
Chapter 4
Exact Solutions to the Equations of Viscous Flow

Abstract A collection of exact solutions to the equations of viscous hydrodynamics
is presented, along with one for non-Newtonian flow and one which uses the
Boussinesq approximation to treat a problem in natural convection.

In this chapter we present some of the very few known cases for which the
equations of viscous flow can be solved without approximation. We consider only
incompressible flow, since there are virtually no exact solutions known for the
flow of a viscous, compressible fluid. However for a few exceptions, see Goldstein
(1960), von Mises (2004) and Chap. 9 in Panton (1984).

An impressive review of exact and approximate solutions of the Navier-Stokes
equation was compiled by Berker (1963).

We shall assume throughout that the body forces are zero. However the solutions
are easily modified to cover the important case of a conservative body force field.
For this case the covariant components of body force are derivable from a potential:

fi D @�

@xi
:

Consequently, if we set

p� D p � �� ;

the grouping .�fi � @p=@xi / in the covariant Navier-Stokes equation (3.47) is
replaced by �@p�=@xi . If the body force is gravity, we might describe this procedure
as incorporating the gravitational head into the pressure head.
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106 4 Exact Solutions

4.1 Rectilinear Flow Between Parallel Plates

In Fig. 4.1, consider that an incompressible fluid is contained in the region between
two parallel infinite plates, which move steadily in their own planes. We choose
a Cartesian coordinate system with x3-axis normal to the plates and with origin
midway between them, so that the plates correspond, say, to x3 D ˙h. Further we
let the coordinate system translate with the average velocity of the plates. Hence
if the plate at x3 D Ch moves with velocity components U; V in the x1- and x2-
directions, respectively, then the plate at x3 D �h moves with velocity components
�U;�V . Thus, the no-slip condition requires that

v1 D ˙U at x3 D ˙h ;
v2 D ˙V at x3 D ˙h ; (4.1)

v3 D 0 at x3 D ˙h :
Since the coordinate system is not accelerated, Eqs. (2.194) and (2.195) apply.

We seek a solution of the form

v1 D u.x3/ ;

v2 D v.x3/ ;

v3 D 0 ; (4.2)

p D p.x1/ :

Such a solution does, in fact, exist: the continuity equation (2.194) and the i D 3

component of the momentum equation (2.195) are automatically satisfied; the other
two component equations reduce to

�
@2u

@x23
D @p

@x1
; (4.3)

�
@2v

@x23
D 0 ; (4.4)

which are easily solved subject to the boundary conditions (4.1). According to (4.2),
u is a function of x3, only and p is a function of x1 only. Consequently both sides
of (4.3) are equal to the same constant, say �G. Thus

u D U
x3

h
C
�

Gh2

2�

��
1 � x23

h2

�
;

v D Vx3
h
; (4.5)

p D C � Gx1 ;

where C is a constant of integration.
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Fig. 4.1 Geometry for flow
between parallel plates

A particular case corresponds to the flow between stationary plates, i.e. U D
V D 0 in the presence of a pressure gradient. The velocity field reduces to a parabola

uP D
�

Gh2

2�

��
1 � x23

h2

�
; (4.6)

and this flow is know as channel flow or plane Poiseuille flow (after Jean Louis
Marie Poiseuille, 1797–1869).

The flux Q of the flow in the x1-direction per unit length in the x2 direction is
defined by

Q D
Z h

�h
u dx3 : (4.7)

Integrating the first of Eqs. (4.5), we obtain

Q D 2G
h3

3�
: (4.8)

Thus the pressure gradient is proportional to the flux, to which the motion of the
plates does not contribute.

If there is no pressure gradient, we can select an orientation of the coordinate
system so that (4.5) reduces to the Couette flow (after Maurice Marie Alfred
Couette, 1858–1943)

u D U
x3

h
;

v D 0 ; (4.9)

p D C :

This solution is sometimes called homogeneous shear flow.
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The general case (4.5) corresponds to Couette flow with a pressure flow
superimposed; the two basic flows may be oblique to each other. Since, for the
assumed form of solution (4.2), the nonlinear terms drop out of the Navier-Stokes
equation, the two flows do not couple.

4.2 Plane Shear Flow of a Non-Newtonian Fluid

Let us consider the simple shear flow of the Reiner-Rivlin fluid (Eq. (2.149)) in a
Cartesian orthonormal coordinate system such that

v1 D P� x2; v2 D v3 D 0 ; (4.10)

where P� is called the shear rate. The components eij of the tensor e vanish except

for e12 D e21 D P�
2

, which then leads to I2 .e/ D � P�2=4 and I3 .e/ D 0. We will
denote the matrices associated with tensors by their symbol within square brackets.
Therefore the matrices Œe�; Œe2� are given by

Œe� D

0
B@
0

P�
2
0

P�
2
0 0

0 0 0

1
CA ; �

e2
� D

0
B@

P�2
4
0 0

0
P�2
4
0

0 0 0

1
CA : (4.11)

The corresponding stress components are then

T11 D T22 D �p C '2
P�2
4
; T33 D �p ; (4.12)

T12 D T21 D '1
P�
2

D �. P�/ ; (4.13)

T13 D T23 D 0 : (4.14)

Let us introduce the first normal stress differences defined by the relations

N1 D T11 � T22; N2 D T22 � T33 : (4.15)

Here we obtain

N1 D 0 and N2 D '2
P�2
4
: (4.16)

However, this does not correspond to the physical reality as experimental data show
neitherN1 norN2 vanishes. We therefore need a different kind of model, namely the
second-order fluid, to resolve the right normal stress differences. This model uses
Rivlin-Ericksen tensors, a concept described in Deville and Gatski (2012). It can be
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shown that all three functions N1;N2; � depend on the nature of the fluid, and are
called the viscometric functions of the material. Note also that in the Newtonian
case N2 D 0, indicating that for this kind of fluid, there is no imbalance in the first
normal stress differences.

4.3 The Flow Generated by an Oscillating Plate

Let us now suppose that an infinite flat plate at the bottom of an infinitely deep sea
of fluid executes linear harmonic motion parallel to itself. We let the plate lie in the
x3 D 0 plane of a Cartesian coordinate system, so oriented that the oscillation is
along the x1-axis. The location of the origin is unimportant, but the xi -system is
fixed in space, not in the oscillating plate. The motion of the plate generates in the
fluid a rectilinear flow, partially in-phase, partially out-of-phase, with the plate. The
pressure, however, remains constant.

If the velocity-amplitude and frequency of the plate motion are denoted, respec-
tively, by A and !, the no-slip condition requires that

v1 D D A cos!t at x3 D 0 ; (4.17)

v2 D v3 D 0 at x3 D 0 : (4.18)

If we set

v1 D f .x3/ cos!t C g.x3/ sin!t ;

v2 D v3 D 0 ; (4.19)

p D constant ;

the equations of motion (2.194), (2.195) are satisfied, provided only that

.!g � �f 00/ cos!t D .!f C �g00/ sin!t : (4.20)

Equation (4.20) can hold for all values of t only if both sides vanish independently.
Thus

!g � �f 00 D 0 ;

!f C �g00 D 0 : (4.21)

It is readily verified that the general solution of this system is

f .x3/ D e�kx3 .c1 cos kx3 C c2 sin kx3/C eCkx3 .c3 cos kx3 C c4 sin kx3/ ;

g.x3/ D e�kx3 .c1 sin kx3 � c2 cos kx3/ � eCkx3 .c3 sin kx3 � c4 cos kx3/ ;

(4.22)
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where

k D
r
!

2�
: (4.23)

Since the growing exponentials are not physically admissible, we set

c3 D c4 D 0 : (4.24)

The remaining constants are evaluated from the boundary condition (4.17):

c1 D A; c2 D 0 : (4.25)

We then have

v1 D Ae�kx3 .cos kx3 cos!t C sin kx3 sin!t/

D Ae�kx3 cos.!t � kx3/ : (4.26)

Thus the oscillating plate sets up a corresponding oscillation in the fluid. As we
move away from the plate, the amplitude decays exponentially and the phase lag
with respect to the plate motion varies linearly. Two fluid layers a distance 2	=k
apart oscillate in phase. This distance, which, by (4.23), is equal to 2	

p
2�=!, is

called the depth of penetration of the harmonic motion. That it increases with
viscosity and decreases with frequency is not surprising: if we slowly oscillate a flat
plate in a sticky fluid, we expect to drag large masses of fluid along with the plate;
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on the other hand, if we move the plate rapidly in a fluid of low viscosity, we expect
the fluid essentially to ignore the plate, except in a thin boundary-layer.

The velocity profile above an oscillating plate is illustrated in Fig. 4.2.

4.4 Transient Flow in a Semi-infinite Space

Let us consider the case in which the plate executes a motion more general than
steady-state oscillation. To make it definite, let us suppose that the plate, and the
fluid above it, are at rest until time zero, when the plate begins to move in the
x1-direction1 with velocity V.t/. If we set

v1 D v.x3; t/ ;

v2 D v3 D 0 ; (4.27)

p D constant ;

the equations of motion (2.194), (2.195) are satisfied if

@v

@t
D �

@2v

@x23
: (4.28)

Thus the velocity generated by the moving plate diffuses through the fluid according
to the heat equation. This equation can be solved subject to the initial condition

v.x3; 0/ D 0 ; (4.29)

and to the boundary condition

v.0; t/ D V.t/ ; (4.30)

by straightforward application of the Laplace transform. Some instructive cases are
worked out in Schlichting (1960); unsteady motion between parallel plates is also
considered. The reader is also referred to Dowty (1963).

If we assume V.t/ D V , with V a constant, then we can work out easily a closed
form solution. The initial and boundary conditions are recapitulated as

t < 0; v D 0; 8 x3 ; (4.31)

t > 0; v D V; at x3 D 0 ; (4.32)

v D 0; at x3 D 1 : (4.33)

1Motion in the x2-direction could be superimposed; the resulting fluid motions do not couple.
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Equation (4.28) is a diffusion type equation similar to the heat equation. We will
transform this partial differential equation into an ordinary differential equation by
a change of variables that is based on similarity considerations. As the problem has
no other space variable than x3 and no other time scale than t , one combines them
to form the dimensionless group


 D x3

2
p
�t
: (4.34)

This change of variable will produce an ordinary differential equation whose
solution is a function of 
. This solution is called a self-similar solution as the
velocity profile with respect to x3 is similar at any time t . Setting

v D V f .
/ ; (4.35)

Eq. (4.28) becomes

f 00 C 2
f 0 D 0 ; (4.36)

with the conditions


 D 0; f D 1I 
 D 1; f D 0 : (4.37)

Integrating (4.36), one obtains

f D A

Z 


0

e�
02d
0 C B : (4.38)

With the conditions (4.37), one gets for 
 D 0, B D 1 and for 
 D 1, A D
�2=p	 . In terms of the error function erf(x) defined by

erf .x/ D 2p
	

Z x

0

e��2d� ; (4.39)

which makes erf.1/ D 1, Eq. (4.38) becomes

f D 1 � erf 
 : (4.40)

The velocity profile for t > 0 is

v D V

�
1 � erf.

x3

2
p
�t
/

�
: (4.41)

and is shown in Fig. 4.3.
The penetration depth of the plate movement in the semi-infinite space is related

to the question: for t fixed, what is the distance to the plate where the velocity
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Fig. 4.3 Transient flow in a
semi-infinite space

reaches, for example, 1 % of the V value? From numerical erf values, the function
1 � erf(
) is 0:01 for 
 � 2. The penetration depth ı is consequently given by


ı D ı

2
p
�t

' 2; ı ' 4
p
�t : (4.42)

It is proportional to the square root of the kinematic viscosity and time. If the
viscosity is very small, the fluid “sticks” less to the wall and the effect of the wall
presence is reduced. If t goes to infinity, the velocity at each position in the semi-
infinite space goes to V .

4.5 Channel Flow with a Pulsatile Pressure Gradient

Blood flow in the vascular tree is driven by the pulsating pressure gradient produced
by the heart that is acting as a pump. In order to avoid (temporarily) the geometrical
complexity of cylindrical coordinates appropriate for blood flow in the arteries, we
will tackle a simplified version of the problem, namely the plane channel flow under
an oscillating pressure gradient.

Recall that the standard Poiseuille flow with a steady constant pressure gradient
denoted by G gives rise to the parabolic velocity profile (4.6). Let us add now an
oscillating component characterized by the pulsation ! such that

� 1

�

@p

@x1
D �G � C cos!t ; (4.43)

with C a constant obtained from experimental data, for example. For the sake
of simplicity in the analytical treatment, it is customary to resort to Fourier
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representation and use the following relation

� 1

�

@p

@x1
D �G � <.Cei!t / ; (4.44)

where < means the real part. As a steady state oscillating solution is sought for the
velocity field, the solution is written as a complex function

v1 D uP C < �
u.!; x3/e

i!t
	
; (4.45)

where the Poiseuille solution uP given by Eq. (4.6) corresponds to constant pressure
gradient.

The Navier-Stokes equations lead to the relation

@v1

@t
D �1

�

@p

@x1
C �

@2v1

@x23
: (4.46)

With Eqs. (4.44) and (4.45), Eq. (4.46) gives

i! u D �C C �
@2u

@x23
: (4.47)

The boundary conditions are

u.h/ D 0;
@u

@x3
.0/ D 0 : (4.48)

The solution of (4.47) is

u D <

2
64 iC
!

0
B@1 �

cosh
q

i!
�
x3

cosh
q

i!
�
h

1
CA
3
75 : (4.49)

Taking the relation i 1=2 D .1 C i/=
p
2 into account, the real part of (4.49) yields

the velocity field

v1 D uP � C

!

��
1 � f1.!; x3/

f3.kh/

�
sin!t � f2.!; x3/

f3.kh/
cos!t

�
; (4.50)

where the various notations are defined as follows

k D
r
!

2�
;

cc.x/ D cos.x/ cosh.x/ ;

ss.x/ D sin.x/ sinh.x/ ;
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Fig. 4.4 Pulsating velocity field with ! D 1; left: k D 1=
p
2; right: k D 5=

p
2

f1.!; x3/ D cc.kx3/cc.kh/C ss.kx3/ss.kh/ ; (4.51)

f2.!; x3/ D cc.kx3/ss.kh/ � ss.kx3/cc.kh/ ;

f3.!/ D cc2.!/C ss2.!/ :

Figure 4.4 shows the time evolution of the velocity profile for two different values
of k. The left part represents the flow for a low frequency case or when the viscous
forces are important, i.e. hk � 1, whereas the right part corresponds to high
frequency forcing or to a fluid with low viscosity. The low frequency solution may
be obtained by taking the limit of Eq. (4.50) when k ! 0. Since cc.x/ ! 1 and
ss.x/ is asymptotic to x2 as x ! 0, one has

v1 D uP C Ch2

2�
cos!t



1 � .x3

h
/2
�
; (4.52)

so that the pulsating term is still a parabola with a modified amplitude which is
given by the oscillating part of the pressure gradient in (4.43). The high frequency
case or the equivalent inviscid fluid may be treated with the approximation hk � 1.
Then, since cc.x/ and ss.x/ are asymptotic, respectively, to 1=2 ex cos x and
1=2 ex sin.x/ as x ! 1, the limit solution reads

v1 D uP � C

!
.sin!t � sin.!t � 
/e�
/ ; (4.53)

where the new variable 
 measuring the distance from the upper wall is defined as
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 D k.h � x3/ D h � x3p
2�=!

: (4.54)

Note that the first term of the oscillating part of (4.53) is the response of the inviscid
fluid (� D 0) to the pressure gradient. As soon as we are inside the fluid the second
oscillating term goes to zero leaving the flow oscillating under the influence of the
pressure gradient.

4.6 Poiseuille Flow

Probably the most important exact solution in applied viscous hydrodynamics is
the Poiseuille solution for pressure flow through a straight circular pipe of uniform
diameter. Let a cylindrical polar coordinate system be defined with z-axis along
the axis of the pipe; in view of the axial symmetry of the situation, the specific
orientation of the � D 0 direction is unimportant. If the radius of the pipe is denoted
by R, the no-slip condition requires

vr D v� D vz D 0 at r D R : (4.55)

We seek a solution to Eqs. (3.77) through (3.80) in the form

vr D v� D 0 ;

vz D u.r/ ; (4.56)

p D p.z/ :

The continuity equation (3.77) is automatically satisfied, as are the momentum
equations (3.78) and (3.79). There remains only (3.80), which reduces to

�

�
@2u

@r2
C 1

r

@u

@r

�
D @p

@z
: (4.57)

As for the flow between plates, both sides must be equal to the same constant, say
�G. With the boundary conditions (4.55) and the restriction that the velocity be
finite at the tube axis,

u D
�

GR2

4�

��
1 � r2

R2

�
; (4.58)

p D C �Gz ; (4.59)

where C is a constant of integration.
If we denote by Q the volume rate of flow through the pipe, so that



4.6 Poiseuille Flow 117

Q D 2	

Z R

0

ru dr ; (4.60)

integration of (4.58) yields

Q D 	
GR4

8�
: (4.61)

We can superimpose a swirl without disturbing the parabolic velocity profile
(4.58). Let us suppose that we rotate the pipe about its own axis, not necessarily with
constant angular velocity. The boundary conditions (4.55) must then be modified:

vr D vz D 0 at r D R ; (4.62)

v� D R!.t/ at r D R: (4.63)

If we set

vr D 0;

v� D v.r; t/ ; (4.64)

vz D u.r/ ;

where u.r/ is the Poiseuille solution (4.58), the continuity equation (3.77) is
automatically satisfied.

The pressure field (4.59) will not quite suffice. As evidenced by Eq. (3.78), an r-
dependence must be added to balance the centrifugal force generated by v� . We set

p.z; r; t/ D C �Gz C �

Z r

0

r�1Œv.r; t/�2dr : (4.65)

With (4.64) and (4.65), Eqs. (3.78) and (3.80) are satisfied. There remains only
(3.79), which reduces to

@v

@t
D �

�
@2v

@r2
C 1

r

@v

@r
� v

r2

�
: (4.66)

By way of example, suppose that the pipe wall undergoes steady-state torsional
oscillation, so that

!.t/ D A cos nt : (4.67)

We expect that the resulting swirl will have an in-phase and an out-of-phase
component, so that

v.r; t/ D f .r/ cos nt C g.r/ sin nt : (4.68)
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Substituting into (4.66),

.cos nt/

�
ng

�
� f 00 � f 0

r
C f

r2

�
D .sin nt/

�
nf

�
C g00 C g0

r
� g

r2

�
: (4.69)

If (4.69) is to hold for all values of t , both sides must vanish independently. Thus

ng

�
� f 00 � f 0

r
C f

r2
D 0 ; (4.70)

nf

�
C g00 C g0

r
� g

r2
D 0 : (4.71)

If we multiply (4.70) by i and subtract from (4.71), we obtain

n

�
.f � ig/C

�
d2

dr2
C 1

r

d

dr
� 1

r2

�
.g C if / D 0 : (4.72)

By setting

F.r/ D f .r/ � ig.r/ ; (4.73)

(4.72) can be written as Bessel’s equation of order unity:

d2F

dr2
C 1

r

dF

dr
C
�
i 3n

�
� 1

r2

�
F D 0 : (4.74)

SinceF.0/must be finite, we reject the Neumann function as an admissible solution.
Therefore

F.r/ D cJ1.i
3=2r

p
n=�/ ; (4.75)

where c is a (complex) constant of integration. Comparing (4.63), (4.64), (4.67),
(4.68), (4.73), we see that

F.R/ D RA ; (4.76)

so that

c D ber1R
p
n=� � i bei1R

p
n=�

.ber1R
p
n=�/2 C .bei1R

p
n=�/2

RA ; (4.77)

where ber1z and bei1z denote, respectively, the real and imaginary parts of J1.i3=2z/.
With (4.73) and (4.75), we then obtain
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f .r/ D RA

.ber1R
p
n=�/2 C .bei1R

p
n=�/2

.ber1R
p
n=�ber1r

p
n=� C

bei1R
p
n=�bei1r

p
n=�/ ;

g.r/ D RA

.ber1R
p
n=�/2 C .bei1R

p
n=�/2

.bei1R
p
n=�ber1r

p
n=� �

ber1R
p
n=�bei1r

p
n=�/ : (4.78)

The remarks in Sect. 4.3 concerning the penetration of the boundary motion into
the fluid carry over mutatis mutandis to the torsional oscillation of a circular pipe.
Also in analogy with Sect. 4.3, more general rotary motion of the pipe can be treated
by applying the Laplace transform to Eq. (4.66). Unsteady longitudinal motion of
the pipe can also be treated.

In the next chapter we shall consider the exact solution of the problem of steady-
state flow through a pipe of non-circular cross section.

4.7 Starting Transient Poiseuille Flow

We will examine the transient flow in a circular pipe where the fluid starts from
rest to reach the Poiseuille steady parabolic profile (4.58). The only non vanishing
velocity component is vz and the pressure gradient goes instantaneously at t D 0

from zero to the value �G everywhere. The dynamic equation is from (3.80)

G C �

�
@2vz

@r2
C 1

r

@vz

@r

�
D �

@vz

@t
; (4.79)

with the initial condition

vz.r; 0/ D 0; 0 � r � R ; (4.80)

and the boundary condition

vz.R; t/ D 0;8t : (4.81)

In order to render (4.79) homogeneous, let us change variables

w.r; t/ D G

4�

�
R2 � r2	 � vz.r; t/ : (4.82)

The new variable will be solution of the equation

@2w

@r2
C 1

r

@w

@r
D 1

�

@w

@t
; (4.83)
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with the initial condition

w.r; 0/ D G

4�

�
R2 � r2	 ; (4.84)

and the boundary condition

w.R; t/ D 0; 8t : (4.85)

Through the transient phase, the velocity vz will increase till the steady state (4.58)
is reached, whereas the transient perturbation w.r; t/ will decay to zero. To solve
(4.83), we proceed by separation of variables

w.r; t/ D f .r/g.t/ : (4.86)

Substituting in (4.83), one gets

dg.t/

dt
C C� g.t/ D 0 ; (4.87)

d2f

dr2
C 1

r

df

dr
C C f D 0 ; (4.88)

where C is an arbitrary constant. The solution of (4.87) reads

g.t/ D B exp.�C�t/ : (4.89)

As w.r; t/ decreases with respect to time, we assume that C will involve only
positive values so thatC can be written �2=R2. This will ease the next computations,
as we will observe. Equation (4.88) then becomes

d2f

dr2
C 1

r

df

dr
C �2

R2
f D 0 : (4.90)

The change of variable �r=R D z leads (4.90) to the canonical form of the Bessel
equation

d2f

dz2
C 1

z

df

dz
C .1 � k2

z2
/ f D 0 ; (4.91)

whose general solution is given by

f D C1Jk.z/C C2Yk.z/ ; (4.92)
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where the functions Jk and Yk are Bessel functions of first and second kind,
respectively, of order k and C1; C2 are arbitrary constants. Consequently, the
solution of (4.90) is

f D C1J0.
�r

R
/C C2Y0.

�r

R
/ : (4.93)

As Y0 goes to �1 when r ! 0, one concludes that C2 D 0 for w to remain finite
on the axis. The general solution of (4.83) becomes

w.r; t/ D C3J0.
�r

R
/ exp.� �

2

R2
�t/ : (4.94)

The solution (4.94) verifies condition (4.85) for � values, denoted �n, given by the
zeroes of the Bessel function J0

J0.�n/ D 0 : (4.95)

The solution is obtained as

w.r; t/ D G

4�

1X
nD1

cn J0.
�nr

R
/ exp.� �

2
n

R2
�t/; (4.96)

and the coefficients cn are determined by (4.84):

R2 � r2 D
1X
nD1

cn J0.
�nr

R
/ : (4.97)

To solve Eq. (4.97), let us recall the orthogonality properties of Bessel functions as
expressed by Lommel integrals

Z 1

0

zJn.�i z/Jn.�j z/dz D 0; �i ¤ �j ; (4.98)

Z 1

0

zJ 2n .�i z/dz D 1

2
ŒJ 0
n.�i /�

2 : (4.99)

Solution of (4.97) is obtained with z D r=R as

cn D 2R2

ŒJ 0
0.�n/�

2

Z 1

0

.1 � z2/zJ0.�nz/dz : (4.100)

The evaluation of the two integrals in (4.100) is carried out using successively the
recurrence relationships (4.102) and then (4.101) Abramowitz and Stegun (1972)
with ` D 2;m D 0
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Z
z`C1Jm.z/dz D z`C1JmC1.z/C .` �m/z`Jm.z/

� .`2 �m2/

Z
z`�1Jm.z/dz ; (4.101)

Z z

z0

zmJm�1.z/dz D ŒzmJm.z/�
z
z0 ; (4.102)

zJ 0
m.z/ D mJm.z/ � zJmC1.z/ : (4.103)

This yields

Z 1

0

zJ0.�nz/dz D 1

�n
J1.�n/ ; (4.104)

Z 1

0

z3 J0.�nz/dz D 1

�4n

�
�3nJ1.�n/C 2�2nJ0.�n/ � 4�nJ1.�n/

�
; (4.105)

D 1

�n
J1.�n/ � 4

�3n
J1.�n/ :

One finds with the help of the relation ŒJ 0
0.�n/�

2 D ŒJ1.�n/�
2:

cn D 8R2

�3nJ1.�n/
: (4.106)

Taking Eqs. (4.82), (4.96) and (4.106) into account, the velocity profile is

vz.r; t/ D G

4�

�
R2 � r2	 � 2GR2

�

1X
nD1

J0.
�nr
R
/

�3nJ1.�n/
exp.� �

2
n

R2
�t/ : (4.107)

Figure 4.5 shows the velocity variation with respect to time.

4.8 Pulsating Flow in a Circular Pipe

We come back to the blood flow in arteries. Assuming that arteries are rigid circular
pipes, —an assumption far from the physiological phenomena as arterial walls
deform and move under pressure waves Zamir (2000)—, we are faced with a time-
periodic pressure gradient driving the Poiseuille flow. The cardiac cycle is indeed
time-periodic and therefore the pressure gradient should be represented by a Fourier
series. For the sake of simplicity we will consider only a Fourier in such a way that

@p

@z
D �Cei!t ; (4.108)
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with ! the angular frequency. The flow governing equation is obtained from (3.80):

Cei!t C �

�
@2vz

@r2
C 1

r

@vz

@r

�
D �

@vz

@t
; (4.109)

and a solution is sought in terms of the Fourier representation

vz D u.r/ei!t : (4.110)

The combination of Eqs. (4.109) and (4.110) generates the solution

u D C

i�!

�
1 � J0.i

3=2˛r=R/

J0.i3=2˛/

�
; (4.111)

in which there appears a dimensionless number ˛ called the Womersley number
defined as

˛ D R

r
!

�
: (4.112)

Note that the Womersley number is the square root of the oscillatory Reynolds
number (2.241).

The solution (4.111) was obtained with the boundary conditions

u.R/ D 0;
du

dr
.r D 0/ D 0 : (4.113)

The function J0.i3=2
p

!
�
r/ D J0.i

3=2˛r=R/ is the Kelvin function of order 0.
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As the Womersley number is the ratio of the radius to the penetration depth, it
is a characteristic feature of pulsatile blood flow. Typical values of ˛ in the aorta
range from 20 for a human in good health to 8 for a cat. Another way of interpreting
the Womersley number consists in estimating the distance from the rigid wall, say
ı, where the viscous forces and the inertia are of equal magnitude. Near the wall,
viscosity is dominant and a rough estimate of the viscous forces is �U=ı2. Near the
symmetry axis, inertia dominates and yields the estimate �!U . Equating the two
forces leads to the definition

ı D �

!
: (4.114)

If ˛ is large, the viscous effects are confined to a region very close to the wall.
In the centre of the flow, the dynamics will be driven by the equilibrium of inertia
and pressure forces, resulting in a velocity profile that will be more blunt than the
parabolic profile that comes from the balance of viscous and pressure forces.

4.9 Helical Flow in an Annular Region

4.9.1 The Newtonian Case

In this section we treat the motion of fluid contained between two concentric circular
pipes of constant radii R1 and R2 with, say, R1 < R2 as indicated in Fig. 4.6. The
pipes rotate about their common axis with constant angular velocities !1 and !2,
respectively. In addition the pipes may translate steadily, parallel to their common
axis; let us say that the outer pipe translates with velocity U relative to the inner.

We define a cylindrical coordinate system r; �; z which translates with the inner
pipe but does not rotate with it. The z-axis lies along the common axis of the pipes;
because of the axial symmetry, the orientation of the � D 0 axis is unimportant.

Since the cylindrical coordinate system is not accelerated, the fluid motion is
governed by Eqs. (3.77) through (3.80). The no-slip condition requires that

vr D vz D 0; v� D R1!1 at r D R1 I
vr D 0; v� D R2!2; vz D U at r D R2 : (4.115)

From our experiences with the exact solutions found in previous sections, we
expect that

vr D 0 ;

v� D v.r/ ;

vz D u.r/ ; (4.116)

p D C �Gz C �

Z r

0

r�1Œv.r/�2dr :
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The continuity equation is indeed satisfied, as is Eq. (3.78). Equation (3.79)
reduces to

d2v

dr2
C 1

r

dv

dr
� v

r2
D 0 ; (4.117)

and Eq. (3.80) becomes

d2u

dr2
C 1

r

du

dr
D �G

�
: (4.118)

Thus the rotary flow and the axial flow do not couple. Integrating (4.117) subject to
the boundary conditions on v� yields the axisymmetric Couette flow

v D
�
R22!2 �R21!1
R22 �R21

�
r C

�
!1 � !2
R22 �R21

�
R21R

2
2

r
: (4.119)

Integrating (4.118) subject to the boundary conditions on vr yields

u D G

4�

�
R21 � r2 C .R22 �R21/ ln.r=R1/

ln.R2=R1/

�
C U

ln.r=R1/

ln.R2=R1/
: (4.120)

If the pipes do not translate relative to one another, so that U D 0, Eq. (4.120)
describes pressure flow in a coaxial pipe. The opposite case, for which G D 0

but U ¤ 0, is referred to as drag flow, but the term is not in common use. The
general case described by (4.119) and (4.120) might be termed pressure flow with
superimposed Couette flow and drag flow.

As in Poiseuille’s problem, the exact solution presented here can be generalized
by permitting unsteady motion of the pipes parallel to themselves.



126 4 Exact Solutions

4.9.2 The Non-Newtonian Circular Couette Flow

Circular Couette flow occurs in the gap between two rotating concentric cylinders.
The inner cylinder of radius R1 has the angular velocity !1 while the outer cylinder
of radiusR2 spins at !2. The apparatus has a heightH which is much larger than the
radius of either cylinder so that the apparatus height is supposed infinite. Referring
to the previous cylindrical coordinates system r; �; z, the steady state velocity field
is such that

vr D 0; v� D v� .r/; vz D 0 : (4.121)

This v� velocity field is then determined from the integration of the � -momentum
equation

�.
@v�

@t
C vr

@v�

@r
C v�

r

@v�

@�
C vz

@v�

@z
C vrv�

r
/

D @Tr�

@r
C 1

r

@T��

@�
C @T�z

@z
C 2Tr�

r
; (4.122)

which reduces to

1

r2
d

dr

�
r2 Tr�

	 D 0 : (4.123)

The stress component Tr� of (2.149) is given by the relation

Tr� D '1

2

�
@v�

@r
� v�

r

�
: (4.124)

Taking (4.124) into account, the integration of (4.123) with the boundary conditions
v� .R1/ D R1!1 and v� .R2/ D R2!2 yields the velocity field (4.119).

In the case of a fixed outer cylinder !2 D 0 and the velocity is given by

v� D Ar C B

r
D !1R

2
1

R22 �R21

�
R22
r

� r
�
: (4.125)

The r-momentum equation

�.
@vr

@t
C vr

@vr

@r
C v�

r

@vr

@�
C vz

@vr

@z
� v2�
r
/

D @Trr

@r
C 1

r

@Tr�

@�
C @Trz

@z
C Trr � T��

r
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simplifies and gives

d Trr

dr
C 1

r
.Trr � T�� / D ��v

2
�

r
: (4.126)

With the stress component

Trr D �p C '2

4

�
@v�

@r
� v�

r

�2
;

Eq. (4.126) yields

�@p
@r

C '2
@

@r

�
B2

r4

�
D ��v

2
�

r
: (4.127)

As Tzz D �p, one obtains

� Tzz D p D '2
B2

r4
jrR1 C

Z r

R1

�
v2�
r

dr C C (4.128)

D p.R1/C '2
B2

r4
C
Z r

R1

�
v2�
r

dr : (4.129)

If the fluid is Newtonian, '2 D 0 and the pressure increases from the inner to the
outer cylinder. The fluid rises along the outer cylinder under centrifugal forces. For
the non-Newtonian fluid, if '2 > 0 and if B is sufficiently large under a high
shear due to a small gap between the cylinders, the pressure increases when one
approaches the inner cylinder and this produces the rod-climbing effect as shown in
Fig. 2.5.

4.10 Hamel’s Problem: Flow in a Wedge-Shaped Region

The exact solutions presented so far have all been somewhat degenerate. In every
case the form we assumed for the velocity profile caused the nonlinear inertia terms
in the Navier-Stokes equation either to vanish completely or to produce only a
centrifugal force, easily balanced by a pressure gradient. Since the mechanism of
non-linear momentum transfer is best studied through exact solutions in which the
non-linear terms play an important role, it is worthwhile to seek out such solutions.

In Fig. 4.7 consider that an incompressible fluid is contained in the trough
between two non-parallel walls. Consider further that a line-source (or sink) of
uniform outputQ per unit length lies along the line of intersection of the walls. Let a



128 4 Exact Solutions

a

q

r

Fig. 4.7 Wedge geometry

cylindrical polar coordinate system r; �; z be defined so that the walls correspond to
� D ˙˛. The velocity components must, then, satisfy the no-slip condition

vr D v� D vz D 0 at � D ˙˛; (4.130)

along with the volume flow condition

Z ˛

�˛
rvr d� D Q : (4.131)

We expect a priori that the flow will be two-dimensional. Moreover we suspect
that a purely radial pattern of flow may satisfy the hydrodynamic equations.
Therefore we seek a solution with

v� D vz D 0 : (4.132)

The continuity equation (3.77) then requires that

vr D 1

r
f .�/ ; (4.133)

so that Eq. (3.79) becomes

@p

@�
D 2�

r2
f 0.�/ : (4.134)

Thus

p D 2�

r2
f .�/C g.r/ : (4.135)
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Substituting (4.133) and (4.135) into (3.78) yields

r3g0.r/ D �Œf 00.�/C 4f .�/�C �Œf .�/�2 : (4.136)

Since the left side of (4.136) is a function of r alone and the right side is a function
of � alone, both sides must equal some constant, call it ��K. Then (4.135) yields

p D �

2r2
Œ4f .�/CK�C pa ; (4.137)

where pa is the pressure at r D 1. Also (4.136) becomes a differential equation for
f .�/:

f 00 C 4f C f 2

�
CK D 0 : (4.138)

Integration of this equation introduces two new constants, which can be eliminated
by use of the boundary conditions (4.130). The volume flow condition (4.131) then
determines K.

Before proceeding, let us consider the consequences of the non-linear term in
(4.138). Were it not for this term, the flow would be reversible: if f were a solution,
then �f would be a solution to the equation obtained by replacing K with �K,
i.e., by replacing the source with a sink. However, with the non-linear term, which
results from fluid inertia, no such conclusion can be drawn. Because of its inertia,
the fluid attempts to obey Bernoulli’s law, which relates the pressure to the fluid
speed, not to the direction of flow; it is prevented from doing so by viscosity, which
always acts to oppose the flow. If either inertia or viscosity were negligible, the flow
would be reversible (in the first case p � pa would reverse sign; in the second case
it would not). With both effects present, source flow differs qualitatively from sink
flow. Discussions of the nature of the difference are presented in Goldstein (1938)
and Schlichting (1960).

In order to obtain a first integral to (4.138), multiply through by f 0 and integrate.
Since the geometry of Hamel’s problem is symmetric with respect to the � D 0 axis,
f 0.0/ D 0. Hence

1

2
f 02 C 2.f 2 � f 2

1 /C 1

3�
.f 3 � f 3

1 /CK.f � f1/ D 0 ; (4.139)

where f1=r is the midstream velocity. Thus an implicit relation between f and �
can be obtained in terms of an elliptic integral:

� D ˙
r
3�

2

Z f1

f

dfp
f1 � f

q
f 2 C .f1 C 6�/f C f 2

1 C 6�f1 C 3�K

:

(4.140)
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Because of the symmetry about � D 0, either sign may be retained. If we choose
the plus sign, the no-slip condition at � D ˛ gives us

Z f1

0

dfp
f1 � f

q
f 2 C .f1 C 6�/f C f 2

1 C 6�f1 C 3�K

D ˛

r
2

3�
: (4.141)

The second relation required to determine the constants f1 andK is provided by the
volume flow condition (4.131).

4.10.1 The Axisymmetric Analog of Hamel’s Problem

Having succeeded in finding an exact solution to the problem of source flow in
a wedge, we might try seeking another exact solution by considering flow from a
source at the apex of a cone. As we shall see, the search leads quickly to a frustration.

Let a spherical coordinate system be chosen with origin at the apex of the
cone and with � D 0 along its axis. Since the problem is axially symmetric, the
orientation of the � D 0 axis is unimportant.

If we assume that, as in Hamel’s problem, the flow pattern is purely radial, the
continuity equation (3.101) requires that

vr D 1

r2
f .�/ : (4.142)

Equation (3.103) then becomes

@p

@�
D 2�

r3
f 0.�/ ; (4.143)

so that

p D 2�

r3
f .�/C g.r/ : (4.144)

Substituting (4.142) and (4.144) into Eq. (3.102) yields

r4g0.r/ � 2�

r
Œf .�/�2 D �Œf 00.�/C cot �f 0.�/C 6f .�/� : (4.145)

Since the left side depends upon r and the right side does not, both sides must equal
some constant, say C . But consider further: setting the left side of (4.145) equal to
C yields

2�Œf .�/�2 D r5g0.r/ � Cr : (4.146)
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Once more we find that both sides must equal some constant, so that f .�/ itself is
constant. However, f .�/ vanishes at � D ˛, where ˛ is the semi-vertical angle of
the cone. Consequently f .�/ is identically zero.

Thus we have shown that there can be no purely radial flow in a cone, at least for
an incompressible fluid without body forces. There must be a component of flow in
the � -direction, so that an eddy pattern results. For such a pattern the Navier-Stokes
equation is quite complicated. Hence there is not much hope for exact solution—
especially as people have been trying ever since Georg Karl Wilhelm Hamel (1877–
1954) published his paper in 1916 Hamel (1916).2

Some insight as to why radial flow obtains in a wedge but not in a cone comes
from dimensional considerations. For wedge flow the relevant physical parameters
are the fluid density, its viscosity, the wedge half-angle, and the source output per
unit length. The dimensions of these quantities are

Œ�� D ML�3 ;

Œ�� D ML�1T �1 ; (4.147)

˛ W dimensionless ;

ŒQ� D L2T �1 :

No combination of these parameters yields a length. If source flow in a wedge
were to produce a steady-state eddy pattern, the eddies would presumably be
characterized by a length, (for example, the distance from the origin beyond which
no back-flow occurs,) expressible in terms of the parameters of the problem (for
otherwise we would reach the ridiculous conclusion that it is a fundamental constant
of the universe). As we have seen, however, the parameters do not give us such a
length. For flow in a cone, however, the source strength, say Q�, has dimensions of
volume per unit time. Hence, Q��=� is a length. Moreover, it depends on Q� the
way one might expect: as the source gets stronger, the eddies are blasted farther and
farther out from the origin.

4.11 Bubble Dynamics

Let us now suppose that a spherical bubble of inviscid gas is contained in an
otherwise unlimited volume of liquid. Suppose further that the pressure pg of the gas
forming the bubble varies with time. As a consequence the radius R of the bubble
will also vary with time. The pulsating bubble will generate a velocity field within
the liquid which in turn generates a stress field.

2A translation of the paper exists: United States NACA Technical Memorandum 1342. Since
Hamel’s result is extensively discussed in the hydrodynamics literature, his original paper is now
primarily of historical interest.
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The spherical symmetry of the situation makes it convenient to choose a spherical
coordinate system with origin at the center of the bubble as in Fig. 4.8. The velocity
field generated in the liquid will have only a radial component

vr D v.r; t/ ; (4.148)

so that the hydrodynamic equations (3.101) and (3.102) reduce to

@v

@r
C 2v

r
D 0 ; (4.149)

�

�
@v

@t
C v

@v

@r

�
D �@p

@r
C �

�
@2v

@r2
C 2

r

@v

@r
� 2v

r2

�
: (4.150)

At the bubble wall, the liquid velocity must equal PR.t/, where an overdot denotes
ordinary differentiation with respect to time. Thus integration of (4.149) yields

v D
PRR2
r2

: (4.151)

Substituting this result into (4.150) and integrating, we obtain

.p � pa/
�

D
�
R

r

�
.R RRC 2 PR2/ �

 
R4 PR2
2r4

!
; (4.152)

where pa is the pressure at infinity.
With Eqs. (3.98) and (3.100), we see that the physical components of stress are

given by
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Trr D �p �
 
4�R2 PR
r3

!
;

T�� D T�� D �p C
 
2�R2 PR
r3

!
; (4.153)

T�� D T�r D Tr� D 0 :

Within the bubble,

Trr D T�� D T�� D �pg.t/ ;
T�� D T�r D Tr� D 0 : (4.154)

The stress components T�r and Tr� must be continuous across the bubble surface.
A comparison of (4.153) and (4.154) reveals that this requirement is automatically
satisfied. The stress component Trr must experience a jump of magnitude 2�=R,
where � is the coefficient of interfacial tension ; the value inside the bubble is lower.
Comparing the first of Eqs. (4.153) with the first of Eqs. (4.154), we find that the
pressure just outside the bubble wall is given by

p.RC 0; t/ D pg.t/ � .2� C 4� PR/
R

: (4.155)

By setting r D .R C 0/ in Eq. (4.152), we obtain an ordinary differential equation
for the bubble radius as a function of time:

R RRC 3

2
PR2 C 4� PR

�R
C 2�

�R
D pg.t/ � pa

�
: (4.156)

Since (4.156) is an equation of second order, two initial conditions must be specified.
Most simply, R.0/ and PR.0/ will be given.

The treatment given here has been restricted to spherical bubbles. In practice,
the presence of a unidirectional gravitational field tends to destroy the spherical
symmetry. It also causes the bubble to rise in the liquid, and our analysis does not
account for streaming past the bubble. Thus Eq. (4.156) is virtually useless in the
study of large-scale bubbles arising, say, from an underwater explosion.

However in certain physical problems the bubble is small enough so that
interfacial tension causes it to remain essentially spherical. When streaming past
the bubble is negligible, Eq. (4.156) can then be applied. This approach has been
used to study the growth of vapor bubbles in superheated liquids, Plesset and Zwick
(1954), where the variation of pg with time is caused by thermal expansion of the
gas due to the diffusion of heat into the bubble. Also the growth of small bubbles
by diffusion of gas through the liquid has been studied by use of Eq. (4.156), cf.
Barlow and Langlois (1962) and Langlois (1963). Cavitation bubbles can also be
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treated, but in the literature on cavitation in liquids, viscosity is usually neglected,
so that the term 4� PR=�R is dropped from Eq. (4.156).

4.12 The Flow Generated by a Rotating Disc

As our next example of an exact solution to the equations of viscous hydrodynamics,
we consider the flow generated by an infinite flat disc rotating in its own plane
with constant angular velocity !d , as in Fig. 4.9. At first it would seem that purely
rotary flow is generated, but, looking deeper, we see that this is not the case. First,
solid body rotation is not an acceptable solution, for infinite pressures would be
required to support the centrifugal forces generated by the rotating fluid. Therefore
the fluid near the disc rotates faster than the fluid farther away. Consequently there is
a variation of centrifugal force in the axial direction. The fluid near the disc is thrown
outward more violently, so that other fluid must stream down the axis to replace it.
Thus the motion is fully three-dimensional, albeit axisymmetric. By making a clever
guess as to the form of the flow pattern, Theodore von Kármán (1891–1963) was
able to reduce the hydrodynamic equations to a set of ordinary differential equations
von Kármán (1921). He assumed that

vr D ru.z/; v� D r!.z/; vz D v.z/; p D p.z/ : (4.157)

Substituting these forms into Eqs. (3.77) through (3.80) yields

2u C v0 D 0 ;

u2 � !2 C u0v D �u00 ; (4.158)

2u! C !0v D �!00 ;

�vv0 C p0 D �v00 :
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Fig. 4.10 Velocity
components with respect to
the normalized axial
coordinate

These equations can be normalized by setting

z D
p
�=!dZ; u.z/ D !dU.Z/; !.z/ D !dΩ.Z/ :

v.z/ D p
�!dV.Z/; p.z/ D ��!dP.Z/ : (4.159)

Thus

2U C V 0 D 0 ;

U 2 � Ω2 C U 0V D U 00 ;

2UΩ C Ω0V D Ω00 ; (4.160)

VV 0 D P 0 C V 00 :

For boundary conditions, von Kármán assumed that the radial and azimuthal
components of velocity approach zero as z approaches infinity. At z D 0, the no-slip
condition applies. In terms of the normalized variables,

U D V D 0; Ω D 1 at Z D 0 ;

U ! 0;Ω ! 0 as Z ! 1 : (4.161)

von Kármán obtained an approximate solution to the system (4.160) subject to
the boundary conditions (4.161). We shall not go into the details, nor into those
of Cochran’s numerical solution Cochran (1934) for they are set out in Goldstein
(1938) and Schlichting (1960)

As shown in Fig. 4.10, the significant point is that the radial and azimuthal
velocity components differ appreciably from zero only in a layer near the disc. The
thickness of this layer is proportional to

p
�=!d which therefore plays the role of a

depth of penetration for the flow generated by a rotating disc. As z ! 1, the axial
component of velocity approaches asymptotically the finite value �0:886p�!d so
that the rotating disc acts as a centrifugal pump.
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Fig. 4.11 Flow over an
inclined plane

4.13 Free Surface Flow over an Inclined Plane

Taking the effect of gravity into account, consider the steady two-dimensional flow
of a viscous fluid over a plane inclined with respect to the vertical direction by the
angle ˛ (cf. Fig. 4.11). The thickness of the fluid layer is uniform and equal to h.
The fluid is in contact at the free surface with ambient air, which we will model as an
inviscid fluid at pressure pa. We assume that the air flow does not affect the viscous
fluid flow. The flow is parallel as the trajectories of the fluid particles are parallel
to the inclined plane. Therefore v D .v1; 0; 0/. By the incompressibility constraint,
one obtains

@v1

@x1
D 0; (4.162)

and we deduce v1 D v1.x2/. The only non zero component of the stress tensor is
T12 or T21. As pressure is uniform at the free surface, the pressure in the viscous
fluid does not depend on the x1 direction, but does depend on x2. The first equation
of (2.95) written in the x1 direction yields

@T12

@x2
C �g1 D @T12

@x2
C �g cos˛ D 0 : (4.163)

Integration of this relation yields

T12 D ��g x2 cos˛ C C : (4.164)

At the free surface x2 D h, the shear stress must vanish as the inviscid fluid cannot
sustain shear. One obtains

T12 D �g cos˛.h � x2/ : (4.165)
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As T12 D �dv1=dx2, we may evaluate v1 by integrating Eq. (4.165) with respect to
x2, with the boundary condition v1.x2 D 0/ D 0. The velocity profile is given by

v1 D �g cos˛

2�
x2.2h � x2/ : (4.166)

The Navier-Stokes equation in the x2 direction gives the relation

� @p

@x2
C �g2 D � @p

@x2
� �g sin˛ D 0 : (4.167)

Integrating with respect to x2 and using the free surface condition p.x2 D h/ D pa,
we get

p D pa � .� g sin˛/.x2 � h/ : (4.168)

The mass flux per unit length in the x3 direction reads

Q D
Z h

0

u dx2 D �g cos˛ h3

2�
: (4.169)

4.14 Natural Convection Between Two Differentially Heated
Vertical Parallel Walls

We now consider the steady, two-dimensional, non-isothermal slow flow of a
viscous incompressible fluid subjected to a variable temperature field. The fluid
flows between two infinite vertical parallel walls at different temperatures, cf.
Fig. 4.12, such that Θ1 > Θ2. We assume that the Boussinesq approximation is
valid and the relevant equations are given by (2.196)–(2.198). The velocity field is
a priori of the form v D .u.x1; x2/; v.x1; x2/; 0/. However as the flow is invariant
with respect to translation in the x2 direction, one concludes that it depends only on
the x1 coordinate. With (2.196),

@u

@x1
D 0 : (4.170)

As u D 0 at the walls, u D 0 and v D v.x1/. The temperature gradient is oriented
in the horizontal direction, so that the temperature field is such that Θ D Θ.x1/.
Consequently Eq. (2.198) becomes

d2Θ

dx21
D 0 : (4.171)
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Θ1 Θ2

h

x2

x1+h

Fig. 4.12 Natural convection
in an infinite plane channel

Integrating with the boundary conditions Θ D Θ1 at x1 D �h and Θ D Θ2 at x D h

yields

Θ D Θ2 � Θ1

2h
x1 C Θ1 C Θ2

2
D Ax1 C Θ1 C Θ2

2
: (4.172)

The momentum equation (2.197) gives

� @p

@x2
C �

d2v

dx21
� �0g.1 � ˛.Θ � Θ0// D 0 (4.173)

The reference temperature is chosen such that Θ0 D .Θ1 C Θ2/=2, i.e. the mean
temperature. As the flow is not driven by an exterior pressure gradient, the pressure
is purely hydrostatic and results from the integration of

� @p

@x2
� �0g D 0 ; (4.174)

valid at equilibrium. Therefore the velocity field is driven by the buoyancy force and
one solves

�
d2v

dx21
C �0g˛Ax1 D 0 : (4.175)

With the boundary conditions v D 0 at x1 D ˙h,

v D g˛A

6�
x1.h

2 � x21/ : (4.176)



4.15 Flow behind a grid 139

It is easy to verify that this velocity profile corresponds to a vanishing flow rate
across each horizontal section. A posteriori the velocity field is orthogonal to the
temperature field; this leads to the vanishing of the transport term in the material
derivative of Θ.

In the real world, it is impossible to build infinite walls. Therefore top and bottom
walls confine the fluid and force it to form a convection cell. The flow we have
analyzed is thus unstable Koschmieder (1993) and constitutes an idealization of the
physical phenomena.

4.15 Flow Behind a Grid

Kovasznay (1948) examines the steady state two-dimensional exact solution of the
Navier-Stokes equation for the laminar flow behind a periodic array of cylinders or
rods. The velocity field is assumed to be such that v1 D U C u1; v2 D u2, where U
is the mean velocity in the x1 direction. The vorticity equation (2.247) yields

@
3

@t
C .U C u1/

@
3

@x1
C u2

@
3

@x2
D �r2
3 : (4.177)

Denoting the spacing of the grid by ı, we define the Reynolds number as Re D
ıU=�. The dimensionless vorticity becomes ! D 
3 ı=U . The other dimensionless
variables are x D x1=ı; y D x2=ı; � D tU=ı; 1 C u D v1=U; v D v2=U . The
governing equation (4.177) is

@!

@�
C .1C u/

@!

@x
C v

@!

@y
D 1

Rer2! : (4.178)

As steady state solutions are sought, the term @!=@� vanishes. We are left with

r2! � Re @!
@x

� Re
�

u
@!

@x
C v

@!

@y

�
D 0 : (4.179)

To build up the analytical solution, the trick consists in finding an expression that
cancels the nonlinear term. The streamfunction is introduced to satisfy the continuity
equation

u D @ 

@y
; v D �@ 

@x
; (4.180)

and therefore the vorticity is

! D �r2 : (4.181)
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Taking the periodicity into account, the streamfunction is set up such that

 D f .x/ sin 2	y : (4.182)

With (4.182), the nonlinear term of (4.179) gives

f 0f 00 � ff 000 D 0 : (4.183)

Integrating (4.183) we obtain

f 00 D k2 f ; (4.184)

where k is a real or complex arbitrary constant. A further integration yields

f D Cekx : (4.185)

With the stream function

 D Cekx sin 2	y (4.186)

canceling the nonlinear term in (4.179), we have to seek a solution of the equation

r2! � Re @!
@x

D 0 : (4.187)

Setting

! D g.x/ sin 2	y ; (4.188)

we have

g00 � Re g0 � 4	2g D 0 ; (4.189)

the solution of which is

g.x/ D Ae�1x C Be�2x ; (4.190)

where

�1;2 D Re
2

˙
r

Re
2

C 4	2 : (4.191)

Combining (4.188) and (4.190), the vorticity is

! D �
Ae�1x C Be�2x

	
sin 2	y ; (4.192)
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Fig. 4.13 Streamlines of the
Kovasznay flow for Re D 40

while Eqs. (4.181) and (4.186) give

! D C.4	2 � k2/ekx sin 2	y : (4.193)

Comparison of (4.192) and (4.193) shows that two solutions are possible

k D �1; A D �Re�1C; B D 0; (4.194)

k D �2; A D 0; B D �Re�2C; (4.195)

With �2 and Re D 40 the streamlines are shown in Fig. 4.13, with pairs of eddies
generated behind the cylinders. The flow recovers uniformity downstream through
the exponential term of the solution.

As the Kovasznay flow incorporates the nonlinear term, it is a good benchmark
to test the numerical accuracy and space convergence of computational methods
integrating the Navier-Stokes equation.

4.16 Plane Periodic Solutions

Many exact solutions of the Navier-Stokes equations are obtained for spatial
periodic conditions. In this section we consider a two-dimensional (2D) solution
due to Walsh (1992).

Let us first proof the following theorem

Theorem 4.1. Let us consider a vector field u in the domain ˝ that satisfies

r2u D �u; (4.196)

div u D 0 : (4.197)
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Then the velocity v D e��tu satisfies the Navier-Stokes equation (2.178) and (2.179)
with a pressure such that

r p D �v � rv : (4.198)

The vector v is divergence free as is also u. Furthermore,

@v
@t

D ��v D ��v : (4.199)

It remains to prove that the nonlinear term is a gradient. This amounts to showing
that

@

@x2

�
v1
@v1

@x1
C v2

@v1

@x2

�
D @

@x1

�
v1
@v2

@x1
C v2

@v2

@x2

�
; (4.200)

as curlr D 0. This is evident by incompressibility and relation (4.199).
In the 2D case, we resort to the streamfunction  , assuming that it is

an eigenfunction of the Laplacian with eigenvalue �. Consequently, u D
.@ =@x2;�@ =@x1/ satisfies (4.196) and (4.197)with the same �. Therefore, e��t 
is the streamfunction of the associated Navier-Stokes flow. If we have a periodic
domain of size 2	 , then the eigenfunctions � are of the form � D �.k2x1 C k2x2/,
with kx1 and kx2 positive integers. For given kx1 ; kx2 , the linearly independent
eigenfunctions are

cos.kx1x1/ cos.kx2x2/; sin.kx1x1/ sin.kx2x2/ ;

cos.kx1x1/ sin.kx2x2/; sin.kx1x1/ cos.kx2x2/ :

It is possible to build up complicated geometrical patterns by combination of
the eigenfunctions named n;m eigenfunction by Walsh, with � D �.n2 C m2/. A
theorem in number theory shows that integers of the form p2i and p2iC1, where p
is an integer number such that p � 1 .mod 4/, may be written as sums of squares
in exactly i C 1 manners. For example, 625 D 252 D 242 C 72 D 202 C 152.
Figure 4.14 displays the streamlines corresponding to D sin.25x1/Ccos.25x2/�
sin.24x1/ cos.7x2/C cos.15x1/ cos.20x2/ � cos.7x1/ sin.24x2/.

4.17 Summary

The exact solutions presented in this chapter do not exhaust the list of those
available, but they are fairly representative. A more comprehensive collection can
be obtained by consulting the references.
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Some flow problems such as the flow between parallel plates or in an annular
region, are amenable to exact solution because the nonlinear inertia terms drop out
of the hydrodynamic equations. Others, such as Hamel’s problem, retain a nonlinear
character, but enough nonlinear terms disappear so that the problem reduces to
a differential equation whose solution can be recognized. Finally, there are flow
problems, such as the flow generated by a rotating disc, which can be reduced to a
system of normalized ordinary differential equations to be integrated numerically.

A semantical question arises: What is meant by “exact solution”? The answer
probably varies from one era to another. In the mid-nineteenth century Hamel’s
solution probably would not have qualified, for it cannot be expressed in terms of
functions well understood at that time. In the earlier twentieth century von Kármán’s
formulation of the rotating disc problem might not have been accepted as an exact
solution because of the numerical labor that remained to be done.

Perhaps now we have come full cycle on von Kármán’s problem: the student
today might well ask if the numerical integration of four ordinary differential
equations is any more an exact solution than would be numerical integration of the
full hydrodynamic equations. However let us recall the state of computational art in
the 1920s and 1930s. Numerical integration methods for both ordinary and partial
differential equations were known, and the construction of analog computers was in
sight. However high speed digital equipment, which makes practical the numerical
treatment of partial differential equations, was still a generation away. Thus the
reduction of a problem to ordinary differential equations really was a significant
step.

Today much open source and commercial software is available. Visualization
packages are also available to show the myriads of numerical results produced by
simulation tools relying on high-performance computing. However the display of
a result does not explain everything and simple (or simplified) models are still a
source of understanding for what some people have named the incomprehensible
Navier-Stokes equation.
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