient temperature. The mechanism is 
presented below [ 79 ]. It includes nucleophilic substitution of I- with amine followed 
by heterocyclization and aromatization as key steps.
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    Using α,α-difl uoro-γ-iodo-γ-iodotrimethylsilyl ketones or aldehyde  225  as 
starting compounds, 3,3-difl uoro-5-trimethylsilyl-1-pyrrolines  226, 228  were 
obtained in high yields. Further treatment of them with potassium fl uoride gave 
4,5- unsubstituted 3-fl uoropyrroles  227, 229  in yields up to 95 % [ 80 ].
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    Neutral ozonolysis of compound  230  afforded the cyclic hemiaminal  231  in 
95 % yield. Catalytic hydrogenation of  231  in the absence of the acid led to the 
formation of the pyrrole derivative  233  as a major product [ 81 ].
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    3-Fluoro-1-phenylpyrrole  229a  was effectively prepared starting from 
compound  234 . Cyclic hemiacetal  234 , existing in equilibrium with its open 
form  235 , was reduced into amine  237 , which transformed easily into pyrrole  229a  
via acid catalyzed cyclization and dehydration [ 82 ].
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    A convenient method for the synthesis of polyfunctionalized 3-fl uoropyrroles 
 243  by Rh 2 (OAc) 4 -catalyzed intramolecular N-H insertion reaction of difl uorinated 
diazo compounds  241  was reported [ 83 ]. The starting compounds can be synthe-
sized by Zn-CuCl-promoted Reformatsky-imine addition reaction of 4-bromo- 4,4-
difl uoroacetoacetate  238  with aldimines  239 . Subsequent diazotransfer reaction 
and Rh 2 (OAc) 4 -catalyzed intramolecular N-H insertion allow the preparation of 
3-fl uoropyrroles  243  in almost quantitative yield.

   

Br

O

FF
R1 H

N
R2 O

FF
N
H

R1

R
2Zn, CuCl+

R1

CO2Et

O

N2
FF

N
H

R2

THF

1 mol% 
Rh2(AcO)4

NR1

R2

F OH

CO2Et

243

toluene
80 °C

CO2Et CO2Et

NR1

R2

F OH

CO2Et

F

H

- HF

238 239 240

241 242

R1=Ph, 4-MeOC6H4, 4-ClC6H4, 2-Naphthyl, 2-Furyl; R2=Ph, 4-ClC6H4, 4-MeOC6H4, Bn

90-95%

TsN3

TEA

  

    A valuable method for the synthesis of 2-aryl-3-fl uoropyrroles  247  is 
based on a gold-catalyzed cyclization and dehydrofl uorination of gem- 
difl uorohomopropargylamines  246 . Difl uorinated homopropargylamines  246  can 
be prepared by the addition of gem-difl uoropropargyllithium reagents to arylated 
 N -tosylimines  244  [ 84 ].
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    The Paal-Knorr reaction was used for the synthesis of the pyrrole  250  from 
methyl 4,4,4-trifl uoroacetoacetate ( 248 ) in two steps [ 85 ]. Alkylation of  248  with 
4-fl uorophenacyl bromide gave the 1,4-diketone  249  in 25 % yield after decar-
boxylation. Its cyclization with 2-cyanoethylamine in acetic acid provided  250 , 
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which was used without purifi cation in next step. Similarly, the 1,4-diketones  251  
and  253  gave the pyrrole derivatives  252  [ 86 ] and a series of N-substituted pyrroles 
 254 , respectively [ 87 ].
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    Thiol esters  255  and  258  have proved to be versatile precursors of 
3- trifl uoromethylpyrroles. Methylation of the mercapto groups of  255  and  258,  
followed by subsequent cross-coupling reactions of the resulting thiol esters with 
organozinc reagents yielded 2-trifl uoromethyl-1,4-diketones  256  and  259 , respec-
tively. Classic Paal–Knorr condensation of  256  and  259  afforded highly substituted 
3-trifl uoromethyl fi ve-membered heteroaromatics  257  and  260  in high yields [ 88 ].
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    A versatile approach to 2-CF 3 -pyrroles was elaborated using dihydrofurans as 
masked 1,4-dicarbonyl compounds. Condensation of the dihydrofurans  261  with 
primary amine hydrochlorides gave the corresponding N-substituted pyrroles  262  in 
good yields [ 89 ].
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    The reactions of the diketone  263  with a number of rather basic amines 
(pK a  ~ 9–10) under different conditions gave mixtures of the furans  264  and the 
pyrroles  265  and  266  [ 90 ]. The reactions with two equivalents of primary amines in 
ether afforded mixtures of products  264  and  265  (method A). Large excess of 
pentylamine (8 eq.) increased the yield of furan  264c  and produced the pyrrole 
 265c  and  266c  as minor products. Without solvent the furan  264c  was not formed 
and the pyrrole  266c  became the major product. Maintaining the furan  264  in excess 
amine without solvent at r.t. resulted in its conversion into the corresponding 
pyrrole  266  in 67 % yield.
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    The Knorr pyrrole synthesis was also employed for the synthesis of 
3- trifl uoropyrroles [ 91 ]. Treatment of ethyl trifl uoroacetoacetate  267  with sodium 
nitrite in acetic acid led to the oxime  268 . Refl uxing with zinc dust and addition of 
1,3-dicarbonyl compounds  269  afforded the 3-trifl uoromethylpyrroles  270  in 
moderate yields. Using more acidic trifl uoroacetic acid allowed to lower the 
reaction temperature to 70 °C [ 92 ]. Using a similar approach, the tricarboxylic acid 
ester  273  was prepared starting from the acetone dicarboxylic acid ester  271  and the 
fl uorinated keto ester  272  [ 93 ].
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    The γ-nitro ketones  274  were also used as precursors in pyrrole synthesis. 
The reduction of the nitro compounds  274  by iron depending on the conditions and 
the substrate can give pyrroles  275a,b , dihydropyrroles  276b  or pyrrolidinones  277c . 
It was also found that the di-hydropyrrole  276b  can be transformed into pyrrole 
 275b  in 25 % yield at refl ux in nitrobenzene [ 94 ].
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    The classic Hantzsch pyrrole synthesis is based on the reaction of ketones 
bearing electron-withdrawing group in α-position with α-haloketones or aldehydes 
in the presence of amine or ammonia. For example, the condensation of the masked 
bromoacetaldehyde  278  with ethyl 4,4,4-trifl uoroacetoacetate ( 279 ) and propargyl 
amine gave the pyrrole  280  [ 95 ]. The yield of pyrrole  280  was not given.
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N CF3
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278
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CO2Et
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    In contrast, the reaction of α-halotrifl uoromethyl ketones due to the high 
electrophilicity of these ketones led to furans [ 96 ]. However, in order to synthesize 
pyrroles, the reaction of such α-haloketones has to be carried out with previously 
prepared enamines. So, based on reactions of the bromoketone  281  with enamines  282 , 
a series of 2-CF 3 -pyrroles  283  was obtained in good yields [ 96 ].
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F3C N
H

R1

R2

282 283281

R1= Me, Ph, 4-ClC6H4, 4-MeC6H4;  R2= CN, CO2Me   

    The aim of the following work [ 97 ] was the synthesis of the trifl uoromethyl 
analogue  287  of FPL 64176, which is a calcium channel activator. Key step of the 
synthesis was the reaction of diketone  284  with the azoalkene  285  in refl uxing 
 tert - butanol . The reaction gave the hydroxypyrroline  286  in quantitative yield. 
Subsequent treatment with hydrochloric acid followed by reaction with NaNO 2  
converted the hydroxypyrroline  286  into the target pyrrole  287 .
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    The reaction of the 1,3-diketones  288  with the azoalkenes  289  led regiose-
lectively to the dihydropyrroles  291  in high yields via the intermediates  290  [ 98 ]. 
The compounds  291  are stable and can be isolated in pure form, but they lost easily 
water by treatment with trifl ic anhydride to form the pyrroles  292  [ 99 ].
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    A novel coupling cyclization reaction of 1,3-diketones with imines was applied 
for the synthesis of polyaryl substituted 3-trifl uoromethylpyrroles. The reaction was 
promoted by a low-valent titanium reagent and afforded the pyrroles  295  in high 
to quantitative yields. A number of 1,3-diketones  293  and imines  294  provided a 
variety of pyrroles  295 , bearing different combinations of electron-donating, as well as 
electron-withdrawing substituents in aromatic rings [ 100 ].
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    The Pd(0)-catalyzed reaction of the unsymmetrical 1,3-diketones  296a  and 
 296b  with  N -benzylmethyleneaziridine  297  produced the corresponding 2-trifl uoro- 
methylpyrroles  299a  or  299b  in moderate yields as 1:1 mixture with trifl uoroacetyl-
pyrroles  300a  or  300b  via the intermediate aziridine  298 , which rearrange on 
pathway  a  or  b  to pyrroline cations to give the products  298  and  300  [ 101 ].
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    An effi cient synthetic method for the preparation of polysubstituted furans, 
thiophenes and pyrroles using ynolates was developed by Shindo et al. [ 102 ]. 
The cycloaddition of ynolate  301  to amidoketone  302  gave the oxetene  303 , which 
formed the bicyclic β-lactone  304  by cyclization. Aqueous workup afforded  305 , 
which was converted to the fi nal 2-trifl uoromethylpyrrole  306  in 71 % yield by 
dehydration with TsOH. The ynolate  301  was prepared  in situ  by treatment of ethyl 
2,2-dibromopropanoate with  t -BuLi at −78 °C.
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    Furthermore, bistrifl uoroacetylmethane ( 307 ) at heating with 2-picolylamine 
gave a mixture of the diastereomeric dihydropyrroles  308  and  309  in high overall 
yield [ 103 ]. The ratio of the diastereomers depends on the acidic catalyst and the 
reaction time. Complete dehydration of  308  and  309  resulted in the formation of the 
pyrrole  310  after 24 h at refl ux using  p -toluenesulfonic acid as catalyst. Similarly, 
the 1,3-diketone  311a  (R = Ph) gave an 1:3 mixture of the pyrroles  312a  and  313a , 
while  311b  (R =  t -Bu) gave  312b  as the sole product [ 104 ]. It should be noted, that 
2-(aminomethyl)pyridine appears to be the only amine, which participated in such 
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a transformation. Neither other isomeric (aminomethyl)-pyridines nor benzylamine 
reacted in this way.
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O

N

N

307

toluene,
reflux, 1h

R
O

O

N
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molecular sieves  b R= tBu 64%

N

HO
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N

CF3 CF3HO

F3C

F3C
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F3C

F3C

F3C

F3C

F3C

F3C

5% TsOH
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reflux, 24h

N

NH

N

NH

R

N

NH

R

H2N

H2N

TsOH

308 309 310

xylene, 170°C a R= Ph  12% 37%
-

312 313

+

  

    It was shown that the three-component Grob cyclization of ( E )-1,1,1-trifl uoro-3- 
nitrobut-2-ene  314  with 1,3-dicarbonyls  315  and primary aliphatic amines  316  
provides a simple and convenient approach to substituted 4-(trifl uoromethyl)pyrroles 
 317  bearing different electron-withdrawing substituents at the 3-position. Mild 
conditions and readily available starting materials are distinct advantages of the 
approach [ 105 ].

   

R1

O O

F3C

NO2

R2NH2 R1

O N
R2H

314

314
EtOH

Δ NH

O

R1

R2

CF3

N
OH

O
N

O

R1

R2

CF3

N

OH

OH
N

O

R1

R2

CF3

R1=OEt, Me, Ph
R2=H, Me, Et, Bn, HOCH2CH2, PhCH2CH2, 3,4-(MeO)2C6H3CH2CH2

25-69%

315

316

317

  

2.2.5        Synthesis Based on α,β-Unsaturated Trifl uoromethyl Ketones 

 α,β-Unsaturated trifl uoromethyl ketones such as  319  were found to be very useful 
building blocks for the construction of pyrroles [ 106 ]. For example, the enaminok-
etones  319 , which can be prepared in high yields from the enol ethers  318 , gave the 
3-trifl uoromethylpyrroles  320  or 3-trifl uoroacetylpyrroles  321  depending on the 
reaction conditions [ 107 ]. Thus, the cyclization of  319a  afforded the pyrrole  320a  in 
high yield at refl ux in mesitylene, while at standing in trifl uoroacetic acid at room 
temperature the pyrrole  321b  was formed. It should be mentioned, that non- fl uorinated 
analogs of  319  gave 1:1 mixtures of the corresponding pyrroles under these conditions.
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OR1

R2 R2
R2

R2=Me

O

CF3

NH O

CF3

71-100%

(i) XYCHNH2xHCl, Et3N, MeCN
X=CO2Et, COPh, CN; Y=Ph, H, Me, CH2CH2SMe
(ii) XYCHNH2, MeCN;  X=(MeO)2CH, Y=H

i or ii

318
R1 = Et, H; R2 = Me, H

N
H

F3C

X

N
H

R2

CF3

O

CF3CO2H

mesitylene

reflux
320a (92%)

321b (100%)

X

X=COPh

X=(MeO)2CH
R2=Me

r.t.

X Y 319

Y=H

Y=H

  

    A convenient pathway towards the 3-trifl uoromethyl-pyrroles  323  starts from 
enaminodiketones  322  prepared  in situ  from amino acid derivatives. The derivative 
of  N -benzylglycine ethyl ester gave the pyrrole  323a  quantitatively [ 108 ]. In the 
case of  N -methyl- and  N -benzylglycine the corresponding pyrroles  209b  and  209c  
were obtained in 43 % and 33 % yields. Cyclic amino acid derivatives afforded the 
bicyclic derivatives  324a  (from proline) and  324b  (from pipecolic acid). In both 
cases decarboxylation occurred in the aromatization step. Finally, the reaction of a 
thioproline derivative gave a mixture of pyrroles  325  and  326  [ 109 ].

   

CF3F3C

OO

R
322

N

O

CF3

CF3

R =
N

CO2H

324

N

O

CF3

CF3
R1O2C

R2

N
CH2CO2R1

R2

R =

a R1=Et, R2=Bn,  96%
b R1=H,  R2=Bn, 43%
c R1=H,  R2=Me, 33%

N

O

CF3

CF3

S
N

CF3

S N

S CO2H

R =

325 (14%) 326 (52%)

323

nn

a  n=1 (70%)
b  n=2 (24%)

+

323CH2Cl2

  

    A simple changing of solvent from dichloromethane to acetonitrile allowed to 
prepare  325  exclusively in higher yield. Compounds  212  were converted into dioxo-
thiazoles  190  by catalytic oxidation and then used as a precursor for generation of 
azafulvenium methides acting as 1,3-dipols (see Sect.  2.2.3 ) [ 73 ].
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O2S
N

CF3

R
OF3C

OEt S

R

MeCN
S

CO2H

CO2H

R

CF3

O

TFAA

MeCN

H2O2
Na2WO4

35°C
S

N

CF3

R
R=H   88%
R=Ph 85%

R=H   78%
R=Ph 85%

R=H   73%
R=Ph 70%

325 190322

NH

N

  

    Another example dealing with α,β-unsaturated ketones was reported by Gerus 
et al. [ 110 ]. Ketones  327  were smoothly converted to cyanohydrins by treatment 
with TMSCN, which on reduction with LiAlH 4  afforded the aminoalcohols  328 . 
Acid catalyzed intramolecular cyclization gave  329 , which by dehydration gave the 
pyrroles  330  generally in good yields.

   

N
H

CF3

R2

R3

R2

R1O

R3

O

CF3

R2

R1O
R3

OH

CF3

NH2

N

R3

R2

F3C
OH

R2=H,   R3=H   65%; R2=Me, R3=H   55%

R2=H,   R3=Br  5-10%; R2=Ph, R3=H   90%

a: TMSCN, Et3N, 0-10 °C

b: LiAlH4, ether, 0-5 °C
c: HCl, H2O, MeCN, r.t.

327 329 330328
R1=Me, Et

a

b

c

  

    A number of  N -benzylated 2- and 3-trifl uoromethylated pyrroles were prepared 
using enaminoketones. Accordingly, the treatment of  331  or  334  with NaH-DMSO 
in benzene led to the corresponding pyrroles  332  and  333  or  335 , respectively, in 
moderate yields [ 111 ].

   

N
Bn

CF3R

CO2EtDMSO
benzeneN

Bn

O

CO2Et

CO2Et

R

CF3

N
H

R2

CO2HN
Bn

O
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R1
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NaH

N
Bn

CF3R

CO2H

R=Ph            -                                 51%
R=CO2Et    28%                             15%

R1=CF3, R2=Ph   40%

R1=Ph,   R2=CF3 64%
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334 335

332 333

DMSO
benzene

NaH
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    The photolytic rearrangement of aziridine derived enaminoketones  336  was used 
for the synthesis of a mixture of diphenylpyrrole  337  and dibenzoindole  338  [ 112 ].

   

N

O

F3C Ph

PhR

R
Ph

N
H

CF3

Ph

Ph
N
H

CF3

+

336 337 (23 %) 338 (46 %)

R = H
hv

  

    The 2-trifl uoromethylpyrroles  341  and  342  were obtained in high yields starting 
from  339 . Reaction of the alkoxy azide  339  with a variety of secondary amines 
formed  340 . Subsequent reduction with trimethylphosphine and cyclizing dehydration 
gave  341 , while direct reduction of  339  and cyclization led to  342  [ 113 ].

   

MeCN
0°CORO

CF3 N3

R1NHR2

N
H

F3C

NR1R2

NR1R2O

CF3 N3

N
H

F3C
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340 (60-92 %) 341 (61-81 %)

339
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-(CH2)4

-, -(CH2)5
-,

-(CH2)2-O-(CH2)2
-

R=Me, Et, iPr, nBu

Me3P

THF
0°C

Me3P

THF
0°C

  

    The reaction of ketones  343  with phosphorus analogue of  N -benzylglycinate  344  
allowed to prepare the enaminoketones  345  in good yields. Treatment of  345  with 
bases led to 3-trifl uoromethyl-2-phosphonopyrroles  346  and  351  in low yields via 
5-exo-trig cyclization. Formation of nonphosphorylated pyrroles  347  and  349  was 
also observed making this method less synthetically valuable [ 114 ].
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2.2.6        Synthesis Based on Isocyanides 

 Rhodium catalyzed reactions of ethyl isocyanoacetate  353  with 3- fl uoroacetylacetone 
 352  provides a new facile method for the catalytic synthesis of substituted pyrroles. 
The key step of the reaction is the activation of the C-H bond of isonitrile  353  
induced by the α-heteroatom effect. 3-Fluoropyrrole  44  was obtained in 40 % 
by this method [ 115 ]. The mechanism of the transformation includes rhodium 
promoted decarbonylation of formamide  354  followed by cyclocondensation of 
intermediate  355  to form the corresponding pyrrole  44 .

   

352
N
H

Me

CN CO2Et
Rh4(CO)12

+

F

Me CO2Et

40%

toluene
4 h, 80 °C

Me Me

O O

F

Me Me

O

F

CO2EtOHCHN

Rh Me Me

O

F

CO2EtH2N

- H2O

354 355

353 44

-CO

  

    3-Fluoropyrroles  358, 359  were synthesized using addition of isocyanome-
thylide anions to α-fl uoroalkenyl sulfones and sulfoxides  356 . The addition 
of isocyanoacetate  353  led regioselectively to ethyl 3-fl uoropyrroles  358  in 
moderate yields. In contrast, the addition of tosylmethylisocyanide  357  afforded a 
mixture of 4-fl uoro- 3-methyl-2-tosyl-1H-pyrrole  359  with non-fl uorinated pyrrole 
derivative  360  [ 116 ].

   

356

F

SOnPh

R1

CO2Et
CN

KH   THF, r. t.
R1=4-PhC6H4

N
H

R1

EtO2C

F

n=2  35%
n=1  22%

SO2Tol
CN

N
H

Me

TolSO2

F

n=2 8% 23%
n=1 24% 24%

N
H

Me

EtO2C

SOnPh

353

357

358

359 360NaH   THF, r. t.

  

    Convenient    approach to 3-CF 3 -pyrroles is also based on the condensation of 
electron-defi cient alkenes with isocyanomethylide anions. A wide range of pyrroles 
 362  was synthesized from α-trifl uoromethyl(vinyl-sulfones)  361  and ethyl isocya-
noacetate  353  [ 117 ].
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R1

CF3

SO2R2

N
H

R1 CF3

EtO2C

R1=Ph, 4-MeC6H4, 4-ClC6H4, 4-MeOC6H4, 4-NO2C6H4,

C6F5, 2,6-Cl2C6H4, 2-thiophene, CO2Et, CN; R2=Ph, n-C6H13

20-79%
361 362

DBU, THFCO2Et
CN

353

  

    Ethyl 3-trifl uoromethylacetylenecarboxylate ( 180 ) and toluenesulfonylmethyl 
isocyanide (TOSMIC)  363  provided the 3-CF 3 -pyrrole  364  containing a tosyl group 
in 2-position [ 118 ].

   
N
H

F3C CO2Et

Tos

KHMDS, THF, 20°C

76%
CO2EtF3C

180 364

Tos
CN

363   

    The reaction of perfl uoroalkyl substituted α,β-unsaturated ketones  365  or 
β-trifl uoromethylacrylates  367  with ethyl isocyanoacetate  353  gave 3-acylpyrroles 
 366  [ 119 ] or 3-pyrrolylcarboxylates  368  [ 120 ] in one step. Subsequent treatment 
of  368  with trimethylsilyl iodide afforded the acid  369 , which after pyrolysis at 
copper chromite gave the unsubstituted 3-trifl uoromethylpyrrole  55a .
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N
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45%
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Et2O, DMSO
65-68%

367
78-100%

CO2Et
CN

353365

Δ

  

    The reaction of trifl uoromethyl substituted β-acetoxy-α-nitroalkanes  370  with 
isocyanoacetates  353, 371  in the presence of DBU gave the 3- trifl uoromethylpyrroles 
 373  in good yields via the nitroalkenes  372  [ 121 ]. The yield was increased up to 100 % 
employing two equivalents of an even stronger non-nucleophilic base [ 122 ].
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CF3R1
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CO2R2CN
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    So, application of isocyanides is one of the best methods for synthesis of 
fl uorinated pyrroles due to high yields, simplicity and mild reaction conditions.  

2.2.7     Miscellaneous Approaches to Fluoropyrroles 

 Thermal rearrangement of N-alkyl- and N-aryl-(2,2-difl uoro-1-phenylcyclopropyl) 
methyleneamines  375  into N-substituted 3-fl uoropyrroles  376  was reported by 
Kagabu. The transformation at high temperature gave regioselectively the corre-
sponding 3-fl uoropyrroles  376  in moderate to good yields. Using this method both 
N-alkyl- and aryl derivatives of pyrrole can be prepared [ 123 ].

   

RNH2

F
F

Ph

O

F
F

Ph

N
R

Na2SO4, PhH
r. t.

Ph

N

R

180 °C
PhH

R= Ph, n-Bu, t-Bu, cyclo-Hex, 1-Naphtyl, Ph(CH3)2C, 4-MeOC6H4CH2

31-70%

F

374 375 376

  

    An interesting cyclobutene ring expansion reaction was found by Buhr. 
Being heated or irradiated by UV light, methyl 2-azido-3,3-difl uorocyclobut-1- 
enecarboxylate  377  extrudes nitrogen    to give highly strained azirine  378 , which 
transforms into azomethine ylide  380  through the carbene  379 . The last step of the 
transformation is the reaction of ylide  380  with solvents leading to methyl 4-fl uoro- 
5-aryl-1H-pyrrole-2-carboxylates  381  in low yield [ 124 ].
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N3

CO2Me CO2Me
CO2Me CO2Me CO2Me
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Δ or hv F
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N N

F
F
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F
F

NH

F Ar

ArH= PhH, furan, mesitylene, 1,4-dimethoxybenzene

ArH

ArH

10-12%

378 379 380 381

  

    The reaction of azadiene  382  with difl uorocarbene gives fl uoropyrrole  385  as a 
major product. Difl uorocarbene was generated by reduction of dibromodifl uoro-
methane with active lead in dichloromethane in the presence of tetrabutylammonium 
bromide under ultrasound irradiation. A possible mechanism includes the formation 
of difl uoroazomethine ylide  383 , 1,5-cyclization of the latter into difl uoropyrroline 
 384 , and subsequent HF elimination [ 125 ].
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Ph N Ph

Ph
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     t -BuOK in DMSO was found to be the most effi cient basic system for the elimination 
of HF from  388  to prepare 3,4-difl uoropyrrole  391  [ 43 ]. Tetrafl uoropyrrolidine  388  
was prepared starting from  386  or  389 . Thus,  386  was converted into  387  by nucleo-
philic substitution with benzylamine. Next,  387  was debenzylated by treatment 
with hydrogen on Pd/C to give  388  [ 126 ]. Another pathway to  388  is reduction of 
tetrafl uoromaleimide  390  obtained by cyclization of  389  under P 2 O 5  [ 127 ].
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    An interesting transformation was found by Tatlow et al. 1-Methyl-2,5- 
dichlorodifl uoropyrrole  393  was obtained in low yield by treatment of 1-methyl- 
3 H   ,4 H -hexafl uoropyrrolidine  392  with “old” aluminium chloride, which was of a 
normal reagent grade. In contrast, using freshly sublimed aluminium chloride gave 
1-methyltetrachloropyrrole  394  in good yield [ 128 ].

   

N

F F

F
F

F

F
N

F F

Cl Cl N

Cl Cl

Cl Cl

57%8%

AlCl3
CH2Cl2

0 °C

freshly sublimed AlCl3
CH2Cl2, 15 °C

393 392 394   

    5-Endo-trig cyclizations can be applied for 2-fl uoropyrroles synthesis. Thus, 
treatment of  N -(3-(difl uoromethylene)-2-methyl-5-phenylhexyl)-4- toluenesulfonamide 
 395  with base provided 5-fl uoro-3-methyl-4-(2-phenylpropyl)-1-tosyl-2,3-dihydro-
1 H -pyrrole  396  in 80 % yield [ 129 ].

   

F2C

CH2CH(Me)Ph

Me

TsHN

NaH, DMF
90 °C,  4 d

N
Ts

F

MePh(Me)HCH2C

80%395 396   

2.2.8        Miscellaneous Approaches to Trifl uoromethylpyrroles 

 The perfl uorohexa-2,4-diene  397  was revealed to be a very useful building block for 
the preparation of tetrasubstituted pyrroles, thiophenes and furans. Thus, the derivatives 
 398 ,  399 , and  188a  were formed at room temperature [ 130 ]. Replacement of the 
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base by potassium fl uoride (in the case of anilines) led to the pyrroloquinolines  400  
among other reaction products [ 131 ]. Surprisingly, the reaction of the diene  397  
with ammonia in the presence of potassium fl uoride gave the pyrrole  188d  besides 
open chain the diaminodiene  401  [ 130 ].
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CF3

CF3 CF3

CF3 CF3

CF3
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8-Cl
8-F
8-MeO
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Y

  

    An interesting approach to polysubstituted pyrroles was elaborated based on 
the enamine  402 , which on heating with S 2 Cl 2  or SCl 2  in chlorobenzene led to the 
thiazine  403  in good yields [ 132 ]. Subsequent refl uxing of  403  with triethylamine 
in ether afforded the pyrrole  405  in 57 % yield by sulfur extrusion from the interme-
diate  404  and acidic workup. Employing one pot technique, the pyrrole  405  was 
synthesized in 56 % overall yield calculated on the enamine  402 . Other bases 
(LDA,  s -BuLi, KH, EtONa) can also be used for conversion of  403  to  405  [ 133 ].

   

F3C NH2

R

N
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F3C

R

CF3

H
S2Cl2 or SCl2

NEt3 N
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CF3 N
H

F3C CF3
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+H
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Et2O

402 R = CO2Et51% or 78%

PhCl
100 °C, 10h

  

    The allylamine  406  was deprotonated with three equiv. of  n -BuLi using one 
equivalent of THF as accelerator (benzene, 60 °С) to give the intermediate  407 , 
which on treatment with trifl uoroacetic acid anhydride led to the pyrrole  408  in 
16 % overall yield [ 134 ].

   

1 eq THF,
benzene

60°C

NHR

3 eq nBuLi
NR

Li
N
R

F3C16%

(CF3CO)2O

406 407 408

Li

R=TBDMS
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    Coupling of the imine  409  with 500 fold excess of methyl trifl uoroacetate 
proceeded smoothly at room temperature in the presence of equimolar amount of 
the NbCl 3  · DME complex, giving the pyrrole  410  in 60 % yield [ 135 ].

   
N

Ph

CF3O

O
N

Ph

CF3
60%

NbCl3xDME

409 410

THF

  

    The 1,1,1-trifl uoro-2-nitroso-2-propene  412  generated  in situ  by treatment of the 
α-bromooxime  411  with sodium carbonate, on reaction with the silyl ether  413  
gave the 5,6-dihydro-4 H -1,2-oxazine  414 , which was transformed to the target 
pyrrole  415  in 51 % yield by treatment with Mo(CO) 6  in acetonitrile in the presence 
of trifl uoroacetic acid [ 136 ].

   

H3C H

HMe3SiO
CF3

N

Na2CO3
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CF3

N O
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H3C

Me3SiO
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H
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a 1)Mo(CO)6, TFA, CH3CN, 14h, Δ; 2) Et3N

a

51%

  

    Furthermore, the reaction of the orthophosphonate  416  with SnCl 2  gave 
the trifl uoroacetic enamide  417 , which reacted with acetylenes to afford the 
2,5- bistrifl uoro-methylpyrroles  418  in moderate yields [ 137 ].

   

N

Me

CF3

RR
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N
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F3C F3C F3C

O

N

Me

CF3

F F
CR

MeO
OMe

CF3

CF3
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R=CF3 40%
R=CO2Me  37%

-COF2

418417416

RC

  

    The 2-trifl uoromethylpyrrole  420  connected with a long-chain alkyl group in 
4-position was obtained in one step in 40 % yield from alkylidenecyclopropyl 
ketone  419  with excess of benzylamine in the presence of MgSO 4  as an additive [ 138 ].
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    An effi cient one-pot pyrrole synthesis was elaborated by Katritzky et al. [ 139 ]. 
The addition of  S -methylthioimidate  423  to ethyl β-trifl uoromethylacrylate  424  was 
the key step of the reaction leading to  425 . The intermediate  423  was readily prepared 
from thioamide  421  in two steps via  422 .

   

S
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N
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N
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422 425423
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CF3
EtO2C

PhMe
424

  

    As it was mentioned previously, mesoionic oxazolones were used as dipolaro-
philes in the synthesis of 2-CF 3 -pyrroles. A tandem addition of 1,2-binucleophiles 
to oxazolones also led to pyrroles, but bearing the CF 3 -group in 3-position. For 
instance, the reaction of the oxazolones  426  with aminomalonate  427  gave the 
pyrrolidine derivative  428 , which formed  429  by reaction with acetic anhydride. 
Treatment of  429  with lithium hydroxide resulted in a decarboxylation giving the 
pyrrole  430  [ 140 ].
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    Effi cient pathway towards 3-CF 3 -pyrroles was elaborated using condensation 
of mesoionic 4-trifl uoroacetyl-1,3-oxazolium-5-olates  431  with phosphorus ylides. 
Target pyrroles  432 , 433  with big variety of substituents were easily obtained in the 
yields up to 90 %. The principal advantage of the method is fl exibility in the type of 
substituents in the pyrrole ring which can be readily achieved by choosing the 
appropriate N-acyl-N-alkylglycines (precursors of  431 ) as the starting material and 
also the ylides [ 141 ].
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    The use of sulfur ylides in the synthesis of trifl uoromethylpyrroles from 
mesoionic 4-trifl uoroacetyl-1,3-oxazolium-5-olates  431  is prove to be also valuable. 
Reactions proceed to give alkyl(aryl)thio-4-trifl uoromethylpyrroles  434  in good 
yields with an admixture of non-sulfur pyrroles  435  in small amounts [ 142 ].
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    Qiu and co-workers failed to oxidize the dihydropyrrole  436  to the α,β- 
unsaturated lactam with CrO 3  in pyridine. Instead, the oxidation in the presence of 
dimethylpyrazol provided the 3-trifl uoromethyl-pyrrole  437  in good yield [ 143 ].
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N

F3C
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F3C
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CO2Bn
67%
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436 437

HN N

  

    An interesting pathway towards the  N -tosylated 3-trifl uoromethylpyrrole  441  
was developed by Rutjes et al. [ 144 ]. The palladium catalyzed addition of benzyloxy- 
allene  439  to sulfonamide  438  led to the  N , O -acetal  440  in excellent yield. 
Subsequent, treatment of  440  with the Grubbs II catalyst followed by acid workup 
gave the  N -tosylpyrrole  441  in 80 % yield.

   

N

CF3
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OBnNH

·

CF3
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MeCN, r.t.
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Ts80%440438 44192%439   

3            Properties and Some Applications of Fluorinated Pyrroles 

 There are not too much examples of fl uorinated pyrroles reactivity. Nevertheless 
one can easily conclude that fl uoropyrroles have very similar chemistry in compari-
son to other pyrroles. Thus, fl uorinated pyrrole  442  can be N-alkylated by treatment 
with alkyl bromides [ 18 ]. Inverse process is possible for N-tosyl derivative  445  
under basic workup [ 84 ].
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    Trifl uoromethylpyrroles were also alkylated. Alkylation of pyrroles  446  led to 
N-ethoxymethyl derivatives  447  [ 145 ,  146 ]. Similarly, N-methyl derivative of 
pyrrolecarboxylic ester  448  was obtained, which was further hydrolyzed and decar-
boxylated [ 55 ]. Reaction of  451  with NH 2 Cl afforded N-aminopyrrole  452  in 88 % 
yield [ 147 ].
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    Due to electron-donating properties of pyrrole ring, fl uorinated pyrroles react 
smoothly with electrophiles to give the corresponding functionalized derivatives. 
Thus, iodination of  453  was carried out under treatment with N-iodo-succinimide in 
refl uxing 1,4-dioxane. Diiododerivative  454  prepared in this way was coupled with 
phenylboronic acid to give the corresponding polyaromatic compound  455  in 20 % 
yield under Suzuki reaction conditions [ 148 ].

   

NH

F

F

O

O

NH

F

F

B
F

F

NH

I

F

F

O

O

NH

F

F

B
F

F

I

NH

Ph

F

F

O

O

NH

F

F

B
F

F

Ph

i ii

i: N-iodo-succinimide, 1,4-dioxane, reflux
ii: PhB(OH)2, Pd(PPh3)4, Na2CO3, DME-H2O

453 454 455

  

    Chlorination and bromination of trifl uoromethylpyrroles were carried out by 
treatment with  t -BuOCl and Br 2  correspondingly. Deactivating infl uence of CF 3 - and 
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cyano groups explains, why heating was used for halogenation of pyrrole  456  [ 149 ]. 
Nitration of  458  was achieved using acetylnitrate [ 61 ].

   

N
H

CN

F3C
Cl

N
H

CN

F3C
Cl

X
i X=Cl, 83%

ii X=Br, 90%

i t-BuOCl, PhCl, 70 °С; ii Br2, PhCl, 100 °С
456 457

N
H

Y CF3

X

X,Y=Ar, CN, NO2, Alk, CF3, OAlk

HNO3/Ac2O

N
H

O2N

Y CF3

X

r.t.

458 139

  

    Several efforts were done to perform C-alkylation of pyrrole  373a  by dimethoxy-
methane [ 122 ]. Then PTSA was used as catalyst, about 10 days are needed for full 
conversion. Using of (CH 2 O) n  in EtOH does not lead to pyrrole  459  at all. 
Nevertheless, using of BF 3 xEt 2 O in dichloromethane allowed to prepare compound 
 459  in high yield.
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    Reaction of 3,4-difl uoropyrrole  391  with oxalyl chloride  460  led to the corre-
sponding 1,2-diketone  461 , which was transformed into quinoxaline  463  in high 
yield by the reaction with 1,2-phenylenediamine  462  [ 150 ]. Using reaction of 
1,3-diketone  464  with hydrazine, fl uorinated dipyrrolylpyrazole  465  was prepared 
in good yield [ 151 ].
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    The reaction of 3,4-difl uoropyrrole  391  with aliphatic ketones  466  afforded 
fl uorinated calix[n]pyrroles. Different fl uorinated macrocyclic compounds of this 
type were prepared using this approach by careful variation of concentration, 
temperature, and reaction time. Calix[4]pyrrole  467  and calix[5]pyrroles  468  can 
be prepared as sole products. In contrast, calix[8]pyrrole  469  is always obtained as 
a mixture with calix[5]pyrrole  468 . Calix[4]pyrroles  467  act as neutral anion 
receptors and were found to bind anions such as fl uoride, chloride, or dihydrogen 
phosphate with an enhanced affi nity compared to their non-fl uorinated analogues 
[ 150 ,  152 ].
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    Reaction of 3,4-difl uoropyrrole  391  with benzaldehydes  470  followed by 
oxidation with DDQ led to tetraarylporphyrins  471 . On the base of that reaction 
sequence a convenient and common pathway towards β-octafl uoroporphyrins  471 , 
bearing meso-tetraaryl substituents, including perfl uorinated tetraarylporphyrin was 
elaborated [ 153 ]. In the case of Al 2 O 3  catalysis the fi rst step of above mentioned 
sequence afforded β-octafl uorocorroles  472  instead of porphyrins  471  [ 154 ].
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    Alternatively fl uorinated porphyrin  474  was synthesized by oxidation of 
4- fl uoropyrrole  473  with K 3 Fe(CN) 6 . The target tetrafl uoroporphyrin  474  was 
prepared in poor yield, however [ 23 ]. It should be noted, that due to the high 
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electronegativity of fl uorine, fl uorinated porphyrins became a valuable tool for the 
investigation and understanding of the electronic effects in porphyrin structure, 
opening new horizons for their application.
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    3-Trifl uoromethylpyrroles were also used in the fl uorinated porphyrins synthesis 
[ 121 ]. Thus, porphyrin  475  was prepared in three steps starting from pyrrole  373a . 
At fi rst step reduction of carboxyethyl group was performed. Next, intermolecular 
alkylation takes place to form CH 2 -bridged precursor of porphyrin under PTSA 
catalysis. The last step is aromatization under treatment with chloranile.
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    The key step of another porphyrin synthesis is template assembling of the 
porphyrin core at copper acetate, accompanying with decarboxylation. Starting from 
pyrrole  476 , porphyrin  480  was prepared in few steps [ 155 ,  156 ].
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    Other part of fl uorinated pyrroles chemistry is connected with chemistry of 
functional groups transformation attached to fl uorinated pyrrole ring. Pyrrole 
carboxylic acid esters can be easily transformed into acids by alkaline hydrolysis. 
Pyrrole carboxylic acids undergo decarboxylation at 160–200 °C [ 23 ,  157 ] 
3,4-Difl uoropyrrole  79  with nitrogen atom, protected with  ter t-butyl group, gave 
higher yield at decarboxylation step to compare with non-protected one. 
Unfortunately, only traces of parent 3-fl uoropyrrole  229a  were isolated using this 
method [ 15 ]. Nevertheless, this two step transformation represents simple and 
straightforward approach to fl uoropyrroles with unoccupied α-position, which are 
useful starting materials in synthesis of porphyrins [ 43 ].
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    Oxidation and reduction reactions in series of fl uorinated pyrroles were also 
reported. Anodic oxidation of 5-fl uoro-1-methyl-1H-pyrrole-2-carbonitrile  487  in 
acetonitrile in the presence of Et 3 N · 3HF complex afforded 2,5,5-trifl uoro-1-methyl-
2,5-dihydro-1H-pyrrole-2-carbonitrile  488  with traces of 5,5-difl uoro-1-methyl-
1H- pyrrol-2(5H)-one  489 . α-Methyl group in ethyl 4-fl uoro-3,5-dimethyl-1H-
pyrrole-2-carboxylate  44  can be selectively oxidized by Pb(OAc) 4  in the presence of 
β-methyl group. The reaction led to a mixture of aldehyde  490  and acetate of the 
corresponding alcohol  491  in high total yield [ 23 ].
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    Reduction of 2-formylpyrroles  492  was carried out using NaBH 4  in THF to give 
alcohols  493  in good to high yields [ 23 ]. Such alcohols can be further reduced by 
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treatment with NaBH 4  in CH 2 Cl 2  in the presence of TFA. Thus, alcohol  495  obtained 
by addition of aryllithium to fl uorinated pyrrole carbaldehyde  494 , was converted 
into pyrrole  496  in 30 % total yield [ 18 ].

   

N
H

F

CO2ROHC

R=Et (94%), H (64%)

NaBH4

N
H

F

CO2R
HO

N Ph

F

HO
N Ph

F

O

Ar
N Ph

F

Ar

492 493

494 495 496

ArLi

THF, -78 °C

NaBH4

TFA, CH2Cl2
30% total

  

    Heterocyclic core of trifl uoromethylpyrrole  111  was smoothly reduced by 
hydrogen under Pd catalysis in EtOH. Pyrrolidine  497  was isolated as the only 
diastereomer [ 49 ].
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CO2Me N

F3C Ph

CO2Me
H2, Pd/C, EtOH

84%
111 497   

    A series of pyrroles  500  with unsubstituted second positions was synthesized 
using pyrroles  362  as starting materials [ 158 ]. Reduction of esters  362  with LiAlH 4  
afforded alcohols  498 , which were converted into aldehydes  499  by treatment with 
activated MnO 2 . Decarbonylation under Pd/C gave target pyrroles  500 .
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    There are few examples of reactions, leading to the loss of fl uorine. Thus, treatment 
of trifl uoromethylpyrrole  270a  with excess of LiAlH 4  led to reducing of all functional 
groups to give tetramethylpyrrole  501  in high yield [ 91 ]. Another example is basic 
hydrolysis of pyrrole  270a  in water-ethanol mixture, which led to pyrroletricarboxylic 
acid  502 . Similarly, its ester  503  was obtained in the reaction of  270a  with sodium 
ethoxide.
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    5-Fluorinated trichloromethylketone  13  was used for the synthesis of fl uorohy-
menidin  506 . Hymenidin is bromopyrrole marine alkaloid isolated from the Okinawan 
marine sponge, and found to be is an antagonist of serotonergic receptors [ 159 ]. 
Coupling of diamine  504  with the  13  led to fl uorodihydrohymenidin  505 . Next, vinyl 
double bond was created via electrophilic chlorination of the 2- aminoimidazole 
moiety, followed by dehydrochorination. Addition of NCS to  505  in DMF at room 
temperature selectively formed the corresponding chloroimidazole. Elimination of 
HCl was induced by heating to 100 °C to give fl uorohymenidin formate  506  after 
reversed phase chromatography (H 2 O/MeOH/HCOOH) [ 11 ].

   

N
H

Br CCl3

OF

N
H

N

H2N
NH2

N
H

Br

O

F
N
H

N
H
N NH2

1)DMF, Et3N

2)MeOH, HCl
xHCl

N
H

Br

O

F
N
H

N
H
N NH2

xHCO2H

1) NCS, DMF, 1.5h
2) 100 °C, 2h
3) H2O/MeOH/HCO2H

31%

73%Fluorohymenidin

13
505

504

506

  

    Most applications of trifl uoromethylpyrroles connected with pesticide candidates 
synthesis. In some cases, however, compounds having the 3-trifl uoromethyl core 
posses the fungicidal properties as well. For example amides  508  prepared from  507  
was found to reveal such activity [ 160 ].
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    Ketorolac is a non-steroidal anti-infl ammatory drug, often used as an analgesic. 
Fluorinated analogue of ketorolac (compound  518 ) was synthesized in nine steps in 
11 % total yield starting from  509  [ 161 ].
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4         Conclusions 

 Fluorinated pyrroles have been studied intensively in recent years. As a result, a 
signifi cant number of synthetic approaches to these compounds was elaborated. 
The most general methods involve direct fl uorination/trifl uoromethylation of the parent 
pyrroles, both the [3 + 2]- and the [4 + 2]-cycloaddition reactions, the applications of 
carbonyl compounds as well as TOSMIC and isocyanoacetates. Though variety of 
methods are already known, the elaboration of novel preparative pathways towards 
fl uorinated pyrrole derivatives is still ongoing, which is due to the manifold of bio-
logical activities of this structural motive and the use as precursors for porphyrins 
synthesis. It is no doubt, that this branch of synthetic organic chemistry will enjoy a 
much attention, giving rise to sustainable fl ow of novel convenient pathways to the 
synthesis of fl uorinated pyrroles.     
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