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Multiplicity of Positive Solutions
for an Obstacle Problem in R
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Dedicated to Bernhard Ruf on the occasion of his 60th birthday

Abstract. In this paper we establish the existence of two positive solutions
for the obstacle problem∫

R

[
u′(v − u)′ + (1 + λV (x))u(v − u)

] ≥ ∫
R

f(u)(v − u), ∀v ∈ K

where f is a continuous function verifying some technical conditions and K is
the convex set given by

K =
{
v ∈ H1(R); v ≥ ϕ

}
,

with ϕ ∈ H1(R) having nontrivial positive part with compact support in R.
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1. Introduction

In this paper we will be concerned with the question of existence of positive solu-
tions of a kind of obstacle problem. This class of problems has been largely studied
due both its mathematical interest and its physical applications. For example, it
appears in mechanics, engineering, mathematical programming and optimization,
among other things. See, for instance, the classical books Kinderlehrer & Stam-
pacchia [12], Rodrigues [18] and Troianiello [24] and the references therein.

The typical obstacle problem is as follows: Let Ω be a domain in RN . Given
functions g : R→ R and ϕ : Ω→ R, finding u ∈ H1

0 (Ω) satisfying∫
Ω

∇u · ∇(v − u) ≥
∫
Ω

g(u)(v − u) (P )
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for all function v in the convex set

K :=
{
v ∈ H1

0 (Ω); v(x) ≥ ϕ(x) a.e. Ω
}

(1.1)

where ϕ is called the obstacle function.

Related to this kind of problem, the reader may consult Jianfu ([10], [11]),
where the author uses variational methods, Le [13] in which is used subsolution-
supersolution techniques, Chang [4] where it is considered an obstacle problem
related to discontinuous nonlinearities and Rodrigues [19] who considers combina-
tion of the obstacle problem with nonlocal equations in a class of free boundary
problems. For more recent references we may cite Matzeu & Servadei [16], in
which the authors adapt for inequalities the iterative technique contained in de
Figueiredo, Girardi & Matzeu [6] for elliptic equations, Matzeu & Servadei [17]
where the stability of solutions obtained in [16] are analized. Other results may be
found in Servadei & Valdinoci [22], Mancini & Musina [15], Servadei ([21], [20]),
Magrone, Mugnai & Servadei [14].

These works and the references therein show clearly the mathematical im-
portance and the wide variety of practical situations in which obstacle problems
may be found and applied.

Here we are interested in the unidimensional counterpart of problem (P ).
More precisely, we consider the problem∫

R

[u′(v − u)′ + (1 + λV (x))u(v − u)] ≥
∫
R

f(u)(v − u), ∀v ∈ K, (Pλ)

where u is a nonnegative function belonging to the convex set K given by

K :=
{
v ∈ H1(R); v ≥ ϕ

}
, (K)

where ϕ ∈ H1(R) is assumed to have nontrivial positive part, that is, ϕ+ =
max {ϕ , 0} �≡ 0. Moreover, λ > 0 is a parameter and f : R→ R is a nondecreasing
continuous function verifying the following assumptions:

f(t)

t
→ 0 as |t| → 0 (f1)

and the Ambrosetti & Rabinowitz Condition, that is, there is θ > 2 such that

0 < θF (t) ≤ f(t)t ∀t ∈ R \ {0} (f2)

where F (t) =
∫ t

0
f(s)ds. We assume that V : R → R is a nonnegative continuous

function such that

O := int
((
V −1({0}))) �= ∅

is a bounded open set of R containing the support of ϕ+, that is, Supp (ϕ+) ⊂ O.
Here, Supp(ϕ+) denotes the support of ϕ+ and

V −1({0}) = {x ∈ R;V (x) = 0} .
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The present paper was motivated by recent works involving the following
class of problems {−Δu+ (1 + λV (x))u = f(u) in RN

u(x) > 0 in RN

where λ is a positive parameter, V : RN → R is a nonnegative function and f is
a continuous function satisfying some technical conditions. The reader may find
more details in the papers of Alves [1], Bartsch & Wang [3], Clapp & Ding [5],
Ding & Tanaka [7] and their references. Here, we adapt some approaches found in
these references to study the obstacle problem (Pλ).

Our main result is the following

Theorem 1.1. Suppose (f1)–(f2) hold, then there are r, λ∗ > 0, such that if
‖ϕ+‖H1(R) <

r
2 , problem (Pλ) has two positive solutions for all λ > λ∗.

One of the main difficulties to prove Theorem 1.1 is related to the fact that
the energy functional associated with the problem (Pλ) does not satisfy in general
the well-known Palais–Smale condition, once that we are working in whole R.
To overcome this difficulty, we adapt some ideas found in del Pino & Felmer
[8], modifying the function f outside the set O, in such way that the energy
functional of the modified obstacle problem satisfies the Palais–Smale condition.
Using variational methods, we prove the existence of two solutions for the modified
obstacle problem. After that, it is proved that under the hypotheses of Theorem
1.1, the solutions found are solutions of the original obstacle problem.

The structure of this paper is as follows: In Section 2 we introduce the mod-
ified obstacle problem, in Section 3 we establish the existence of a first solution
for the modified obstacle problem by minimization, in Section 4 we show the ex-
istence of a second solution for the modified obstacle problem by the Mountain
Pass Theorem and in Section 5 we prove Theorem 1.1.

2. The modified obstacle problem

From this time onwards, since we intend to find positive solution, we will assume,
without loss of generality, that

f(t) = 0 ∀t ≤ 0.

To prove the existence of positive solutions for (Pλ), we will work with a
modified obstacle problem, following some ideas found in del Pino & Felmer [8].
To this end, we consider the function h : R→ R as follows:

h(t) =

{
f(t) if t ≤ a,
1
k t if t ≥ a,

where k > max
{

θ
θ−2 , 2

}
and a > 0 satisfy f(a)

a = 1
k . We now set

g(x, t) = χ(x)f(t) + (1− χ(x))h(t),
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where Ω ⊂ R is a bounded open set containing O and χ is the characteristic
function of the set Ω, that is,

χ(x) =

{
1, x ∈ Ω

0, x ∈ Ωc.

Using the function g, we will show the existence of two positive solutions for
the obstacle problem

(PA)

∫
R

[u′(v − u)′ + (1 + λV (x))u(v − u)] ≥
∫
R

g(x, u)(v − u), ∀v ∈ K.

Remark 2.1. If u is a solution of (PA) verifying

u(x) ≤ a, ∀x ∈ Ωc,

then u is a solution of the original obstacle problem. Indeed, if x ∈ Ω, we have
χ(x) = 1 and so

g(x, u(x)) = f(u(x)).

If x /∈ Ω (x ∈ Ωc), then χ(x) = 0 and so

g(x, u(x)) = h(u(x)) = f(u(x)),

because h(u(x)) = f(u(x)) since 0 ≤ u(x) ≤ a in Ωc.

Let Eλ ⊂ H1(R) be the subspace

Eλ =

{
u ∈ H1(R);

∫
R

V (x)u2 <∞
}

endowed with the norm

‖u‖λ =

(∫
R

[|u′|2 + (1 + λV (x))|u|2]) 1
2

.

Hereafter, we denote by ‖ ‖ the usual norm in H1(R).
Since we approach our problem by means of variational method, we consider

the energy functional associated with the obstacle problem (PA), Iλ : Eλ → R,
given by

Iλ(u) =
1

2
‖u‖2λ −

∫
R

G(x, u) + Ψ(u),

where

G(x, t) =

∫ t

0

g(x, s)ds

and Ψ : E → (−∞,∞] is the indicatrix function of the set K, i.e.,

Ψ(u) = 0, ∀u ∈ K and Ψ(u) = +∞, ∀u ∈ Kc. (2.1)

Proposition 2.1. The functional Iλ satisfies the (PS) condition.
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Proof. Let d ∈ R and (un) ⊂ Eλ be a (PS)d sequence for Iλ. Then, there is
(zn) ⊂ E′

λ with zn → 0 such that

Iλ(un)→ d and I ′λ(un)(v − un) ≥ 〈zn, v − un〉 ∀n ∈ N and v ∈ K,

that is,∫
R

u′
n(v − un)

′ + (1 + λV (x))un(v − un)−
∫
R

g(x, un)(v − un) ≥ 〈zn, v − un〉 ,

for all v ∈ K.

Claim 2.1. (un) is a bounded sequence in Eλ.

We deal separately with the sequences (un+) and (un−), where un−=max{−un,0}.
Since un = un+ − un−, it is enough to show that (un+) and (un−) are bounded
in Eλ. To show the boundedness of (un−), we consider the test function v =
un + un− ∈ K. So,∫

R

(u′
n(un−)

′ + (1 + λV (x))unun−)−
∫
R

g(x, un)un− ≥ 〈zn, un−〉 .

Because

∫
R

(1 + λV (x))un+un− =

∫
R

g(x, un)u
−
n = 0, we obtain

−‖un−‖2λ ≥ 〈zn, un−〉 ,
which leads to

‖un−‖2λ ≤ ‖zn‖‖un−‖λ.
As zn → 0 in E′

λ, we conclude that un− → 0 in Eλ, and thus, (un−) is bounded
in Eλ.

With respect to (un+), fixing the test function v = un + un+ ∈ K, we derive
that

‖un+‖2λ −
∫
R

g(x, un)u
+
n ≥ 〈

zn, u
+
n

〉
, (2.2)

leading to

−
∫
Ω

f(un)un ≥ −‖un+‖2λ +
〈
zn, u

+
n

〉
. (2.3)

On the other hand, we know that

d =
1

2
‖un‖2λ −

∫
Ω

F (un)−
∫
Ωc

G(x, un) + on(1).

Using the definition of g, it is easy to prove that

2G(x, t) ≤ g(x, t)t ≤ 1

k
(1 + λV (x))|t|2 ∀x ∈ Ωc and t ∈ R. (2.4)

Thereby, from (f2) and (2.4)

d ≥ 1

2
‖un+‖2λ −

1

θ

∫
Ω

f(un)un − 1

2k

∫
Ωc

(1 + λV (x))|un|2 + on(1). (2.5)
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Combining (2.3) and (2.5),

d ≥
[(1

2
− 1

θ

)
− 1

2k

]
‖un+‖2λ − ‖zn‖‖un+‖+ on(1).

Since k > θ
θ−2 and zn → 0 in E′

λ, the last inequality implies that (un+) is bounded

in Eλ. Therefore, (un) is bounded in Eλ.
Now, we will show that (un) has a subsequence that converges strongly in Eλ.

Since (un−) converges to 0 in Eλ, without loss of generality, we will assume that

un ≥ 0 for all n ∈ N. We begin by fixing R > 0 so large in order that Ω ⊂ (−R
2 ,

R
2

)
and a function η ∈ C1(R,R) satisfying

• 0 ≤ η(t) ≤ 1, ∀t ∈ R;
• η(t) = 0, |t| ≤ R

2 ;

• η(t) = 1, |t| ≥ R;

• |η′(t)| ≤ C
R , ∀t ∈ R.

Claim 2.2. Given δ > 0, there is R > 0 such that∫
|x|≥R

(|u′
n|2 + |un|2) < δ.

Assuming that this claim is true, we continue with our proof. Considering
the test function v = un − η(un − ϕ+) = un − ηun ∈ K, it follows that∫

R

[u′
n(ηun)

′ + (1 + λV (x))un(ηun)] ≤
∫
R

g(x, un)(ηun) + on(1)

or, equivalently,∫
R

η|u′
n|2 +

∫
R

u′
nη

′un +

∫
R

(1 + λV (x))η|un|2 ≤
∫
|x|≥R

2

g(x, un)ηun + on(1)

implying that∫
|x|≥R

|u′
n|2 +

∫
|t|≤R

u′
nη

′un +

∫
|x|≥R

2

(1 + λV (x))η|un|2

≤
∫
|x|≥R

2

1

k
(1 + λV (x))η|un|2 + on(1).

Because k > 2, it follows that∫
|x|≥R

|u′
n|2 +

∫
|t|≤R

u′
nη

′un +

∫
|x|≥R

2

(1 + λV (x))η|un|2

≤
∫
|x|≥R

2

(
1 + λV (x)

2

)
|un|2 + on(1)

and so,∫
|x|≥R

|u′
n|2 +

1

2

∫
|x|≥R

2

(1 + λV (x))η|un|2 ≤
∫
|x|≤R

|u′
n||η′||un| ≤ C

R
+ on(1).



Multiplicity of Positive Solutions 29

Thereby, ∫
|x|≥R

|u′
n|2 +

∫
|x|≥R

(1 + λV (x))|un|2 ≤ C

R
+ on(1),

showing that

lim sup
n→+∞

∫
|x|≥R

(|u′
n|2 + |un|2) ≤ C

R
.

Now, we choose R > 0 so large in order

lim sup
n→+∞

∫
|x|≥R

(|u′
n|2 + |un|2) < δ,

proving the Claim 2.2.
Recalling that for each R > 0, the Sobolev embedding

H1(R) ↪→ C([−R,R])

is compact, we have that

un → u in C([−R,R]).

This limit, combined with the Claim 2.2, asserts that∫
R

g(x, un)un →
∫
R

g(x, u)u (2.6)

and ∫
R

g(x, un)v →
∫
R

g(x, u)v ∀v ∈ K, (2.7)

where u ∈ K is the weak limit of (un) in Eλ.
Since (un) is a bounded Palais–Smale sequence for Iλ, we have∫

R

u′
n(v−un)

′+(1+λV (x))un(v−un) ≥
∫
R

g(x, un)(v−un)+on(1) ∀v ∈ K (2.8)

or equivalently∫
R

[u′
nv

′ + (1 + λV (x))unv]

≥
∫
R

[|u′
n|2 + (1 + λV (x))|un|2] +

∫
R

g(x, un)(v − un) + on(1)

for all v ∈ K. Taking the inferior limits on both sides of the above inequality and
using (2.6) and (2.7), we get∫

R

[u′v′ + (1 + λV (x))uv]

≥
∫
R

[|u′|2 + (1 + λV (x))|u|2] +
∫
R

g(x, u)(v − u) + on(1)

that is, ∫
R

[u′(v − u)′ + (1 + λV (x))u(v − u)] ≥
∫
R

g(x, u)(v − u), ∀v ∈ K

from where it follows that u is a critical point of Iλ.
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Using u as a test function in (2.8) and the limit (2.7), it follows that

lim sup
n→+∞

‖un‖2λ ≤ ‖u‖2λ.

Since Eλ is a Hilbert space, the last inequality leads to un → u in Eλ, finishing
the proof of proposition. �

3. First solution for (PA)

The first positive solution of (PA) will be obtained via Ekeland’s Variational Prin-
ciple [9]. In this section, we denote by Br and Kr the following sets

Br = {u ∈ Eλ; ‖u‖λ < r} and Kr = K ∩Br.

Theorem 3.1. There is r > 0, such that if ‖ϕ+‖H1(R) < 1
2

√
r, the variational

problem

m = inf{Iλ(u) : u ∈ Kr} (3.1)

has a solution for all λ > 0. Moreover, this solution is a positive solution of (PA).

Proof. First of all, we observe that∫
R

G(x, u(x)) =

∫
Ω

F (u) +

∫
Ωc

G(x, u(x)).

From (f1), if ‖u‖λ = r and r is small enough, we have that∫
Ω

F (u) ≤ 1

4

∫
Ω

|u|2 ≤ 1

4
‖u‖2λ.

Hence ∫
R

G(x, u(x)) ≤ 1

4
‖u‖2λ +

∫
Ωc

G(x, u(x)),

and so, by (2.4),∫
R

G(x, u(x)) ≤ 1

4
‖u‖2λ +

1

2k

∫
Ωc

(1 + λV (x))|u|2.
Thereby,

Iλ(u) ≥ 1

4
‖u‖2λ −

1

2k

∫
Ωc

(1 + λV (x))|u|2 + Ψ(u) (3.2)

from where it follows that

Iλ(u) ≥
(
1

4
− 1

2k

)
‖u‖2λ +Ψ(u), ∀u ∈ Eλ. (3.3)

Since k > 2,

I(u) ≥ 1

8
‖u‖2λ, ∀u ∈ Kr. (3.4)

From the above study, we have that m is well defined and m ∈ [0,+∞).
Therefore, there is (un) ⊂ Kr such that

Iλ(un)→ m.
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Once that (un) is bounded, because (un) ⊂ Br(0), we can assume, without loss of
generality, that

un ⇀ u in Eλ and un(x)→ u(x) a.e. in R.

By Ekeland’s Variational Principle, we also assume that

m ≤ Iλ(un) ≤ m+
1

n2
∀n ∈ N

and

Iλ(u) ≥ Iλ(un)− 1

n
‖u− un‖λ ∀u ∈ Kr.

Observing that ϕ+ ∈ Kr, by (3.4),

1

8
‖un‖2λ ≤ Iλ(un) ≤ m+

1

n2
≤ Iλ(ϕ+) +

1

n2
≤ 1

2
‖ϕ+‖2 + 1

n2

leading to

lim sup
n→+∞

‖un‖2λ ≤ 4 ‖ϕ+‖2 < r.

Thus, there is n0 ∈ N such that

‖un‖2λ < r ∀n ≥ n0.

Now, repeating the same arguments found in [11], we have that (un) is a (PS)m
sequence for Iλ, that is,

Iλ(un)→ m and I ′λ(un)(v − un) ≥ 〈zn, v − un〉 ∀v ∈ K (3.5)

with zn → 0 in E′
λ. Using Proposition 2.1, there are a subsequence of (un), still

denoted by (un), and u in Eλ such that

un → u in Eλ. (3.6)

From this, u ∈ Kr and Iλ(u) = m, showing that u is a solution for (3.1). Now,
combining (3.5) and (3.6), it follows that∫

R

[u′(v − u)′ + (1 + λV (x))u(v − u)] ≥
∫
R

g(x, u)(v − u) ∀v ∈ K. (3.7)

Using the test function v = u+u− ∈ K, a direct computation implies that u− = 0,
consequently u is nonnegative. The positivity of u is obtained by applying the
maximum principle. �

4. Second solution for (PA)

In this section, we will apply the Mountain Pass Theorem due to Szulkin [23] to
get a second positive solution for problem (PA). Here, we denote by uλ the solution
obtained in Theorem 3.1.

Lemma 4.1. The energy functional Iλ verifies the geometry of the Mountain Pass
Theorem.
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Proof. Note that, by Theorem 3.1,

Iλ(u) ≥ Iλ(uλ) ∀u ∈ Kr.

Since Ψ(u) = +∞ for all u ∈ Kc
r, it follows that

Iλ(u) ≥ Iλ(uλ) ∀u ∈ Br. (4.1)

Moreover, if ρ = 1
8r

2, (3.4) gives

Iλ(u) ≥ ρ > 0, for all u ∈ ∂Br.

On the other hand, since ‖ϕ+‖2 < 1
4r

2, we have that ϕ+ ∈ Kr, and so,

Iλ(uλ) ≤ Iλ(ϕ+) ≤ 1

2
‖ϕ+‖2 < ρ, (4.2)

from where it follows that

inf
u∈∂Br

Iλ(u) > Iλ(uλ). (4.3)

We now observe that, for t ≥ 1, tϕ+ ∈ K. Then, Ψ(tϕ+) = 0 and

Iλ(tϕ+) =
t2

2

∫
R

(|ϕ′
+|2 + |ϕ+|2)−

∫
R

F (tϕ+).

By (f2), there are A,B > 0 such that

F (s) ≥ Asθ −B ∀s ≥ 0.

Consequently,

Iλ(tϕ+) ≤ t2

2

∫
R

(|ϕ′
+|2 + |ϕ+|2)− tθA

∫
D

(ϕ+)
θ +B|D|,

where D is a mensurable set with finite measure verifying D ∩ Supp (ϕ+) �= ∅.
From this,

Iλ(tϕ+)→ −∞ as t→ +∞,

and thus, setting e = tϕ+ for t large enough, we derive that

‖e‖ > r and Iλ(e) < Iλ(uλ). (4.4)

From (4.1)–(4.4), we deduce that Iλ satisfies the mountain pass geometry, see [23,
Theorem 3.2]. �

Theorem 4.1. Under the assumptions of Theorem 3.1, Problem (PA) has a positive
solution at the mountain pass level for all λ > 0, that is, there is wλ ∈ K verifying

Iλ(wλ) = cλ and I ′λ(wλ)(v − wλ) ≥ 0 ∀v ∈ K,

where cλ is the mountain pass level of Iλ.



Multiplicity of Positive Solutions 33

Proof. Combining Lemma 4.1 and Proposition 2.1 with the Mountain Pass Theo-
rem, we have that the mountain pass level cλ associated with Iλ is a critical value,
hence there is wλ ∈ K such that

Iλ(wλ) = cλ and I ′λ(wλ)(v − wλ) ≥ 0 ∀v ∈ K.

Using the test function v = wλ + wλ− ∈ K, a direct computation implies that
wλ− = 0, consequently wλ is nonnegative. The positivity of wλ is obtained by
applying maximum principle. �

Corollary 4.1. Under the assumptions of Theorem 3.1, problem (PA) has two pos-
itive solutions for all λ > 0.

Proof. From the previous study, we have two solutions denoted by uλ and wλ,
where uλ was obtained by minimization and wλ by Mountain Pass Theorem. More-
over, by (4.2),

m = Iλ(uλ) < ρ and Iλ(wλ) = cλ ≥ ρ.

Thus,

Iλ(uλ) < Iλ(wλ),

from where it follows that uλ and wλ are different. Hence, problem (PA) has two
positive solutions. �

5. Proof of Theorem 1.1

In what follows, our main goal is to show that there is λ∗ > 0 such that if λ ≥ λ∗,
the solutions uλ and wλ obtained in Corollary 4.1 satisfy

wλ(x), uλ(x) ≤ a, ∀x ∈ Ωc. (5.1)

From this, by using Remark 2.1, we will conclude that wλ and uλ are positive
solutions of (Pλ) if λ ≥ λ∗.

Hereafter, λn → +∞, un = uλn and wn = wλn . From Theorem 3.1, we know
that un ∈ Kr for all n ∈ N, thus (un) is bounded in H1(R). Next, we will show
that (wn) is also bounded in H1(R).

Lemma 5.1. The sequence (wn) is bounded in H1(R). More precisely, there is
M > 0 such that

‖wn‖λn ≤M ∀n ∈ N.

Proof. Since wn is a solution of (Pλn), it follows that∫
R

[w′
n(v−wn)

′+(1+λnV (x))wn(v−wn)] ≥
∫
R

g(x,wn)(v−wn), ∀v ∈ K. (5.2)

Repeating the same arguments used in the proof of Proposition 2.1, we derive that

Iλn(wn) ≥
[(

1

2
− 1

θ

)
− 1

2k

]
‖wn‖2λn

∀n ∈ N. (5.3)
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Now, considering the path γ(t) = tt∗ϕ+ for t ∈ [0, 1] and t∗ large enough and
setting

Σ = max
t∈[0,1]

J(γ(t)) > 0,

where

J(u) =
1

2

∫
Ω

[|u′|2 + |u|2]−
∫
Ω

F (u),

it follows that

Iλn(wn) ≤ max
t∈[0,1]

Iλn(γ(t)) = max
t∈[0,1]

J(γ(t)) = Σ ∀n ∈ N,

because Iλn(γ(t)) = J(γ(t)) for all n ∈ N and t ∈ [0, 1].
This combined with (5.3) implies that (‖wn‖λn) is bounded in R. �

Lemma 5.2. There are subsequences of (un) and (wn), still denoted by itself, which
are strongly convergent in H1(R).

Proof. In what follows, we will prove the lemma only for (un), because the same
arguments can be applied to (wn). Following the same arguments used in the proof
of Proposition 2.1, for each δ > 0, there is R > 0 such that

lim sup
n→+∞

∫
|x|≥R

[|u′
n|2 + |un|2] < δ.

The above limit yields∫
R

g(x, un)un →
∫
R

g(x, u)u (5.4)

and ∫
R

g(x, un)v →
∫
R

g(x, u)v ∀v ∈ K, (5.5)

where u ∈ K is the weak limit of (un) in H1(R).

Claim 5.1. The weak limit u is null in Oc, that is,

u(t) = 0 ∀t ∈ Oc.

Hence, u ∈ H1
0 (O).

In fact, for each m ∈ N, we define

Δm =

{
t ∈ R; V (t) >

1

m

}
.

It is immediate to see that

P = {t ∈ R; V (t) > 0} =
∞⋃

m=1

Δm.

Note that ∫
Δm

|un|2 ≤ m

λn
‖un‖2λn

≤ m

λn
r2 ∀n,m ∈ N
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where r is the constant given in Theorem 3.1. The last inequality, together with
Fatou’s Lemma, lead to ∫

Δm

|u|2 = 0 ∀m ∈ N.

Thereby, u = 0 a.e in Δm for all m ∈ N, implying that u = 0 a.e. in P . Now, the
claim follows using the continuity of u.

Using v = u as a test function in (3.7),∫
R

|u′
n|2 +

∫
R

(1 + λnV )|un|2 ≤
∫
R

(1 + λnV )unu+

∫
R

u′
nu

′ −
∫
R

g(x, un)(u − un).

(5.6)
Once that V (t) ≥ 0 and u = 0 in Ωc,∫

R

|u′
n|2 +

∫
R

|un|2 ≤
∫
R

u′
nu

′ +
∫
R

unu−
∫
R

g(x, un)(u − un).

Taking the limit of n→ +∞ and using (5.4)–(5.6),

lim sup
n→+∞

∫
R

[|u′
n|2 + |un|2] ≤

∫
R

[|u′|2 + |u|2].

Since H1(R) is a Hilbert space and un ⇀ u in H1(R), the above limit implies that
un → u in H1(R). �

As a consequence of the lemmas proved in this section, we have the following
results

Corollary 5.1. The sequences (un) and (wn) satisfy

λn

∫
R

V (x)|un|2 → 0 as n→ +∞ (5.7)

and

λn

∫
R

V (x)|wn|2 → 0 as n→ +∞, (5.8)

for some subsequence. Moreover, the weak limits u and w of (un) and (wn) respec-
tively, belong to H1

0 (O) and they are positive solutions of the obstacle problem∫
O
[ψ′(v − ψ)′ + ψ(v − ψ)] ≥

∫
O
f(ψ)(v − ψ) ∀v ∈ K̂ (PO)

where

K̂ :=
{
v ∈ H1

0 (O); v(x) ≥ ϕ(x) a.e. O} .
Proof. From now on, we will prove the lemma only for the sequence (un), because
the same arguments can be applied to (wn). Repeating the same type of arguments
explored in the proof of Claim 5.1, we get again an equality like (5.6), that is,∫

R

|u′
n|2 +

∫
R

(1 + λnV )|un|2 ≤
∫
R

(1 + λnV )unu+

∫
R

u′
nu

′ −
∫
R

g(x, un)(u − un).
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Using the fact that V (t)u(t) = 0 for all t ∈ R, it follows that∫
R

|u′
n|2 +

∫
R

(1 + λnV )|un|2 ≤
∫
R

u′
nu

′ +
∫
R

unu−
∫
R

g(x, un)(u − un). (5.9)

From Theorem 5.2, un → u in H1(R) for some subsequence. Hence,

lim inf
n→+∞

∫
R

(|u′
n|2 + |un|2) =

∫
R

(|u′|2 + |u|2),

lim
n→+∞

∫
R

(u′
nu

′ + unu) =

∫
R

(|u′|2 + |u|2),
and

lim
n→+∞

∫
R

g(x, un)(u− un) = 0.

The above limits combined with (5.9) yield

λn

∫
R

V |un|2 → 0.

To prove that (PO) holds, we begin recalling that for all v ∈ K,∫
R

[u′
n(v − un)

′ + (1 + λnV (x))un(v − un)] ≥
∫
R

g(x, un)(v − un).

Choosing v ∈ K̂, we get∫
R

[u′
n(v − un)

′ + un(v − un)− λnV (x)|un|2] ≥
∫
R

g(x, un)(v − un).

Taking the limit of n→∞ and using Lemma 5.2 and (5.7), we derive that∫
O
[u′(v − u)′ + u(v − u)] ≥

∫
O
f(u)(v − u) ∀v ∈ K̂,

finishing the proof. �

Corollary 5.2. The sequences (un) and (wn) satisfy the following limits

‖wn‖L∞(Oc
), ‖un‖L∞(Oc

) → 0 as n→ +∞.

Proof. These limits are an immediate consequence of the continuous embedding
H1(Ω

c
) ↪→ L∞(Oc

) together with the limits un → u and wn → w in H1(R) and
of the fact that u = w = 0 in Oc. �

Proof of Theorem 1.1. The study made in this section allows us to prove that (5.1)
holds for λ large enough. We will show only (5.1) to (un), because the argument is
the same for (wn). Arguing by contradiction, we assume that there is λn → +∞
such that

‖un‖L∞(Ωc) > a ∀n ∈ N. (5.10)

From Lemma 5.2, there is a subsequence of (un), still denoted by itself, and u ∈
H1

0 (O) such that

un → u in H1(R).
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By Corollary 5.2, the below limit holds

‖un‖L∞(Oc
) → 0 as n→ +∞,

which implies that there is n0 ∈ N such that

‖un‖L∞(Ωc) <
a

2
∀n ≥ n0,

obtaining a contradiction with (5.10). This way, it follows that there is λ∗ > 0
such that the solution uλ satisfies

uλ(x) ≤ a ∀x ∈ Ωc and λ ≥ λ∗.

Now, by Remark 2.1, we can conclude that uλ is a positive solution for (Pλ) for
λ ≥ λ∗. �
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