
Chapter 2
The Hahn Quantum Variational Calculus

We introduce the Hahn quantum variational calculus. Necessary and sufficient
optimality conditions for the basic, isoperimetric, andHahn quantumLagrange prob-
lems, are studied. We also show the validity of Leitmann’s direct method (Almeida
and Torres 2010b; Carlson and Leitmann 2005a,b, 2008; Leitmann 2002, 2003) for
the Hahn quantum variational calculus, and give explicit solutions to some con-
crete problems. Next, we prove a necessary optimality condition of Euler–Lagrange
type for quantum variational problems involving Hahn’s derivatives of higher-order.
Finally, we extend the previous results and obtain optimality conditions for gener-
alized quantum variational problems with a Lagrangian depending on the free end-
points. To illustrate the results, we provide several examples and discuss quantum
versions of the Ramsey model and an adjustment model in economics.

2.1 Preliminaries

Let q ∈]0, 1[ and ω ≥ 0. Define ω0 := ω

1 − q
and let I be a real interval containing

ω0. For a function f defined on I , the Hahn difference operator of f is given by

Dq,ω[ f ](t) :=

⎧
⎪⎪⎨

⎪⎪⎩

f (qt + ω) − f (t)

(q − 1)t + ω
if t �= ω0

f ′(ω0) if t = ω0

provided that f is differentiable at ω0 (where f ′ denotes the Fréchet derivative of f ).
Dq,ω [ f ] is called the q,ω-derivative of f , and f is said to be q,ω-differentiable
on I if Dq,ω [ f ] (ω0) exists.
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Remark 2.1 Note that when q → 1 we obtain the forward h-difference operator

Δh [ f ] (t) := f (t + h) − f (t)

h
,

and when ω = 0 we obtain the Jackson q-difference operator

Dq,0[ f ](t) :=

⎧
⎪⎪⎨

⎪⎪⎩

f (qt) − f (t)

(q − 1)t
if t �= 0

f ′(0) if t = 0

provided f ′ (0) exists. Hence, we can state that the Dq,ω operator generalizes the
forward h-difference and the Jackson q-difference operators (Ernst 2008; Kac and
Cheung 2002; Koornwinder 1994). Notice also that, under appropriate conditions,

lim
q→1

Dq,0 [ f ] (t) = f ′ (t).

Example 2.2 Let q = ω = 1/2. In this case ω0 = 1. It is easy to see that
f :[−1, 1] → R given by

f (t) =

⎧
⎪⎨

⎪⎩

−t if t ∈] − 1, 0[∪]0, 1]
0 if t = −1

1 if t = 0

is not a continuous function but is q,ω-differentiable in [−1, 1] with

Dq,ω[ f ](t) =

⎧
⎪⎨

⎪⎩

−1 if t ∈] − 1, 0[∪]0, 1]
1 if t = −1

−3 if t = 0.

Example 2.3 Let q ∈]0, 1[,ω = 0, and

f (t) =
{

t2 if t ∈ Q

−t2 if t ∈ R \ Q.

Note that f is only Fréchet differentiable in zero, but since ω0 = 0, f is q,

ω-differentiable on the entire real line.

The Hahn difference operator has the following properties:

Theorem 2.4 (Aldwoah 2009; Aldwoah and Hamza 2011) If f, g : I → R are
q,ω-differentiable and t ∈ I , then:
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1. Dq,ω[ f ](t) ≡ 0 on I if and only if f is constant;
2. Dq,ω [ f + g] (t) = Dq,ω [ f ] (t) + Dq,ω [g] (t);
3. Dq,ω [ f g] (t) = Dq,ω [ f ] (t) g (t) + f (qt + ω) Dq,ω [g] (t);

4. Dq,ω

[
f

g

]

(t) = Dq,ω [ f ] (t) g (t) − f (t) Dq,ω [g] (t)

g (t) g (qt + ω)
if g (t) g (qt + ω) �= 0;

5. f (qt + ω) = f (t) + (t (q − 1) + ω) Dq,ω [ f ] (t).

Proposition 2.5 (Aldwoah 2009) Let a, b ∈ R. We have

Dq,ω(at + b)n = a
n−1∑

k=0

(a(qt + ω) + b)k(at + b)n−k−1,

for n ∈ N and t �= ω0.

Let σ (t) = qt +ω, for all t ∈ I . Note that σ is a contraction, σ(I ) ⊆ I,σ (t) < t
for t > ω0,σ (t) > t for t < ω0, and σ (ω0) = ω0.

We use the following standard notation of q-calculus: for k ∈ N0 := N ∪
{0} , [k]q := 1 − qk

1 − q
.

Lemma 2.6 (Aldwoah 2009) Let k ∈ N and t ∈ I . Then,

1. σk (t) = σ ◦ σ ◦ · · · ◦ σ︸ ︷︷ ︸
k-times

(t) = qkt + ω [k]q;

2.
(
σk (t)

)−1 = σ−k (t) = t − ω [k]q
qk

.

Following (Aldwoah 2009; Aldwoah and Hamza 2011) we define the notion of
q,ω-integral (also known as the Jackson–Nörlund integral) as follows:

Definition 2.7 Let a, b ∈ I and a < b. For f : I → R the q,ω-integral of f from
a to b is given by

∫ b

a
f (t) dq,ωt :=

∫ b

ω0

f (t) dq,ωt −
∫ a

ω0

f (t) dq,ωt,

where

∫ x

ω0

f (t) dq,ωt := (x (1 − q) − ω)

+∞∑

k=0

qk f
(

xqk + ω [k]q
)

, x ∈ I,

provided that the series converges at x = a and x = b. In that case, f is called q,ω-
integrable on [a, b]. We say that f is q,ω-integrable over I if it is q,ω-integrable
over [a, b] for all a, b ∈ I .

Remark 2.8 The q,ω-integral generalizes the Jackson q-integral and the Nörlund
sum (Kac and Cheung 2002). When ω = 0, we obtain the Jackson q-integral
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∫ b

a
f (t) dq t :=

∫ b

0
f (t) dqt −

∫ a

0
f (t) dqt ,

where
∫ x

0
f (t) dqt := x (1 − q)

+∞∑

k=0

qk f
(

xqk
)

.

When q → 1, we obtain the Nörlund sum

∫ b

a
f (t)Δωt :=

∫ b

+∞
f (t)Δωt −

∫ a

+∞
f (t)Δωt,

where
∫ x

+∞
f (t)Δωt := −ω

+∞∑

k=0

f (x + kω).

It can be shown that if f : I → R is continuous at ω0, then f is q,ω-integrable over
I (see Aldwoah (2009); Aldwoah and Hamza (2011) for the proof).

Theorem 2.9 (Aldwoah 2009) (Fundamental Theorem of Hahn’s Calculus)
Assume that f : I → R is continuous at ω0 and, for each x ∈ I , define

F (x) :=
∫ x

ω0

f (t) dq,ωt.

Then F is continuous at ω0. Furthermore, Dq,ω [F] (x) exists for every x ∈ I and

Dq,ω [F] (x) = f (x). Conversely,
∫ b

a Dq,ω [ f ] (t) dq,ωt = f (b) − f (a) for all
a, b ∈ I .

Aldwoah proved that the q,ω-integral has the following properties:

Theorem 2.10 (Aldwoah 2009; Aldwoah and Hamza 2011) Let f, g : I → R be
q,ω-integrable on I, a, b, c ∈ I and k ∈ R. Then,

1.
∫ a

a
f (t) dq,ωt = 0;

2.
∫ b

a
k f (t) dq,ωt = k

∫ b

a
f (t) dq,ωt;

3.
∫ b

a
f (t) dq,ωt = −

∫ a

b
f (t) dq,ωt;

4.
∫ b

a
f (t) dq,ωt =

∫ c

a
f (t) dq,ωt +

∫ b

c
f (t) dq,ωt;

5.
∫ b

a
( f (t) + g (t)) dq,ωt =

∫ b

a
f (t) dq,ωt +

∫ b

a
g (t) dq,ωt;

6. Every Riemann integrable function f on I is q,ω-integrable on I ;



2.1 Preliminaries 13

7. If f, g : I → R are q,ω-differentiable and a, b ∈ I , then

∫ b

a
f (t) Dq,ω [g] (t) dq,ωt =

[
f (t) g (t)

]b

a
−
∫ b

a
Dq,ω [ f ] (t) g (qt + ω) dq,ωt.

Property 7 of Theorem 2.10 is known as q,ω-integration by parts formula.

Lemma 2.11 (Annaby et al. 2012) Let s ∈ I and f and g be q,ω-integrable over
I . Suppose that

| f (t)| ≤ g(t), ∀t ∈ {qns + ω [n]q : n ∈ N0
}
.

If ω0 ≤ s, then for b ∈ {qns + ω [n]q : n ∈ N0
}

∣
∣
∣
∣

∫ b

ω0

f (t)dq,ωt

∣
∣
∣
∣ ≤

∫ b

ω0

g(t)dq,ωt.

Remark 2.12 Note that there is an inconsistency in Aldwoah (2009). Indeed,
Lemma 6.2.7 of Aldwoah (2009) is only valid if b ≥ ω0 and a ≤ b.

Remark 2.13 In general, the Jackson–Nörlund integral does not satisfies the follow-
ing inequality (for a counterexample see Aldwoah (2009)):

∣
∣
∣
∣

∫ b

a
f (t) dq,ωt

∣
∣
∣
∣ ≤

∫ b

a
| f (t) |dq,ωt, a, b ∈ I.

For s ∈ I we define

[s]q,ω := {
qns + ω [n]q : n ∈ N0

} ∪ {ω0} .

The following definition and lemma are important for our purposes.

Definition 2.14 Let s ∈ I and g : I×] − θ̄, θ̄[→ R. We say that g (t, ·) is dif-
ferentiable at θ0 uniformly in [s]q,ω if for every ε > 0 there exists δ > 0 such
that

0 < |θ − θ0| < δ ⇒
∣
∣
∣
∣
g (t, θ) − g (t, θ0)

θ − θ0
− ∂2g (t, θ0)

∣
∣
∣
∣ < ε

for all t ∈ [s]q,ω , where ∂2g = ∂g

∂θ
.

Lemma 2.15 Let s ∈ I and assume that g : I×] − θ̄, θ̄[→ R is differen-

tiable at θ0 uniformly in [s]q,ω , G (θ) :=
∫ s

ω0

g (t, θ) dq,ωt for θ near θ0, and
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∫ s

ω0

∂2g (t, θ0) dq,ωt exist. Then, G (θ) is differentiable at θ0 with G ′ (θ0)

=
∫ s

ω0

∂2g (t, θ0) dq,ωt .

Proof For s = ω0 the result is clear. Let s �= ω0 and ε > 0 be arbitrary. Since g(t, ·)
is differentiable at θ0, uniformly in t , there exists δ > 0, such that, for all t ∈ [s]q,ω ,
and for 0 < |θ − θ0| < δ, the following inequality holds:

∣
∣
∣
∣
g(t, θ) − g(t, θ0)

θ − θ0
− ∂2g(t, θ0)

∣
∣
∣
∣ <

ε

s − ω0
.

Applying Theorem 2.10 and Lemma 2.11, for 0 < |θ − θ0| < δ, we have

∣
∣
∣
∣
G(θ) − G(θ0)

θ − θ0
− G ′(θ0)

∣
∣
∣
∣

=
∣
∣
∣
∣
∣

∫ s
ω0

g(t, θ)dq,ωt − ∫ s
ω0

g(t, θ0)dq,ωt

θ − θ0
−
∫ s

ω0

∂2g(t, θ0)dq,ωt

∣
∣
∣
∣
∣

=
∣
∣
∣
∣

∫ s

ω0

[
g(t, θ) − g(t, θ0)

θ − θ0
− ∂2g(t, θ0)

]

dq,ωt

∣
∣
∣
∣

<

∫ s

ω0

ε

s − ω0
dq,ωt = ε

s − ω0

∫ s

ω0

1dq,ωt = ε.

Hence, G(·) is differentiable at θ0 and G ′(θ0) = ∫ s
ω0

∂2g(t, θ0)dq,ωt .

Let a, b ∈ I with a < b. Recall that I is an interval containing ω0. We define the
q,ω-interval by

[a, b]q,ω := {qna + ω[n]q : n ∈ N0} ∪ {qnb + ω[n]q : n ∈ N0} ∪ {ω0},

that is, [a, b]q,ω = [a]q,ω ∪ [b]q,ω . For r ∈ N we introduce the linear space Yr =
Yr ([a, b] ,R) by

Yr :=
{
y : [a, b] → R | Di

q,ω[y], i = 0, . . . , r,

are bounded on [a, b] and continuous at ω0}

endowed with the norm

‖y‖r,∞ :=
r∑

i=0

∥
∥
∥Di

q,ω [y]
∥
∥
∥∞ ,

where ‖y‖∞ := supt∈[a,b] |y (t)|.
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2.2 The Hahn Quantum Euler–Lagrange Equation

In this section we obtain the Euler–Lagrange equation for the basic problem of the
Hahn quantum variational calculus. As in the classical case, we need the following
lemma.

Lemma 2.16 (Fundamental Lemma of the Hahn quantum variational calculus)
Let f ∈ Y0. One has

∫ b
a f (t)h(qt + ω)dq,ωt = 0 for all functions h ∈ Y0 with

h(a) = h(b) = 0 if and only if f (t) = 0 for all t ∈ [a, b]q,ω .

Proof The implication “⇐” is obvious. Let us prove the implication “⇒”. Suppose,
by contradiction, that f (p) �= 0 for some p ∈ [a, b]q,ω .
Case I If p �= ω0, then p = qka + ω[k]q or p = qkb + ω[k]q for some k ∈ N0.
Observe that a(1−q)−ω and b(1−q)−ω cannot vanish simultaneously. Therefore,
without loss of generality, we can assume a(1− q) − ω �= 0 and p = qka + ω[k]q .
Define

h(t) =
{

f (qka + ω[k]q), if t = qk+1a + ω[k + 1]q

0, otherwise.

Then,

∫ b

a
f (t)h(qt + ω)dq,ωt

= −(a(1 − q) − ω)qk f (qka + ω[k]q)h(qk+1a + ω[k + 1]q) �= 0,

which is a contradiction.
Case II If p = ω0, then without loss of generality we can assume f (ω0) > 0. We
know that (see Aldwoah (2009); Annaby et al. (2012) for more details)

lim
n→∞ qna + [n]q,ω = lim

n→∞ qnb + ω[n]q = ω0.

As f is continuous at ω0, we have

lim
n→∞ f (qna + ω[n]q) = lim

n→∞ f (qnb + ω[n]q) = f (ω0).

Therefore, there exists N ∈ N, such that for all n > N the inequalities

f (qna + ω[n]q) > 0 and f (qnb + ω[n]q) > 0

hold. If ω0 �= a, b, then we define
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h(t) =

⎧
⎪⎨

⎪⎩

f (qnb + ω[n]q), if t = qn+1a + ω[n + 1]q , for all n > N

f (qna + ω[n]q), if t = qn+1b + ω[n + 1]q , for all n > N

0, otherwise.

Hence,

∫ b

a
f (t)h(qt+ω)dq,ωt = (b−a)(1−q)

∞∑

n=N

qn f (qna+ω[n]q) f (qnb+ω[n]q) �= 0,

which is a contradiction. If ω0 = b, then we define

h(t) =
{

f (ω0), if t = qn+1a + ω[n + 1]q , for all n > N

0, otherwise.

Hence,

∫ b

a
f (t)h(qt + ω)dq,ωt = −

∫ a

ω0

f (t)h(qt + ω)dq,ωt

= −(a(1 − q) − ω)

∞∑

n=N

qn f (qna + ω[n]q) f (ω0) �= 0,

which is a contradiction. Similarly, we show the case when ω0 = a.

Consider the following q,ω-variational problem

L [y] =
∫ b

a
L
(
t, y (qt + ω) , Dq,ω [y] (t)

)
dq,ωt −→ extr (2.1)

where “extr” denotes “extremize”, in the class of functions y ∈ Y1 satisfying the
boundary conditions

y(a) = α and y(b) = β (2.2)

for some fixed α,β ∈ R.

Definition 2.17 A function y ∈ Y1 is said to be admissible for (2.1)–(2.2) if it
satisfies the endpoint conditions (2.2). We say that h ∈ Y1 is an admissible variation
for (2.1)–(2.2) if h(a) = h(b) = 0.

In the sequel we assume that the Lagrangian L satisfies the following hypotheses:

(H1) (u0, u1) → L(t, u0, u1) is a C1(R2,R) function for any t ∈ [a, b];
(H2) t → L(t, y(qt + ω), Dq,ω [y] (t)) is continuous at ω0 for any y ∈ Y1;
(H3) functions t → ∂i L(t, y(qt + ω), Dq,ω [y] (t)), i = 2, 3, belong to Y1 for all

y ∈ Y1.
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Definition 2.18 We say that y∗ is a local minimizer (resp. local maximizer) for
problem (2.1)–(2.2) if y∗ is an admissible function and there exists δ > 0 such that

L [y∗] ≤ L [y] (resp. L [y∗] ≥ L [y] )

for all admissible y with ‖y∗ − y‖1,∞ < δ.

For fixed y, h ∈ Y1, we define the real function φ by

φ(ε) := L[y + εh].

The first variation for problem (2.1) is defined by

δL[y, h] := φ′(0).

Observe that,

L[y + εh] =
∫ b

a
L(t, y(qt + ω) + εh(qt + ω), Dq,ω[y](t) + εDq,ω[h](t))dq,ωt

=
∫ b

ω0

L(t, y(qt + ω) + εh(qt + ω), Dq,ω[y](t) + εDq,ω[h](t))dq,ωt

−
∫ a

ω0

L(t, y(qt + ω) + εh(qt + ω), Dq,ω[y](t) + εDq,ω[h](t))dq,ωt.

Writing

Lb[y + εh] =
∫ b

ω0

L(t, y(qt + ω) + εh(qt + ω), Dq,ω[y](t) + εDq,ω[h](t))dq,ωt

and

La[y + εh] =
∫ a

ω0

L(t, y(qt + ω) + εh(qt + ω), Dq,ω[y](t) + εDq,ω[h](t))dq,ωt,

we have
L[y + εh] = Lb[y + εh] − La[y + εh].

Therefore,
δL[y, h] = δLb[y, h] − δLa[y, h]. (2.3)

In order to simplify expressions, we introduce the operator {·} defined in the
following way:

{y}(t) := (t, y(qt + ω), Dq,ω[y](t)),
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where y ∈ Y1.
Knowing (2.3), the following lemma is a direct consequence of Lemma 2.15.

Lemma 2.19 For fixed y, h ∈ Y1 let

g(t, ε) = L(t, y(qt + ω) + εh(qt + ω), Dq,ω[y](t) + εDq,ω[h](t))

for ε ∈] − ε̄, ε̄[, for some ε̄ > 0, i.e.,

g(t, ε) = L{y + εh}(t).

Assume that:

(i) g(t, ·) is differentiable at 0 uniformly in t ∈ [a, b]q,ω;

(ii) La[y + εh] =
∫ a

ω0

g (t, ε) dq,ωt and Lb[y + εh] =
∫ b

ω0

g (t, ε) dq,ωt exist for

ε ≈ 0;

(iii)
∫ a

ω0

∂2g(t, 0)dq,ωt and
∫ b

ω0

∂2g(t, 0)dq,ωt exist.

Then,

δL[y, h] =
∫ b

a

(
∂2L{y}(t) · h(qt + ω) + ∂3L{y}(t) · Dq,ω[h](t)

)
dq,ωt.

The following result offers a necessary condition for local extremizer.

Theorem 2.20 (A necessary optimality condition for problem (2.1)–(2.2)) Sup-
pose that the optimal path to problem (2.1)–(2.2) exists and is given by ỹ. Then,
δL[ỹ, h] = 0.

Proof Without loss of generality, we can assume ỹ to be a local minimizer. Let h be
any admissible variation and define a function φ : ]− ε̄, ε̄[→ R by φ(ε) = L[ỹ+εh].
Since ỹ is a local minimizer, there exists δ > 0, such that L[ỹ] ≤ L[y] for all
admissible y with ‖y − ỹ‖1,∞ < δ. Therefore, φ(ε) = L[ỹ + εh] ≥ L[ỹ] = φ(0)
for all ε < δ

‖h‖1,∞ . Hence, φ has a local minimum at ε = 0, and thus our assertion
follows.

Theorem 2.21 (The Hahn quantum Euler–Lagrange equation for problem
(2.1)–(2.2)) Under hypotheses (H1)–(H3) and conditions (i)–(iii) of Lemma 2.19
on the Lagrangian L, if ỹ is a local minimizer or local maximizer to problem (2.1)–
(2.2), then ỹ satisfies the Euler–Lagrange equation

∂2L{y}(t) − Dq,ω[∂3L]{y}(t) = 0 (2.4)

for all t ∈ [a, b]q,ω .
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Proof Suppose that L has a local extremum at ỹ. Let h be any admissible variation
and define a function φ : ] − ε̄, ε̄[→ R by φ(ε) = L[ỹ + εh]. A necessary condition
for ỹ to be an extremizer is given by φ′(0) = 0. Note that

φ′(0) =
∫ b

a

(
∂2L{ỹ}(t) · h(qt + ω) + ∂3L{ỹ}(t) · Dq,ω[h](t)

)
dq,ωt.

Since h(a) = h(b) = 0, then

φ′(0) =
∫ b

a

(
∂2L{ỹ}(t) · h(qt + ω) + ∂3L{ỹ}(t) · Dq,ω[h](t)

)
dq,ωt.

Integration by parts gives

∫ b

a
∂3L{ỹ}(t) · Dq,ω[h](t)dq,ωt =

[
∂3L{ỹ}(t) · h(t)

]b

a

−
∫ b

a
Dq,ω[∂3L]{ỹ}(t) · h(qt + ω)dq,ωt

and since h(a) = h(b) = 0, then

φ′(0) = 0 ⇔
∫ b

a

(
∂2L{ỹ}(t) − Dq,ω[∂3L]{ỹ}(t)

)
· h(qt + ω)dq,ωt = 0.

Thus, by Lemma 2.16, we have

∂2L{ỹ}(t) − Dq,ω[∂3L]{ỹ}(t) = 0

for all t ∈ [a, b]q,ω .

Remark 2.22 Under appropriate conditions, when (ω, q) → (0, 1), we obtain a
corresponding result in the classical context of the calculus of variations (1.4):

d

dt
∂3L(t, y(t), y′(t)) = ∂2L(t, y(t), y′(t)).

Remark 2.23 In practical terms the hypotheses of Theorem 2.21 are not easy to
verify a priori. However, we can assume that all hypotheses are satisfied and apply
the q,ω-Euler–Lagrange equation (2.4) heuristically to obtain a candidate. If such a
candidate is, or not, a solution to the variational problem is a different question that
require further analysis (see Sects. 2.4 and 2.8.5).

http://dx.doi.org/10.1007/978-3-319-02747-0_1
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2.3 The Hahn Quantum Isoperimetric Problem

We now study the isoperimetric problem with an integral constraint. Both normal
and abnormal extremizers are considered. Isoperimetric problems have found a broad
class of important applications throughout the centuries. Areas of application include
also economy (see, e.g., Almeida and Torres (2009b); Caputo (2005) and the refer-
ences given there).

The isoperimetric problem consists of minimizing or maximizing the functional
(2.1) in the class of functions y ∈ Y1 satisfying the boundary conditions (2.2), and
the integral constraint

J [y] =
∫ b

a
F
(
t, y (qt + ω) , Dq,ω [y] (t)

)
dq,ωt = γ (2.5)

for some γ ∈ R.

Definition 2.24 We say that ỹ ∈ Y1 is a local minimizer (resp. local maximizer)
for the isoperimetric problem (2.1), (2.2) and (2.5) if there exists δ > 0 such that
L[ỹ] ≤ L[y] (resp. L[ỹ] ≥ L[y]) for all y ∈ Y1 satisfying the boundary conditions
(2.2) and the isoperimetric constraint (2.5) and ‖ỹ − y‖1,∞ < δ.

Definition 2.25 We say that y ∈ Y1 is an extremal to J if y satisfies the Euler–
Lagrange equation (2.4) relatively to J. An extremizer (i.e., a local minimizer or a
local maximizer) to problem (2.1), (2.2) and (2.5) that is not an extremal to J is said
to be a normal extremizer; otherwise, the extremizer is said to be abnormal.

Theorem 2.26 (Necessary optimality condition for normal extremizers to (2.1),
(2.2) and (2.5)) Suppose that L and F satisfy hypotheses (H1)–(H3) and conditions
(i)–(iii) of Lemma 2.19, and suppose that ỹ ∈ Y1 gives a local minimum or a local
maximum to the functional L subject to the integral constraint (2.5). If ỹ is not an
extremal to J, then there exists a real number λ such that ỹ satisfies the equation

∂2H{y}(t) − Dq,ω[∂3H ]{y}(t) = 0 (2.6)

for all t ∈ [a, b]q,ω , where H = L − λF.

Proof Suppose that ỹ ∈ Y1 is a normal extremizer to problem (2.1), (2.2) and (2.5).
Define the real functions φ,ψ : R2 → R by

φ(ε1, ε2) = L[̃y + ε1h1 + ε2h2],
ψ(ε1, ε2) = J [̃y + ε1h1 + ε2h2] − γ,

where h2 ∈ Y1 is fixed (that we will choose later) and h1 ∈ Y1 is an arbitrary
function. Note that
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∂ψ

∂ε2
(0, 0) =

∫ b

a

(
∂2F{ỹ}(t) · h2(qt + ω) + ∂3F{ỹ}(t) · Dq,ω[h2](t)

)
dq,ωt.

Using integration by parts formula we get

∂ψ

∂ε2
(0, 0) =

∫ b

a

(
∂2F{ỹ}(t) − Dq,ω[∂3F]{ỹ}(t)

)
· h2(qt + ω)dq,ωt

+
[
∂3F{ỹ}(t) · h2(t)

]b

a
.

Restricting h2 to those such that h2(a) = h2(b) = 0 we obtain

∂ψ

∂ε2
(0, 0) =

∫ b

a

(
∂2F{ỹ}(t) − Dq,ω[∂3F]{ỹ}(t)

)
· h2(qt + ω)dq,ωt.

Since ỹ is not an extremal to J, then we can choose h2 such that
∂ψ

∂ε2
(0, 0) �= 0.

We keep h2 fixed. Since ψ(0, 0) = 0, by the Implicit Function Theorem there
exists a function g defined in a neighborhood V of zero, such that g(0) = 0 and
ψ(ε1, g(ε1)) = 0, for any ε1 ∈ V , that is, there exists a subset of variation curves
y = ỹ + ε1h1 + g(ε1)h2 satisfying the isoperimetric constraint. Note that (0, 0) is
an extremizer of φ subject to the constraint ψ = 0 and

∇ψ(0, 0) �= (0, 0).

By the Lagrange multiplier rule, there exists some constant λ ∈ R such that

∇φ(0, 0) = λ∇ψ(0, 0). (2.7)

Restricting h1 to those such that h1(a) = h1(b) = 0 we get

∂φ

∂ε1
(0, 0) =

∫ b

a

(
∂2L{ỹ}(t) − Dq,ω[∂3L]{ỹ}(t)

)
· h1(qt + ω)dq,ωt

and

∂ψ

∂ε1
(0, 0) =

∫ b

a

(
∂2F{ỹ}(t) − Dq,ω[∂3F]{ỹ}(t)

)
· h1(qt + ω)dq,ωt.

Using (2.7) it follows that

∫ b

a

(
∂2L{ỹ}(t) − Dq,ω[∂3L]{ỹ}(t)

− λ
(
∂2F{ỹ}(t) − Dq,ω[∂3F]{ỹ}(t)

))
· h1(qt + ω)dq,ωt = 0.
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Using the fundamental lemma of the Hahn quantum variational calculus (Lemma
2.16), and recalling that h1 is arbitrary, we conclude that

∂2L{ỹ}(t) − Dq,ω[∂3L]{ỹ}(t) − λ
(
∂2F{ỹ}(t) − Dq,ω[∂3F]{ỹ}(t)

)
= 0

for all t ∈ [a, b]q,ω , proving that H = L−λF satisfies the Euler–Lagrange condition
(2.6).

Introducing an extra multiplier λ0 we can also deal with abnormal extremizers to
the isoperimetric problem (2.1), (2.2) and (2.5).

Theorem 2.27 (Necessary optimality condition for normal and abnormal
extremizers to (2.1), (2.2) and (2.5)) Suppose that L and F satisfy hypotheses
(H1)–(H3) and conditions (i)–(iii) of Lemma 2.19, and suppose that ỹ ∈ Y1 gives
a local minimum or a local maximum to the functional L subject to the integral
constraint (2.5). Then there exist two constants λ0 and λ, not both zero, such that ỹ
satisfies the equation

∂2H{y}(t) − Dq,ω[∂3H ]{y}(t) = 0 (2.8)

for all t ∈ [a, b]q,ω , where H = λ0L − λF.

Proof The proof is similar to the proof of Theorem2.26. Since (0, 0) is an extremizer
of φ subject to the constraint ψ = 0, the abnormal Lagrange multiplier rule (cf., e.g.,
van Brunt (2004)) guarantees the existence of two reals λ0 and λ, not both zero, such
that

λ0∇φ = λ∇ψ.

Remark 2.28 Note that if ỹ is a normal extremizer then, by Theorem 2.26, one can
choose λ0 = 1 in Theorem 2.27. The condition (λ0,λ) �= (0, 0) guarantees that
Theorem 2.27 is a useful necessary condition. In general we cannot guarantee, a
priori, that λ0 be different from zero. The interested reader about abnormality is
referred to the book (Arutyunov 2000).

Suppose now that it is required to find functions y1 and y2 for which the functional

L[y1, y2] =
∫ b

a
f (t, y1(qt +ω), y2(qt +ω), Dq,ω[y1](t), Dq,ω[y2](t))dq,ωt (2.9)

has an extremum, where the admissible functions satisfy the boundary conditions

(y1(a), y2(a)) = (ya
1 , y

a
2 ) and (y1(b), y2(b)) = (yb

1 , y
b
2), (2.10)

and the subsidiary nonholonomic condition

g(t, y1(qt + ω), y2(qt + ω), Dq,ω[y1](t), Dq,ω[y2](t)) = 0. (2.11)
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The problem (2.9)–(2.11) can be reduced to the isoperimetric one by transforming
(2.11) into a constraint of the type (2.5). For that, we multiply both sides of (2.11)
by an arbitrary function λ(t), and then take the q,ω-integral from a to b. We obtain
the new constraint

K[y1, y2] =
∫ b

a
λ(t)g(t, y1(qt + ω), y2(qt + ω), Dq,ω[y1](t), Dq,ω[y2](t))dq,ωt = 0.

(2.12)

Under the conditions of Theorem 2.26, the solutions (y1, y2) of the isoperimetric
problem (2.9) and (2.12) satisfy the Euler–Lagrange equation for the functional

∫ b

a
( f − λ̃(t)g)dq,ωt, (2.13)

λ̃(t) = λ̄λ(t) for some constant λ̄. Since (2.12) follows from (2.11), the solutions
of problem (2.9)–(2.11) satisfy the Euler–Lagrange equation for functional (2.13) as
well.

2.4 Sufficient Condition for Optimality

In this subsection we prove sufficient optimality conditions for problem (2.1)–(2.2).
Similar to the classical calculus of variations we assume the Lagrangian function to
be convex (or concave).

Theorem 2.29 Let L(t, u0, u1) be jointly convex (resp. concave) in (u0, u1). If ỹ
satisfies condition (2.4), then ỹ is a global minimizer (resp. maximizer) to problem
(2.1)–(2.2).

Proof We give the proof for the convex case. Since L is jointly convex in (u0, u1),
then for any h ∈ Y1,

L[ỹ + h] − L[ỹ] =
∫ b

a
(L{ỹ + h}(t) − L{ỹ}(t)) dq,ω t

≥
∫ b

a

(
∂2L{ỹ}(t) · h(qt + ω) + ∂3L{ỹ}(t) · Dq,ω[h](t)

)
dq,ω t.

Proceeding analogously as in the proof of Theorem 2.21 and since ỹ satisfies condi-
tion (2.4) we obtain L(ỹ + h) − L(ỹ) ≥ 0, proving the desired result.
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2.5 Leitmann’s Direct Method

Leitmann’s direct method permits to compute global solutions to some problems
that are variationally invariant under a family of transformations (Leitmann 1967,
2001a,b; Silva and Torres 2006; Torres and Leitmann 2008;Wagener 2009). It should
be mentioned that such invariance transformations are useful not only in connection
with Leitmann’s method but also to apply Noether’s Theorem (Torres 2002, 2004a).
Moreover, the invariance transformations are related with the notion of Carathéodory
equivalence (Carlson 2002; Torres 2004b).

Recently, it has been noticed inMalinowska and Torres (2010a) that the invariance
transformations, that keep the Lagrangian invariant, do not depend on the time scale.
This is also true for the generalized Hahn quantum setting that we are considering in
this work: given a Lagrangian L : R×R×R → R, the invariance transformations,
that keep it invariant up to a gauge term, are exactly the same if the Lagrangian L
is used to define a Hahn quantum functional (2.1) or a classical functional L[y] =
∫ b

a L(t, y(t), y′(t))dt of the calculus of variations. Thus, if the quantum problem we
want to solve admits an enough rich family of invariance transformations, that keep it
invariant up to a gauge term, then one does not need to solve a Hahn quantum Euler–
Lagrange equation to find its minimizer: instead, we can try to use Leitmann’s direct
method. The question of how to find the invariance transformations is addressed in
Gouveia and Torres (2005); Gouveia et al. (2006).

Let L̄ : [a, b] × R × R → R. We assume that L̄ satisfies hypotheses (H1)–(H3).
Consider the integral

L̄[ȳ] =
∫ b

a
L̄{ȳ}(t)dq,ωt.

Lemma 2.30 (Leitmann’s fundamental lemma via Hahn’s quantum operator)
Let y = z(t, ȳ) be a transformation having an unique inverse ȳ = z̄(t, y) for all
t ∈ [a, b], such that there is a one-to-one correspondence

y(t) ⇔ ȳ(t)

for all functions y ∈ Y1 satisfying (2.2) and all functions ȳ ∈ Y1 satisfying

ȳ(a) = z̄(a,α), ȳ(b) = z̄(b,β). (2.14)

If the transformation y = z(t, ȳ) is such that there exists a function G : [a, b]×R →
R satisfying the functional identity

L{y}(t) − L̄{ȳ}(t) = Dq,ωG(t, ȳ(t)), (2.15)

then if ȳ∗ yields the extremum of L̄ with ȳ∗ satisfying (2.14), y∗ = z(t, ȳ∗) yields the
extremum of L for y∗ satisfying (2.2).
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Remark 2.31 The functional identity (2.15) is exactly the definition of variationally
invariance when we do not consider transformations of the time variable t (cf. (4) and
(5) of Torres and Leitmann (2008)). Function G that appears in (2.15) is sometimes
called a gauge term (Torres 2004a).

Proof The proof is similar in spirit to Leitmann’s proof (Leitmann 1967, 2001a,b,
2004). Let y ∈ Y1 satisfy (2.2), and define functions ȳ ∈ Y1 through the formula
ȳ = z̄(t, y), t ∈ [a, b]. Then ȳ ∈ Y1 and satisfies (2.14). Moreover, as a result of
(2.15), it follows that

L[y] − L̄[ȳ] =
∫ b

a
L{y}(t)dq,ωt −

∫ b

a
L̄{ȳ}(t)dq,ωt =

∫ b

a
Dq,ωG(t, ȳ(t))dq,ωt

= G(b, ȳ(b)) − G(a, ȳ(a)) = G(b, z̄(b,β)) − G(a, z̄(a,α)),

from which the desired conclusion follows immediately since the right-hand side of
the above equality is a constant, depending only on the fixed-endpoint conditions
(2.2).

Examples 2.33, 2.34 and 2.35 in the next section illustrate the applicability of
Lemma 2.30. The procedure is as follows: (i) we use the computer algebra package
described in Gouveia and Torres (2005) and available from the Maple Application
Center at http://www.maplesoft.com/applications/view.aspx?SID=4805 to find the
transformations that keep the problem of the calculus of variations or optimal control
invariant; (ii) we use such invariance transformations to solve the Hahn quantum
variational problem by applying Leitmann’s fundamental lemma (Lemma 2.30).

2.6 Illustrative Examples

We provide some examples in order to illustrate our main results.

Example 2.32 Let q,ω be fixed real numbers, and I be a closed interval of R such
that ω0, 0, 1 ∈ I . Consider the problem

L[y] =
∫ 1

0

(

y(qt + ω) + 1

2
(Dq,ω[y](t))2

)

dq,ωt −→ min (2.16)

subject to the boundary conditions

y(0) = 0, y(1) = 1. (2.17)

If y is a local minimizer to problem (2.16)–(2.17), then by Theorem 2.21 it satisfies
the Euler–Lagrange equation

Dq,ω Dq,ω[y](t) = 1 (2.18)

http://www.maplesoft.com/applications/view.aspx?SID=4805
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for all t ∈ {ω[n]q : n ∈ N0} ∪ {qn + ω[n]q : n ∈ N0} ∪ {ω0}. By direct substitution
it can be verified that y(t) = 1

q+1 t2 + q
q+1 t is a candidate solution to problem

(2.16)–(2.17).

In next examples we solve quantum variational problems using Leitmann’s direct
method (see Sect. 2.5).

Example 2.33 Let q,ω, and a, b (a < b) be fixed real numbers, and I be a closed
interval of R such that ω0 ∈ I and a, b ∈ {qns + ω[n]q : n ∈ N0} ∪ {ω0} for some
s ∈ I . Let α and β be two given real numbers, α �= β. We consider the following
problem:

L[y] = ∫ b
a

(
(Dq,ω[y](t))2 + y(qt + ω) + t Dq,ω[y](t)) dq,ωt −→ min

y(a) = α, y(b) = β.
(2.19)

We transform problem (2.19) into the trivial problem

L̄[ȳ] =
∫ b

a
(Dq,ω[ȳ](t))2dq,ωt −→ min

ȳ(a) = 0, ȳ(b) = 0,

which has solution ȳ ≡ 0. For that we consider the transformation

y(t) = ȳ(t) + ct + d, c, d ∈ R,

where constants c and d will be chosen later. According to the above, we have

Dq,ω[y](t) = Dq,ω[ȳ](t) + c, y(qt + ω) = ȳ(qt + ω) + c(qt + ω) + d,

and

(Dq,ω[y](t))2 + y(qt + ω) + t Dq,ω[y](t)
= (Dq,ω[ȳ](t))2 + 2cDq,ω[ȳ](t) + c2 + ȳ(qt + ω) + c(qt + ω) + d

+ t Dq,ω[ȳ](t) + ct

= (Dq,ω[ȳ](t))2 + Dq,ω[2cȳ(t) + t ȳ(t) + ct2 + (c2 + d)t].

In order to obtain the solution to the original problem, it suffices to chose c and d so
that

ca + d = α, cb + d = β. (2.20)

Solving the system of equations (2.20) we obtain c = α−β
a−b and d = βa−bα

a−b . Hence,
the global minimizer for problem (2.19) is
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y(t) = α − β

a − b
t + βa − bα

a − b
.

Example 2.34 Let q,ω, and a, b (a < b) be fixed real numbers, and I be a closed
interval of R such that ω0 ∈ I and a, b ∈ {qns + ω[n]q : n ∈ N0} ∪ {ω0} for some
s ∈ I . Let α and β be two given real numbers, α �= β. We consider the following
problem:

L[y] = ∫ b
a

(
Dq,ω[yg](t))2 dq,ωt −→ min

y(a) = α, y(b) = β,
(2.21)

where g does not vanish on the interval [a, b]q,ω . Observe that ȳ(t) = g−1(t) min-
imizes L with end conditions ȳ(a) = g−1(a) and ȳ(b) = g−1(b). Let y(t) =
ȳ(t) + p(t). Then

(
Dq,ω[yg](t))2 = (

Dq,ω[ȳg](t))2 + Dq,ω[pg](t)Dq,ω[2ȳg + pg](t). (2.22)

Consequently, if p(t) = (At + B)g−1(t), where A and B are constants, then (2.22)
is of the form (2.15), since Dq,ω[pg](t) is constant. Thus, the function

y(t) = (At + C)g−1(t)

with

A = [αg(a) − βg(b)] (a − b)−1, C = [aβg(b) − bαg(a)] (a − b)−1,

minimizes (2.21).

Using the idea of Leitmann, we can also solve quantum optimal control problems
defined in terms of Hahn’s operators.

Example 2.35 Let q,ω be real numbers on a closed interval I ofR such that ω0 ∈ I
and 0, 1 ∈ {qns + ω[n]q : n ∈ N0} ∪ {ω0} for some s ∈ I . Consider the global
minimum problem

L[u1, u2] =
∫ 1

0

(
(u1(t))

2 + u2(t))
2
)

dq,ωt −→ min (2.23)

subject to the control system

Dq,ω[y1](t) = exp(u1(t)) + u1(t) + u2(t), Dq,ω[y2](t) = u2(t), (2.24)

and conditions

y1(0) = 0, y1(1) = 2, y2(0) = 0, y2(1) = 1,
u1(t), u2(t) ∈ � = [−1, 1]. (2.25)
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This example is inspired from Torres and Leitmann (2008). It is worth mentioning
that due to the constraints on the values of the controls, (u1(t), u2(t)) ∈ � = [−1, 1],
a theory based on necessary optimality conditions to solve problem (2.23)–(2.25)
does not exist at the moment.

We begin noticing that problem (2.23)–(2.25) is variationally invariant according
to Gouveia and Torres (2005) under the one-parameter family of transformations

ys
1 = y1 + st, ys

2 = y2 + st, us
2 = u2 + s (t s = t and us

1 = u1). (2.26)

To prove this, we need to show that both the functional integral L and the control
system stay invariant under the s-parameter transformations (2.26). This is easily
seen by direct calculations:

Ls[us
1, us

2] =
∫ 1

0

(
us
1(t)

)2 + (
us
2(t)

)2
dq,ωt

=
∫ 1

0
u2
1(t) + (u2(t) + s)2 dq,ωt (2.27)

=
∫ 1

0

(
u2
1(t) + u2

2(t) + Dq,ω[s2t + 2sy2(t)]
)

dq,ωt

= L[u1, u2] + s2 + 2s.

We remark that Ls and L have the same minimizers: adding a constant s2 + 2s to
the functional L does not change the minimizer of L. It remains to prove that the
control system also remains invariant under transformations (2.26):

Dq,ω[ys
1](t) = Dq,ω[y1](t) + s = exp(u1(t)) + u1(t) + u2(t) + s

= exp(us
1(t)) + us

1(t) + us
2(t), (2.28)

Dq,ω[ys
2](t) = Dq,ω[y2](t) + s = u2(t) + s = us

2(t).

Conditions (2.27) and (2.28) prove that problem (2.23)–(2.25) is invariant under the
s-parameter transformations (2.26) up to Dq,ω

(
s2t + 2sy2(t)

)
. Using the invariance

transformations (2.26), we generalize problem (2.23)–(2.25) to a s-parameter family
of problems, s ∈ R, which include the original problem for s = 0:

Ls[u1, u2] =
∫ 1

0
(us

1(t))
2 + (us

2(t))
2dq,ωt −→ min

subject to the control system

Dq,ω[ys
1](t) = exp(us

1(t)) + us
1(t) + us

2(t), Dq,ω[ys
2(t)] = us

2(t),

and conditions



2.6 Illustrative Examples 29

ys
1(0) = 0, ys

1(1) = 2 + s, ys
2(0) = 0, ys

2(1) = 1 + s,

us
1(t) ∈ [−1, 1], us

2(t) ∈ [−1 + s, 1 + s].

It is clear that Ls ≥ 0 and that Ls = 0 if us
1(t) = us

2(t) ≡ 0. The control equations,
the boundary conditions and the constraints on the values of the controls imply that
us
1(t) = us

2(t) ≡ 0 is admissible only if s = −1: ys=−1
1 (t) = t, ys=−1

2 (t) ≡ 0.
Hence, for s = −1 the global minimum to Ls is 0 and the minimizing trajectory is
given by

ũs
1(t) ≡ 0, ũs

2(t) ≡ 0, ỹs
1(t) = t, ỹs

2(t) ≡ 0.

Since for any s one has by (2.27) thatL[u1, u2] = Ls[us
1, us

2]−s2−2s, we conclude
that the global minimum for problemL[u1, u2] is 1. Thus, using the inverse functions
of the variational symmetries (2.26),

u1(t) = us
1(t), u2(t) = us

2(t) − s, y1(t) = ys
1(t) − st, y2(t) = ys

2(t) − st,

and the absolute minimizer for problem (2.23)–(2.25) is

ũ1(t) = 0, ũ2(t) = 1, ỹ1(t) = 2t, ỹ2(t) = t.

2.7 Higher-order Hahn’s Quantum Variational Calculus

We define the q,ω-derivatives of higher-order in the usual way: the r th q,ω-
derivative (r ∈ N) of f : I → R is the function Dr

q,ω[ f ] : I → R given by
Dr

q,ω[ f ] := Dq,ω[Dr−1
q,ω [ f ]], provided Dr−1

q,ω [ f ] is q,ω-differentiable on I and
where D0

q,ω[ f ] := f . The following notations are in order: σ(t) = qt + ω, yσ(t) =
yσ1

(t) = (y ◦ σ)(t) = y (qt + ω), and yσk = y ◦ yσk−1
, k = 2, 3, . . .

Our main goal is to establish necessary optimality conditions for the higher-order
q,ω-variational problem

L [y] =
∫ b

a
L
(

t, yσr
(t), Dq,ω

[
yσr−1

]
(t) , . . . , Dr

q,ω [y] (t)
)

dq,ωt −→ extr

y ∈ Yr ([a, b],R) (P)

y (a) = α0, y (b) = β0,

...

Dr−1
q,ω [y] (a) = αr−1, Dr−1

q,ω [y] (b) = βr−1,

where r ∈ N and αi,βi ∈ R, i = 0, . . . , r − 1, are given.
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Definition 2.36 Wesay thaty is an admissible function for (2.7) ify ∈ Yr ([a, b] ,R)

and y satisfies the boundary conditions Di
q,ω [y] (a) = αi and Di

q,ω [y] (b) = βi of
problem (2.7), i = 0, . . . , r − 1.

The Lagrangian L is assumed to satisfy the following hypotheses:

(H1) (u0, . . . , ur ) → L(t, u0, . . . , ur ) is aC1(Rr+1,R) function for any t ∈ [a, b];
(H2) t → L(t, y(t), Dq,ω [y] (t), . . . , Dr

q,ω [y] (t)) is continuous at ω0 for any
admissible y;

(H3) functions t → ∂i+2L(t, y(t), Dq,ω [y] (t), · · · , Dr
q,ω [y] (t)), i = 0, 1, · · · , r ,

belong to Y1 ([a, b] ,R) for all admissible y.

Definition 2.37 We say that y∗ is a local minimizer (resp. local maximizer) for
problem (2.7) if y∗ is an admissible function and there exists δ > 0 such that

L [y∗] ≤ L [y] (resp. L [y∗] ≥ L [y] )

for all admissible y with ‖y∗ − y‖r,∞ < δ.

Definition 2.38 We say that η ∈ Yr ([a, b],R) is a variation if η (a) = η (b) = 0,
…, Dr−1

q,ω [η] (a) = Dr−1
q,ω [η] (b) = 0.

2.7.1 Higher-order Fundamental Lemma

The chain rule, as known from classical calculus, does not hold in Hahn’s quantum
context (see a counterexample in Aldwoah (2009); Annaby et al. (2012)). However,
we can prove the following.

Lemma 2.39 If f is q,ω-differentiable on I , then the following equality holds:

Dq,ω

[
f σ
]
(t) = q

(
Dq,ω [ f ]

)σ
(t) , t ∈ I.

Proof For t �= ω0 we have

(
Dq,ω [ f ]

)σ
(t) = f (q (qt + ω) + ω) − f (qt + ω)

(q − 1) (qt + ω) + ω

= f (q (qt + ω) + ω) − f (qt + ω)

q ((q − 1) t + ω)

and

Dq,ω

[
f σ
]
(t) = f σ (qt + ω) − f σ (t)

(q − 1) t + ω
= f (q (qt + ω) + ω) − f (qt + ω)

(q − 1) t + ω
.

Therefore, Dq,ω [ f σ] (t) = q
(
Dq,ω [ f ]

)σ
(t). If t = ω0, then σ (ω0) = ω0. Thus,
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(
Dq,ω [ f ]

)σ
(ω0) = (

Dq,ω [ f ]
)
(σ (ω0)) = (

Dq,ω [ f ]
)
(ω0) = f ′ (ω0)

and Dq,ω [ f σ] (ω0) = [ f σ]′ (ω0) = f ′ (σ (ω0)) σ′ (ω0) = q f ′ (ω0).

Lemma 2.40 If η ∈ Yr ([a, b] ,R) is such that Di
q,ω [η] (a) = 0 (resp. Di

q,ω [η]

(b) = 0) for all i ∈ {0, 1, . . . , r} , then Di−1
q,ω [ησ] (a) = 0 (resp. Di−1

q,ω [ησ] (b) = 0)
for all i ∈ {1, . . . , r}.
Proof If a = ω0 the result is trivial (because σ (ω0) = ω0). Suppose now that
a �= ω0 and fix i ∈ {1, . . . , r}. Note that

Di
q,ω [η] (a) =

(
Di−1

q,ω [η]
)σ

(a) − Di−1
q,ω [η] (a)

(q − 1) a + ω
.

Because, by hypothesis, Di
q,ω [η] (a) = 0 and Di−1

q,ω [η] (a) = 0, then

(
Di−1

q,ω [η]
)σ

(a) = 0.

Lemma 2.39 shows that

(
Di−1

q,ω [η]
)σ

(a) =
(
1

q

)i−1

Di−1
q,ω

[
ησ
]
(a).

We conclude that Di−1
q,ω [ησ] (a) = 0. The case t = b is proved in the same way.

Lemma 2.41 Suppose that f ∈ Y1 ([a, b] ,R). One has

∫ b

a
f (t) Dq,ω [η] (t) dq,ωt = 0

for all functions η ∈ Y1 ([a, b],R) such that η (a) = η (b) = 0 if and only if
f (t) = c, c ∈ R, for all t ∈ [a, b]q,ω .

Proof The implication “⇐” is obvious. We prove “⇒”. We begin noting that

∫ b

a
f (t) Dq,ω [η] (t) dq,ωt

︸ ︷︷ ︸
=0

= f (t) η (t)

∣
∣
∣
∣

b

a︸ ︷︷ ︸
=0

−
∫ b

a
Dq,ω [ f ] (t) ησ (t) dq,ωt.

Hence,
∫ b

a
Dq,ω [ f ] (t) η (qt + ω) dq,ωt = 0
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for any η ∈ Y1 ([a, b] ,R) such that η (a) = η (b) = 0. We need to prove that,
for some c ∈ R, f (t) = c for all t ∈ [a, b]q,ω , that is, Dq,ω [ f ] (t) = 0 for all
t ∈ [a, b]q,ω . Suppose, by contradiction, that there exists p ∈ [a, b]q,ω such that
Dq,ω [ f ] (p) �= 0.
(1) If p �= ω0, then p = qka +ω [k]q or p = qkb+ω [k]q for some k ∈ N0. Observe
that a (1 − q) − ω and b (1 − q) − ω cannot vanish simultaneously.

(a) Suppose that a (1 − q) − ω �= 0 and b (1 − q) − ω �= 0. In this case we can
assume, without loss of generality, that p = qka + ω [k]q and we can define

η (t) =
{

Dq,ω [ f ]
(
qka + ω [k]q

)
if t = qk+1a + ω [k + 1]q

0 otherwise.

Then,

∫ b

a
Dq,ω [ f ] (t) · η (qt + ω) dq,ωt

= − (a (1 − q) − ω) qk Dq,ω [ f ]
(

qka + ω [k]q
)

· Dq,ω [ f ]
(

qka + ω [k]q
)

�= 0,

which is a contradiction.
(b) If a (1 − q) − ω �= 0 and b (1 − q) − ω = 0, then b = ω0. Since qkω0 +

ω [k]q = ω0 for all k ∈ N0, then p �= qkb + ω [k]q ∀k ∈ N0 and, therefore,

p = qka + ω [k]q,ω for some k ∈ N0.

Repeating the proof of (a) we obtain again a contradiction.
(c) If a (1 − q) − ω = 0 and b (1 − q) − ω �= 0, then the proof is similar to (b).

(2) If p = ω0 then, without loss of generality, we can assume Dq,ω [ f ] (ω0) > 0.
Since

lim
n→+∞

(
qna + ω [k]q

) = lim
n→+∞

(
qnb + ω [k]q

) = ω0

(see Aldwoah (2009)) and Dq,ω [ f ] is continuous at ω0, then

lim
n→+∞ Dq,ω [ f ]

(
qna + ω [k]q

) = lim
n→+∞ Dq,ω [ f ]

(
qnb + ω [k]q

)

= Dq,ω [ f ] (ω0) > 0.

Thus, there exists N ∈ N such that for all n ≥ N one has

Dq,ω [ f ]
(
qna + ω [k]q

)
> 0 and Dq,ω [ f ]

(
qnb + ω [k]q

)
> 0.

(a) If ω0 �= a and ω0 �= b, then we can define
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η (t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Dq,ω [ f ]
(
q N b + ω [N ]q

)
i f t = q N+1a + ω [N + 1]q

Dq,ω [ f ]
(
q N a + ω [N ]q

)
i f t = q N+1b + ω [N + 1]q

0 otherwise.

Hence,

∫ b

a
Dq,ω [ f ] (t) η (qt + ω) dq,ωt

= (b − a) (1 − q) q N Dq,ω [ f ]
(

q N b + ω [N ]q
)

· Dqω [ f ]
(

q N a + ω [N ]q
)

�= 0,

which is a contradiction.
(b) If ω0 = b, then we define

η (t) =
⎧
⎨

⎩

Dq,ω [ f ] (ω0) i f t = q N+1a + ω [N + 1]q

0 otherwise.

Therefore,

∫ b

a
Dq,ω [ f ] (t) η (qt + ω) dq,ωt

= −
∫ a

ω0

Dq,ω [ f ] (t) η (qt + ω) dq,ωt

= − (a (1 − q) − ω) q N Dq,ω [ f ]
(

q N a + ω [k]q
)

· Dq,ω [ f ] (ω0) �= 0,

which is a contradiction.
(c) When ω0 = a, the proof is similar to (b).

Lemma 2.42 (Fundamental lemma of Hahn’s variational calculus) Let f, g ∈
Y1 ([a, b] ,R) .

If
∫ b

a

(
f (t) ησ (t) + g (t) Dq,ω [η] (t)

)
dq,ωt = 0

for all η ∈ Y1 ([a, b] ,R) such that η (a) = η (b) = 0, then

Dq,ω [g] (t) = f (t) ∀t ∈ [a, b]q,ω .

Proof Define the function A by
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A (t) :=
∫ t

ω0

f (τ ) dq,ωτ .

Then Dq,ω [A] (t) = f (t) for all t ∈ [a, b] and

∫ b

a
A (t) Dq,ω [η] (t) dq,ωt = A (t) η (t)

∣
∣
∣
∣

b

a
−
∫ b

a
Dq,ω [A] (t) ησ (t) dq,ωt

= −
∫ b

a
Dq,ω [A] (t) ησ (t) dq,ωt

= −
∫ b

a
f (t) ησ (t) dq,ωt .

Hence,

∫ b

a

(
f (t) ησ (t) + g (t) Dq,ω [η] (t)

)
dq,ωt = 0

⇔
∫ b

a
(−A (t) + g (t)) Dq,ω [η] (t) dq,ωt = 0.

By Lemma 2.41 there is a c ∈ R such that −A (t) + g (t) = c for all t ∈ [a, b]q,ω .
Hence Dq,ω [A] (t) = Dq,ω [g] (t) for t ∈ [a, b]q,ω , which provides the desired
result: Dq,ω [g] (t) = f (t) ∀t ∈ [a, b]q,ω .

We are now in conditions to deduce the higher-order fundamental Lemma of
Hahn’s quantum variational calculus.

Lemma 2.43 (Higher-order fundamental lemma of Hahn’s variational
calculus) Let f0, f1, . . . , fr ∈ Y1 ([a, b] ,R). If

∫ b

a

(
r∑

i=0

fi (t) Di
q,ω

[
ησr−i

]
(t)

)

dq,ωt = 0

for any variation η, then

r∑

i=0

(−1)i
(
1

q

) (i−1)i
2

Di
q,ω [ fi ] (t) = 0

for all t ∈ [a, b]q,ω .

Proof We proceed by mathematical induction. If r = 1 the result is true by Lemma
2.42. Assume that
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∫ b

a

(
r+1∑

i=0

fi (t) Di
q,ω

[
ησr+1−i

]
(t)

)

dq,ωt = 0

for all functions η such that η (a) = η (b) = 0, …, Dr
q,ω [η] (a) = Dr

q,ω [η] (b) = 0.
Note that

∫ b

a
fr+1 (t) Dr+1

q,ω [η] (t) dq,ωt

= fr+1 (t) Dr
q,ω [η] (t)

∣
∣
∣
∣

b

a
−
∫ b

a
Dq,ω

[
fr+1

]
(t)
(

Dr
q,ω [η]

)σ
(t) dq,ωt

= −
∫ b

a
Dq,ω

[
fr+1

]
(t)
(

Dr
q,ω [η]

)σ
(t) dq,ωt

and, by Lemma 2.39,

∫ b

a
fr+1 (t) Dr+1

q,ω [η] (t) dq,ωt = −
∫ b

a
Dq,ω

[
fr+1

]
(t)

(
1

q

)r

Dr
q,ω

[
ησ
]
(t) dq,ωt .

Therefore,

∫ b

a

(
r+1∑

i=0

fi (t) Di
q,ω

[
ησr+1−i

]
(t)

)

dq,ωt

=
∫ b

a

(
r∑

i=0

fi (t) Di
q,ω

[
ησr+1−i

]
(t)

)

dq,ωt

−
∫ b

a
Dq,ω

[
fr+1

]
(t)

(
1

q

)r

Dr
q,ω

[
ησ
]
(t) dq,ωt

=
∫ b

a

[r−1∑

i=0

fi (t) Di
q,ω

[(
ησ
)σr−i ]

(t) dq,ωt

+
(

fr −
(
1

q

)r

Dq,ω

[
fr+1

]
)

(t) Dr
q,ω

[
ησ
]
(t)

]

dq,ωt.

By Lemma 2.40, ησ is a variation. Hence, using the induction hypothesis,

r−1∑

i=0

(−1)i
(
1

q

) (i−1)i
2

Di
q,ω [ fi ] (t)

+ (−1)r
(
1

q

) (r−1)r
2

Dr
q,ω

[(

fr − 1

qr
Dq,ω

[
fr+1

]
)]

(t)
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=
r−1∑

i=0

(−1)i
(
1

q

) (i−1)i
2

Di
q,ω [ fi ] (t) + (−1)r

(
1

q

) (r−1)r
2

Dr
q,ω [ fr ] (t)

+ (−1)r+1
(
1

q

) (r−1)r
2 1

qr
Dr

q,ω

[
Dq,ω

[
fr+1

]]
(t)

= 0

for all t ∈ [a, b]q,ω , which leads to

r+1∑

i=0

(−1)i
(
1

q

) (i−1)i
2

Di
q,ω [ fi ] (t) = 0, t ∈ [a, b]q,ω.

2.7.2 Higher-order Hahn’s Quantum Euler–Lagrange Equation

For avariationη and an admissible functiony,wedefine the functionφ : (−ε̄, ε̄) → R

by φ (ε) = φ (ε, y, η) := L [y + εη]. The first variation of the variational problem
(2.7) is defined by δL [y, η] := φ′ (0). Observe that

L [y + εη] =
∫ b

a
L

(

t, yσr
(t) + εησr

(t), Dq,ω

[
yσr−1

]
(t) + εDq,ω

[
ησr−1

]
(t),

. . . , Dr
q,ω [y] (t) + εDr

q,ω [η] (t)

)

dq,ωt

= Lb [y + εη] − La [y + εη]

with

Lξ [y + εη] =
∫ ξ

ω0

L

(

t, yσr
(t) + εησr

(t) , Dq,ω

[
yσr−1

]
(t) + εDq,ω

[
ησr−1

]
(t),

. . . , Dr
q,ω [y] (t) + εDr

q,ω [η] (t)

)

dq,ωt,

ξ ∈ {a, b}. Therefore,

δL [y, η] = δLb [y, η] − δLa [y, η]. (2.29)

Considering (2.29), the following is a direct consequence of Lemma 2.15:
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Lemma 2.44 For a variation η and an admissible function y, let

g (t, ε) := L

(

t, yσr
(t) + εησr

(t), Dq,ω

[
yσr−1

]
(t) + εDq,ω

[
ησr−1

]
(t),

. . . , Dr
q,ω [y] (t) + εDr

q,ω [η] (t)

)

,

ε ∈ (−ε̄, ε̄). Assume that:
(1) g (t, ·) is differentiable at 0 uniformly in t ∈ [a, b]q,ω;

(2) La [y + εη] =
∫ a

ω0

g (t, ε) dq,ωt and Lb [y + εη] =
∫ b

ω0

g (t, ε) dq,ωt exist for

ε ≈ 0;

(3)
∫ a

ω0

∂2g (t, 0) dq,ωt and
∫ b

ω0

∂2g (t, 0) dq,ωt exist.

Then

φ′ (0) = δL [y, η]

=
∫ b

a

( r∑

i=0

∂i+2L
(

t, yσr
(t), Dq,ω

[
yσr−1

]
(t) , . . . , Dr

q,ω [y] (t)
)

· Di
q,ω

[
ησr−i

]
(t)

)

dq,ωt,

where ∂i L denotes the partial derivative of L with respect to its i th argument.

The following result gives a necessary condition of Euler–Lagrange type for an
admissible function to be a local extremizer for (2.7).

Theorem 2.45 (The higher-order Hahn quantum Euler–Lagrange equation)
Under hypotheses (H1)–(H3) and conditions (1)–(3) of Lemma 2.44 on the
Lagrangian L, if y∗ ∈ Yr is a local extremizer for problem (2.7), then y∗ satis-
fies the q,ω-Euler–Lagrange equation

r∑

i=0

(−1)i
(
1

q

) (i−1)i
2

Di
q,ω

[
∂i+2L

] (
t, yσr

(t), Dq,ω

[
yσr−1

]
(t),

. . . , Dr
q,ω [y] (t)

)
= 0 (2.30)

for all t ∈ [a, b]q,ω .

Proof Let y∗ be a local extremizer for problem (2.7) and η a variation. Define
φ : (−ε̄, ε̄) → R by φ (ε) := L [y∗ + εη]. A necessary condition for y∗ to be an
extremizer is given by φ′ (0) = 0. By Lemma 2.44 we conclude that
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∫ b

a

( r∑

i=0

∂i+2L
(

t, yσr
(t), Dq,ω

[
yσr−1

]
(t) , . . . , Dr

q,ω [y] (t)
)

· Di
q,ω

[
ησr−i

]
(t)

)

dq,ωt = 0

and (2.30) follows from Lemma 2.43.

Remark 2.46 In practical terms the hypotheses of Theorem 2.45 are not so easy to
verify a priori. One can, however, assume that all hypotheses are satisfied and apply
the q,ω-Euler–Lagrange equation (2.30) heuristically to obtain a candidate. If such
a candidate is, or not, a solution to problem (2.7) is a different question that always
requires further analysis (see an example in Sect. 2.7.3).

When ω = 0 one obtains from (2.30) the higher-order q-Euler–Lagrange
equation:

r∑

i=0

(−1)i
(
1

q

) (i−1)i
2

Di
q

[
∂i+2L

] (
t, yσr

(t), Dq

[
yσr−1

]
(t), . . . , Dr

q [y] (t)
)

= 0

for all t ∈ {aqn : n ∈ N0}∪{bqn : n ∈ N0}∪{0}. The higher-order h-Euler–Lagrange
equation is obtained from (2.30) taking the limit q → 1:

r∑

i=0

(−1)i Δi
h

[
∂i+2L

] (
t, yσr

(t),Δh

[
yσr−1

]
(t), . . . , Δr

h [y] (t)
)

= 0

for all t ∈ {a + nh : n ∈ N0} ∪ {b + nh : n ∈ N0}. The classical Euler–Lagrange
equation (van Brunt 2004) is recovered when (ω, q) → (0, 1):

r∑

i=0

(−1)i di

dt i
∂i+2L

(
t, y (t) , y′ (t), . . . , y(r)(t)

)
= 0

for all t ∈ [a, b].
We now illustrate the usefulness of our Theorem 2.45 by means of an example

that is not covered by previous available results in the literature.

2.7.3 An Example

Let q = 1
2 and ω = 1

2 . Consider the following problem:

L [y] =
∫ 1

−1

(

yσ(t) + 1

2

)2 ((
Dq,ω [y] (t)

)2 − 1
)2

dq,ωt −→ min (2.31)
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over all y ∈ Y1 satisfying the boundary conditions

y(−1) = 0 and y(1) = −1. (2.32)

This is an example of problem (2.7) with r = 1. Our q,ω-Euler–Lagrange equation
(2.30) takes the form

Dq,ω [∂3L]
(
t, yσ (t), Dq,ω [y] (t)

) = ∂2L
(
t, yσ (t), Dq,ω [y] (t)

)
.

Therefore, we look for an admissible function y∗ of (2.31)–(2.32) satisfying

Dq,ω

[

4

(

yσ + 1

2

)2 ((
Dq,ω [y]

)2 − 1
)

Dq,ω [y]

]

(t)

= 2

(

yσ(t) + 1

2

)((
Dq,ω [y] (t)

)2 − 1
)

(2.33)

for all t ∈ [−1, 1]q,ω . It is easy to see that

y∗(t) =

⎧
⎪⎨

⎪⎩

−t if t ∈ (−1, 0) ∪ (0, 1]
0 if t = −1

1 if t = 0

is an admissible function for (2.31)–(2.32) with

Dq,ω [y∗] (t) =

⎧
⎪⎨

⎪⎩

−1 if t ∈ (−1, 0) ∪ (0, 1]
1 if t = −1

−3 if t = 0,

satisfying the q,ω-Euler–Lagrange equation (2.33).We nowprove that the candidate
y∗ is indeed a minimizer for (2.31)–(2.32). Note that here ω0 = 1 and, by Lemma
2.11 and item (3) of Theorem 2.10,

L [y] =
∫ 1

−1

(

yσ(t) + 1

2

)2 ((
Dq,ω [y] (t)

)2 − 1
)2

dq,ωt ≥ 0 (2.34)

for all admissible functions y ∈ Y1 ([−1, 1],R). Since L [y∗] = 0, we conclude that
y∗ is a minimizer for problem (2.31)–(2.32).

It is worth mentioning that the minimizer y∗ of (2.31)–(2.32) is not continuous
while the classical calculus of variations (van Brunt 2004), the calculus of variations
on time scales (Ferreira and Torres 2008; Malinowska and Torres 2009; Martins
and Torres 2009), or the nondifferentiable scale variational calculus (Almeida and
Torres 2009a, 2010a; Cresson et al. 2009), deal with functions which are necessarily
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continuous. As an open question, we pose the problem of determining conditions on
the data of problem (2.7) assuring, a priori, the minimizer to be regular.

2.8 Generalized Transversality Conditions

The main purpose of this section is to generalize the Hahn calculus of varia-
tions (Malinowska and Torres 2010c) by considering the following q,ω-variational
problem:

L [y] =
∫ b

a
L
(
t, y (qt + ω) , Dq,ω [y] (t) , y(a), y(b)

)
dq,ωt −→ extr. (2.35)

In Sect. 2.8.1 we obtain the Euler–Lagrange equation for problem (2.35) in the class
of functions y ∈ Y1 satisfying the boundary conditions

y(a) = α and y(b) = β (2.36)

for some fixed α,β ∈ R. The transversality conditions for problem (2.35) are
obtained in Sect. 2.8.2. In Sect. 2.8.3 we prove necessary optimality conditions
for isoperimetric problems. A sufficient optimality condition under an appropriate
convexity assumption is given in Sect. 2.8.4.

In the sequel we assume that the Lagrangian L satisfies the following hypotheses:

(H1) (u0, . . . , u3) → L(t, u0, . . . , u3) is a C1(R4,R) function for any t ∈ [a, b];
(H2) t → L(t, y(qt + ω), Dq,ω [y] (t), y(a), y(b)) is continuous at ω0 for any

y ∈ Y1;
(H3) functions t → ∂i+2L(t, y(qt + ω), Dq,ω [y] (t), y(a), y(b)), i = 0, . . . , 3

belong to Y1 for all y ∈ Y1.

In order to simplify expressions, we introduce the operator {·} defined in the
following way:

{y}(t, a, b) := (t, y(qt + ω), Dq,ω[y](t), y(a), y(b))

where y ∈ Y1.
The following lemma can be obtained similar to Lemma 2.15.

Lemma 2.47 For fixed y, h ∈ Y1 let

g(t, ε) = L(t, y(qt + ω) + εh(qt + ω), Dq,ω[y](t)
+ εDq,ω[h](t), y(a) + εh(a), y(b) + εh(b))

for ε ∈] − ε, ε[, for some ε > 0, i.e., g(t, ε) = L{y + εh}(t, a, b). Assume that:

(i) g(t, ·) is differentiable at 0 uniformly in t ∈ [a, b]q,ω;
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(ii) La[y + εh] =
∫ a

ω0

g (t, ε) dq,ωt and Lb[y + εh] =
∫ b

ω0

g (t, ε) dq,ωt exist for

ε ≈ 0;

(iii)
∫ a

ω0

∂2g(t, 0)dq,ωt and
∫ b

ω0

∂2g(t, 0)dq,ωt exist.

Then,

δL[y, h] =
∫ b

a

(
∂2L{y}(t, a, b) · h(qt + ω) + ∂3L{y}(t, a, b) · Dq,ω[h](t)

+ ∂4L{y}(t, a, b) · h(a) + ∂5L{y}(t, a, b) · h(b)
)

dq,ωt.

2.8.1 The Hahn Quantum Euler–Lagrange Equation

In the following theorem, we give the Euler–Lagrange equation for problem
(2.35)–(2.36).

Theorem 2.48 (Necessary optimality condition to (2.35)–(2.36)) Under hypothe-
ses (H1)–(H3) and conditions (i)–(iii) of Lemma 2.47 on the Lagrangian L, if ỹ is
a local minimizer or local maximizer to problem (2.35)–(2.36), then ỹ satisfies the
Euler–Lagrange equation

∂2L{y}(t, a, b) − Dq,ω[∂3L]{y}(t, a, b) = 0 (2.37)

for all t ∈ [a, b]q,ω .

Proof Suppose that L has a local extremum at ỹ. Let h be any admissible variation
and define a function φ :] − ε̄, ε̄[→ R by φ(ε) = L[ỹ + εh]. A necessary condition
for ỹ to be an extremizer is given by φ′(0) = 0. Note that

φ′(0) =
∫ b

a

(
∂2L{ỹ}(t, a, b) · h(qt + ω) + ∂3L{ỹ}(t, a, b) · Dq,ω[h](t)

+ ∂4L{ỹ}(t, a, b) · h(a) + ∂5L{ỹ}(t, a, b) · h(b)
)

dq,ωt.

Since h(a) = h(b) = 0, then

φ′(0) =
∫ b

a

(
∂2L{ỹ}(t, a, b) · h(qt + ω) + ∂3L{ỹ}(t, a, b) · Dq,ω[h](t)

)
dq,ωt.

Integration by parts gives
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∫ b

a
∂3L{ỹ}(t, a, b) · Dq,ω[h](t)dq,ωt =

[
∂3L{ỹ}(t, a, b) · h(t)

]b

a

−
∫ b

a
Dq,ω[∂3L]{ỹ}(t, a, b) · h(qt + ω)dq,ωt

and since h(a) = h(b) = 0, then

φ′(0) = 0 ⇔
∫ b

a

(
∂2L{ỹ}(t, a, b) − Dq,ω[∂3L]{ỹ}(t, a, b)

)
· h(qt + ω)dq,ωt = 0.

Thus, by Lemma 2.16, we have

∂2L{ỹ}(t, a, b) − Dq,ω[∂3L]{ỹ}(t, a, b) = 0

for all t ∈ [a, b]q,ω .

Remark 2.49 Under appropriate conditions, when (ω, q) → (0, 1), we obtain a
corresponding result in the classical context of the calculus of variations (Cruz et al.
2010) (see also Malinowska and Torres (2010b)):

d

dt
∂3L(t, y(t), y′(t), y(a), y(b)) = ∂2L(t, y(t), y′(t), y(a), y(b)).

Remark 2.50 In the basic problem of the calculus of variations, L does not depend
on y(a) and y(b), and equation (2.37) reduces to the Hahn quantum Euler–Lagrange
equation (2.4).

2.8.2 Natural Boundary Conditions

The following theorem provides necessary optimality conditions for problem (2.35).

Theorem 2.51 (Natural boundary conditions to (2.35)) Under hypotheses (H1)–
(H3) and conditions (i)–(iii) of Lemma 2.47 on the Lagrangian L, if ỹ is a local
minimizer or local maximizer to problem (2.35), then ỹ satisfies the Euler–Lagrange
equation (2.37) and

1. if y(a) is free, then the natural boundary condition

∂3L{ỹ}(a, a, b) =
∫ b

a
∂4L{ỹ}(t, a, b)dq,ωt (2.38)

holds;
2. if y(b) is free, then the natural boundary condition
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∂3L{ỹ}(b, a, b) = −
∫ b

a
∂5L{ỹ}(t, a, b)dq,ωt (2.39)

holds.

Proof Suppose that ỹ is a local minimizer (resp. maximizer) to problem (2.35). Let
h be any Y1 function. Define a function φ : ] − ε̄, ε̄[→ R by φ(ε) = L[ỹ + εh]. It is
clear that a necessary condition for ỹ to be an extremizer is given by φ′ (0) = 0. From
the arbitrariness of h and using similar arguments as the ones used in the proof of
Theorem 2.48, it can be proved that ỹ satisfies the Euler–Lagrange equation (2.37).

1. Suppose now that y(a) is free. If y(b) = β is given, then h(b) = 0; if y(b) is
free, then we restrict ourselves to those h for which h(b) = 0. Therefore,

0 = φ′(0)

=
∫ b

a

(
∂2L{ỹ}(t, a, b) − Dq,ω[∂3L]{ỹ}(t, a, b)

)
· h(qt + ω)dq,ωt (2.40)

+
( ∫ b

a
∂4L{ỹ}(t, a, b)dq,ωt − ∂3L{ỹ}(a, a, b)

)
· h(a) = 0.

Using the Euler–Lagrange equation (2.37) into (2.40) we obtain

( ∫ b

a
∂4L{ỹ}(t, a, b)dq,ωt − ∂3L{ỹ}(a, a, b)

)
· h(a) = 0.

From the arbitrariness of h it follows that

∂3L{ỹ}(a, a, b) =
∫ b

a
∂4L{ỹ}(t, a, b)dq,ωt.

2. Suppose now that y(b) is free. If y(a) = α, then h(a) = 0; if y(a) is free, then
we restrict ourselves to those h for which h(a) = 0. Thus,

0 = φ′(0)

=
∫ b

a

(
∂2L{ỹ}(t, a, b) − Dq,ω[∂3L]{ỹ}(t, a, b)

)
· h(qt + ω)dq,ωt (2.41)

+
( ∫ b

a
∂5L{ỹ}(t, a, b)dq,ωt + ∂3L{ỹ}(b, a, b)

)
· h(b) = 0.

Using the Euler–Lagrange equation (2.37) into (2.41), and from the arbitrariness
of h, it follows that

∂3L{ỹ}(b, a, b) = −
∫ b

a
∂5L{ỹ}(t, a, b)dq,ωt.
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In the case where L does not depend on y(a) and y(b), under appropriate assump-
tions on the Lagrangian L , we obtain the following result.

Corollary 2.52 If ỹ is a local minimizer or local maximizer to problem

L [y] =
∫ b

a
L{ỹ}(t)dq,ωt −→ extr

then ỹ satisfies the Euler–Lagrange equation

∂2L{ỹ}(t) − Dq,ω[∂3L]{ỹ}(t) = 0

for all t ∈ [a, b]q,ω , and

1. if y(a) is free, then the natural boundary condition

∂3L{ỹ}(a) = 0 (2.42)

holds;
2. if y(b) is free, then the natural boundary condition

∂3L{ỹ}(b) = 0 (2.43)

holds.

Remark 2.53 Under appropriate conditions, when (ω, q) → (0, 1) equations (2.42)
and (2.43) reduce to the well-known natural boundary conditions for the basic prob-
lem of the calculus of variations

∂3L(a, ỹ(a), ỹ′(a)) = 0 and ∂3L(b, ỹ(b), ỹ′(b)) = 0,

respectively.

2.8.3 Isoperimetric Problem

We now study the general Hahn quantum isoperimetric problem with an integral
constraint. Both normal and abnormal extremizers are considered. The isoperimetric
problem consists of minimizing or maximizing the functional

L [y] =
∫ b

a
L
(
t, y (qt + ω), Dq,ω [y] (t) , y(a), y(b)

)
dq,ωt (2.44)

in the class of functions y ∈ Y1 satisfying the integral constraint
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J [y] =
∫ b

a
F
(
t, y (qt + ω), Dq,ω [y] (t), y(a), y(b)

)
dq,ωt = γ (2.45)

for some γ ∈ R.

Theorem 2.54 (Necessary optimality condition for normal extremizers to
(2.44)–(2.45)) Suppose that L and F satisfy hypotheses (H1)–(H3) and conditions
(i)–(iii) of Lemma 2.47, and suppose that ỹ ∈ Y1 gives a local minimum or a local
maximum to the functional L subject to the integral constraint (2.45). If ỹ is not an
extremal to J, then there exists a real λ such that ỹ satisfies the equation

∂2H{y}(t, a, b) − Dq,ω[∂3H ]{y}(t, a, b) = 0 (2.46)

for all t ∈ [a, b]q,ω , where H = L − λF and

1. if y(a) is free, then the natural boundary condition

∂3H{ỹ}(a, a, b) =
∫ b

a
∂4H{ỹ}(t, a, b)dq,ωt (2.47)

holds;
2. if y(b) is free, then the natural boundary condition

∂3H{ỹ}(b, a, b) = −
∫ b

a
∂5H{ỹ}(t, a, b)dq,ωt (2.48)

holds.

Proof The proof is left to the reader. Hint: recall proofs of Theorem 2.26 and The-
orem 2.51.

Introducing an extra multiplier λ0 we can also deal with abnormal extremizers to
the isoperimetric problem (2.44)–(2.45).

Theorem 2.55 (Necessary optimality condition for normal and abnormal
extremizers to (2.44)–(2.45)) Suppose that L and F satisfy hypotheses (H1)–(H3)
and conditions (i)–(iii) of Lemma 2.47, and suppose that ỹ ∈ Y1 gives a local
minimum or a local maximum to the functional L subject to the integral constraint
(2.45). Then there exist two constants λ0 and λ, not both zero, such that ỹ satisfies
the equation

∂2H{y}(t, a, b) − Dq,ω[∂3H ]{y}(t, a, b) = 0 (2.49)

for all t ∈ [a, b]q,ω , where H = λ0L − λF and

1. if y(a) is free, then the natural boundary condition

∂3H{ỹ}(a, a, b) =
∫ b

a
∂4H{ỹ}(t, a, b)dq,ωt (2.50)
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holds;
2. if y(b) is free, then the natural boundary condition

∂3H{ỹ}(b, a, b) = −
∫ b

a
∂5H{ỹ}(t, a, b)dq,ωt (2.51)

holds.

In the case where L and F do not depend on y(a) and y(b), under appropriate
assumptions on Lagrangians L and F , we obtain the following result.

Corollary 2.56 If ỹ is a local minimizer or local maximizer to the problem

L [y] =
∫ b

a
L{y}(t)dq,ωt −→ extr

subject to the integral constraint

J [y] =
∫ b

a
F{y}(t)dq,ωt = γ

for some γ ∈ R, then there exist two constants λ0 and λ, not both zero, such that ỹ
satisfies the following equation

∂2H{y}(t) − Dq,ω[∂3H ]{y}(t) = 0

for all t ∈ [a, b]q,ω , where H = λ0L − λF and

1. if y(a) is free, then the natural boundary condition

∂3H{ỹ}(a) = 0

holds;
2. if y(b) is free, then the natural boundary condition

∂3H{ỹ}(b) = 0

holds.

2.8.4 Sufficient Condition for Optimality

The following theorem gives sufficient optimality conditions for problem (2.35).
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Theorem 2.57 Let L(t, u1, . . . , u4) be jointly convex (respectively concave) in
(u1, . . . , u4). If ỹ satisfies conditions (2.37), (2.38) and (2.39), then ỹ is a global
minimizer (respectively maximizer) to problem (2.35).

Proof The proof can be adapted from the proof of Theorem 2.29.

2.8.5 Illustrative Examples

We provide some examples in order to illustrate our results.

Example 2.58 Let q ∈]0, 1[ and ω ≥ 0 be fixed real numbers, and I be an interval
of R such that ω0, 0, 1 ∈ I . Consider the problem

L[y] =
∫ 1

0

(

y(qt + ω) + 1

2
(Dq,ω[y](t))2

)

dq,ωt −→ min (2.52)

over all y ∈ Y1 satisfying the boundary condition y(1) = 1. If ỹ is a local minimizer
to problem (2.52), then by Corollary 2.52 it satisfies the following conditions:

Dq,ω Dq,ω [̃y](t) = 1, (2.53)

for all t ∈ {ω[n]q : n ∈ N0} ∪ {qn + ω[n]q : n ∈ N0} ∪ {ω0} and

Dq,ω [̃y](0) = 0. (2.54)

It is easy to verify that ỹ(t) = 1
q+1 t2 − ( ω

q+1 − c)t + d, where c, d ∈ R, is a solution
to equation (2.53). Using the natural boundary condition (2.54) we obtain that c = 0.
In order to determine d we use the fixed boundary condition y(1) = 1, and obtain
that d = q+ω

q+1 . Hence

ỹ(t) = 1

q + 1
t2 − ω

q + 1
t + q + ω

q + 1

is a candidate to be a minimizer to problem (2.52). Moreover, since L is jointly
convex, by Theorem 2.57, ỹ is a global minimizer to problem (2.52).

Example 2.59 Let q ∈]0, 1[ and ω ≥ 0 be fixed real numbers, and I be an interval
of R such that ω0, 0, 1 ∈ I . Consider the problem of minimizing

L[y] =
∫ 1

0

(

y(qt + ω) + 1

2
(Dq,ω[y](t))2 + γ

1

2
(y(1) − 1)2 + λ

1

2
y2(0)

)

dq,ωt,

(2.55)
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where γ,λ ∈ R
+. If ỹ is a local minimizer to (2.55), then by Theorem 2.51 it satisfies

the following conditions:
Dq,ω Dq,ω [̃y](t) = 1, (2.56)

for all t ∈ {ω[n]q : n ∈ N0} ∪ {qn + ω[n]q : n ∈ N0} ∪ {ω0}, and

Dq,ω [̃y](0) =
∫ 1

0
λỹ(0)dq,ωt, (2.57)

Dq,ω [̃y](1) = −
∫ 1

0
γ(ỹ(1) − 1)dq,ωt. (2.58)

As in Example 2.58, ỹ(t) = 1
q+1 t2 − ( ω

q+1 −c)t +d, where c, d ∈ R, is a solution to
equation (2.56). In order to determine c and d we use the natural boundary conditions
(2.57) and (2.58). This gives

ỹ(t) = 1

q + 1
t2 − ω(λ + γ) − λ(γ − 1)(q + 1) + γλ

(q + 1)(γ + λγ + λ)
t

+ (γ − 1)(q + 1) − γ(1 − ω)

(q + 1)(γ + λγ + λ)
(2.59)

as a candidate to be a minimizer to (2.55). Moreover, since L is jointly convex, by
Theorem 2.57 it is a global minimizer. Theminimizer (2.59) is represented in Fig. 2.1
for fixed γ = λ = 2, q = 0.99 and different values of ω.

Fig. 2.1 The minimizer
(2.59) of Example 2.59 for
fixed γ = λ = 2, q = 0.99
and different values of ω
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We note that in the limit, when γ,λ → +∞, ỹ(t) = 1
q+1 t2 + q

q+1 t and coincides
with the solution of the following problem with fixed initial and terminal points (see
Example 2.32):

L[y] =
∫ 1

0

(

y(qt + ω) + 1

2
(Dq,ω[y](t))2

)

dq,ωt −→ min

subject to the boundary conditions

y(0) = 0, y(1) = 1.

Expression γ 1
2 (y(1) − 1)2 + λ 1

2y
2(0) added to the Lagrangian y(qt + ω) +

1
2 (Dq,ω[y](t))2 works like a penalty functionwhen γ andλ go to infinity. The penalty
function itself grows, and forces the merit function (2.55) to increase in value when
the constraints y(0) = 0 and y(1) = 1 are violated, and causes no growth when
constraints are fulfilled. The minimizer (2.59) is represented in Fig. 2.2 for fixed
q = 0.5,ω = 1 and different values of γ and λ.

Remark 2.60 Let

L[y] =
∫ 1

0

(

y(qt + ω) + 1

2
(Dq,ω[y](t))2

)

dq,ωt

and

Fig. 2.2 The minimizer
(2.59) of Example 2.59 for
fixed q = 0.5,ω = 1 and
different values of γ and λ
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ỹ1(t) = 1

q + 1
t2 − ω

q + 1
t + q + ω

q + 1
and ỹ2(t) = 1

q + 1
t2 + q

q + 1
t.

Comparing Example 2.58 and Example 2.59, we can conclude that

L[̃y1] < L[̃y2].

2.9 An Application Towards Economics

As the variables, that are usually considered and observed by the economist, are the
outcome of a great number of decisions, taken by different operators at different
points of time, it seems natural to look for new kinds of models which are more
flexible and realistic. Hahn’s approach allows for more complex applications than
the discrete or the continuous models. A consumer might have income from work at
unequal time intervals and/ormake expenditures at unequal time intervals. Therefore,
it is possible to obtain more rigorous and more accurate solutions with the approach
here proposed.

In the first example we discuss the application of the Hahn quantum variational
calculus to theRamseymodel, which determines the behavior of saving/consumption
as the result of optimal inter-temporal choices by individual households (Atici and
McMahan 2009). For a complete treatment of the classical Ramsey model we refer
the reader to Barro and Sala-i-Martin (1999).

Example 2.61 Before writing the quantummodel in terms of the Hahn operators we
will present its discrete and continuous versions. The discrete-time Ramsey model
is

max[Wt ]

T −1∑

t=0

(1 + p)−tU

[

Wt − Wt+1

1 + r

]

, Ct = Wt − Wt+1

1 + r
,

while the continuous Ramsey model is

max
W (·)

∫ T

0
e−ptU

[
r W (t) − W ′(t)

]
dt, C(t) = r W (t) − W ′(t), (2.60)

where the quantities are defined as

• W – production function,
• C – consumption,
• p – discount rate,
• r – rate of yield,
• U – instantaneous utility function.

Onemay assume, due to some constraints of economical nature, that the dynamics
do not depend on the usual derivative or the forward difference operator, but on the



2.9 An Application Towards Economics 51

Hahn quantum difference operator Dq,ω . In this condition, one is entitled to assume
again that the constraint C(t) has the form

C(t) = −
[

E

(

−r,
t − ω

q

)]−1

Dq,ω

[

E

(

−r,
t − ω

q

)

W (t)

]

,

where E (z, ·) is the q,ω-exponential function defined by

E (z, t) :=
∞∏

k=0

(1 + zqk(t (1 − q) − ω))

for z ∈ C. Several nice properties of the q,ω-exponential function can be found
in Aldwoah (2009); Annaby et al. (2012). By taking the q,ω-derivative of[

E
(
−r, t−ω

q

)
W (t)

]
the following is obtained:

C(t) = −
[

E

(

−r,
t − ω

q

)]−1 [

E

(

−r,
t − ω

q

)

Dq,ωW (t)

+E

(

−r,
t − ω

q

)

W (qt + ω)
r
(
1 − 1

q

)
− r

(
1 + r

(
t − t−ω

q

))

(
1 + r

(
t − t−ω

q

))
(1 − r (t (1 − q) − ω))

⎤

⎦ .

The quantumRamseymodel with the Hahn difference operator consists tomaximize

∫ T

0
E(−p, t)U

[

W (qt + ω)
r
(
1 + r

(
t − t−ω

q

))
− r

(
1 − 1

q

)

(
1 + r

(
t − t−ω

q

))
(1 − r (t (1 − q) − ω))

− Dq,ωW (t)

]

dq,ω (2.61)

subject to the constraint

C(t) = W (qt+ω)
r
(
1 + r

(
t − t−ω

q

))
− r

(
1 − 1

q

)

(
1 + r

(
t − t−ω

q

))
(1 − r (t (1 − q) − ω))

−Dq,ωW (t). (2.62)

The quantum Euler–Lagrange equation is, by Theorem 2.21, given by

E(−p, t)U ′ [C(t)]
r
(
1 + r

(
t − t−ω

q

))
− r

(
1 − 1

q

)

(
1 + r

(
t − t−ω

q

))
(1 − r (t (1 − q) − ω))

+ Dq,ω

[
E(−p, t)U ′ [C(t)]

] = 0. (2.63)
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Note that for q ↑ 1 and ω ↓ 0 problem (2.61)–(2.62) reduces to (2.60), and (2.63)
to the classical Ramsey’s Euler–Lagrange differential equation.

In the next example we analyze an adjustment model in economics. For a deeper
discussion of this model we refer the reader to Sengupta (1997).

Example 2.62 Consider the dynamic model of adjustment

J [y] =
T∑

t=1

r t
[
α(y(t) − ȳ(t))2 + (y(t) − y(t − 1))2)

]
−→ min,

where y(t) is the output (state) variable, r > 1 is the exogenous rate of discount and
ȳ(t) is the desired target level, and T is the horizon. The first component of the loss
function above is the disequilibrium cost due to deviations from desired target and
the second component characterizes the agent’s aversion to output fluctuations. In
the continuous case the objective function has the form

J [y] =
∫ T

1
e(r−1)t

[
α(y(t) − ȳ(t))2 + (y′(t))2

]
−→ min.

Let q ∈]0, 1[ and ω ≥ 0 be fixed real numbers, and I be an interval of R such that
ω0, 0, T ∈ I . The quantum model in terms of the Hahn operators which we wish to
minimize is

J [y] =
∫ T

0
E(1 − r, t)

[
α(y(qt + ω) − ȳ(qt + ω))2 + (Dq,ω[y](t))2

]
dq,ωt,

(2.64)
where E (z, ·) is the q,ω-exponential function. By Theorem 2.51, a minimizer to
(2.64) should satisfy the conditions

E(1 − r, t) [α(y(qt + ω) − ȳ(qt + ω))] = Dq,ω

[
E(1 − r, t)Dq,ω[y](t)], (2.65)

for all t ∈ {ω[n]q : n ∈ N0} ∪ {T qn + ω[n]q : n ∈ N0} ∪ {ω0}; and

E(1 − r, t)Dq,ω[y](t)∣∣t=0 = 0, E(1 − r, t)Dq,ω[y](t)∣∣t=T = 0. (2.66)

Taking the q,ω-derivative of the right side of (2.65) and applying properties of the
q,ω-exponential function, for t such that |t −ω0| < 1

(r−1)(1−q)
, we can rewrite (2.65)

and (2.66) as

[1 − (r − 1)(t (1 − q) − ω)]α(y(qt + ω) − ȳ(qt + ω))

= (r − 1)Dq,ω[y](t) + Dq,ω Dq,ω[y](t),
(2.67)

Dq,ω[y](t)∣∣t=0 = 0, Dq,ω[y](t)∣∣t=T = 0. (2.68)
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Note that for (q,ω) → (1, 0) equations (2.67) and (2.68) reduce to

α(y(t) − ȳ(t)) = (r − 1)y′(t) + y′′(t),

y′(t)
∣
∣
t=0 = 0, y′(t)

∣
∣
t=T = 0,

which are necessary optimality conditions for the continuous model.
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