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Abstract This chapter involves problems of estimating parameters of sinusoids 
from white noisy data by using Gibbs sampling (GS) in a Bayesian inferential 
framework which allows us to incorporate prior knowledge about the nature of sinu-
soidal data into the model. Modifications of its algorithm is tested on data generated 
from synthetic signals and its performance is compared with conventional estima-
tors such as Maximum Likelihood (ML) and Discrete Fourier Transform (DFT) 
under a variety of signal to noise ratio (SNR) conditions and different lengths of 
data sampling (N), regarding to Cramér–Rao lower bound (CRLB) that is a limit on 
the best possible performance achievable by an unbiased estimator given a dataset. 
All simulation results show its effectiveness in frequency and amplitude estimation 
of noisy sinusoids.

Keywords Bayesian inference · Parameter estimation · Gibbs sampling · Cramér–Rao 
lower bound and Power spectral density

2.1  Introduction

The sinusoidal frequency model embedded in noise is extensively important be-
cause of its wide applicability in many areas of science and engineering such as, 
modeling and manipulation of time-series from speech, audio to radar, seismology, 
nuclear magnetic resonance, communication problems and underwater acoustics 
[28].

We therefore address here a problem of estimating parameters of noisy sinusoids 
within a Bayesian inferential framework that provides a rigorous mathematical foun-
dation for making inferences about them and a basis for quantifying uncertainties in 
their estimates. Under an assumption that a number of sinusoids is known a priori, 
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several algorithms have already been applied to spectral analysis and parameter 
estimation problems, such as least-square fitting [33], maximum likelihood(ML) 
[25], discrete Fourier transform (DFT) [29, 8], and periodogram [27]. After Jayness’ 
work [21], researchers in different fields of science have given much attention to 
the relationship between Bayesian inference and parameter estimation. Bretthorst 
and the others [4, 16, 6, 11, 12, 1, 38, 36, 37, 39] have done excellent works in this 
area for the last 16 years.

In Bayesian framework, it is necessary to evaluate high dimensional integrals 
that can be difficult and complex to tackle with. In order to solve these problems, 
different stochastic sampling algorithms have already been suggested and imple-
mented by the different researches. Therefore, we introduce here one of the stochas-
tic algorithms called Gibbs sampling [11, 12, 7] for recovering sinusoids from noisy 
data and compare its performance with classical estimators, regarding to Cramér–
Rao lower bound (CRLB), that is widely used in statistical signal processing as a 
benchmark to evaluate unbiased estimators given a dataset [30]. For this purpose, 
a series of simulation studies with a variation in levels of noise and length of data 
sampling for a single sinusoid is set up.

The outline of this chapter is as follows. In Sect. 2.2, the harmonic signal models 
are introduced. In Sect. 2.3, we briefly outline Bayesian data analysis and sum-
marize Gibbs sampling estimator in Sect. 2.4. Cramer–Rao lower bound (CRLB) 
is introduced in Sect. 2.5. Computer simulation results are given in Sect. 2.6 to 
evaluate the performance of the Gibbs sampling estimator by comparing with that 
of classical estimators in different conditions. Finally, conclusions from these simu-
lations are drawn.

2.2  Harmonic Signal Model

In many experiments, a discrete data set D = { , ,..., }d d dN
T

1 2  denoted as an output 
of a physical system that we want to be modeled is sampled from an unknown func-
tion y t( )  at discrete times{ ,...., }t tN

T
1 :

( )
( ; ) , ( 1, , ),

i i

i i

d y t
f t e i N

=
= θ + = … 

(2.1)

where θ  is a vector containing parameters that characterize behavior of physical 
system ( ; )f t θ  and that are usually unknown. The term ei  is assumed to be drawn 
from a known random process. The choice of the model function ( , )f t θ  depends on 
the specific application, but we will consider here a superposition of k  sinusoids:

1

( , ) cos( ) sin( ),
j j

k

c j s j
j

f t a t a tω ω
=

θ = +∑
 

(2.2)
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where 2{ , }
j j

k
c sa a ∈�  and (0, )jω π∈  are amplitudes and angular frequencies, 

respectively. Hence, Eq. (2.1) can be written in the matrix-vector form:

D Ga e= + , (2.3)

where D  is ( )N ×1  matrix of data points and e  is ( )N ×1  matrix of independent 
identically distributed Gaussian noise samples. G  is ( )N k× 2  matrix whose each 
column is a basis function evaluated at each point of time series. The linear coeffi-
cient a  is a ( )2 1k × matrix whose components are arranged in order of coefficients 
of cosine and sine terms { , ,..., , }a a a ac s c sk k1 1

. Then, the goal of data analysis is usu-
ally to infer 1{( , , )}

j j

k
c s j ja a ω =θ =  from D  and it is a non-linear optimization, due 

to frequencies. In signal processing literature, numerous approaches are based on 
frequentists statistics whereas only a few of them based on Bayesian statistics.

2.3  Bayesian Data Analysis

Bayesian inference can be provided from the product rule of probability calculus 
which can be originated rigorously starting with the formulation of a small number 
of desiderata required to define a rational theory of inference as first enunciated by 
Cox [9], with a more complete treatment given by Jaynes [22]. This formulation 
directs to the ordinary rules of probability calculus and indicates that every allowed 
(consistent) theory for inference must be mathematically equivalent to probability 
theory, or else inconsistent.

By using Bayes’ rule [2, 3, 18], the context of the current problem can be ex-
pressed as follows:

( ) ( | , )( | , ) ,
( )

p p Ip I
p

=
DD
D

θ θ
θ

 
(2.4)

where ( )p θ  is the prior probability density function (PDF) of the parameter vector 
θ that encapsulates our state of knowledge of the parameters before observing D; 

( | , )p ID θ  is called the likelihood function when considered as a function of θ, but 
it is known as the sampling distribution when considered as a function of D. p( )D  
is denoted as an evidence or the marginal likelihood and ( , )p IDθ  is the posterior 
PDF of the parameters θ  of interest, which summarizes the last information about 
it:

( , ) ( ) ( | , ).p I p p I∝D Dθ θ θ
 

(2.5)

It is noted that for parameter estimation, the evidence p( )D  is θ-independent be-
cause of constant and simply plays role of a normalization factor. To proceed further 
in the specification of the posterior PDF, we now need to assign functional forms 
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for ( )p θ  and ( | , )p ID θ . After computing ( , )p IDθ , the problem turns out to search 
a vector θ  that satisfies

� { }arg max ( , ) ,p I
∈

= D
θ Θ

θ θ
 

(2.6)

where Θ is a parameter space.

2.4  Gibbs Sampling

In order to avoid computing the multivariate maximization problem described in 
Sect. 2.3, an alternative way is the one, proposed by Dou and Hogdson [11, 12], 
which combines Gibbs sampling (GS) with Bayesian inference theory. Gibbs sam-
pling is an iterative Monte Carlo sampling process [14, 26, 20] and a special case 
of Metropolis–Hastings sampling [27, 19] wherein the random value is always ac-
cepted. It was also used by Geman and Geman [15] in image restoration. Statisti-
cians [35, 13] began to utilize the method for Bayesian computations. It is based 
on supposing that the target distribution is a posterior probability distribution but, 
it can be applied to any target distribution, when their full conditional probability 
distributions are available. We extend here its derivation for multiple frequency sig-
nals and briefly summarize it below, but refer to the papers [12, 1] for more detail 
information.

For linear parameters a  in Eq. (2.3), when 2σ  is known and there is no any 
specific information about { , }a ac s  prior to the observation D, then Eq. (2.5) turns 
out to be the following form:

2 2( , , , , ) ( , , , , ),c s c sp I p Iσ σω ∝ ωa a D D a a
 

(2.7)

where p c s( , )a a ∝ constant  as an uninformative uniform prior PDF for{ , }a ac s . 
The marginal posterior distribution of a given ω and D  becomes a multivariate 
normal distribution 2 1ˆ( , ( ) )T

m σ −a G GN [11, 12]:

2
11/2 ( ) ( )2 2| |( | , , )

( 2 )

T TT

m
p e σσ

πσ
− − −

ω =
a a G G a aG Ga D
� �

 
(2.8)

where â is best estimate for a  and 2( | , )p σa D is maximized at â. When the vari-
ance 2σ  is unknown, by using Jeffreys prior

2
2

1( )p σ
σ

=
 

(2.9)

and integrating this joint posterior PDF in (2.7) with respect to 2σ ,
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the marginal posterior distribution of a given ω and D  in Eq. (2.8) turns into the 
multivariate Student’s t distribution 2 1ˆ( , ( ) , )T

mt s ν−a G G [11, 12]:

 

(2.11)

where N mν = − is degrees of freedom and 2 1 ˆ ˆ( ) ( )Ts
v

= − −D D D D  is sampling 
variance.

Suppose that ac j
is the only unknown parameter among the others{ , , }

jc s−
a a ω

where ac c c c cj j j k
a a a a

− − +
= { , ..., , ,..., }

1 1 1
. Under the assumption of known distribution 

of the noise, Eq. (2.8) for the conditional PDF of ac j
 given that , , ,

jc s−
a a Dω and 2σ  

have already been known becomes a univariate Gaussian distribution:

 
(2.12)

where

 

(2.13)

and

{ }(1) (1) (1) (1)
1 2, ,...,ˆ

Nd d d=D
 

(2.14)

whose components are defined by 
1

cos( ) sin( ),
l l

k

i c l i lj s l i
l

d a t a tω δ ω
=

− +∑
( 1, 2,3..., )i N= . The 

1
0lj

l j
l j

δ
≠

=  =
 helps to eliminate the contribution, which 

comes from the cosine term of the j th sinusoid. When 2σ is unknown, Eq. (2.12) 
becomes a univariate Student’s t distribution:

( )2 2 1ˆ( , , , , ) , ( ) , 1 ,
j j j c c cj j j

T
c c s c a a ap a a s Nσ

−

−ω ∝ −a a D X Xt (2.15)

[ ] ( )/ 21/2
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s
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− +−Γ +  − −
ω = +  Γ Γ   
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( )2 2 1ˆ( , , , , ) , ( ) ,
j j j c cj j

T
c c s c a ap a aσ σ
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−ω ∝a a D X XN
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c j

j c j
c cj j

j
a

c aT
a a

j N

t
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ω

 
 = =  
  

D X
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with

 
(2.16)

When { }, ,
jc s−

a a ω is given, in a similar way, the conditional PDF of as j
given that 

, , ,
jc s−

a a Dω  and 2σ  have already been known is

( )2 2 1ˆ( , , , , ) , ( ) ,
j j j s sj j

T
s c s s a ap a aσ σ

−

−ω ∝a a D X XN

 
(2.17)

where

(2) 1sin( )ˆ
ˆ ,

sin( )

s j

j s j
a ss jj

j
a

s aT
a

j N

t
a

t

ω

ω

 
 = =  
  

D X
X

X X


 

(2.18)

and

{ }(2) (2) (2) (2)
1 2, ,... ,ˆ , Nd d d=D

 
(2.19)

whose components are defined by (2)

1

ˆ cos( ) sin( ) ,
l l

k

i i c l i s l i lj
l

d d a t a tω ω δ
=

= − +∑
( 1,..., )i N= .

When 2σ  is unknown, Eq. (2.17) turns out to be

2 2 1ˆ( , , , , ) ( , ( ) , 1)
j j j s s sj j j

T
s s c s a a ap a a s Nσ

−

−ω ∝ −aa D X Xt
 

(2.20)

with

2 (2) (2)1 ˆ ˆˆ ˆ( ) ( ).
1s j s j sj j j

T
a s a s as a a

N
= − −

−
D X D X

 
(2.21)

To be able to use the theory of GS for the nonlinear parameter ω, we need to introduce 
some reasonable approximations to linearize the nonlinear model function ( , )if t ω  
with respect to ω  under the condition of the known amplitudes{ , }a ac s . This can be 
done by expanding it around ω̂  in a region where the posterior PDF is concentrated:

( )
1

ˆ ˆ ˆ( , ) cos( ) sin( )

ˆ ˆ ˆsin( ) cos( ) ( ),

l l

j j

k

i c l i s l i
l

c i j i s i j i j j

f t a t a t

a t t a t t

ω ω

ω ω ω ω
=

≅ +

+ − + −

∑ω

 

(2.22)

2 (1) (1)1 ˆ ˆˆ ˆ( ) ( )
1c j c j cj j j

T
a c a c as a a

N
= − −

−
D X D X
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where 2

ˆ 1

ˆ arg min ( ( , ))
N

j i i
i

d f t
ω

ω
∈ =

= −∑
ω

ω  and { }1 1 1ˆ ˆ,..., , , ,...,j j j kω ω ω ω ω− +=ω . Thus, 

the conditional PDF of jω  given that , , ,j c s− a a Dω  and 2σ  have already been 
known is a univariate Gaussian distribution:

2 2 1ˆ( , , , , ) ( , ( ) ),
j j

T
j j c s jp ω ωω σ ω σ −

− ∝a a D X XNω
 

(2.23)

where

1 1 1 1ˆ ˆsin( ) sin( )

.
ˆ ˆsin( ) sin( )

j j

j

j j

c j s j

c N j N s N j N

a t t a t t

a t t a t t
ω

ω ω

ω ω

− + 
 

=  
 − + 

X �

 

(2.24)

If 2σ  is unknown, Eq. (2.23) becomes is a univariate Student’s t distribution

( )2 2 1ˆ( , , , , ) , ( ) , 1 .j j j

T
j j c s jp s Nω ω ωω σ ω −

− ∝ −a a D X Xω t
 

(2.25)

with

 (2.26)

where �
1 2

ˆ ˆ ˆ{ ( ), ( ),..., ( )}Nd t d t d t=D whose components are defined by 

1

ˆ ˆ ˆ( ) cos( ) sin( )
l l

k

i c l i s l i
l

d t a t a tω ω
=

= +∑
A systematic form of GS algorithm [11, 12, 10] contains choosing initially ar-

bitrary starting values { }(0) (0) (0), ,c sa a ω  and drawing successively random samples 
from the full conditional distributions:

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

1 1 1

1 1 1

1 1 0 0 0 0(1)

1 1 1 0 0 0(1)

1 1 1 1 1 0 0
1 1 1

( { ,...., , ,...., }, , , )

( ,{ ,...., , ,...., }, , )

( , ,{ ,...., , ,...., }, ), ( 1,..., ).

j j j j k j

j j j j j k

j j

c c c c c c s

s s c s s s s

j j c s j j k

a p a a a a a

a p a a a a a

p j kω ω ω ω ω ω

− +

− +

− +

ω

ω

=

a D

a D

a a D

∼

∼

∼
 

(2.27)

At each iteration of the Gibbs sampler, we cycle through the set of conditional dis-
tributions and draw one sample from each. When a sample is drawn from one con-
ditional distribution, the succeeding distributions are updated with the new value of 
that sample. At the ′K th  iteration we obtain the following drawings:

2 1 ˆ ˆ( ) ( ),
1j

Ts
Nω = − −

−
D D D D
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(2.28)

For a large enough K a ac
K

s
K, ,( ) ( )+ +1 1  and ( 1)Kω +  can be considered as random vari-

ables drawn from their posterior PDF distributions. Therefore we are able to gener-
ate samples of these posterior PDFs for each parameter. Using these samples, all 
of the estimates about the their corresponding can then be found, such as the most 
probable values for them, the mean value, the marginal variances with respect to 
the most probable value etc. When 2σ  is unknown, we do the same thing as above 
except that the random numbers are drawn from the Student’s t distribution.

2.5  Cramer–Rao Lower Bound

Given an estimation problem, one may ask: What is the variance of the best possible 
unbiased estimator? The answer is given by the Cramer–Rao lower bound (CRLB) 
[24, 17], which we will study in this section and it provides a theoretical lower limit 
for variance of estimator. If we consider the parameter vector θ  and the signal to 
noise ratio (SNR), then the CRLB to the variance of unbiased estimator of the pa-
rameters θ for the signal model is determined in the form:

 (2.29)

where Fisher information matrix ( )θJ [24] is defined as an expectation of the sec-
ond derivatives of the log likelihood function with respect to θ:

2

2

 ∂ θ
θ = − ∂θ 

ln ( , )
( ) .

P I
E

D
J

 
(2.30)

for large N , ( )θJ  is a diagonal matrix and its inversion is straightforward. The 
diagonal elements of its inversion yield the lower bound on the variance of the esti-
mates asymptotically. When the noise is white Gaussian, we can use the an alterna-
tive form of CRLB which is easier than the general case in Eq. (2.30). In this case 
the Fisher information matrix becomes

2
1

1
σ =

∂ (θ) ∂ θ 
(θ) =  ∂θ ∂θ ∑

( )
.

TN
j j

j

f f
J

 
(2.31)
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1 1 1 1
, 1

1 1 1 1 1
1
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j j j j k j

j j j j j k

j j j j k
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j j c s

a p a a a a a

a p a a a a a

pω ω ω ω ω ω

− +

+

− +

+ + +

+ + + +
−

+ + + + +

ω

ω

a D

a D

a a D

∼

∼

∼

� 1Var ( ) CRLB( ) ( ),−θ ≥ θ = θJθ
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2.6  Computer Simulations

To demonstrate the proposed approach with examples which are used by previous 
researches [4, 11, 12, 38, 36, 37], we firstly created data samples according to a 
signal model with a single frequency:

d t t e ii i i i= + + =2 0 3 4 0 3 1 512cos( . ) sin( . ) ( ,..., ) (2.32)

Here i  runs in a symmetric time interval −T  and T (2T+1=N ) and e Ni ~ ( , )0 1 . We 
obtained noisy data samples (N = 512), shown in Fig. 2.1 and carried out Bayes-
ian analysis. The proposed method requires initial values for the parameters to 
start the iteration. Instead of choosing them randomly from a uniform distribution 
[16], we first performed a Fast Fourier Transformation (FFT) of the data and then 
chose the locations of the peaks in the power spectrum density [4, 16], which is 
a squared magnitude of FFT, as an initial estimate for the frequencies. Once, ini-
tial frequencies were obtained, we carried on calculating the coefficients ac  and 
as  as initial values for the amplitudes, respectively. The algorithm of GS, intro-
duced in the paper was coded in Mathematica programming language and run on 
a workstation in two cases where the standard deviation of noise is known or not. 
In the case where the deviation of noise is unknown, the output of the computer 
simulation is illustrated in Table 2.1. The estimated parameter values are quoted  

Fig. 2.1  Recovering signal from noisy data produced from a single harmonic frequency signal 
model
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as ( value) ± ( standard deviation) and used to regenerate the given signal model, 
shown in Fig. 2.1.

It can be seen that a single frequency and its corresponding amplitudes are re-
covered very well.

In order to determine its convergence, there are several diagnostic tests [5, 34] 
we can do, both visual and statistical, to see if the chain appears to be converged. 
One intuitive and easily implemented diagnostic tool is a trace plot (or history plot) 
[34] which is a plot of the iteration number against the value of the draw of the pa-
rameter. If it has converged, the trace plot will move up and down around the mode 
of the distribution and the distribution of the parameters settles down to the target 
posterior PDF from which statistical inferences about the parameters can be made. 
A clear sign of non-convergence occurs when we observe some trending in the trace 
plot. In this case we can see whether our chain gets stuck in certain areas of the pa-
rameter space, which indicates bad mixing. Figure 2.2 shows the scatter plots of the 
model parameters, 1ω , ac1

 and as1
, respectively and indicates that the GS samples 

are densely placed around the estimated values of these parameters.
In our second example, we consider a signal model with two close harmonic 

frequencies:

ω

Fig. 2.2  MCMC parameter iterations

 

Table 2.1  Computer simulations for a single harmonic frequency model
Parameters True values Estimated values

1ω 0.3 0.2999 ± 0.00009
ac1

2 2.041 ± 0.0623
as1

4 3.992 ± 0.0628
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