
Chapter 2
Weighted Graphs and the Associated Markov
Chains

In this chapter, we discuss general potential theory for symmetric (reversible)
Markov chains on weighted graphs. Note that there are many nice books and lecture
notes that treat potential theory and/or Markov chains on graphs, for example
[7, 20, 93, 118, 125, 175, 195, 204, 211]. While writing this chapter, we are largely
influenced by the lecture notes by Barlow [20].

2.1 Weighted Graphs

Let X be a finite or a countably infinite set, and E is a subset of ffx; yg W x; y 2
X; x ¤ yg. A graph is a pair .X;E/. For x; y 2 X , we write x � y if fx; yg 2
E . A sequence x0; x1; � � � ; xn is called a path with length n if xi 2 X for i D
0; 1; 2; � � � ; n and xj � xjC1 for j D 0; 1; 2; � � � ; n � 1. For x ¤ y, define d.x; y/
to be the length of the shortest path from x to y. If there is no such path, we set
d.x; y/ D 1 and we set d.x; x/ D 0. d.�; �/ is a metric on X and it is called a
graph distance. .X;E/ is connected if d.x; y/ < 1 for all x; y 2 X , and it is
locally finite if jfy W fx; yg 2 Egj < 1 for all x 2 X . Throughout the lectures, we
will consider connected locally finite graphs (except when we consider the trace of
them in Sect. 2.3).

Assume that the graph .X;E/ is endowed with a weight (conductance) �xy ,
which is a symmetric nonnegative function on X � X such that �xy > 0 if and
only if x � y. We call the pair .X;�/ a weighted graph.

Let �x D �.x/ D P
y2X �xy and define a measure � on X by setting �.A/ DP

x2A �x for A � X . Also, we define B.x; r/ D fy 2 X W d.x; y/ < rg for each
x 2 X and r � 1.

Definition 2.1.1. We say that .X;�/ has controlled weights (or .X;�/ satisfies p0-
condition) if there exists p0 > 0 such that
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4 2 Weighted Graphs and the Associated Markov Chains

�xy

�x
� p0 8x � y:

If .X;�/ has controlled weights, then clearly jfy 2 X W x � ygj � p�1
0 .

Once the weighted graph .X;�/ is given, we can define the corresponding
quadratic form, Markov chain and the discrete Laplace operator.

Quadratic Form. We define a quadratic form on .X;�/ as follows.

H2.X;�/ D H2 D ff W X ! R W E.f; f / D 1

2

X

x;y2X
x�y

.f .x/ � f .y//2�xy < 1g;

E.f; g/ D 1

2

X

x;y2X
x�y

.f .x/ � f .y//.g.x/ � g.y//�xy 8f; g 2 H2:

Physically, E.f; f / is the energy (per unit time) of the electrical network for an
(electric) potential f .

Since the graph is connected, one can easily see that E.f; f / D 0 if and only if
f is a constant function. We fix a base point 0 2 X and define

kf k2
H2 D E.f; f /C f .0/2 8f 2 H2:

Note that

E.f; f / D 1

2

X

x�y
.f .x/ � f .y//2�xy �

X

x

X

y

.f .x/2 C f .y/2/�xy D 2kf k22;
(2.1)

for all f 2 L
2 where kf k2 WD .

P
x f .x/

2�x/
1=2 is the L2-norm of f . So L

2 � H2.
We give basic facts in the next lemma.

Lemma 2.1.2. (i) Convergence in H2 implies the pointwise convergence.
(ii) H2 is a Hilbert space.

Proof. (i) Suppose fn ! f in H2 and let gn D fn � f . Then E.gn; gn/ C
gn.0/

2 ! 0 so gn.0/ ! 0. For any x 2 X n f0g, there is a sequence fxi gliD0 �
X such that x0 D 0; xl D x, xi � xiC1 for i D 0; 1; � � � ; l � 1 and xi ¤ xj for
i ¤ j . Then

jgn.x/�gn.0/j2 � l
l�1X

iD0
jgn.xi /�gn.xiC1/j2 � 2l. l�1min

iD0 �xi xiC1
/�1E.gn; gn/! 0

(2.2)
as n ! 1 so we have gn.x/ ! 0.

(ii) Assume that ffngn � H2 is a Cauchy sequence in H2. Then fn.0/ is a Cauchy
sequence in R so converges. Thus, similarly to (2.2) fn converges pointwise
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to f , say. Now using Fatou’s lemma, we have kfn � f k2
H2 � lim infm kfn �

fmk2
H2 , so that kfn � f k2

H2 ! 0. ut
Markov Chain. Let Y D fYng be a Markov chain on X whose transition
probabilities are given by

P.YnC1 D yjYn D x/ D �xy

�x
DW P.x; y/ 8x; y 2 X:

We write P
x when the initial distribution of Y is concentrated on x (i.e. Y0 D x,

P-a.s.). .P.x; y//x;y2X is the transition matrix for Y . Y is called a simple random
walk when �xy D 1 whenever x � y. Y is �-symmetric since for each x; y 2 X ,

�xP.x; y/ D �xy D �yx D �yP.y; x/:

We define the heat kernel of Y by

pn.x; y/ D P
x.Yn D y/=�y 8x; y 2 X: (2.3)

Using the Markov property, we can easily show the Chapman-Kolmogorov
equation:

pnCm.x; y/ D
X

z

pn.x; z/pm.z; y/�z; 8x; y 2 X: (2.4)

Using this and the fact p1.x; y/ D �xy=.�x�y/ D p1.y; x/, one can verify the
following inductively

pn.x; y/ D pn.y; x/; 8x; y 2 X:

For n � 1 and f W X ! R, let

Pnf .x/ D
X

y

pn.x; y/f .y/�y D
X

y

P
x.Yn D y/f .y/ D E

xŒf .Yn/�:

We sometimes consider a continuous time Markov chain fYtgt�0 with respect to
� which is defined as follows: each particle stays at a point, say x for (independent)
exponential time with parameter 1, and then jumps to another point, say y with
probability P.x; y/. The heat kernel for the continuous time Markov chain can be
expressed as follows.

pt .x; y/ D P
x.Yt D y/=�y D

1X

nD0
e�t tn

nŠ
pn.x; y/; 8x; y 2 X:
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Discrete Laplace Operator. For f W X ! R, the discrete Laplace operator is
defined by

Lf .x/ D
X

y

P.x; y/f .y/ � f .x/ D 1

�x

X

y

.f .y/ � f .x//�xy

D E
xŒf .Y1/� � f .x/ D .P1 � I /f .x/; (2.5)

where Y1 is the (discrete time) Markov chain on X at time 1. Note that according
to Ohm’s law “I D V=R”,

P
y.f .y/ � f .x//�xy is the total flux flowing into x,

given the potential f .

Definition 2.1.3. Let A � X . A function f W X ! R is harmonic on A if

Lf .x/ D 0; 8x 2 A:
f is sub-harmonic (resp. super-harmonic) on A if Lf .x/ � 0 (resp. Lf .x/ � 0)
for x 2 A.

Lf .x/ D 0 means that the total flux flowing into x is 0 for the given potential f .
This is the behavior of the currents in a network called Kirchhoff’s (first) law.

For A � X , we define the (exterior) boundary of A by

@A D fx 2 Ac W 9z 2 A such that z � xg: (2.6)

Proposition 2.1.4 (Maximum Principle). Let A be a connected subset of X and
h W A[@A ! R be sub-harmonic onA. If the maximum of h overA[@A is attained
in A, then h is constant on A [ @A.

Proof. Let x0 2 A be the point where h attains the maximum and let H D fz 2
A[ @A W h.z/ D h.x0/g. If y 2 H \A, then since h.y/ � h.x/ for all x 2 A[ @A,
we have

0 � �yLh.y/ D
X

x

.h.x/ � h.y//�xy � 0:

Thus, h.x/ D h.y/ (i.e. x 2 H ) for all x � y. Since A is connected, this implies
H D A [ @A. ut

We can prove the minimum principle for a super-harmonic function h by
applying the maximum principle to �h.

For f; g 2 L
2, denote their L

2-inner product as .f; g/, namely .f; g/ DP
x f .x/g.x/�x .

Lemma 2.1.5. (i) L W H2 ! L
2 and kLf k22 � 2kf k2

H2 .
(ii) For f 2 H2 and g 2 L

2, we have .�Lf; g/ D E.f; g/.
(iii) L is a self-adjoint operator on L

2.X;�/ and the following holds:

.�Lf; g/ D .f;�Lg/ D E.f; g/; 8f; g 2 L
2: (2.7)
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Proof. (i) Using the Schwarz inequality, we have

kLf k22 D
X

x

1

�x
.
X

y

.f .y/ � f .x//�xy/
2

�
X

x

1

�x
.
X

y

.f .y/ � f .x//2�xy/.
X

y

�xy/ D 2E.f; f / � 2kf k2
H2 :

(ii) Using (i), both sides of the equality are well-defined. Further, using the
Schwarz inequality,

X

x;y

j�xy.f .y/� f .x//g.x/j � .
X

x;y

�xy.f .y/� f .x//2/1=2.
X

x;y

�xyg.x/
2/1=2

D p
2E.f; f /1=2kgk2 < 1:

So we can use Fubini’s theorem, and we have

.�Lf; g/ D �
X

x

.
X

y

�xy.f .y/ � f .x///g.x/

D 1

2

X

x

X

y

�xy.f .y/ � f .x//.g.y/ � g.x// D E.f; g/:

(iii) We can prove .f;�Lg/ D E.f; g/ similarly and obtain (2.7). ut
Equation (2.7) is the discrete Gauss-Green formula.

Lemma 2.1.6. Set pxn .�/ D pn.x; �/. Then, the following hold for all x; y 2 X .

pnCm.x; y/ D .pxn ; p
y
m/; P1p

x
n.y/ D pxnC1.y/; (2.8)

Lpxn.y/ D pxnC1.y/ � pxn.y/; E.pxn ; pym/ D pxnCm.y/ � pxnCmC1.y/; (2.9)

p2n.x; y/ � p
p2n.x; x/p2n.y; y/: (2.10)

Proof. The two equations in (2.8) are due to the Chapman-Kolmogorov equa-
tion (2.4). The first equation in (2.9) is then clear since L D P1 � I . The second
equation in (2.9) can be obtained by these equations and (2.7). Using (2.8) and the
Schwarz inequality, we have

p2n.x; y/
2 D .pxn ; p

y
n /
2 � .pxn ; p

x
n /.p

y
n ; p

y
n / D p2n.x; x/p2n.y; y/;

which gives (2.10). ut
It can be easily shown that .E ;L2/ is a regular Dirichlet form on L

2.X;�/

(cf. [108]). Then the corresponding Hunt process is the continuous time Markov
chain fYtgt�0 with respect to � and the corresponding self-adjoint operator on L

2 is
L in (2.5).
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Remark 2.1.7. Note that fYtgt�0 has the transition probability P.x; y/ D �xy=�x
and it waits at x for an exponential time with mean 1 for each x 2 X . Since the
“speed” of fYtgt�0 is independent of the location, it is sometimes called constant
speed random walk (CSRW for short). We can also consider a continuous time
Markov chain with the same transition probability P.x; y/ and wait at x for an
exponential time with mean ��1

x for each x 2 X . This Markov chain is called
variable speed random walk (VSRW for short). We will discuss VSRW in Chap. 8.
The corresponding discrete Laplace operator is

LV f .x/ D
X

y

.f .y/ � f .x//�xy: (2.11)

For each f; g that have finite support, we have

E.f; g/ D �.LV f; g/� D �.Lf; g/�;

where � is a measure on X such that �.A/ D jAj for all A � X . So VSRW is the
Markov process associated with the Dirichlet form .E ;L2/ on L

2.X; �/ and CSRW
is the Markov process associated with the Dirichlet form .E ;L2/ on L

2.X;�/.
VSRW is a time changed process of CSRW and vice versa.

We now introduce the notion of rough isometry.

Definition 2.1.8. Let .X1; �1/; .X2; �2/ be weighted graphs that have controlled
weights.

(i) A map T W X1 ! X2 is called a rough isometry if the following holds. There
exist constants c1; c2; c3 > 0 such that

c�1
1 d1.x; y/ � c2 � d2.T .x/; T .y// � c1d1.x; y/C c2 8x; y 2 X1; (2.12)

d2.T .X1/; y
0/ � c2 8y0 2 X2; (2.13)

c�1
3 �1.x/ � �2.T .x// � c3�1.x/ 8x 2 X1; (2.14)

where di.�; �/ is the graph distance of .Xi ; �i /, for i D 1; 2.
(ii) .X1; �1/; .X2; �2/ are said to be rough isometric if there is a rough isometry

between them.

It is easy to see that rough isometry is an equivalence relation. One can easily prove
that Z2, the triangular lattice, and the hexagonal lattice are all roughly isometric if
there exists M > 0 such that �xy 2 ŒM�1;M � whenever x � y. It can be proved
that Z1 and Z

2 are not roughly isometric.
The notion of rough isometry was first introduced by M. Kanai [145,146]. Since

his work was mainly concerned with Riemannian manifolds, definition of rough
isometry included only (2.12), (2.13). The definition equivalent to Definition 2.1.8
is given in [77] (see also [130]). Note that rough isometry corresponds to (coarse)
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quasi-isometry in the field of geometric group theory, which was introduced by
Gromov already in 1981 (see [124]).

When we discuss various properties of Markov chains/Laplace operators, it is
important to think about their “stability”. In the following, we introduce two types
of stability.

Definition 2.1.9. (i) We say a property is stable under bounded perturbation if
whenever .X;�/ satisfies the property and .X;�0/ satisfies c�1�xy � �0

xy �
c�xy for all x; y 2 X , then .X;�0/ satisfies the property.

(ii) We say a property is stable under rough isometry if whenever .X;�/ satisfies
the property and .X 0; �0/ is rough isometric to .X;�/, then .X 0; �0/ satisfies
the property.

If a property is stable under rough isometry, then it is clearly stable under bounded
perturbation.

It is known that the following properties of weighted graphs are stable under
rough isometry.

(i) Transience and recurrence
(ii) The Nash inequality, i.e. pn.x; y/ � c1n

�˛ for all n � 1; x; y 2 X (for some
˛ > 0)

(iii) Parabolic Harnack inequality (see Definition 3.3.4 (2))

We will see (i) later in this chapter, and (ii) and (iii) in Chap. 3. One of the important
open problems is to show if the elliptic Harnack inequality, i.e. the Harnack
inequality for harmonic functions, is stable under these perturbations or not. (In
fact, recently this has been affirmatively solved in [38] under some assumption. Yet,
the assumption contains some regularity of the growth of capacities and occupation
times. It would be desirable to prove (or disprove) the stability assuming only the
volume growth condition.)

Definition 2.1.10. .X;�/ has the Liouville property if there is no bounded non-
constant harmonic functions. .X;�/ has the strong Liouville property if there is no
positive non-constant harmonic functions.

It is known that both Liouville and strong Liouville properties are not stable under
bounded perturbation (see [176], also [45] for a counterexample in the framework
of graphs/manifolds with polynomial volume growth).

2.2 Harmonic Functions and Effective Resistances

For A � X , define

�A D inffn � 0 W Yn 2 Ag; �C
A D inffn > 0 W Yn 2 Ag;

�A D inffn � 0 W Yn … Ag:
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For A � X and f W A ! R, consider the following Dirichlet problem.

� Lv.x/ D 0 8x 2 Ac;
vjA D f:

(2.15)

Proposition 2.2.1. Assume that f W A ! R is bounded and set

'.x/ D E
xŒf .Y�A/ W �A < 1�:

(i) ' is a solution of (2.15).
(ii) If Px.�A < 1/ D 1 for all x 2 X , then ' is the unique bounded solution of

(2.15).

Proof. (i) 'jA D f is clear. For x 2 Ac , using the Markov property of Y , we have

'.x/ D
X

y

P.x; y/'.y/;

so L'.x/ D 0.
(ii) Let ' 0 be another bounded solution and letHn D '.Yn/�' 0.Yn/. ThenHn is a

bounded martingale up to �A, so using the optional stopping theorem, we have

'.x/ � ' 0.x/ D E
xH0 D E

xH�A D E
xŒ'.Y�A/ � ' 0.Y�A/�

D E
xŒf .Y�A/ � f .Y�A/� D 0

since �A < 1 a.s. and '.x/ D ' 0.x/ for x 2 A. ut
Remark 2.2.2. (i) In particular, we see that ' is the unique solution of (2.15) when

Ac is finite. In this case, we have another proof of the uniqueness of the solution
of (2.15): let u.x/ D '.x/ � ' 0.x/, then ujA D 0 and Lu.x/ D 0 for x 2 Ac .
So, noting u 2 L

2 and using Lemma 2.1.5, E.u; u/ D .�Lu; u/ D 0 which
implies that u is constant on X (so it is 0 since ujA D 0).

(ii) If hA.x/ WD P
x.�A D 1/ > 0 for some x 2 X , then the function ' C �hA

is also a solution of (2.15) for all � 2 R, so the uniqueness of the Dirichlet
problem fails.

For A;B � X such that A \ B D ;, define

Reff.A;B/
�1 D inffE.f; f / W f 2 H2; f jA D 1; f jB D 0g: (2.16)

(We defineReff.A;B/ D 1 when the right hand side is 0, andReff.A;B/ D 0when
there is no f 2 H2 that satisfies f jA D 1 and f jB D 0.) We call Reff.A;B/ the
effective resistance betweenA andB . It is easy to see thatReff.A;B/ D Reff.B;A/.
If A � A0, B � B 0 with A0 \ B 0 D ;, then Reff.A

0; B 0/ � Reff.A;B/.
Take a bond e D fx; yg, x � y in a weighted graph .X;�/. We say cutting the

bond e when we take the conductance �xy to be 0, and we say shorting the bond e
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when we identify x D y and take the conductance �xy to be 1. Clearly, shorting
decreases the effective resistance (shorting law), and cutting increases the effective
resistance (cutting law).

The following proposition (Dirichlet’s principle) shows that among feasible
potentials whose voltage is 1 onA and 0 onB , it is a harmonic function on .A[B/c
that minimizes the energy.

Proposition 2.2.3. Assume Reff.A;B/ ¤ 0.

(i) The right hand side of (2.16) is attained by a unique minimizer '.
(ii) ' in (i) is a solution of the following Dirichlet problem

� L'.x/ D 0; 8x 2 X n .A[ B/;

'jA D 1; 'jB D 0:
(2.17)

Proof. (i) We fix a base point x0 2 B and recall that H2 is a Hilbert space with
kf kH2 D E.f; f /Cf .x0/

2 (Lemma 2.1.2 (ii)). Since V WD ff 2 H2 W f jA D
1; f jB D 0g is a non-void (because Reff.A;B/ ¤ 0) closed convex subset of
H2, a general theorem shows that V has a unique minimizer for k � kH2 (which
is equal to E.�; �/ on V).

(ii) Let g be a function onX whose support is finite and is contained inX n.A[B/.
Then, for any � 2 R, ' C �g 2 V , so E.' C �g; ' C �g/ � E.'; '/. Thus
E.'; g/ D 0. Applying Lemma 2.1.5 (ii), we have .L'; g/ D 0. For each x 2
X n .A[ B/, by choosing g.z/ D ıx.z/, we obtain L'.x/�x D 0. ut

As we mentioned in Remark 2.2.2 (ii), we do not have uniqueness of the Dirichlet
problem in general. So in the following of this section, we will assume that Ac is
finite in order to guarantee uniqueness of the Dirichlet problem.

Remark 2.2.4. There is a dual characterization of resistance using flows of the
network. It is called Thompson’s principle (see for example, [20, 93]).

The next theorem gives a probabilistic interpretation of the effective resistance.

Theorem 2.2.5. If Ac is finite, then for each x0 2 Ac ,

Reff.x0; A/
�1 D �x0P

x0.�A < �
C
x0
/: (2.18)

Proof. Let v.x/ D P
x.�A < �x0/. Then, by Proposition 2.2.1, v is the unique

solution of Dirichlet problem with v.x0/ D 0, vjA D 1. By Proposition 2.2.3 and
Lemma 2.1.5 (noting that 1 � v 2 L

2),

Reff.x0; A/
�1 D E.v; v/ D E.�v; 1 � v/ D .Lv; 1 � v/

D Lv.x0/�x0 D E
x0 Œv.Y1/��x0 :

By definition of v, one can see E
x0 Œv.Y1/� D P

x0.�A < �
C
x0
/ so the result follows.

ut
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Similarly, if Ac is finite one can prove

Reff.B;A/
�1 D

X

x2B
�xP

x.�A < �
C
B /:

Note that by Ohm’s law, the right hand side of (2.18) is the current flowing from x0
to A.

The following lemma is useful and will be used later in Proposition 4.4.3.

Lemma 2.2.6. Let A;B � X and assume that both Ac;Bc are finite. Then the
following holds for all x … A[ B .

.Reff.x; A[B//.Reff.x; A/
�1 �Reff.x; B/

�1/ � P
x.�A < �B/ � Reff.x; A [ B/

Reff.x; A/
:

Proof. Using the strong Markov property, we have

P
x.�A < �B/ D P

x.�A < �B; �A[B < �C
x /C P

x.�A < �B; �A[B > �C
x /

D P
x.�A < �B; �A[B < �C

x /C P
x.�A[B > �C

x /P
x.�A < �B/:

So

P
x.�A < �B/ D P

x.�A < �B; �A[B < �C
x /

Px.�A[B < �C
x /

� P
x.�A < �

C
x /

Px.�A[B < �C
x /
:

Using (2.18), the upper bound is obtained. For the lower bound,

P
x.�A < �B; �A[B < �C

x / � P
x.�A < �

C
x < �B/

� P
x.�A < �

C
x / � P

x.�B < �
C
x /;

so using (2.18) again, the proof is complete. ut
As we see in the proof, we only need to assume that Ac is finite for the upper

bound.
Now let .X;�/ be an infinite weighted graph. Let fAng1

nD1 be a family of finite
sets such thatAn � AnC1 for n 2 N and [n�1An D X . Let x0 2 A1. By the shorting
law, Reff.x0; A

c
n/ � Reff.x0; A

c
nC1/, so the following limit exists.

Reff.x0/ WD lim
n!1Reff.x0; A

c
n/: (2.19)

Further, the limit Reff.x0/ is independent of the choice of the sequence fAng
mentioned above. (Indeed, if fBng is another such family, then for each n there
exists Nn such that An � BNn , so limn!1Reff.x0; A

c
n/ � limn!1Reff.x0; B

c
n/.

By changing the role of An and Bn, we have the opposite inequality.)
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Theorem 2.2.7. Let .X;�/ be an infinite weighted graph. For each x 2 X , the
following holds

P
x.�C

x D 1/ D .�xReff.x//
�1:

Proof. By Theorem 2.2.5, we have

P
x.�Acn < �

C
x / D .�xReff.x; A

c
n//

�1:

Taking n ! 1 and using (2.19), we have the desired equality. ut
Definition 2.2.8. We say a Markov chain is recurrent at x 2X if Px.�C

x D 1/D 0.
We say a Markov chain is transient at x 2 X if Px.�C

x D 1/ > 0.

The following is well-known for irreducible Markov chains (so in particular it
holds for Markov chains corresponding to weighted graphs). See for example [188].

Proposition 2.2.9. (1) fYngn is recurrent at x 2 X if and only if m WDP1
nD0 Px.Yn D x/ D 1. Further, m�1 D P

x.�C
x D 1/.

(2) If fYngn is recurrent (resp. transient) at some x 2 X , then it is recurrent (resp.
transient) for all x 2 X .

(3) fYngn is recurrent if and only if P
x.fY hits y infinitely ofteng/D 1 for all

x; y 2X . fYngn is transient if and only if Px.fY hits y finitely ofteng/ D 1 for
all x; y 2 X .

From Theorem 2.2.7 and Proposition 2.2.9, we have the following.

fYng is transient (resp. recurrent)

, Reff.x/ < 1 (resp. Reff.x/ D 1), 9x 2 X (2.20)

, Reff.x/ < 1 (resp. Reff.x/ D 1), 8x 2 X:

Example 2.2.10. Consider Z
2 with weight 1 on each nearest neighbor bond. Let

@Bn D f.x; y/ 2 Z
2 W either jxj or jyj is ng. By shorting @Bn for all n 2 N, one can

obtain

Reff.0/ �
1X

nD0

1

4.2nC 1/
D 1:

So the simple random walk on Z
2 is recurrent.

Let us recall the following fact.

Theorem 2.2.11 (Pólya 1921). Simple random walk on Z
d is recurrent if d D 1; 2

and transient if d � 3.

The combinatorial proof of this theorem is well-known. For example, for d D 1,
by counting the total number of paths of length 2n that moves both right and left n
times,
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P
0.Y2n D 0/ D 2�2n

�
2n

n

�

D .2n/Š

22nnŠnŠ
� .�n/�1=2;

where Stirling’s formula is used in the end. Thus

m D
1X

nD0
P
0.Yn D 0/ �

1X

nD1
.�n/�1=2 C 1 D 1;

so fYng is recurrent.
This argument is not robust. For example, if one changes the weight on Z

d so that
c1 � �xy � c2 for x � y, one cannot apply the argument at all. The advantage of
the characterization of transience/recurrence using the effective resistance is that one
can make a robust argument. Indeed, by (2.20) we can see that transience/recurrence
is stable under bounded perturbation. This is because, if c1�0

xy � �xy � c2�
0
xy for

all x; y 2 X , then c1Reff.x/ � R0
eff.x/ � c2Reff.x/. We can further prove that

transience/recurrence is stable under rough isometry.
Finally in this section, we will give more equivalence condition for the transience

and discuss some decomposition of H2. Let H2
0 be the closure of C0.X/ in H2,

where C0.X/ is the space of compactly supported functions on X . For a finite set
B � X , define the capacity of B by

Cap .B/ D inffE.f; f / W f 2 H2
0 ; f jB D 1g:

We first give a lemma.

Lemma 2.2.12. If a sequence of non-negative functions vn 2 H2, n 2 N satisfies
limn!1 vn.x/ D 1 for all x 2 X and limn!1 E.vn; vn/ D 0, then

lim
n!1 ku � .u ^ vn/kH2 D 0; 8u 2 H2; u � 0:

Proof. Let un D u ^ vn and define Un D fx 2 X W u.x/ > vn.x/g. By the
assumption, for each N 2 N, there exists N0 D N0.N / such that Un � B.0;N /c

for all n � N0. For A � X , denote EA.u/ D 1
2

P
x;y2A.u.x/ � u.y//2�xy . Since

EUcn .u � un/ D 0, we have

E.u � un; u � un/ � 2 � 1
2

X

x2Un

X

yW y�x

�
u.x/ � un.x/ � .u.y/� un.y//

�2
�xy

� 2EB.0;N�1/c .u � un/ � 4
�
EB.0;N�1/c .u/C EB.0;N�1/c .un/

�
(2.21)

for all n � N0. As un D .u C vn � ju � vnj/=2, we have

EB.0;N�1/c .un/ � c1

�
EB.0;N�1/c .u/C EB.0;N�1/c .vn/C EB.0;N�1/c .ju � vnj/

�

� c2

�
EB.0;N�1/c .u/C EB.0;N�1/c .vn/

�
:



2.2 Harmonic Functions and Effective Resistances 15

Thus, together with (2.21), we have

E.u � un; u � un/ � c3

�
EB.0;N�1/c .u/C EB.0;N�1/c .vn/

�

� c3

�
EB.0;N�1/c .u/C E.vn; vn/

�
:

Since u 2 H2, EB.0;N�1/c .u/ ! 0 asN ! 1 and by the assumption, E.vn; vn/ ! 0

as n ! 1. So we obtain E.u � un; u � un/ ! 0 as n ! 1. By the assumption, it
is clear that u � un ! 0 pointwise, so we obtain ku � unkH2 ! 0. ut

We say that a quadratic form .E ;F/ is Markovian if u 2 F and v D .0 _ u/^ 1,
then v 2 F and E.v; v/ � E.u; u/. It is easy to see that quadratic forms determined
by weighted graphs are Markovian.

Proposition 2.2.13. The following are equivalent.

(i) The Markov chain corresponding to .X;�/ is transient.
(ii) 1 … H2

0

(iii) Cap .fxg/ > 0 for some x 2 X .
(iii)0 Cap .fxg/ > 0 for all x 2 X .
(iv) H2

0 ¤ H2

(v) There exists a non-negative super-harmonic function which is not a constant
function.

(vi) For each x 2 X , there exists c1.x/ > 0 such that

jf .x/j2 � c1.x/E.f; f / 8f 2 C0.X/: (2.22)

Proof. For fixed x 2 X , define '.z/ D P
z.�x < 1/. We first show the following:

' 2 H2
0 and

E.'; '/ D .�L'; 1fxg/ D Reff.x/
�1 D Cap .fxg/: (2.23)

Indeed, let fAng1
nD1 be a family of finite sets such that An � AnC1 for n 2 N, x 2

A1, and [n�1An D X . Then Reff.x; A
c
n/

�1 # Reff.x/
�1. Let 'n.z/ D P

z.�x < �An/.
Using Lemma 2.1.5 (ii), and noting 'n 2 C0.X/, we have, form � n,

E.'m; 'n/ D .'m;�L'n/ D .1fxg;�L'n/ D E.'n; 'n/ D Reff.x; A
c
n/

�1: (2.24)

This implies

E.'m � 'n; 'm � 'n/ D Reff.x; A
c
m/

�1 � Reff.x; A
c
n/

�1:

Hence f'mg is a E-Cauchy sequence. Noting that 'n ! ' pointwise, we see that
'n ! ' inH2 as well and ' 2 H2

0 . Taking n D m and n ! 1 in (2.24), we obtain
(2.23) except the last equality. To prove the last equality of (2.23), take any f 2 H2

0
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with f .x/ D 1. Then g WD f � ' 2 H2
0 and g.x/ D 0. Let gn 2 C0.X/ with

gn ! g in H2
0 . Then, by Lemma 2.1.5 (ii), E.'; gn/ D .�L'; gn/. Noting that ' is

harmonic except at x, we see that L' 2 C0.X/. So, letting n ! 1, we have

E.'; g/ D .�L'; g/ D �L'.x/g.x/�x D 0:

Thus,

E.f; f / D E.' C g; ' C g/ D E.'; '/C E.g; g/ � E.'; '/;

which means that ' is the unique minimizer in the definition of Cap .fxg/. So the
last equality of (2.23) is obtained.

Given (2.23), we now prove the equivalence.

.i/ H) .iii/0: This is a direct consequence of (2.20) and (2.23).

.iii/ ” .ii/ ” .iii/0: This is easy. Indeed, Cap .fxg/ D 0 if and only if there
is f 2 H2

0 with f .x/ D 1 and E.f; f / D 0, that is f is identically 1.
.iii/0 H) .vi/: Let f 2 C0.X/ � H2

0 with f .x/ ¤ 0, and define g D f=f .x/.
Then

Cap .fxg/ � E.g; g/ D E.f; f /=f .x/2:

So, letting c1.x/ D 1=Cap .fxg/ > 0, we obtain (vi).
.vi/ H) .i/: As before, let 'n.z/ D P

z.�x < �An/. Then by (2.22), E.'n; 'n/ �
c1.x/

�1. So, using the fact 'n ! ' in H2 and (2.23), Reff.x/
�1 D E.'; '/ D

limn E.'n; 'n/ � c1.x/
�1. This means the transience by (2.20).

.ii/ ” .iv/: .ii/ H) .iv/ is clear since 1 2 H2, so we will prove the opposite
direction. Suppose 1 2 H2

0 . Then there exists ffngn � C0.X/ such that k1 �
fnkH2 < n�2. Since E is Markovian, we have k1�fnkH2 � k1�.fn_0/^1kH2 ,
so without loss of generality we may assume fn � 0. Let vn D nfn � 0. Then
limn vn.x/ D 1 for all x 2 X and E.vn; vn/ D n2E.fn; fn/ � n�2 ! 0 so
by Lemma 2.2.12, ku � .u ^ vn/kH2 ! 0 for all u 2 H2 with u � 0. Since
u ^ vn 2 C0.X/, this implies u 2 H2

0 . For general u 2 H2, we can decompose
it into uC � u� where uC; u� � 0 are in H2. So applying the above, we have
uC; u� 2 H2

0 and conclude u 2 H2
0 .

.i/ H) .v/: If the corresponding Markov chain is transient, then  .z/ D
P

z.�C
x < 1/ is the non-constant super-harmonic function.

.i/ (H .v/: Suppose the corresponding Markov chain fYngn is recurrent. For
a super-harmonic function  � 0, Mn D  .Yn/ � 0 is a supermartingale,
so it converges Px-a.s. Let M1 be the limiting random variable. Since the set
fn 2 N W Yn D yg is unbounded Px-a.s. for all y 2 X (due to the recurrence), we
have Px. .y/ D M1/ D 1 for all y 2 X , so  is constant. ut

Remark 2.2.14. .v/ H) .i/ implies that if the Markov chain corresponding to
.X;�/ is recurrent, then it has the strong Liouville property.
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ForA;B which are subspaces ofH2, we writeA˚B D ff Cg W f 2 A; g 2 Bg
if E.f; g/ D 0 for all f 2 A and g 2 B .

As we see above, the Markov chain corresponding to .X;�/ is recurrent if
and only if H2 D H2

0 . When the Markov chain is transient, we have the
following decomposition of H2, which is called the Royden decomposition (see
[204, Theorem 3.69]).

Proposition 2.2.15. Suppose that the Markov chain corresponding to .X;�/ is
transient. Then

H2 D H ˚H2
0 ;

where H WD fh 2 H2 W h is a harmonic functions on Xg. Further the decomposi-
tion is unique.

Proof. For each f 2 H2, let af D infh2H2
0
E.f � h; f � h/. Then, similarly to the

proof of Proposition 2.2.3, we can show that there is a unique minimizer vf 2 H2
0

such that af D E.f � vf ; f � vf /, E.f � vf ; g/ D 0 for all g 2 H2
0 , and

in particular f � vf is harmonic on X . For the uniqueness of the decomposition,
suppose f D uCv D u0 Cv0 where u; u0 2 H and v; v0 2 H2

0 . Then, w WD u�u0 D
v0 � v 2 H \H2

0 , so E.w;w/ D 0, which implies w is constant. Since w 2 H2
0 and

the Markov chain is transient, by Proposition 2.2.13 we have w 	 0. ut

2.3 Trace of Weighted Graphs

Finally in this chapter, we briefly mention the trace of weighted graphs, which will
be used in Chaps. 4 and 8. Note that there is a general theory on traces for Dirichlet
forms (see [74, 108]). Also note that a trace to infinite subset of X may not satisfy
locally finiteness, but one can consider quadratic forms on them similarly.

Proposition 2.3.1 (Trace of the Weighted Graph). Let V � X be a non-void set
such that Px.�V < 1/ D 1 for all x 2 X and let f 2 H2.V / WD fujV W u 2 H2g.
Then there exists a unique u 2 H2 which attains the following infimum:

inffE.v; v/ W v 2 H2; vjV D f g: (2.25)

Moreover, the map f 7! u DW HV f is a linear map and there exist weights
f O�xygx;y2V such that the corresponding quadratic form OEV .�; �/ satisfies the follow-
ing:

OEV .f; f / D E.HV f;HV f / 8f 2 H2.V /:

Proof. The proof here is inspired by [153, Sect. 8].
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The fact that there exists a unique u 2 H2 that attains the infimum of (2.25)
can be proved similarly to Proposition 2.2.3 (i). So the map HV W H2.V / ! H2

where f 7! HV f is well-defined. Let HV WD fu 2 H2 W E.u; v/ D 0; for all v 2
H2 such that vjV D 0g; a space of harmonic functions on X n V . We claim the
following:

HV D HV .H
2.V // and RV W HV ! H2.V /; (2.26)

where RV u D ujV is an inverse operator of HV . Once this is proved, then we have
the linearity of HV and furthermore we have

H2 D HV ˚ fv 2 H2 W vjV D 0g:

So let us prove (2.26). If f 2 H2.V / and u D HV f , then for any v 2 H2 with
vjV D f , we have

E.�.v � u/C u; �.v � u/C u/ � E.u; u/; 8� 2 R;

because u attains the infimum in (2.25). This implies E.v � u; u/ D 0, namely
u 2 HV . Clearly ujV D f , so we obtain HV 
 HV .H

2.V // and RV ı HV is an
identity map. Next, if u 2 HV and ujV D f 2 H2.V /, then for any v 2 H2 with
vjV D f , we have

E.v; v/ D E.v � u C u; v � u C u/ D E.v � u; v � u/C E.u; u/ � E.u; u/

because E.v�u; u/ D 0 (since u 2 HV ). This implies u D HV f , since the infimum
in (2.25) is attained uniquely by HV f . So we obtain HV � HV .H

2.V // and HV ı
RV is an identity map.

Set OE.f; f / D E.HV f;HV f /. Clearly, OE is a non-negative definite symmetric
bilinear form and OE.f; f / D 0 if any only if f is a constant function. So, there exists
faxygx;y2V with axy D ayx such that OE.f; f / D 1

2

P
x;y2V axy.f .x/ � f .y//2.

Next, we show that OE is Markovian. Indeed, writing Nu D .0_u/^1 for a function
u, since HV ujV D Nu, we have

OE.Nu; Nu/ D E.HV Nu;HV Nu/ � E.HV u;HV u/ � E.HV u;HV u/ D OE.u; u/;

for all u 2 H2.V /, where the fact that E is Markovian is used in the second
inequality. Now take p; q 2 V with p ¤ q arbitrary, and consider a function h
such that h.p/ D 1; h.q/ D �˛ < 0 and h.z/ D 0 for z 2 V n fp; qg. Then, there
exist c1; c2 such that

OE.h; h/ D apq.h.p/ � h.q//2 C c1h.p/
2 C c2h.q/

2 D apq.1C ˛/2 C c1 C c2˛
2

� OE. Nh; Nh/ D apq. Nh.p/ � Nh.q//2 C c1 Nh.p/2 C c2 Nh.q/2 D apq C c1:
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So .apq C c2/˛
2 C 2apq˛ � 0. Since this holds for all ˛ > 0, we have apq � 0.

Putting O�pq D apq for each p; q 2 V with p ¤ q, we have OEV D OE , that is OE is
associated with the weighted graph .V; O�/. ut

We call the induced weights f O�xygx;y2V as the trace of f�xygx;y2X to V . From
this proposition, we see that for x; y 2 V , Reff.x; y/ D RVeff.x; y/ whereRVeff.�; �/ is
the effective resistance for .V; O�/.
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