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Abstract Clonal heterogeneity in cell populations with respect to properties such
as growth rate, motility, metabolism or signaling, has been observed for some time.
Unraveling the dynamics and the mechanisms giving rise to such variability has been
the goal of recent work, largely aided by quantitative/ mathematical tools. Quantita-
tive evaluation of cell-to-cell variability (heterogeneity) poses technical challenges
that only recently are being overcome. Clearly, a mathematical theory of cellular
heterogeneity could have fundamental implications. For instance, a theory of cell
population growth variability, coupled with experimental measurements, may in the
long term be crucial for an in-depth understanding of physiological processes such as
stem cell expansion, embryonic development, tissue regeneration, or of pathological
ones (e.g., cancer, fibrosis, tissue degeneration). We focus on recent advances, both
theoretical and experimental, in quantification and modeling of the clonal variability
of proliferation rates within cell populations. Our aim is to highlight a few stimu-
lating examples from this fledgling and exciting field, in order to frame the issue
and point to challenges and opportunities that lie ahead. Furthermore, we emphasize
work carried out in cancer-related systems.
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1 Heterogeneity and Growth Variability

Clonal heterogeneity in cell populations with respect to properties such as growth
(Fig. 1), motility (Fig.2), metabolism or signalling (Fig.3), has been observed for
some time (see, e.g., Altschuler [1], Quaranta [12] and references therein). However,
quantitative evaluation of this cell-to-cell variability (heterogeneity) poses techni-
cal challenges that only recently are being overcome [1, 12]. Furthermore, mathe-
matical foundations for interpreting these quantitative experimental observations of
heterogeneity are in need of development. Far from being exclusively academic, a
mathematical theory of cellular heterogeneity could have fundamental implications,
similar to a theory on population biology or ecology [8]. For instance, a theory of
cell population growth variability, coupled to experimental measurements, may in the
long term be crucial for an in-depth understanding of physiological processes such as
stem cell expansion, embryonic development, tissue regeneration, or of pathological
ones (e.g., cancer, fibrosis, tissue degeneration).

Here, we focus on recent advances, both theoretical and experimental, in
quantification and modeling of the clonal variability of proliferation rates within cell
populations. Our aim is to highlight a few stimulating examples from this fledgling
and exciting field, in order to frame the issue and point to challenges and opportunities
that lie ahead. Furthermore, we emphasize work carried out in cancer-related sys-
tems. As our aim is not an exhaustive review, we apologize in advance for inevitable
omissions.

Variability of growth rates, among other indicators of heterogeneity in growth
kinetics of individual tumours, has long been detected, but precision in quantification
may have been made possible only in the past few years by methods developed by,
among others, Quaranta and his group (see [12, 19]). For instance, a team from
Verona, Italy, quantified growth variability of tumour cell clones from a human
leukaemia cell line, by cloning Molt3 cells, and measuring the growth of 201 clonal
populations by microplate spectrophotometry. Growth rate of each clonal population
was estimated by fitting data with the logistic equation for population growth [18].
Their results indicated that growth rates vary between clones. Six clones with growth
rates above or below the mean growth rate of the parent population were further
cloned, and the growth rates of their offspring were measured. Researchers noted
that distribution of subclone growth rates did not significantly differ from that of the
parent population, supporting the conjecture that growth variability has an epigenetic
origin [18]. Such variability in growth rates may be amenable to further quantitative
analysis of population dynamics with analytic tools developed in Tyson et al. [19].

In the paper “Characterizing heterogeneous cellular responses to perturbations”
[14], Slack et al. approached the challenge of heterogeneity with a mathematically-
appealing assumption that cell populations may be described as mixtures of a limited
number of phenotypically distinct subpopulations. Methods for characterizing spa-
tial heterogeneity observed within cell populations are developed, starting from the
extraction of phenotypic measurements of the activation and colocalization patterns
of cellular readouts from large numbers of cells in diverse conditions. Phenotypic
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Fig.1 Cell-to-cell variability of intermitotic times within human cultured cell lines. Note that the
heterogeneity of intermitotic times within seemingly homogeneous isogenic cell lines (populations)
is quite broad, and distributed in non-Gaussian fashion. Intermitotic time encompasses hours from
the end of one cell division to the start of the successive one. Single cells were tracked by automated
confocal microscopy collecting images at regular intervals by automated microscopy as described
[19]. Intermitotic times were calculated as described [19] and fitted to an exponentially modi-
fied Gaussian (EMG) distribution http://en.wikipedia.org/wiki/Exponentially_modified_Gaussian_
distribution. Human cultured cell lines are as follows: A375, melanoma; PC9, non-small cell lung
carcinoma; MCF10A, immortalized non-tumorigenic breast epithelium; CA1D, H-Ras transformed
MCF10A. n = number of cells tracked; p, 0 and x are parameters for the EMG distribution; ks
p-value was calculated by the Kolmogorov-Smirnoff statistic test.
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Fig. 2 Cell-to-cell speed variation within mammary gland human cell lines. Spontaneous, non-
directed motility was tracked in over 1,500 individual cells from one immortalized (MCF10A) and
two transformed MCF10A-derived (AT1 and CA1d) breast epithelial cell lines. Cell-to-cell variabil-
ity of motility was evaluated with respect to speed under two culture conditions, full-supplement or
serum/EGF-depleted media, respectively. a Box-and-whisker plot of individual cell speed (color-
coded by individual experiment). b Population histogram of frequency (the number of cells) and
the normal (Gaussian) fit for each set of data (based around the average). Shapiro-Wilks W tests
confirmed that distributions are non-normal and positively skewed (more cells are likely to move

at lower speeds) with long tails

(at higher speeds).
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Fig. 3 Single cell variability in metabolic and signaling activity. a Single-cell measurements of
glucose uptake using 2- deoxy- 2- [(7- nitro- 2, 1, 3- benzoxadiazol- 4- yl)amino]- D- glucose
(2-NBDG). Fluorescent representative images of CAld (right, higher magnification) after 10 min
incubation with 300uM of 2-NBDG as described in [7]. The variability in subcellular distribution
of the probe was apparent in CAld cells (right panel). b Staining patters of BT-474 lapatinib
resistant cell line reveals variability (heterogeneity). BT-475LR cell lines were plated overnight and
treated with 1 ;M lapatinib for 1h at 37 C. Cells were fixed and stained with fluorescent probes
(DNA/pAKT(pS473)/Ac-Histone3) and imaged with a Zeiss confocal microscope (LSM 510).

stereotypes are identified within the total population, and probabilities assigned to
cells belonging to subpopulations modeled on these stereotypes. Each population
or condition may then be characterized by a probability vector—its subpopulation
profile—estimating the number of cells in each subpopulation. Responses of hetero-
geneous cellular populations to perturbations (e.g., anti-cancer drugs) are summa-
rized as probabilistic redistributions of these mixtures. In the study by Slack et al.,
this computational method was applied to heterogeneous responses of cancer cells
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to a panel of drugs. The finding is that cells treated with drugs of similar mechanism
exhibited the same pattern of heterogeneity redistribution.

In subsequent work from this group, Singh et al. [13] employed the same compu-
tational framework to investigate whether patterns of basal signaling heterogeneity
in untreated cell populations could distinguish cellular populations with different
drug sensitivities. As in the earlier study, cellular heterogeneity in populations was
modeled as a mixture of stereotyped signaling states. Interestingly, the researchers
found that patterns of heterogeneity could be used to separate the most sensitive and
most resistant populations to the drug paclitaxel within a set of H460 lung cancer
clones and within the NCI-60 panel of cancer cell lines, but not for a set of less
heterogeneous immortalized noncancer HBEC (human bronchial epithelial cell)
clones. Stockholm et al. [17] used both computer simulation and experimental
analysis to address the issue of the origin of phenotypic differentiation in clonal
populations. Two models—referred to as the “extrinsic” and “intrinsic” models—
explaining the generation of diverse cell types in a homogeneous population, were
tested using simple multi-agent computer modeling. The approach takes each cell
as an autonomous “agent”, and following defined rules governing the action of indi-
vidual agents, the behavior of the system emerges as an outcome of the agents’
collective action.

As the term suggests, the “extrinsic”” model attributes the occurrence of a pheno-
typic switch to extrinsic factors. Identical cells may become different because they
encounter different local environments that induce alternative adaptive responses.
Changing its phenotype, the cell contributes to changes in the local environment,
inducing responses in surrounding cells, and ultimately influencing the dynamics of
the cell population. The second model assumes that the phenotype switch is intrinsic
to the cells. Phenotypic changes could occur even in a homogenous environment and
may result from asymmetric segregation of intrinsic fate determinants during cell
division that lead to the change in gene expression patterns, [17].

The Stockholm study cites an experiment where two subpopulations appear spon-
taneously in C2C12 mouse myogenic cells—the main population (MP), and a side
population (SP). The two cell types are phenotypically distinct, and researchers take
off from the lab experiment to perform agent-based modeling computer simulation
on two cell types subject to two sets of hypotheses (the extrinsic and intrinsic models).
The models are built on a limited number of simplified assumptions about how indi-
vidual cells migrate, interact with each other, divide and die. The agent-based model
assumes that each cell divides at each iteration step but survival of daughter cells
depends on local cell density. In the intrinsic model, the phenotypic switch occurs
under the assumption of cell autonomy, with the environment playing no ostensible
role in the switching; rather, switching from one cell type to the other occurs at
fixed probabilities. In the extrinsic model, local cell density determines phenotypic
switching, hence local density is surrogate for the complex of factors affecting cell
survival, such as gradient of nutrients, oxygen, secreted factors, etc, and cell types
represent two forms of adaptation to high and low density environments. The extrin-
sic and intrinsic hypotheses were implemented by varying the parameters (assuming
cell migration velocities within experimentally guided limits of values). Simulations
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for the intrinsic model result in the two cell types being distributed randomly both
during growth and equilibrium, suggesting that the randomness of cell type spatial
distribution is characteristic of the intrinsic model. On the other hand, the spatial dis-
tribution of cells resulting from simulations of the extrinsic model is different from
that in the intrinsic model, with cluster formation as an observed feature. Moreover,
this feature is robust in the range of parameter values considered.

Both intrinsic and extrinsic models generate in the simulations heterogeneous cell
populations with a stable proportion of the two cell types. Experimental verification
of model predictions, using the C2C12 myogenic cell line, indicated that neither
one of the models can fully account for the spatial distribution of the cell types
at equilibrium, as some clustering of the rare SP cell was observed in low density
regions, while distribution in high density regions was generally uniform. A hybrid
model combining both intrinsic and extrinsic hypotheses was in better agreement
with the clustering behavior of the rare SP cells. In the end, it is not solely the
local environment, nor, on the other hand, merely a cell-autonomous propensity for
differentiation that activates the phenotype switch. Rather, it may be a combination
of the two.

A similar “agent” model framework is utilized in mathematical models of can-
cer invasion, with emphasis on tumor microenvironment, compared in [11]. In
that review, three independent computational models for cancer progression are
discussed, all pointing to an essential role of the tumor microenvironment (mE)
“in eliciting invasive patterns of tumor growth and enabling dominance of aggres-
sive cell phenotypes.” Both the evolutionary hybrid cellular automata (EHCA) and
the Hybrid Discrete Continuum (HDC) models treat cells as points on a lattice. In the
case of the EHCA, the grid itself represents the mE, and the only variable on the grid,
apart from cells, is the concentration of oxygen, with a partial differential equation
controlling the oxygen dynamics in space and time. In the HDC model, the mE con-
sists of a two-dimensional lattice of extracellular matrix upon which oxygen diffuses
and is produced/consumed, and matrix degrading proteases are produced/used. The
HDC model has the mE variables controlled by reaction-diffusion equations with
tumor cells occupying discrete lattice points. Notably, a key feature of the HDC
model is that the tumor cell population is heterogeneous, each cell phenotype being
defined from a pool of 100 pre-defined phenotypes within a biologically relevant
range of cell-specific traits. Mutation is incorporated into the model by assigning to
cells a small probability of changing some traits at cell division. If a change occurs,
the cell is randomly assigned a new phenotype from the pool of about 100. Taken
together with a third model—the Immersed Boundary method (IBCell)—the models
describe the process of cancer invasion on multiple scales: The EHCA at the molec-
ular (gene expression) scale, the IBCell at the cell scale, the HDC at the tissue scale.
Though not highlighted, heterogeneity is an issue addressed in the models, with
the microenvironment driving cancer progression in a major way, and on multiple
scales. From representative simulations of the models (see [11] for details), analysis
of the effect of mE variables on tumor growth point to “competitive adaptation to
mkE conditions as a determining factor for invasion: both invasive tumor morphol-
ogy (“fingering”) and evolution of dominant aggressive clonal phenotypes appear
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to occur by a process of progressive cell adaptation to mE’s that support sustained
competition between distinct cancer cell phenotypes.”

In their 2011 paper [6] on models of heterogeneous cell populations, Hasenauer
et al. discuss a framework for modeling genetic and epigenetic differences among
cells. With the approach to intracellular biochemical reaction networks modeled by
systems of differential equations (which may characterize metabolic networks and
signal transduction pathways), heterogeneity in populations is accounted for by dif-
ferences in parameter values and initial conditions. Using population snapshot data,
a Bayesian approach is used to infer parameter density of the model describing single
cell dynamics. Using maximum likelihood methods, single cell measurement data is
processed for parameter density estimation; the proposed framework includes a noise
model, as well as methods for determining uncertainty of the parameter density. For
computational tractability, the population model is converted into a density-based
model, where the variables are not states of single cells but density of the output (see
[6] for details). Towards verifying efficacy of the proposed modeling framework, the
model of TNF (tumor necrosis factor) signaling pathway was studied under a hypo-
thetical experimental set-up with artificial data involving a cell population responding
to the TNF stimulus. The model, introduced in [3], is based on known inhibitory and
activating interactions among key signaling proteins of the TNF pathway. Cellular
response to the TNF stimulus has been observed to be highly heterogeneous within
a clonal population. Heterogeneity at the cell level is modeled by differences in
two parameter values, one quantifying the inhibitory effect of NF-€B via the C3a
inhibitor XIAP onto the C3 activity, and the other the activation of I-kB via NF-kB.
The authors conclude that the method yields good estimation results.

In the abovementioned framework, the assumption was that network structure was
identical in all cells and spatial effects and stochasticity of the biochemical reactions
are negligible. Moreover, the mechanisms for cell-to-cell interactions typically char-
acterized by differential equations, are reasonably well-understood and formulated,
from actual experiment.

In an effort to uncover sources of cell-to-cell variation, Colman-Lerner et al.
[4] looked into cell-to-cell variability of a prototypical eukaryotic cell fate decision
system, the mating pheromone response pathway in yeast. Cell-to-cell variation was
quantified by the output in the cell-fate decision system—the pheromone response
pathway in the yeast Saccharomyces cerevisiae. The fate decision to switch from
the normal vegetative growth to mating events including gene transcription, cell
cycle arrest, etc. is induced by the alpha-factor, a pheromone secreted by cells of the
mating type. Pheromone-induced expression of fluorescent protein reporter genes
was used as a readout. To dis-aggregate differences due to the operation of the
signal transduction pathway from cell-to-cell differences in gene expression from the
reporters, yeast strains containing genes for the yellow and cyan fluorescent protein
were generated. The analytical framework used considered the alpha-factor response
pathway and the reporter gene expression mechanism to measure its activity as a
single system, with two connected subsystems—pathway and expression. In each of
the two subsystems, two sources of variation are considered—stochastic fluctuations
and cell-to-cell differences in “capacity”, depending on number, localization and
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activity of proteins that transmit the signal (pathway capacity) or express genes into
proteins (expression capacity). About half of the observed variation was attributed to
pre-existing differences in cell cycle position at the time of pathway induction, while
another large component of the variation in system output is due to differences in cell
capacity to express proteins from genes. Very little variation is due to noise in gene
expression. Although the study did not specifically refer to molecular mechanisms
underlying cell-to-cell variation, it does provide a basis for further investigation into
these mechanisms, including, as mentioned elsewhere, network architecture.

Heterogeneous cell populations have been the subject of mathematical model-
ing since about the 1960s, with the cell population balance (CPB) approach by
Frederickson and a few others (see [16] for references). The models use partial
integro-differential equations for the dynamics of the distribution of the physio-
logical state of cells and ordinary integro- differential equations to describe sub-
strate availability. For CPB models, heterogeneity arises from physiological func-
tions leading to different growth and division rates of the cells, as well as for
unequal partitioning effects. When the physiological state vector (whose components
include intracellular content, morphometric characteristics like size) has two or more
components, the approach leads to multidimensional models that are highly unwieldy
computationally. Stamatakis notes that CPB models cannot account for the inherent
stochasticity of chemical reactions occurring in cellular control volumes or stochas-
tic DNA-duplication. To account for this stochasticity, refinements were considered
by Gillespie and others (see [16] for references) using the chemical master equation.
A relatively recent approach, referred to as the Langevin approach, uses stochastic
differential equations in modeling stochasticity in intracellular reactions. In recent
work Stamakis and Zygourakis (2010) [16] propose a mathematical framework to
account for all the various sources of cell population heterogeneity, namely growth
rate variability, stochasticity in DNA duplication and cell division, and stochastic
reaction occurrences for the genetic network, through the cell population master
equation (CPME) that governs the temporal dynamics of the probability of finding
the cell population at a specific state, together with a Monte Carlo algorithm that
enables simulation of exact stochastic paths of this master equation. Employing the
population balance framework, each cell is described by a state vector containing
information about its chemical content and morphometric characteristics such as
length, etc (Stamatakis uses volume only). The state of the overall population is
given by a vector w, which reflects the number v of individual cells and the state
of each vector. The master equation is derived as a probability balance describing
the evolution of a probability distribution for the cell population, using submodels
of probability inflows and probability outflows accounting for chemical reactions,
DNA duplication, cell growth (here using exponential growth), a propensity function
(for cells to divide).

In an earlier study, Mantzaris [9] also looked into models of cell population
heterogeneity, incorporating into a prior deterministic single-cell model, two extra
parameters (one, a rate of operator fluctuations) to quantify two main sources of
stochasticity at the single cell level for the reaction network, namely small num-
ber of molecules and slow operator fluctuations. Starting from a deterministic cell
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population balance model (DCPB), Mantzaris used stochastic differential equations
to refine the CPB model (to account for extrinsic and intrinsic sources of popula-
tion heterogeneity—respectively, the unequal partitioning between daughter cells of
intracellular components on division, and random fluctuations in reaction rates reg-
ulated by a small number of regulatory molecules) through the Stochastic Variable
Number Monte Carlo method/model. Simulations on a genetic network with posi-
tive feedback revealed differences arising from different sources of stochasticity on
regions of the parameter space where the system is bistable.

Although much of the modeling of heterogeneity has not specifically investi-
gated implications on cancer treatment, a 2012 study (see [10]) looks into cell-cycle
heterogeneity and its effects on solid tumor response to chemotherapy. In their paper,
Powathil et al. raise the difficulty of treating cancer with chemotherapeutic drugs due
to the development of cell-cycle mediated drug resistance. Elsewhere (see references
in [10]) it has been suggested that this may be due to the presence of functionally
heterogeneous cells and can be addressed to some extent by using combinations of
chemotherapy drugs that target different phases of the cell-cycle kinetics. Hence, it is
important to study and analyze the underlying heterogeneity within a cell and within
a solid tumour due to the presence of the unfavourable microenvironment and the
cellcycle position. A hybrid multi-scale cellular automaton model is used to simu-
late the spatio-temporal dynamics at the cell level, incorporating feedbacks between
these cell level dynamics and molecular variations of intercellular signalling and
macroscopic behaviour of tissue oxygen dynamics. Each cell has its own cell-cycle
dynamics and this is incorporated into the CA model for cellular proliferation using
a set of ordinary differential equations, from an early model by Tyson and Novak
[20]. Chemical processes within the cell are quantified using concentration of key
chemical components, considered as functions of time, and a 6-variable system of
differential equations describe the processes of production, destruction and interac-
tions. These kinetic relations are then used to explain transitions between two steady
states—the G1 and the S-G2-M state, assumed to be controlled by cell mass. With
cells located spatially in the dynamic microenvironment, depending on variations
in oxygen concentration and with drug distribution dynamics in the growing tumor
also affecting the state of individual cells, partial differential equations (for oxygen,
a reaction diffusion equation) model changes in oxygen and drug concentration. In
simulating the model, parameters were chosen based on earlier work (mainly from
Tyson and Novak); notably, to account for the “natural” variability between cell
growth rates, and to have a non-synchronous cell population, a multiple of the value
from a probability density function with uniform distribution between -1 and 1 is
added to an identified value for growth rate, effectively incorporating cell cycle het-
erogeneity. Computational simulations were run first on cell-cycle and oxygen tumor
growth, assuming zero drug concentration, and subsequently on tumours treated with
cell-cycle specific drugs. The results revealed that cytotoxic effect of combination
therapy depends on timing of drug delivery, time-delay between doses of chemother-
apeutic drugs, and cell-cycle heterogeneity. Not surprisingly, drug effectiveness also
depends on distribution of tumor cell mass as it affects the tumor microenvironment
and drug distribution. The current direction towards patient specific optimal treat-
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ment strategies seems to be supported by the model simulations. It is worth noting
that non-synchronous cell population can be parameterized from experimental data
[5] due to recent automated microscopy advances, making it possible to validate
models such as the one described by Powathil et al. [10].

In a recent review by Bendall and Nolan [2], the authors assert that “stem cell
hierarchies, transcription start sites, cell signaling pathways (and more) all function
against a backdrop that assumes that carefully orchestrated single-cell stochastics, in
concertwithmass action, is what determines outcome.” Since all kinds of heterogene-
ity may drive treatment decisions, it is crucial to develop better technologies to study
heterogeneity in single-cells. Notably, the statement is made that recent research indi-
cate that the biology of single cells “is rarely deterministic.” Snijder and Pelkmans
[15] take the view instead that “a large part of phenotypic cell-to-cell variability is
the result of deterministic regulatory processes.” Although not necessarily in conflict,
these seemingly opposing views point to the necessity to further investigate various
and diverse aspects and mechanisms driving phenotypic heterogeneity in cells and
cell populations. As Snijder points out, population context has been shown to con-
tribute in major ways to cellular behavior, including sporulation, genetic competence
and motility, giving rise to adaptation in gene transcription, protein translation,
cellular growth, rate of proliferation, sensitivity to apoptosis, metabolic activity, cell
shape and/or cell polarization. These adaptations cause cells themselves to alter pop-
ulation context, eventually determining single-cell distribution of phenotype prop-
erties in a population. Such complex feedback/ regulatory mechanisms may involve
many entities and interactions, in the absence of a full understanding of which, a
stochastic distribution may somewhat account for the variability [21].

2 Conclusions

What emerges from the models so far developed is that apparently ‘“stochas-
tic/variable behavior” in single cells and populations can be reasonably quantified, if
not fully understood. In many of the above-mentioned mathematical models for pop-
ulation heterogeneity, the key to characterization of population behavior is a fairly
holistic understanding of the key “players” (cells), their environment, and reactions
and feedback mechanisms among components. Integration of these theoretical and
quantitative tools will be paramount for distinguishing between relevant and noisy
heterogeneity [1]. While this field of investigation is still in its infancy, it is not dif-
ficult to imagine the impact it will have on our understanding of cellular response to
perturbations, including drugs.
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