
2. Probabilities

2.1 Experiments, Events, Sample Space

Since in this book we are concerned with the analysis of data originating from
experiments, we will have to state first what we mean by an experiment and
its result. Just as in the laboratory, we define an experiment to be a strictly
followed procedure, as a consequence of which a quantity or a set of quan-
tities is obtained that constitutes the result. These quantities are continuous
(temperature, length, current) or discrete (number of particles, birthday of a
person, one of three possible colors). No matter how accurately all conditions
of the procedure are maintained, the results of repetitions of an experiment
will in general differ. This is caused either by the intrinsic statistical nature of
the phenomenon under investigation or by the finite accuracy of the measure-
ment. The possible results will therefore always be spread over a finite region
for each quantity. All of these regions for all quantities that make up the result
of an experiment constitute the sample space of that experiment. Since it is
difficult and often impossible to determine exactly the accessible regions for
the quantities measured in a particular experiment, the sample space actually
used may be larger and may contain the true sample space as a subspace. We
shall use this somewhat looser concept of a sample space.

Example 2.1: Sample space for continuous variables

In the manufacture of resistors it is important to maintain the values R (electri-
cal resistance measured in ohms) and N (maximum heat dissipation measured
in watts) at given values. The sample space for R and N is a plane spanned
by axes labeled R and N . Since both quantities are always positive, the first
quadrant of this plane is itself a sample space.
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Example 2.2: Sample space for discrete variables

In practice the exact values of R and N are unimportant as long as they are
contained within a certain interval about the nominal value (e.g., 99 kΩ <

R < 101kΩ , 0.49 W <N < 0.60 W). If this is the case, we shall say that the
resistor has the properties Rn, Nn. If the value falls below (above) the lower
(upper) limit, then we shall substitute the index n by −(+). The possible val-
ues of resistance and heat dissipation are therefore R−, Rn, R+, N−, Nn, N+.
The sample space now consists of nine points:

R−N−, R−Nn, R−N+,
Rn N−, RnNn, RnN+,
R+N−, R+Nn, R+N+.

Often one or more particular subspaces of the sample space are of spe-
cial interest. In Example 2.2, for instance, the point Rn, Nn represents the
case where the resistors meet the production specifications. We can give such
subspaces names, e.g., A,B,. . . and say that if the result of an experiment
falls into one such subspace, then the event A (or B,C,. . .) has occurred. If A
has not occurred, we speak of the complementary event Ā (i.e., not A). The
whole sample space corresponds to an event that will occur in every exper-
iment, which we call E. In the rest of this chapter we shall define what we
mean by the probability of the occurrence of an event and present rules for
computations with probabilities.

2.2 The Concept of Probability

Let us consider the simplest experiment, namely, the tossing of a coin. Like
the throwing of dice or certain problems with playing cards it is of no practical
interest but is useful for didactic purposes. What is the probability that a “fair”
coin shows “heads” when tossed once? Our intuition suggests that this prob-
ability is equal to 1/2. It is based on the assumption that all points in sample
space (there are only two points: “heads” and “tails”) are equally probable and
on the convention that we give the event E (here: “heads” or “tails”) a prob-
ability of unity. This way of determining probabilities can be applied only to
symmetric experiments and is therefore of little practical use. (It is, however,
of great importance in statistical physics and quantum statistics, where the
equal probabilities of all allowed states is an essential postulate of very suc-
cessful theories.) If no such perfect symmetry exists—which will even be the
case with normal “physical” coins—the following procedure seems reason-
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able. In a large number N of experiments the event A is observed to occur n
times. We define

P (A)= lim
N→∞

n

N
(2.2.1)

as the probability of the occurrence of the event A. This somewhat loose fre-
quency definition of probability is sufficient for practical purposes, although
it is mathematically unsatisfactory. One of the difficulties with this definition
is the need for an infinity of experiments, which are of course impossible
to perform and even difficult to imagine. Although we shall in fact use the
frequency definition in this book, we will indicate the basic concepts of an
axiomatic theory of probability due to KOLMOGOROV [1]. The minimal set
of axioms generally used is the following:

(a) To each event A there corresponds a non-negative number, its proba-
bility,

P (A)≥ 0 . (2.2.2)

(b) The event E has unit probability,

P (E)= 1 . (2.2.3)

(c) If A and B are mutually exclusive events, then the probability of A or
B (written A+B) is

P (A+B)= P (A)+P (B) . (2.2.4)

From these axioms∗ one obtains immediately the following useful results.
From (b) and (c):

P (Ā+A)= P (A)+P (Ā)= 1 , (2.2.5)

and furthermore with (a):

0≤ P (A)≤ 1 . (2.2.6)

From (c) one can easily obtain the more general theorem for mutually exclu-
sive events A, B, C, . . . ,

P (A+B+C+·· ·)= P (A)+P (B)+P (C)+·· · . (2.2.7)

It should be noted that summing the probabilities of events combined with
“or” here refers only to mutually exclusive events. If one must deal with events
that are not of this type, then they must first be decomposed into mutually
exclusive ones. In throwing a die, A may signify even, B odd, C less than
4 dots, D 4 or more dots. Suppose one is interested in the probability for the

∗Sometimes the definition (2.3.1) is included as a fourth axiom.
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event A or C, which are obviously not exclusive. One forms A and C (written
AC) as well as AD, BC, and BD, which are mutually exclusive, and finds for
A or C (sometimes written A +̇C) the expression AC+AD+BC. Note that
the axioms do not prescribe a method for assigning the value of a particular
probability P (A).

Finally it should be pointed out that the word probability is often used in
common language in a sense that is different or even opposed to that consid-
ered by us. This is subjective probability, where the probability of an event is
given by the measure of our belief in its occurrence. An example of this is:
“The probability that the party A will win the next election is 1/3.” As another
example consider the case of a certain track in nuclear emulsion which could
have been left by a proton or pion. One often says: “The track was caused by
a pion with probability 1/2.” But since the event had already taken place and
only one of the two kinds of particle could have caused that particular track,
the probability in question is either 0 or 1, but we do not know which.

2.3 Rules of Probability Calculus: Conditional Probability

Suppose the result of an experiment has the property A. We now ask for the
probability that it also has the property B, i.e., the probability of B under the
condition A. We define this conditional probability as

P (B|A)= P (AB)

P (A)
. (2.3.1)

It follows that
P (AB)= P (A)P (B|A) . (2.3.2)

One can also use (2.3.2) directly for the definition, since here the requirement
P (A) �= 0 is not necessary. From Fig. 2.1 it can be seen that this definition is
reasonable. Consider the event A to occur if a point is in the region labeled
A, and correspondingly for the event (and region) B. For the overlap region
both A and B occur, i.e., the event (AB) occurs. Let the area of the different
regions be proportional to the probabilities of the corresponding events. Then
the probability of B under the condition A is the ratio of the area AB to that
of A. In particular this is equal to unity if A is contained in B and zero if the
overlapping area vanishes.

Using conditional probability we can now formulate the rule of total
probability. Consider an experiment that can lead to one of n possible mu-
tually exclusive events,

E =A1+A2+·· ·+An . (2.3.3)



2.4 Examples 11

The probability for the occurrence of any event with the property B is

P (B)=
n
∑

i=1

P (Ai)P (B|Ai) , (2.3.4)

as can be seen easily from (2.3.2) and (2.2.7).

AB
A

B Fig.2.1: Illustration of conditional probability.

We can now also define the independence of events. Two events A and
B are said to be independent if the knowledge that A has occurred does not
change the probability for B and vice versa, i.e., if

P (B|A)= P (B) , (2.3.5)

or, by use of (2.3.2),
P (AB)= P (A)P (B) . (2.3.6)

In general several decompositions of the type (2.3.3),

E = A1+A2+·· ·+An ,

E = B1+B2+·· ·+Bm , (2.3.7)
...

E = Z1+Z2+·· ·+Z� ,

are said to be independent, if for all possible combinations α,β, . . . ,ω the
condition

P (AαBβ · · ·Zω)= P (Aα)P (Bβ) · · ·P (Zω) (2.3.8)

is fulfilled.

2.4 Examples

2.4.1 Probability for n Dots in the Throwing of Two Dice

If n1 and n2 are the number of dots on the individual dice and if n= n1+n2,
then one has P (ni) = 1/6; i = 1,2; ni = 1,2, . . . ,6. Because the two dice
are independent of each other one has P (n1,n2) = P (n1)P (n2) = 1/36. By
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considering in how many different ways the sum n = ni +nj can be formed
one obtains

P2(2) = P (1,1)= 1/36 ,

P2(3) = P (1,2)+P (2,1)= 2/36 ,

P2(4) = P (1,3)+P (2,2)+P (3,1)= 3/36 ,

P2(5) = P (1,4)+P (2,3)+P (3,2)+P (4,1)= 4/36 ,

P2(6) = P (1,5)+P (2,4)+P (3,3)+P (4,2)

+P (5,1)= 5/36 ,

P2(7) = P (1,6)+P (2,5)+P (3,4)+P (4,3)

+P (5,2)+P (6,1)= 6/36 ,

P2(8) = P2(6)= 5/36 ,

P2(9) = P2(5)= 4/36 ,

P2(10) = P2(4)= 3/36 ,

P2(11) = P2(3)= 2/36 ,

P2(12) = P2(2)= 1/36 .

Of course, the normalization condition
∑12

k=2P2(k)= 1 is fulfilled.

2.4.2 Lottery 6 Out of 49

A container holds 49 balls numbered 1 through 49. During the drawing 6
balls are taken out of the container consecutively and none are put back in.
We compute the probabilities P (1), P (2), . . ., P (6) that a player, who before
the drawing has chosen six of the numbers 1, 2, . . ., 49, has predicted exactly
1, 2, . . ., or 6 of the drawn numbers.

First we compute P (6). The probability to choose as the first number
the one which will also be drawn first is obviously 1/49. If that step was
successful, then the probability to choose as the second number the one which
is also drawn second is 1/48. We conclude that the probability for choosing
six numbers correctly in the order in which they are drawn is

1

49 ·48 ·47 ·46 ·45 ·44
= 43!

49! .

The order, however, is irrelevant. Since there are 6! possible ways to arrange
six numbers in different orders we have

P (6)= 6!43!
49! =

1
(49

6

) = 1

C49
6

.
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That is exactly the inverse of the number of combinations C49
6 of 6 elements

out of 49 (see Appendix B), since all of these combinations are equally prob-
able but only one of them contains only the drawn numbers.

We may now argue that the container holds two kinds of balls, namely 6
balls in which the player is interested since they carry the numbers which he
selected, and 43 balls whose numbers the player did not select. The result of
the drawing is a sample from a set of 49 elements of which 6 are of one kind
and 43 are of the other. The sample itself contains 6 elements which are drawn
without putting elements back into the container. This method of sampling is
described by the hypergeometric distribution (see Sect. 5.3). The probability
for predicting correctly � out of the 6 drawn numbers is

P (�)=
(6
�

)( 43
6−�
)

(49
6

) , �= 0, . . . ,6 .

2.4.3 Three-Door Game

In a TV game show a candidate is given the following problem. Three rooms
are closed by three identical doors. One room contains a luxury car, the other
two each contain a goat. The candidate is asked to guess behind which of
the doors the car is. He chooses a door which we will call A. The door A,
however, remains closed for the moment. Of course, behind at least one of the
other doors there is a goat. The quiz master now opens one door which we
will call B to reveal a goat. He now gives the candidate the chance to either
stay with the original choice A or to choose remaining closed door C. Can the
candidate increase his or her chances by choosing C instead of A?

The answer (astonishing for many) is yes. The probability to find the car
behind the door A obviously is P (A)= 1/3. Then the probability that the car
is behind one of the other doors is P (Ā) = 2/3. The candidate exhausts this
probability fully if he chooses the door C since through the opening of B it is
shown to be a door without the car, so that P (C)= P (Ā).
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