
Chapter 1
A Primer on Feller Semigroups and Feller
Processes

Throughout this chapter, E denotes a locally compact and separable space; later on
we will restrict ourselves to the Euclidean space Rd and its subsets. By C1.E/ we
denote the space of continuous functions u W E ! R which vanish at infinity, i.e.

8� > 0 9K � E compact 8x 2 Kc W ju.x/j 6 �: (1.1)

If E D Rd , then (1.1) is the same as limjxj!1 u.x/ D 0; if E D B.z; r/ is an open
ball in Rd , then (1.1) entails that (there is an extension of u such that) u.x/ D 0 on
the boundary jx � zj D r , and if E is a compact set, then C1.E/ D C.E/, i.e. the
space of all continuous functions on E . Observe that

.C1.E/; k � k1/; kuk1 WD sup
x2E

ju.x/j; (1.2)

is a Banach space, and the space of compactly supported continuous functions
Cc.E/ is a dense subspace. If E is not compact, we can use the one-point
compactification E@ by adding the point @. Since the complements of compact sets
K�E form a neighbourhood base of the point @ at infinity, we can identify C1.E/
with fu 2 C.E@/ W u.@/ D 0g.

The topological dual C �1.E/ of C1.E/ consists of the bounded signed Radon
measures Mb.E/, i.e. the signed Borel measures � on E with finite total mass
j�j.E/ < 1. A sequence .un/n>1 � C1.E/ converges weakly to u 2 C1.E/, if
limn!1

R
un d� D R

u d� for all � 2 Mb.E/. Weak convergence is the same as
bp (bounded pointwise) convergence

bp- lim
n!1 un D u ” sup

n>1
kunk1 < 1 and lim

n!1 un.x/ D u.x/ 8x 2 E;
(1.3)

cf. Dunford–Schwartz [93, Corollary IV.6.4, p. 265]. Note that this only holds for
sequences, cf. Ethier–Kurtz [100, Appendix 3, pp. 495–496].
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2 1 A Primer on Feller Semigroups and Feller Processes

The norm topology on the Banach space Mb.E/ is given by the total variation
norm k�kTV WD �C.E/ C ��.E/ where � D �C � �� is the Hahn–Jordan
decomposition. More often, we use on Mb.E/ the weak-* or vague topology, i.e.

�n
vaguely����!
n!1 � ” lim

n!1

Z
u d�n D

Z
u d� 8u 2 C1.E/: (1.4)

If, in addition, limn!1�ṅ .E/ D �˙.E/, then one speaks of weak convergence
(of measures), i.e.

�n
weakly����!
n!1 � ” lim

n!1

Z
u d�n D

Z
u d� 8u 2 Cb.E/: (1.5)

Mind that this is not weak convergence in the topological sense.

1.1 Feller Semigroups

There is no standard usage of the term Feller semigroup in the literature and every
author has his or her own definition of “Feller semigroup” (Rogers and Williams
[255, p. 241]). Therefore we take the opportunity to develop some of the core
material in a consistent way.

Definition 1.1. Let .Tt /t>0 be a family of linear operators defined on the bounded
Borel measurable functions Bb.E/. If

T0 D id and TtTsu D TsTtu D TtCsu 8u 2 Bb.E/; s; t > 0

then .Tt /t>0 is said to be a (one-parameter operator) semigroup.
A sub-Markov semigroup is an operator semigroup .Tt /t>0 which is positivity

preserving

Ttu > 0 8u 2 Bb.E/; u > 0 (1.6)

and has the sub-Markov property

Ttu 6 1 8u 2 Bb.E/; u 6 1: (1.7)

A Markov semigroup is a sub-Markov semigroup which is conservative, i.e.
Tt1 D 1.

Note that a sub-Markov semigroup is automatically monotone

Ttv 6 Ttw 8v;w 2 Bb.E/; v 6 w (1.8)
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(take u D w � v in (1.6)), it satisfies Jensen’s inequality

�.Ttu/ 6 Tt�.u/ 8u 2 Bb.E/ and any convex � W R ! R; �.0/ D 0 (1.9)

(observe that a convex function with �.0/ D 0 is the upper envelope of affine-linear
functions `.x/ D ax C b where a 2 R and b 6 0 such that `.x/ 6 u.x/ for all x,
and use `.Ttu/ 6 Tt`.u/ 6 Tt�.u/, see e.g. [283, Theorem 12.14, p. 116] for the
standard proof) and it is contractive

kTtuk1 6 kuk1 8u 2 Bb.E/ (1.10)

(use jTtuj 6 Tt juj 6 Ttkuk1 6 kuk1).

Definition 1.2. A Feller semigroup is a sub-Markov semigroup .Tt /t>0 which
satisfies the Feller property

Ttu 2 C1.E/ 8u 2 C1.E/; t > 0 (1.11)

and which is strongly continuous in the Banach space C1.E/

lim
t!0

kTtu � uk1 D 0 8u 2 C1.E/: (1.12)

One of the reasons to consider semigroups acting on spaces of continuous
functions is the fact that such semigroups are integral operators with pointwise
everywhere defined measure kernels, cf. the Riesz representation theorem, Theorem
1.5 below. This is particularly attractive for the study of stochastic processes where
these kernels will serve as transition functions, cf. Sect. 1.2.

Example 1.3. Throughout the text we will use the following standard examples for
Feller semigroups. For simplicity we consider only E � Rd and u 2 Bb.E/.
a) (Shift semigroup) Let ` 2 Rd . The shift semigroup is Ttu.x/ WD u.x C t`/,
t > 0.

b) (Poisson semigroup) Let ` 2 Rd and � > 0. The Poisson semigroup is defined

as Ttu.x/ D P1
jD0 u.x C j`/

.�t/j

j Š
e�t�.

c) (Heat/Brownian semigroup) Let gt .x/ D .2�t/�d=2 e�jxj2=2t be the heat kernel
or normal distribution (mean zero, variance t) on Rd . The heat or Brownian
semigroup is Ttu.x/ D R

Rd u.y/gt .y � x/ dy.
d) (Symmetric stable semigroups) Let gt;˛.x/, ˛ 2 .0; 2� be the symmetric stable

probability density. It is implicitly defined through the characteristic function
(inverse Fourier transform)1 F�1Œgt;˛ �.�/ WD R

Rd e
ix��gt;˛.x/ dx D e�t j�j˛ . The

symmetric ˛-stable semigroup is Ttu.x/ WD R
Rd u.y/gt;˛.y � x/ dy.

1See the beginning of Chap. 2 for the conventions for the Fourier transform and characteristic
functions.
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Only for ˛ D 1 and 2 the densities gt;˛ are explicitly known: ˛ D 1 yields

the Cauchy density gt;1.x/ D t	
�
dC1
2

�
�� dC1

2

�
t2 C jxj2�� dC1

2 , and ˛ D 2

gives the heat semigroup gt;2.x/ D g2t .x/ D .4�t/� d
2 e�jxj2=4t with twice the

normal speed.
e) (Convolution/Lévy semigroups) Let .�t /t>0 be a family of infinitely divisible

probability measures on Rd , i.e. for every n > 2 we can write �t as an n-fold
convolution of the measures �t=n. Moreover, assume that t 7! �t is continuous
in the vague topology.

Then Ttu.x/ WD R
Rd u.xCy/�t .dy/ is a semigroup of convolution operators.

We will discuss the structure of these semigroups in Sect. 2.1 below.
Note that all previously defined semigroups fall in this category. Because

of the structure of these semigroups, the Feller property is easily seen using
the dominated convergence theorem. Strong continuity follows from the vague
continuity of the family .�t /t>0, see also Berg–Forst [24, Chap. II.§12, pp. 85–
97] or [284, Proposition 7.3, pp. 87–89] for a probabilistic proof for the heat
semigroup which carries over to general convolution semigroups.

f) (Ornstein–Uhlenbeck semigroup) Let .�t /t>0 be a family of infinitely divisible
probability measures on Rd such that t 7! �t is continuous in the vague
topology, and B 2 Rd�d .

Then, Ttu.x/ WD R
Rd u.etBx C y/�t .dy/ defines the so-called Ornstein–

Uhlenbeck semigroup. Note that this is a special case of the Mehler semigroup,
see e.g. Bogachev et al. [36]. The strong continuity and the Feller property
of the Ornstein–Uhlenbeck semigroup was proved in Sato–Yamazato [268,
Theorem 3.1].

Further examples are generalized, Lévy-driven Ornstein–Uhlenbeck semi-
groups which have been studied by Behme–Lindner [18], see also Exam-
ples 1.17(f) and 3.34(b) below for details.

g) (One-sided stable semigroups) On E D Œ0;1/ one defines the density pt;˛.x/,
t; x > 0, 0 < ˛ < 1 through the Laplace transform

R 1
0
e�sxpt;˛.x/ dx D e�t s˛ .

Then Ttu.x/ WD R 1
0

u.x C y/pt;˛.y/ dy is the one-sided ˛-stable semigroup.

The Lévy density pt;1=2.x/ D .4�/�1=2 t x�3=2 e�t 2=4x1.0;1/.x/ is the only
density in this family for which a closed-form expression is known.

h) (Diffusion semigroups) Consider a second order partial differential operator in
divergence form L D 1

2
r � .Q.�/r/whereQ W Rd ! Rd �Rd is a measurable,

symmetric matrix-valued function which is uniformly elliptic, i.e. there exist
constants 0 < c 6 C < 1 such that

cj�j2 6 hQ.x/�; �i 6 C j�j2 8� 2 Rd

and (for simplicity)Q 2 C1
b .R

d /. It is well known that the initial value problem
d
dt u.t; x/ D Lu.t; x/, u.0; x/ D �.x/ admits a fundamental solution p.t; x; y/
satisfyingp 2 S1

nD1 C1
b

�
Œ1=n; n��Rd�Rd I .0;1/

�
. The fundamental solution

leads to a Feller semigroup u.t; x/ D Tt�.x/ D R
Rd �.y/p.t; x; y/ dy, cf. Itô

[151, Chap. 1] or Stroock [310]. In general, the explicit expression of p.t; x; y/
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is not known; however, we have Aronson’s estimates which allow us to compare
p.t; x; y/ from above and below with the well-known fundamental solution of
the heat equation, i.e. where the differential operator is 1

4
qj
, qj > 0, j D 1; 2:

.q1�t/
�d=2 exp

�

�jx � yj2
q1t

�

6 p.t; x; y/ 6 .q2�t/
�d=2 exp

�

�jx � yj2
q2t

�

with qj D qj .c; C; d/. This beautiful result is originally due to Aronson [6], see
also Stroock [310].

i) (Affine semigroups) Consider on E D RmC � Rd�m, d > m > 0, the semigroup
.Tt /t>0 given by Ttu.x/ D R

E
u.y/pt .x; dy/ (with a suitable transition kernel

pt.x; dy/). Then .Tt /t>0 is called affine, if for every t 2 Œ0;1/ the characteristic
function (inverse Fourier transform) of the measure pt .x; �/ has exponential-
affine dependence on x. In general, pt .x; �/ is not known explicitly; however,
affine semigroups are characterized by the existence of functions

� W Œ0;1/ � iRd ! C� and  W Œ0;1/ � iRd ! Cm� � iRd�m

(as usual, we write C� D fz 2 C W Re z 6 0g) such that for every x 2 E and
for all .t; �/ 2 Œ0;1/ � Rd

Tt e�.x/ D
Z
eiy��pt .x; dy/ D e�.t;i�/C

Pd
jD1 xj  j .t;i�/ D e�.t;i�/Cx� .t;i�/

holds; in this generality, affine semigroups have been considered for the first time
by Duffie–Filipović–Schachermayer [91, Sect. 2].

If the measures ps.x; �/ converge weakly (in the sense of measures) to pt .x; �/
as s ! t for all .t; x/ 2 Œ0;1/ � E or, equivalently, if the functions �.t; i�/
and  .t; i�/ are continuous in t 2 Œ0;1/, for every � 2 Rd , then .Tt /t>0 is a
Feller semigroup, cf. Keller-Ressel [175, Sect. 1.3, Theorem 1.1, p. 16] or Keller-
Ressel–Schachermayer–Teichmann [176, Sect. 3, Theorem 3.5]. ut

The Role of Strong Continuity. Using the linearity and contractivity (1.10) of a
Feller semigroup, it is not hard to see that (1.12) is equivalent to

lim
s!t

kTsu � Ttuk1 D 0 8u 2 C1.E/; t > 0: (1.12’)

In fact, we can even replace (1.12) by the notion of pointwise convergence.

Lemma 1.4. Let .Tt /t>0 be a sub-Markov semigroup which satisfies the Feller
property. Then each of the following conditions is equivalent to the strong continuity
(1.12).

lim
t!0

Ttu.x/ D u.x/ 8u 2 C1.E/; x 2 EI (1.13)
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Œ0;1/ �E 3 .t; x/ 7! Ttu.x/ is continuous for each u 2 C1.E/I (1.14)

Œ0;1/ � E � C1.E/ 3 .t; x; u/ 7! Ttu.x/ is continuous: (1.15)

Proof. It is enough to prove that (1.12) ) (1.15) and (1.13) ) (1.12). The first
implication is a standard �=3-argument: Fix .t; x; u/ 2 Œ0;1/ � E � C1.E/ and
pick any .s; y; v/ in some �=3-neighbourhood. Then

jTtu.x/ � Tsv.y/j 6 jTtu.x/� Ttu.y/j C jTtu.y/ � Tsu.y/j C jTsu.y/ � Tsv.y/j
6 jTtu.x/� Ttu.y/j C kTjt�sju � uk1 C ku � vk1:

The second implication is less trivial. We follow the proof given in Dellacherie–
Meyer [84, Theorème XIII.19, pp. 98–99], see also Revuz–Yor [250, Proposition
III.2.4, p. 89]. Let u 2 C1.E/. Clearly, (1.13) entails limt!s Ttu.x/ D Tsu.x/ for
all s > 0 and x 2 E . Therefore the integral

U˛u.x/ WD
Z 1

0

e�˛sTsu.x/ ds

defines a family of linear operators on C1.E/ and, by dominated convergence and
a simple change of variables, it is easy to see that lim˛!1.˛U˛u.x/ � u.x// D 0

for every x 2 E . In fact, .U˛/˛>0 is a resolvent satisfying the resolvent equation

U˛u � Uˇu D .ˇ � ˛/U˛Uˇu 8˛; ˇ > 0: (1.16)

Thus, the range R WD U˛C1.E/ does not depend on ˛ > 0. Once again by
dominated convergence, we see for any � 2 MC

b .E/

Z
u.x/ �.dx/ D lim

˛!1

Z
˛U˛u.x/ �.dx/:

If � is orthogonal to R, this equality shows that
R

u d� D 0 for all u 2 C1.E/,
hence � D 0. This proves that R is dense in C1.E/. Now we can use Fubini’s
theorem to deduce

TtU˛u.x/ D e˛t
Z 1

t

e�˛sTsu.x/ ds

as well as

kTtU˛u � U˛uk1 6 .e˛t � 1/kU˛uk1 C tkuk1:

This shows that limt!0 kTtf �f k1 for all f 2 R, and a standard density argument
proves (1.12). ut
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Lemma 1.4 may be a bit surprising as it allows to replace uniform convergence
by pointwise convergence. This is a variation of a theme from the theory of operator
semigroups which says that for contraction semigroups the notions of continuity
in the norm topology and in the weak topology coincide, see e.g. [78, Proposition
1.23, p. 15]. For Feller semigroups, weak continuity means that t 7! R

Ttu.x/ �.dx/
is continuous for all � 2 Mb.E/. Since (sequential) weak convergence is the same
as bounded pointwise convergence, it is indeed enough to check that the function
t 7! R

Ttu.x/ ıy.dx/ D Ttu.y/ is continuous for each y 2 E .

Feller Semigroups Defined on C 1.E/. Sometimes a strongly continuous, posi-
tivity preserving, conservative semigroup .Tt /t>0 with Tt W C1.E/ ! C1.E/ is
called a Feller semigroup—although it is only defined on C1.E/. Using a variant
of the Riesz representation theorem, cf. Rudin [258, Theorem 6.19, p. 130], we can
extend .Tt /t>0 onto Bb.E/.

Theorem 1.5 (Riesz). Let Tt W C1.E/ ! C1.E/, t > 0, be a family of positivity
preserving linear operators. Then Tt is an integral operator of the form

Ttu.x/ D
Z

u.y/ pt.x; dy/ (1.17)

where pt .x; �/ is a uniquely defined positive Radon measure.

It is not hard to see that pt.x; dy/ is a sub-probability measure, if Ttu 6 1 whenever
u 6 1. Moreover, .t; x/ 7! pt.x; B/ is for every B 2 B.E/ measurable: If B D U

is an open set, this follows immediately from (1.15) since we can approximate 1U
by an increasing sequence of positive C1-functions. For generalB 2 B.E/ we use
a Dynkin system or monotone class argument. If .Tt /t>0 is a semigroup, the kernels
pt .x; dy/ satisfy the Chapman–Kolmogorov equations

psCt .x; B/ D
Z
pt .y; B/ ps.x; dy/ 8B 2 B.E/; s; t > 0: (1.18)

This shows that every Feller semigroup defined onC1.E/ can be uniquely extended
to a sub-Markov semigroup in the sense of Definition 1.1, i.e. it becomes a Feller
semigroup in the sense of Definition 1.2.

Other Feller Properties. As already mentioned, there is no uniform agreement on
what a “Feller semigroup” should be. Usually the question is on which space the
semigroup should be defined. Let us review some common alternative definitions
and give them distinguishing names.

Definition 1.6. A sub-Markov semigroup .Tt /t>0 is called a C b-Feller semigroup
if it enjoys the C b-Feller property, i.e.

Ttu 2 Cb.E/ 8u 2 Cb.E/; t > 0 (1.19)
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and if t 7! Ttu is continuous in the topology of locally uniform convergence in the
space Cb.E/.

If E is compact, the notions of Feller- and Cb-Feller semigroups coincide. The
correct choice of topology on Cb.E/ is a major issue. Although .Cb.E/; k � k1/
is a perfectly good Banach space, the requirement of strong continuity is so strong
that only few semigroups enjoy this property.

Example 1.7. a) Let Ttu.x/ D u.x C t`/ be the shift-semigroup on Rd (Example
1.3(a)). Since Ttu.x/ � u.x/ D u.x C t`/ � u.x/, strong continuity of the shift
semigroup entails that u is uniformly continuous. This means that .Tt /t>0 is not
strongly continuous on .Cb.Rd /; k � k1/.

b) Let Ttu.x/ be the Poisson semigroup on Rd (Example 1.3(b)). Then

jTtu.x/ � u.x/j D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

1X

jD1

�
u.x C j`/ � u.x/

� .�t/j

j Š
e��t

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

6 2kuk1.1 � e��t /

shows that .Tt /t>0 is strongly continuous on Cb.Rd / (and even on Bb.Rd /).
c) Denote by .A;D.A// the generator of the Feller semigroup .Tt /t>0, cf. Sect. 1.4

below. If A is a bounded operator with respect to k � k1, then .Tt /t>0 is strongly
continuous on Cb.Rd /, and even on Bb.Rd /. This follows from

jTtu.x/ � u.x/j D
ˇ
ˇ
ˇ
ˇ

Z t

0

ATsu.x/ ds

ˇ
ˇ
ˇ
ˇ 6 tkAkkuk1 8x 2 Rd ; u 2 C1.Rd /

cf. Lemma 1.26, and a standard extension argument for linear operators (the
B.L.T. theorem, Reed–Simon [248, Theorem I.7, p. 9]). This shows that a
(Feller) semigroup with bounded generator is continuous in the strong operator
topology: kTt � 1k D supkuk161 kTtu � uk1 6 tkAk. Conversely, any semi-
group which is continuous in the strong operator topology has a bounded
generator, cf. Pazy [236, Theorem 1.2, p. 2].

d) The heat semigroup (Example 1.3(c)) is not strongly continuous on Cb.R/. To
see this, define a function u 2 Cb.R/ by

u.x/ WD
1X

nD2
un.x/ and un.x/ WD

8
ˆ̂
<

ˆ̂
:

0; jx � nj > 1
n
;

n
�
x � nC 1

n

�
; n � 1

n
< x 6 n;

n
�
nC 1

n
� x�

; n 6 x < nC 1
n
:

Then we find for x 2 R, t > 0 and ı > 0

jTtu.x/� u.x/j >
ˇ
ˇ
ˇ
ˇ

Z

jyj6ı
.u.x C y/ � u.x//gt .y/ dy

ˇ
ˇ
ˇ
ˇ � 2kuk1

Z

jyj>ı
gt .y/ dy:
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Pick x D n and ı D n�1. Then

kTtu � uk1 >
Z

1
2n6jyj6 1

n

.u.n/� u.nC y//gt .y/ dy � 2

Z

jyj> 1
n

gt .y/ dy

> 1

2

Z

1
2n6jyp

t j6 1
n

g1.y/ dy � 2

Z

jyp
t j> 1

n

g1.y/ dy:

Now we use t D tn WD .4n2/�1 and write ˚.x/ D R x
�1 g1.y/ dy for the normal

cumulative distribution function. Then

lim
t!0

kTtu � uk1 > lim
n!1 kTtnu � uk1 > 5

2
˚.2/� 1

2
˚.1/� 2 > 0:01:

A similar calculation shows that .Tt /t>0 is actually strongly continuous for all
uniformly continuous functions u.

e) Let .Tt /t>0 be an affine semigroup (Example 1.3(i)) on E D RmC �Rd�m which
is a Feller semigroup, i.e. ps.x; �/ converges weakly to pt .x; �/ as s ! t for all
.t; x/ 2 Œ0;1/ � E . Then .Tt /t>0 is also a Cb-Feller semigroup. According to
Theorem 1.9 below, this follows from

Tt1.x/ D Tte0.x/ D e�.t;0/Cx� .t;0/;

which shows that x 7! Tt1.x/ is continuous and bounded. ut
If we replace uniform convergence by uniform convergence on compact sets, the
restriction of a Feller semigroup to Cb.E/ will be continuous at t D 0, cf. [274,
Lemma 3.1].

Lemma 1.8. Let .Tt /t>0 be a Feller semigroup. Then limt!0 Ttu.x/ D u.x/ locally
uniformly in x for all u 2 Cb.E/.

The following criterion for a Feller semigroup to be a Cb-Feller semigroup is
again taken from [274, Sect. 3].

Theorem 1.9. Let .Tt /t>0 be a sub-Markov semigroup. Then

�
Tt W C1.E/ ! C1.E/ and Tt1 2 Cb.E/

�
H) Tt W Cb.E/ ! Cb.E/:

In particular, if .Tt /t>0 is a Feller semigroup with Tt1 2 Cb.E/, then it is also a
Cb-Feller semigroup.

A necessary and sufficient condition that a Cb-Feller semigroup is a Feller
semigroup is given in the next theorem.

Theorem 1.10. Let .Tt /t>0 be a Cb-Feller semigroup and .pt .x; dy//t>0 the tran-
sition kernels, i.e. for any t > 0, x 2 E and u 2 Cb.E/, Ttu.x/ D R

u.y/ pt.x; dy/.
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Then, .Tt /t>0 is a Feller semigroup if, and only if, for all t > 0 and any increasing
sequence of bounded sets Bn 2 B.E/ with

S
n>1 Bn D E we have

lim
jxj!1

pt.x; Bn/ D 0 8n > 1: (1.20)

Proof. Since E is locally compact and separable, E is �-compact, and there exists
a sequence of bounded (even compact) sets Bn increasing towards E . Assume that
.Tt /t>0 has the Cb-Feller property.

By the definition of C1.Rd /, there is for every � > 0 some N.�/ such that for
all n > N.�/ we have juj1EnBn 6 �. Thus, for x 2 E ,

jTtu.x/j 6
Z

Bn

ju.y/jpt.x; dy/C
Z

EnBn
ju.y/jpt.x; dy/

6 kuk1pt .x; Bn/C �:

Hence,

lim
jxj!1

jTtu.x/j 6 kuk1 lim
jxj!1

pt .x; Bn/C � D �:

Letting �! 0 yields that Ttu 2 C1.E/. In order to see strong continuity onC1.E/,
we remark that t 7! Ttu.x/ is continuous for all x 2 E and u 2 C1.E/. Thus, by
Lemma 1.4, we conclude that .Tt /t>0 is strongly continuous on C1.E/, hence a
Feller semigroup.

On the other hand, for any bounded set B 2 B.E/, there is some u 2 C1.E/
such that u > 0 and ujB � 1. Therefore,

Ttu.x/ >
Z

B

u.y/ pt.x; dy/ D pt .x; B/:

Since .Tt /t>0 is a Feller semigroup,

0 D lim
jxj!1

jTtu.x/j D lim
jxj!1

Ttu.x/ > lim
jxj!1

pt .x; B/: ut

The criterion (1.20) ensuring the Feller property in Theorem 1.10 is not easy to
check. If E D Rd we can use the structure of the infinitesimal generator to obtain a
simpler condition; we postpone this to Theorem 2.49 in Sect. 2.5.

In potential theory one often requires the following strong Feller property.

Definition 1.11. A sub-Markov semigroup .Tt /t>0 is said to be a strong Feller
semigroup if Tt W Bb.E/ ! Cb.E/ for all t > 0.

Among other things, the strong Feller property ensures that ˛-excessive functions
are lower semicontinuous, see Blumenthal–Getoor [33, (2.16), p. 77]; for a detailed
discussion we also refer to Bliedtner–Hansen [30, Sect. V.3, pp. 175–184].
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If .Tt /t>0 is a strong Feller semigroup, then the operators Tt W Bb.E/ ! Cb.E/,
t > 0, are compact if we equip Bb.E/ with the topology of uniform convergence
and Cb.E/ with the topology of locally uniform convergence, cf. Revuz [249,
Proposition 1.5.8, Theorem 1.5.9, p. 37] or [290, Proposition 2.3]. The following
result is from Bliedtner–Hansen [30, Proposition 2.10, p. 181].

Lemma 1.12. Let .Tt /t>0 be a sub-Markov semigroup on Bb.E/. Then the follow-
ing assertions are equivalent.

a) .Tt /t>0 is a strong Feller semigroup and for every t > 0 and u 2 Cc.E/ it holds
that lims#t Tsu D Ttu locally uniformly.

b) For every u 2 Bb.E/ the function .t; x/ 7! Ttu.x/ is continuous on .0;1/�E .

Example 1.13. a) The shift and the Poisson semigroups [Examples 1.3(a) and
1.3(b)] are not strongly Feller.

b) A convolution semigroup (Example 1.3(e)) is strongly Feller if, and only if, the
convolution kernel �t.dy/ is absolutely continuous with respect to Lebesgue
measure. This result is due to Hawkes [132, Lemma 2.1, p. 338], see also Jacob
[157, Lemmas 4.8.19, 4.8.20, pp. 438–439]. ut
A strong Feller semigroup need not be Cb-Feller nor Feller. Conversely, the

strong Feller property does not follow from the (Cb-)Feller property without further
conditions. Typically one has to assume some kind of (uniform) absolute continuity
property or some ultracontractivity property. The following results are adapted from
[290, Sects. 2.1 and 2.2].

Theorem 1.14. Let .Tt /t>0 be a Cb-Feller semigroup with kernels .pt .x; dy//t>0.
Then the following assertions are equivalent.

a) .Tt /t>0 is a strong Feller semigroup.
b) There exists a probability measure � 2 MC.E/ such that for every t > 0 the

family .pt .x; dy//x2E is locally absolutely continuous with respect to �, i.e. for
any compact set K � E it holds lim

ı!0
sup

B2B.E/; �.B/6ı
sup

z2K
pt .z; B/ D 0:

In particular, if .Tt /t>0 is a Cb-Feller semigroup such that the representing kernels
are of the form pt.x; dy/ D pt .x; y/ �.dy/ for some Radon measure � 2 MC.E/
and a locally bounded density .x; y/ 7! pt.x; y/, then .Tt /t>0 is a strong Feller
semigroup.

Another criterion is based on ultracontractivity. Hoh remarked in [138, Theorem
8.9, p. 134], see also Jacob–Hoh [140, Theorem 2.1], that a Feller semigroup on
C1.Rd / which is ultracontractive, i.e.

kTtuk1 6 ct kukL2.dx/ 8t > 0; u 2 Cc.Rd /;

is already a strong Feller semigroup.
Using Orlicz spaces we can obtain a necessary and sufficient condition. Let

us recall some facts about Orlicz space from Rao–Ren [247]. A positive function
˚ W R ! Œ0;1� is a Young function if it is convex, even, satisfies ˚.0/D 0 and
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limx!1˚.x/ D 1. Given a Young function˚ and a Radon measure� 2 MC.E/,
we define the Orlicz space as

L˚.�/ D
�

f W E ! R measurable and
Z
˚. f̨ / d� < 1 for some ˛ > 0

	

:

The set L˚.�/ is a linear space. If ˚.x/ D jxjp , p > 1, then L˚.�/ coincides with
the usual Lebesgue space Lp.�/. The Orlicz norm

kf k˚ D sup

�Z
jfgj d� W

Z
˚c.g/ d� 6 1; g 2 Bb.E/

	

;

where˚c is the Legendre transform of˚ , i.e.˚c.y/ WD supx>0
�
xjyj�˚.x/�; turns

L˚.�/ into a Banach space. We have, cf. [290, Theorem 2.8],

Theorem 1.15. Let .Tt /t>0 be a Cb-Feller semigroup. Then the following asser-
tions are equivalent.

a) .Tt /t>0 is a strong Feller semigroup.
b) For every t > 0 there exists a Radon measure �t 2 MC.E/ and some Young

function˚t W R ! Œ0;1/ which is strictly increasing on Œ0;1/ such that for all
compact sets K � E and u 2 Cc.E/

k1KTtuk1 6 C.K; t/kuk˚t : (1.21)

Proof. This is a variant of [290, Theorem 2.8]. Note that the definition of a Cb-Feller
semigroup includes the condition [290, Theorem 2.8 (2)]. In order to see that (b)
entails (a), one only needs that x D 0 is the only zero of the Young functions ˚t ;
this is clearly ensured by the strong monotonicity of ˚t . The proof of the converse
is based on the de la Vallée–Poussin characterization of uniform integrability, cf.
[283, Theorem 16.8(vii), p. 170], and the argument in [283] allows us to take ˚t.x/
strictly increasing on Œ0;1/. ut

One-Point Compactifications and Sub-Markovianity. The following technique
allows us to restrict our attention to Markov semigroups, i.e. sub-Markov semi-
groups satisfying Tt1 D 1. Let .Tt /t>0 be a Feller semigroup which is not necessar-
ily conservative. Denote by E@ the one-point compactification of E and define

T @t u WD u.@/C Tt .u � u.@// 8u 2 C1.E@/ D Cb.E@/: (1.22)

Then .T @t /t>0 is a conservative Feller semigroup. Without problems we see that the
new semigroup inherits all relevant properties from .Tt /t>0. Only the positivity is
not so obvious. This can be seen by functional-analytic arguments as in Ethier–Kurtz
[100, Lemma 4.2.3, p. 166]; alternatively let .pt .x; dy//t>0 be the kernels from the
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Riesz representation of .Tt /t>0, cf. Theorem 1.5. Then the corresponding kernels
for .T @t /t>0 are given by

p@t .x; f@g/ WD 1 � pt .x;E/; t > 0; x 2 E;
p@t .@; B/ WD ı@.B/; t > 0; B 2 B.E@/;

p@t .x; B/ WD pt .x; B/; t > 0; x 2 E; B 2 B.E/;

(1.23)

and the positivity of each T @t follows.
This means that we can restrict ourselves to conservative semigroups, if needed.

1.2 From Feller Processes to Feller Semigroups—and Back

Let .˝;F ;P/ be a probability space and assume that .Xt ;Ft /t>0 is a time-homo-
geneous Markov process with state space .E;B.E//. As usual, we denote by Px

and Ex the probability measures P.� jX0 D x/ and the corresponding expectation,
respectively. From the Markov property one easily sees that

Ex u.Xt/ WD
Z

E

u.y/ Px.Xt 2 dy/ 8u 2 Bb.E/; x 2 E (1.24)

defines a Markov semigroup.
We always require that .Xt/t>0 is normal, i.e. Px.X0 D x/ D 1 for all x 2 E .

Moreover, we assume for simplicity that the process has infinite life-time, i.e.
Px.Xt 2 E/ D 1 for all t > 0 and x 2 E , otherwise we would get a sub-Markov
semigroup.

Definition 1.16. A Feller process is a time-homogeneous Markov process whose
transition semigroup Ttu.x/ D Ex u.Xt/ is a Feller semigroup.

A function pt .x; B/ defined on Œ0;1/ � E � B.E/ is a time-homogeneous
transition function if

pt .x; �/ is a (sub-)probability measure on E , t > 0; x 2 E;
p0.x; �/ D ıx.�/; x 2 E;

p�.�; B/ is jointly measurable, B 2 B.E/;

ptCs.x; B/ D
Z
ps.y; B/ pt .x; dy/; s; t > 0; B 2 B.E/:

(1.25)

Clearly, pt .x; B/ D Px.Xt 2 B/ D P.Xt 2 B jX0 D x/ is such a transition
function.

Conversely, assume that we start with a Feller semigroup .Tt /t>0. Using the Riesz
representation theorem, Theorem 1.5, we can write Tt as an integral operator
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Ttu.x/ D
Z

u.y/ pt.x; dy/ (1.26)

where the family of kernels .pt .x; �//t>0;x2E is a uniquely defined transition
function.

Using Kolmogorov’s standard procedure we can construct a probability space
.˝;F ;P/ and a Markov process .Xt /t>0 with state space E such that

Px.Xt 2 B/ D P.Xt 2 B jX0 D x/ D pt .x; B/ and Ex u.Xt/ D Ttu.x/:

Example 1.17. The semigroups of Example 1.3 correspond to the following stochas-
tic processes.

a) (Shift semigroup) Xt D t` is a deterministic movement with speed ` 2 Rd .
b) (Poisson semigroup) Xt is a Poisson process with intensity � > 0 and jump

height ` 2 Rd : P.Xt D j`/ D .�t/j

j Š
e�t�, j D 0; 1; 2; : : :.

.Xt /t>0 is spatially homogeneous, i.e. Px.Xt 2 B/ D P.Xt C x 2 B/.
c) (Heat/Brownian semigroup) Xt is a d -dimensional standard Brownian motion,

Px.Xt 2 dy/ D gt .x � y/ dy. .Xt /t>0 is spatially homogeneous.
d) (Symmetric stable semigroups) Xt is a rotationally symmetric ˛-stable Lévy

process, Px.Xt 2 dy/ D gt;˛.x � y/ dy. If ˛ D 1, we get the Cauchy process.
.Xt/t>0 is spatially homogeneous.

e) (Convolution/Lévy semigroups) Xt is a Lévy process, i.e. a stochastic process
with values in Rd and with the following properties:

stationary increments: Xt �Xs � Xt�s for 0 6 s < t ;
independent increments: .Xtj �Xtj�1 /

n
jD1, 0 6 t0 < � � � < tn are independent

random variables;
stochastic continuity: limh!0P.jXhj > �/ D 0 for all � > 0.
Note that the stationary increment property entails that X0 � ı0 or X0 D 0

a.s. Since the transition semigroup is a convolution operator, .Xt/t>0 is spatially
homogeneous:

Ex u.Xt/ D Ttu.x/ D
Z

u.x C y/�t .dy/ D
Z

u.x C y/ P0.Xt 2 dy/

D E0 u.Xt C x/;

i.e. Px.Xt 2 dy/ D �t.dy � x/. All previously considered examples are Lévy
processes.

f) (Ornstein–Uhlenbeck semigroups) Let .Zt /t>0 be a Lévy process andB 2Rd�d .
The processXx

t WD etBxC R t
0
e.t�s/B dZs , x 2 Rd , is a (Lévy-driven) Ornstein–

Uhlenbeck process, which is the unique strong solution to the following
stochastic differential equation:

dXt D BXt dt C dZt ; X0 D x 2 Rd :
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A generalized Ornstein–Uhlenbeck process is the strong solution of the SDE

dVt D Vt� dX.1/t C dX.2/t ; V0 D x 2 R;

where Xt D .X
.1/
t ; X

.2/
t /, t > 0, is a two-dimensional Lévy process. Behme–

Lindner [18, Theorem 3.1] show that .Vt /t>0 is a one-dimensional Feller process.
g) (One-sided stable semigroups) Xt is an ˛-stable subordinator, i.e. an increasing

Lévy process with values in Œ0;1/.
h) (Affine semigroups) An affine process .Xt /t>0 is a Markov process that corre-

sponds to the affine semigroup .Tt /t>0 of Example 1.3. Well-known examples
are the Cox–Ingersoll–Ross process on E D Œ0;1/, the Ornstein–Uhlenbeck
process on EDRd , the process of a Heston model on ED Œ0;1/ � Rd

or the Wishart process on the more general state space of positive semidef-
inite d -dimensional matrices EDSC

d . Note that the condition to be a Feller
semigroup in Example 1.3 is equivalent to the stochastic continuity of the affine
process, cf. (1.27). ut

We have seen that Feller processes and Feller semigroups are in one-to-one
correspondence. Clearly, the semigroup property is equivalent to the Chapman–
Kolmogorov equations of the transition function, hence the Markov property of the
Feller process. The strong continuity is linked to stochastic continuity of the process.
Recall that a Markov process .Xt/t>0 is stochastically continuous, if

lim
t!0

Px.Xt 2 E n Ux/ D 0 8x 2 E; Ux open neighbourhood of x: (1.27)

If (1.27) holds uniformly for all x (in compact sets) we speak of (local) uniform
stochastic continuity. For example, any Lévy process (Example 1.17(e)) is uni-
formly stochastically continuous, see Dynkin [97, Chap. II.§5, 2.23, p. 77].

Lemma 1.18. Let .Xt/t>0 be a (temporally homogeneous) Markov process and
.Tt /t>0 be the corresponding Markov semigroup; assume that each Tt has the Feller
property, i.e. Tt W C1.Rd / ! C1.Rd /. Then the strong continuity of .Tt /t>0
entails that .Xt/t>0 is (locally uniformly) stochastically continuous. Conversely, if
.Xt/t>0 is stochastically continuous, the semigroup .Tt /t>0 is on the space C1.Rd /

weakly, hence strongly continuous.

If .Xt/t>0 is a Feller process then we denote by FX
t D �.Xs W s 6 t/ its natural

filtration. Using some standard martingale regularization arguments one proves, see
e.g. Revuz–Yor [250, Theorem III.2.7, p. 81],

Theorem 1.19. Let .Xt /t>0 be a Feller process. Then it has a càdlàg modification,
that is there exists a Feller process . QXt/t>0 such that Px.Xt D QXt/ D 1 for all
t > 0 and x 2 E , and t 7! QXt.!/ is for almost all ! right-continuous with finite
left-hand limits (càdlàg2).

2càdlàg is the acronym for the French continue à droite et limitée à gauche.
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In particular, any Lévy process (Example 1.17(e)) has a càdlàg modification.
Often the natural filtration is too small. Usually one considers the right-

continuous filtration Ft D FX
tC WD T

�>0 FX
tC� , cf. Ethier–Kurtz [100, Theorem

4.2.7, p. 169], or even larger universal augmentations, cf. Revuz–Yor [250, Proposi-
tion III.2.10, p. 93], which are automatically right-continuous. For a Lévy process it
is enough to augment FX

t by all P null sets to get a right-continuous filtration, see
Protter [243, Theorem I.31, p. 22]. We define

QFt WD
\

�2MC.E/; �.E/D1
�.Ft ;N

�/ (1.28)

where N� is the family of the null sets corresponding to the initial distribution �.
Then . QFt /t>0 is a complete and right-continuous filtration [159, Theorem 3.5.10,
p. 101] and we have the following extension of Theorem 1.19, see, for example,
Jacob [159, Theorem 3.5.14, p. 104].

Theorem 1.20. Let . QXt/t>0 be the càdlàg modification of a Feller process and
. QFt /t>0 be the filtration constructed in (1.28). Then .. QXt/t>0; . QFt /t>0/ is a strong
Markov process.

1.3 Resolvents

Let .Tt /t>0 be a Feller semigroup and denote by .pt .x; �//t>0;x2E the transition
function. By Fubini’s theorem, the integral

U˛u.x/ WD
Z 1

0

e�˛t Ttu.x/ dt;D
Z 1

0

Z
e�˛tu.y/ pt.x; dy/ dt (1.29)

exists for all ˛ > 0, x 2 E , u 2 Bb.E/, and is a linear map U˛ W Bb.E/ ! Bb.E/.

Definition 1.21. Let .Tt /t>0 be a Feller semigroup and ˛ > 0. The operator U˛
given by (1.29) is the ˛-potential operator or resolvent operator at ˛ > 0.

If we interpret U˛ as the (vector-valued) Laplace transform of the Feller
semigroup .Tt /t>0, it is not surprising that there is a one-to-one relationship between
.U˛/˛>0 and .Tt /t>0.

Theorem 1.22. Let .Tt /t>0 be a Feller semigroup. Then .U˛/˛>0 is a Feller
contraction resolvent, i.e. for all ˛ > 0 the operators ˛U˛

a) are positivity preserving and sub-Markov: 0 6 u 6 1 H) 0 6 ˛U˛u 6 1;
b) satisfy the Feller property: ˛U˛ W C1.E/ ! C1.E/;
c) are strongly continuous on C1.E/: lim˛!1 k˛U˛u � uk1 D 0;
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d) satisfy the resolvent equation

U˛u � Uˇu D .ˇ � ˛/UˇU˛u 8˛; ˇ > 0; u 2 Bb.E/I (1.30)

e) satisfy the inversion formula (or exponential formula)

Ttu D lim
n!1



n
t
Un=t

�n
u 8u 2 C1.E/; (strong limit in C1.E/): (1.31)

Proof. The properties (a)–(c) and (1.30) follow at once from the integral represen-
tation (1.29), see e.g. [284, Proposition 7.13, p. 97]. The inversion formula (1.31)
is the vector-valued real Post–Widder inversion formula for the Laplace transform.
The (non-trivial) proof can be found in Pazy [236, Theorem 1.8.3, p. 33]. ut

Since the formula (1.31) holds for general contraction semigroups, we can use it
to deduce the following result.

Corollary 1.23. Let .Tt /t>0 be a contraction semigroup onBb.E/ and .U˛/˛>0 the
corresponding family of potential operators.

a) .Tt /t>0 is positivity preserving (sub-Markov, strongly continuous) if, and only if,
.˛U˛/˛>0 is positivity preserving (sub-Markov, strongly continuous);

b) Tt W C1.E/ ! C1.E/ for all t > 0 if, and only if, U˛ W C1.E/ ! C1.E/ for
all ˛ > 0.

Note that the analogue of property (b) for Cb also holds, but it fails for the strong
Feller property: The shift semigroup Ttu.x/ D u.x C t`/ is not a strong Feller
semigroup while its resolvent U˛u.x/ D R 1

0
e�t˛ u.x C t`/ dt is a convolution

operator which maps Bb.E/ to Cb.E/.

1.4 Generators of Feller Semigroups and Processes

Let .Tt /t>0 be a Feller semigroup. If we understand the semigroup property

TtCs D TtTs and T0 D id

as an operator-valued functional equation it is an educated guess to expect that
Tt is some kind of exponential etA where A is a suitable operator. For matrix
(semi-)groups this is an elementary exercise. Having in mind the classical functional
equation, we know that we have to assume some kind of boundedness and
continuity; in fact, strong continuity of .Tt /t>0 will be enough. The key issue is the
question how to define Tt as an “exponential” if A is an unbounded operator. This
problem was independently solved by Hille and Yosida in 1948, and we refer to any
text on operator semigroups for a complete description, for example [78, 236, 354]
or [150] for a probabilistic perspective. Here we concentrate on Feller semigroups
as in [100] or [284].
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Definition 1.24. A Feller generator or (infinitesimal) generator of a Feller semi-
group .Tt /t>0 or a Feller process .Xt/t>0 is a linear operator .A;D.A// defined by

D.A/ WD
�

u 2 C1.E/ W lim
t!0

Ttu � u

t
exists as uniform limit

	

;

Au WD lim
t!0

Ttu � u

t
8u 2 D.A/:

(1.32)

In general, .A;D.A// is an unbounded operator which is densely defined, i.e. D.A/
is dense in C1.E/, and closed

.un/n>1 � D.A/; lim
n!1 un D u;

.Aun/n>1 is a Cauchy sequence

)

H)
(

u 2 D.A/ and

Au D lim
n!1Aun:

(1.33)

Example 1.25. In general, it is difficult to determine the exact domain of the
generator. For the semigroups from Example 1.3 we find

a) (Shift semigroup) Au.x/ D ` � ru.x/ where ` 2 Rd and r is the d -dimensional
gradient. We have C11.Rd / � D.A/.

b) (Poisson semigroup) Au.x/ D �.u.x C `/ � u.x// with � > 0; ` 2 Rd . Since
this is a bounded operator, D.A/ D C1.Rd /.

c) (Heat/Brownian semigroup) Au.x/ D 1
2

u.x/ where 
 is the d -dimensional

Laplacian on Rd . It is easy to see that C21.Rd / � D.A/. If d D 1, we have
C21.R/ D D.A/ (cf. [284, Example 7.20, p. 102]). If d > 2, the inclusion is
strict, cf. Günter [129, Chap. II.§14, pp. 82–83] or [128, Chap. II.§14, pp. 85–86]
for a concrete example and Dautray–Lions [82, Remark 5, pp. 290–291] for an
abstract argument. In general, u 2 D.A/ if, and only if, u 2 C1.Rd / and 
u
exists in the sense of Schwartz’ distributions (i.e. as generalized function) and is
represented by a C1-function, cf. Itô [149, Sect. 3.§2, pp. 92–96].

d) (Symmetric stable semigroups) If ˛ 2 .0; 2/ then Au.x/ D �.�
/˛=2u.x/. The
fractional power of the Laplacian is, at least for u 2 C21.Rd / � D.A/, given by

Au.x/ D c˛

Z

Rd nf0g
�
u.x C y/� u.x/ � ru.x/ � y
.jyj/� dy

jyj˛Cd (1.34)

where c˛ D ˛2˛�1��d=2	
�
˛Cd
2

�ı
	

�
1 � ˛

2

�
and for some truncation function


 2 BbŒ0;1/ such that 0 6 1 � 
.s/ 6 �min.s; 1/ (for some � > 0) and s
.s/
is bounded.

Since lim�!0

R
jyj>� y
.jyj/ dy D 0, we can rewrite (1.34) under the integral

without ru.x/ � y
.jyj/ as a Cauchy principal value integral, if ˛ 2 Œ1; 2/, and
as a bona fide integral, if ˛ 2 .0; 1/.

To get more details on the domain D.A/ we use for ˛ 2 .0; 1/ and a function
u 2 C21.Rd / an alternative representation of the generator, see Sato [267,
Example 32.7, p. 217]
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Au.x/ D c

Z

Sd

Z 1

0

u.x C r�/� u.x/

r1C˛
dr �d .d�/ (1.35)

where �d is the uniform measure on the unit sphere Sd � Rd . For non-integer
ˇ > 0, letCˇ.Rd / denote the Hölder space of bˇc-times differentiable functions
whose bˇcth derivative is Hölder continuous with index ˇ�bˇc; as usual, k�kCˇ
denotes the corresponding norm.

Splitting the inner integral in (1.35) yields for u 2 C21.Rd / \ Cˇ.Rd /,
1 > ˇ > ˛,

kAuk1 6 c.kukCˇ C kuk1/; (1.36)

and this shows that we have C1.Rd / \ C˛C�.Rd / � D.A/ for all � > 0.
For ˛ > 1 a similar argument yields the same statement. See also [16, Remark

5.3] for an extension to stable-like processes in the sense of Bass.
e) (Convolution/Lévy semigroups) The generator of a general Lévy semigroup is,

for u 2 C21.Rd / � D.A/, of the form

Au.x/ D l �ru.x/C1

2
divQru.x/C

Z

Rdnf0g

�
u.xCy/�u.x/�ru.x/�y
.jyj/� �.dy/

(1.37)

where l 2 Rd , Q 2 Rd�d positive semidefinite and � 2 MC.Rd / such thatR
Rdnf0g min.jyj2; 1/ �.dy/ < 1; 
 is a truncation function as in the previous

example. For a proof we refer to Sato [267, Theorem 31.5, p. 208] or to
Theorem 2.21 and Corollary 2.22 below.

f) (Ornstein–Uhlenbeck semigroups) Let A be the operator given by (1.37), and let
B 2 Rd�d . Then, the generator of the Ornstein–Uhlenbeck semigroup is, for
every u 2 C21.Rd / � D.A/, of the form

Lu.x/ D Au.x/CBx � ru.x/:

For a proof we refer to [268, Theorem 3.1].
The generator of the generalized Ornstein–Uhlenbeck semigroup, cf. Exam-

ple 1.17(f), is defined for u 2 C2
c .R/ by

Au.x/ D .�1x C �2/u
0.x/C 1

2

�
x2�211 C 2x�12 C �222

�
u00.x/C

C
“

R2nf0g



u.x C y1x C y2/� u.x/� u0.x/.y1x C y2/1Œ0;1�.jxj/� �.dy1; dy2/
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where

��
�1
�2

�

;

�
�211 �12
�12 �

2
22

�

; �.dy1; dy2/

�

is the Lévy triplet of the driving Lévy

process Xt 2 R2.
Moreover, fu 2 C21.R/ W xu0.x/; x2u00.x/ 2 C1.R/g � D.A/ and the test

functionsC1
c .R

d / are an operator core. For a proof we refer to Behme–Lindner
[18, Theorem 3.1]. Using the technique of Theorem 3.8, in particular the remark
following its statement, we can get a similar result with a different proof relying
on the symbol, cf. Example 3.34(b).

g) (Affine semigroups) The generator of an affine semigroup exists if, and only if,
.Tt /t>0 is regular, i.e. if @C

@t
Tt e

��x jtD0 exists for all .x; �/ 2 E � .Cm� � iRd�m/
and defines a function which is continuous at � D 0 for all x 2 E; equivalently,
F.�/ D @C

@t
�.t; �/jtD0 and R.�/ D @C

@t
 .t; �/jtD0 exist for all � 2 Cm� � iRd�m

and are continuous at � D 0. Regularity follows from the stochastic continuity
of the corresponding affine process or from the condition for being Feller in
Example 1.3, cf. Keller-Ressel–Schachermayer–Teichmann [176, Theorem 5.1]
or [177, Theorem 3.10] for general state spaces. For u 2 C2

c .E/ the generator is
given by

Au.x/ D l � ru.x/C 1

2
divQru.x/C

Z

Enf0g

�
u.x C y/� u.x/ � ru.x/ � 
.y/��.dy/

C
mX

jD1

xj

2

6
4
1

2
divQjru.x/C

Z

Enf0g

�
u.x C y/� u.x/ � ru.x/ � 
j .y/� �j .dy/

3

7
5

C
dX

jD1

xj l
j � ru.x/;

where x D .x1; : : : ; xd / 2 E , l; lj 2 Rd for j D 1; : : : ; d , withQ;Qj 2 Rd�d
positive semidefinite matrices, �; �j 2 MC.E/ and 
; 
j are truncation
functions for j D 1; : : : ; m. These parameters are subject to further restrictions,
cf. Duffie–Filipović–Schachermayer [91, Definition 2.6, p. 991].

The domain of the generator is strictly larger than C2
c .E/ as it contains all

functions u 2 C21.E/ which satisfy certain decay conditions at infinity, cf.
Duffie–Filipović–Schachermayer [91, Sect. 8, p. 1026] for details. ut
By definition, the generatorA is the strong (right-)derivative of Tt at t D 0. Using

the semigroup property one can show the following analogue of the fundamental
theorem of differential calculus.

Lemma 1.26. Let .A;D.A// be the generator of the Feller semigroup .Tt /t>0.
Then



1.4 Generators of Feller Semigroups and Processes 21

Ttu � u D A

Z t

0

Tsu ds 8u 2 C1.Rd /

D
Z t

0

ATsu ds 8u 2 D.A/

D
Z t

0

TsAu ds 8u 2 D.A/:

(1.38)

A straightforward calculation using the formula (1.29) for the ˛-potential operator
(e.g. [284, Theorem 7.13(f), pp. 97–98]) shows

Lemma 1.27. Let .A;D.A// be a Feller generator. Then for each ˛ >0 the
operator ˛ � A has a bounded inverse which is just the ˛-potential operator U˛.
In particular, D.A/ D U˛.C1.E// independently of ˛ > 0.

In other words, the lemma shows that the equation

˛u � Au D f

has the solution u D .˛�A/�1f D U˛f: Therefore .U˛/˛>0 is called the resolvent.
Because of the positivity of a Feller semigroup we find for any u 2 D.A/ which

admits a global maximum umax D u.x0/ D supy2E u.y/

Ttu.x0/� u.x0/ 6 Ttumax � u.x0/ 6 umax � u.x0/ D 0:

This proves the first part of the following lemma. The second part can be found in
[284, Lemma 7.18, p. 101] and [100, Lemma 1.2.11, p. 16].

Lemma 1.28. A Feller generator .A;D.A// satisfies the positive maximum prin-
ciple

u 2 D.A/; u.x0/ D sup
y2E

u.y/ > 0 H) Au.x0/ 6 0: (1.39)

Conversely, if the linear operator .A;D/, where D � C1.E/ is a dense sub-
space, satisfies the positive maximum principle, then .A;D/ is dissipative, i.e.

k�u � Auk1 > �kuk1 8� > 0: (1.40)

In particular, .A;D/ has a closed extension .A;D.A//, and this extension satisfies
again the positive maximum principle.

For the Laplace operator (1.39) is quite familiar: At a (global) maximum the second
derivative is negative.
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Remark 1.29. The positive maximum principle can also be seen as the limiting case
(for p ! 1) of the notion of an Lp.m/-Dirichlet operator. Let .A.p/;D.A.p///
be the generator of a strongly continuous, sub-Markovian semigroup .T .p/t /t>0 in
Lp.m/ for some p > 1. Then A.p/ is an Lp.m/-Dirichlet operator, i.e.

Z

E

..u.x/� 1/C/p�1A.p/u.x/m.dx/ 6 0 8u 2 D.A/ (1.41)

and this condition is necessary and sufficient for the Markov property of the semi-
group, cf. [281, Theorem 2.2]. If A.p/ generates for every p>p0 a sub-Markovian
semigroup and if there is a sufficiently rich set D � D.A.p// (for all p > p0) such
that A.p/.D/ consists of lower semicontinuous and bounded functions, then (1.41)
becomes as p ! 1 the positive maximum principle (1.39), cf. [281, Theorem
2.7]. The notion of a Dirichlet operator in L2 is due to Bouleau–Hirsch [49], for the
spaces Lp it was introduced by Jacob [157, Sect. 4.6, pp. 364–382]. ut

IfE � Rd , the positive maximum principle will have consequences for the struc-
ture of the generator, cf. Theorem 2.21 below. For the time being, we are more
interested in the consequences the positive maximum principle imposes upon the
semigroup: It allows to adapt the classical Hille–Yosida theorem, see e.g. Ethier–
Kurtz [100, Theorem 1.2.12, p. 16], to the context of Feller semigroups, cf. [100,
Theorem 4.2.2, p. 165].

Theorem 1.30 (Hille–Yosida–Ray). Let .A;D/ be a linear operator on C1.E/.
.A;D/ is closable and the closure .A;D.A// is the generator of a Feller semigroup
if, and only if,

a) D � C1.E/ is dense;
b) .A;D/ satisfies the positive maximum principle;
c) .� � A/.D/ � C1.E/ is dense for some (or all) � > 0.

Proof. The necessity of the conditions (a) and (c) follows from the Hille–Yosida
theorem, while condition (b) is the first half of Lemma 1.28.

By the second part of Lemma 1.28, the condition (b) shows that .A;D/ is
dissipative. Then the Hille–Yosida theorem ensures that the closure of .A;D/
generates a strongly continuous contraction semigroup onC1.E/. Using once again
condition (b), we see now that the associated resolvent, hence the semigroup, is
positive, cf. [284, Lemma 7.18, p. 101]. ut
Usually it is a problem to describe the domain D.A/ of a Feller generator.
The following result, due to Reuter and Dynkin, is often helpful if we want to
determine the domain of the generator; our formulation follows Rogers–Williams
[255, Lemma III.4.17, p. 237] and [284, Theorem 7.15, p. 100].

Lemma 1.31 (Dynkin; Reuter). Let .A;D.A// be the infinitesimal generator of a
Feller semigroup, and assume that .G;D.G//, D.G/�C1.E/, extends .A;D.A//,
i.e. D.A/ � D.G/ and GjD.A/ D A. If for all u 2 D.G/
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Gu D u H) u D 0; (1.42)

then .A;D.A// D .G;D.G//.

Since the positive maximum principle or dissipativity guarantee (1.42), Lemma 1.31
tells us that a Feller generator is maximally dissipative, i.e. that it has no proper
dissipative extension.

Recall that the weak limit of a family .ut /t>0 � C1.E/ is defined by

weak- lim
t!0

ut D u ” 8� 2 Mb.E/ W lim
t!0

Z
ut d� D

Z
u d�:

Definition 1.32. Let .Tt /t>0 be a Feller semigroup. The pointwise (infinitesimal)
generator is a linear operator .Ap;D.Ap// defined by

D.Ap/ WD
�

u 2 C1.E/
ˇ
ˇ
ˇ 9g 2 C1.E/ 8x 2 E W g.x/ D lim

t!0

Ttu.x/ � u.x/

t

	

;

Apu.x/ WD lim
t!0

Ttu.x/ � u.x/

t
8u 2 D.Ap/; x 2 E: (1.43)

The weak (infinitesimal) generator is a linear operator .Aw;D.Aw// defined by

D.Aw/ WD
�

u 2 C1.E/
ˇ
ˇ
ˇ 9g 2 C1.E/ W g D weak- lim

t!0

Ttu � u

t

	

;

Awu WD weak- lim
t!0

Ttu � u

t
8u 2 D.Aw/: (1.44)

Since strong convergence entails weak convergence and since weak convergence in
C1.E/ is actually bounded pointwise convergence, it is not hard to see that

D.A/ � D.Aw/ � D.Ap/ and A D AwjD.A/ D ApjD.A/:

From the theory of operator semigroups we know that .A;D.A// D .Aw;D.Aw//,
cf. Pazy [236, Theorem 2.1.3, p. 43], and we even get .A;D.A// D .Ap;D.Ap//

if we use Davies’ proof of the “weak equals strong” theorem [78, Theorem 1.24,
p. 17] and the fact that finite linear combinations of Dirac measures are vaguely
(i.e. weak-*) dense in Mb.E/.

Alternatively, we can use the positive maximum principle. Clearly .Ap;D.Ap//
extends .A;D.A//, and Ap satisfies the positive maximum principle. By (the
analogue of) Lemma 1.28 we see that Ap is dissipative and from Lemma 1.31 we
conclude that D.A/ D D.Ap/. This proves the following result.
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Theorem 1.33. Let .Tt /t>0 be a Feller semigroup generated by .A;D.A//. Then

D.A/ D
�

u 2 C1.E/
ˇ
ˇ
ˇ 9g 2 C1.E/ 8 x 2 E W g.x/ D lim

t!0

Ttu.x/ � u.x/

t

	

:

(1.45)

In particular, .A;D.A// D .Aw;D.Aw// D .Ap;D.Ap//.

Operator Cores. Let .A;D.A// be a densely defined, closed linear operator and
D � D.A/ be a dense subset. If D determines A in the sense that the closure of
.A;D/ is .A;D.A//, then D is called an (operator) core. In other words, D is an
operator core if, and only if,

8u 2 D.A/ 9.un/n>1 � D W lim
n!1

�ku � unk1 C kAu �Aunk1
� D 0: (1.46)

Usually it is hard to determine operator cores, and the following abstract criterion
often comes in handy.

Lemma 1.34. Let .Tt /t>0 be a Feller semigroup, .U˛/˛>0 the resolvent, .A;D.A//
the generator andD0 � D � D.A/ dense subsets ofC1.E/. Then D is an operator
core for .A;D.A// if one of the following conditions is satisfied.

a) Tt.D0/ � D for all t > 0.
b) U˛.D0/ � D for some ˛ > 0.

Proof. The first condition is a standard result from semigroup theory, see e.g. [100,
Proposition 1.3.3, p. 17] or Davies [78, Theorem 1.9, p. 8]. The following simple
proof for the second condition is taken from [9, proof of Theorem 4.4]. Fix any
u 2 D.A/ and set g WD ˛u � Au. Since D0 is dense in C1.E/, there exists a
sequence .gn/n>1 � D0 converging to g. Then, for un WD U˛gn,

.un; Aun/ D .U˛gn; ˛un � gn/
uniformly�����!
n!1 .u; ˛u � g/ D .u; Au/:

By assumption, un 2 U˛.D0/ � D, and this shows that D is a core. ut

The Full Generator. Sometimes it is useful to extend the notion of a generator
even further. The starting point is the observation that d

dt Tt D TtA on D.A/ or

Ttu.x/� u.x/ D
Z t

0

TsAu.x/ ds 8x 2 E; u 2 D.A/ (1.47)

see Lemma 1.26. This motivates the following definition, cf. Ethier–Kurtz [100,
pp. 23–24].
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Definition 1.35. Let .Tt /t>0 be a Feller semigroup. The full generator is the set

OAb WD
�

.f; g/ 2 Bb.E/ � Bb.E/ W Ttf � f D
Z t

0

Tsg ds

	

: (1.48)

By (1.47), f.u; Au/ W u 2 D.A/g � OAb . Observe that the full generator need not be
single-valued, i.e. for any f 2 Bb.E/ there may be more than one g 2 Bb.E/ such
that .f; g/ 2 OAb: For the shift semigroup Ttf .x/ WD f .x C t/ on Bb.R/ one has
.0; g/ 2 OAb for each g 2 Bb.R/ which is Lebesgue almost everywhere zero. The
full generator is linear, dissipative and closed with respect to bounded pointwise
limits bp- limn!1.fn; gn/ D .f; g/. A thorough discussion of the full generator
can be found in Ethier–Kurtz [100, Sect. 1.5, pp. 22–28]. The full generator is most
useful in connection with the martingale problem. At this point we restrict ourselves
to the following fact, cf. [100, Proposition 4.17, p. 162].

Theorem 1.36. Let .Xt /t>0 be a Feller process (or a Markov process) with full
generator OAb . Then

Mt WD f .Xt / � f .X0/ �
Z t

0

g.Xs/ ds 8.f; g/ 2 OAb (1.49)

is a martingale with respect to the natural filtration FX
t WD �.Xs W s 6 t/.

Taking expectations in (1.49), we see that Ex Mt D 0 for all x 2 E; this is just
(1.47), if f D u 2 D.A/ and g D Au.

Theorem 1.36 allows a stochastic characterization of the full generator OAb .
Corollary 1.37. Let .Xt/t>0 be a Feller process (or a strong Markov process) with
full generator OAb , denote by

M
Œf;g�
t D f .Xt /� f .X0/ �

Z t

0

g.Xs/ ds; t > 0;

and write FX
t D �.Xs W s 6 t/ for the natural filtration of the process .Xt/t>0.

Then

OAb D
n
.f; g/ 2 Bb.E/ �Bb.E/ W �

M
Œf;g�
t ;FX

t

�
t>0 is a martingale

o
:

Sometimes it is important to consider unbounded measurable functions f; g.
While it is, in general, not clear how to define Ttf D Ex f .Xt / for an unbounded
function f , the expression f .Xt / is well-defined, and the stochastic version of OAb
can be extended to this situation. We set

OA D
n
.f; g/ 2 B.E/ � B.E/ W �

M
Œf;g�
t ;FX

t

�
t>0 is a local martingale

o
(1.50)

and, by a stopping argument and the strong Markov property of .Xt /t>0, we see that
OAb D OA \ .Bb.E/ �Bb.E//.
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Note that the full generator OA need not be single-valued, i.e. there might be two
(or more) functions g1 ¤ g2 such that .f; g1/; .f; g2/ 2 OA. Therefore we avoid the
notion of extended generator which is sometimes found in the literature, e.g. Davis
[80, (14.15), p. 32] or Meyn–Tweedie [226]

OD.A/ WD ˚
f 2 B.E/ W 9Š g 2 B.E/; .f; g/ 2 OA�

: (1.51)

Dynkin’s Characteristic Operator. The following extension is due to Dynkin, see
[97, Chap. V.§§3–4, pp. 140–149], our presentation follows [284, Sect. 7.5, pp. 103–
109]. Let .Xt/t>0 be a Feller process, denote by FX

t D �.Xs W s 6 t/ the natural
filtration, and by

�xr WD inf
˚
t > 0 W Xt 2 B

c
.x; r/

�
; r > 0; x 2 E (1.52)

the first hitting time of the open set E n B.x; r/ (this is always a stopping time for
FX
tC). Note that

�x0 D infft > 0 W Xt ¤ xg; x 2 E:

Using the strong Markov property of a Feller process one can show, cf. [284,
Theorem A.26, p. 350], that

Px.�x0 > t/ D e��.x/t for some �.x/ 2 Œ0;1�; x 2 E:

This allows us to characterize points in the state space:

x 2 E is called

8
ˆ̂
<

ˆ̂
:

an exponential holding point; if 0 < �.x/ < 1;

an instantaneous point; if �.x/ D 1;

an absorbing point or a trap; if �.x/ D 0:

(1.53)

If x is not absorbing, then there is some r > 0 such that Ex �xr < 1, and the
following definition makes sense.

Definition 1.38. Let .Xt/t>0 be a Feller process and denote by �xr the first hitting
time of the set B

c
.x; r/. Dynkin’s characteristic operator is the linear operator

defined by

Au.x/ WD

8
<̂

:̂

lim
r!0

Ex u.X�xr / � u.x/

Ex �xr
; if x is not absorbing;

0; if x is absorbing;
(1.54)

on the set D.A/ consisting of all u 2 Bb.E/ such that the limit in (1.54) exists for
each non-absorbing point x 2 E .
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From (1.49) and the optional stopping theorem for martingales we easily derive
Dynkin’s formula

Ex u.X�/� u.x/ D Ex
Z �

0

Au.Xs/ ds; u 2 D.A/ (1.55)

where � is a stopping time such that Ex � <1. If we use � D �xr , this formula
allows us to show that the characteristic operator .A;D.A// extends the generator
.A;D.A//, see Dynkin [97, Chap. V.§3, Theorem 5.5, pp. 142–143] or [284,
Theorem 7.26, p. 107].

Theorem 1.39. Let .Xt /t>0 be a Feller process with generator .A;D.A// and
characteristic operator .A;D.A//. Then A is an extension of A and AjD D A

where D D fu 2 D.A/\ C1.E/ W Au 2 C1.E/g.

As an application of the characteristic operator we can characterize the structure
of the generators of Feller processes in Rd with continuous sample paths. A linear
operator L W D.L/ � Bb.R

d / ! Bb.R
d / is called local, if Lu.x/ D Lw.x/

whenever u;w 2 D.L/ coincide in some neighbourhood of the point x, i.e.
ujB.x;�/ D wjB.x;�/.
Theorem 1.40. Let .Xt/t>0 be a Feller process with values in Rd and continuous
sample paths. Then the generator .A;D.A// is a local operator.

If the test functions C1
c .R

d / � D.A/ are in the domain of the generator we can
use a result due to Peetre [237] to see that local operators are differential operators.

Theorem 1.41 (Peetre). Let L W C1
c .R

d / ! Ck
c .R

d / be a linear operator where

k > 0 is fixed. If supp Lu � supp u, then Lu D P
˛2Nd

0
a˛.�/ @j˛j

@x˛
u with finitely

many, uniquely determined distributions a˛ 2 D0.Rd / (i.e. the topological dual of
C1
c .R

d /) which are locally represented by functions of class Ck.Rd /.

If we apply this to Feller generators, we get

Corollary 1.42. Let .Xt/t>0 be a Feller process with continuous sample paths and
generator .A;D.A//. If C1

c .R
d / � D.A/, then A is a second-order differential

operator.

Proof. By Theorem 1.41, A is a differential operator. Since A has to satisfy the
positive maximum principle, A is at most a second order differential operator. This
follows from the fact that we can find test functions � 2 C1

c .R
d / such that x0 is a

global maximum while @j @k@l�.x0/ has arbitrary sign and arbitrary modulus. ut
Recall the so-called Dynkin–Kinney criterion which guarantees the continuity

of the trajectories of a stochastic process:

8� > 0; r > 0 W lim
h!0

sup
t6h

sup
jxj6r

1

h
Px.r > jXt � xj > �/ D 0; (1.56)
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see Dynkin [96, Kapitel 6.§5, Satz 6.6, p. 139].3 In fact, the Dynkin–Kinney
criterion (1.56) is equivalent to the locality of the generator, cf. [284, Theorem 7.30,
p. 108].

Corollary 1.43. Let .Xt /t>0 be a Feller process such that the test functions
C1
c .R

d / are in the domain of the generator .A;D.A//. Then .A; C1
c .R

d // is a
local operator if, and only if, the Dynkin–Kinney criterion (1.56) holds.

1.5 Feller Semigroups and Lp-Spaces

A Feller semigroup .Tt /t>0 is, a priori, defined on the bounded measurable
functions Bb.E/ or the continuous functions vanishing at infinity C1.E/. We will
briefly discuss some standard situations which allow to extend Tt jCc.E/ onto a space
of integrable functions. Throughout this section we assume that .E;B.E/;m/ is a
measure space such that the m is a positive Radon measure with full topological
support, i.e. for any open set U � E we have m.U / > 0.

We assume that the operators Tt are m-symmetric in the following sense

Z

E

Ttu.x/ � w.x/m.dx/ D
Z

E

u.x/ � Ttw.x/m.dx/ 8u;w 2 Cc.E/: (1.57)

If jwj 6 1, we have jTtwj 6 Tt jwj 6 Tt1 6 1, and so

kTtukL1.m/ D sup
w2Cc.E/jwj61

ˇ
ˇ
ˇ
ˇ

Z

E

Ttu � w dm

ˇ
ˇ
ˇ
ˇ 6 sup

w2Cc.E/jwj61

Z

E

juj � jTtwj dm 6 kukL1.m/:

Since Cc.E/ is dense in L1.m/ this shows that Tt jCc.E/ has an extension T .1/t such

that T .1/t W L1.m/ ! L1.m/ is a contraction operator. It is easy to see that .T .1/t /t>0
is a strongly continuous sub-Markovian contraction semigroup on L1.m/.

To proceed, we need a version of the Riesz convexity theorem which we take
from Butzer–Berens [57, Sect. 3.3.2, pp. 187–191].

3In [96] the criterion reads

8� > 0; r > 0 W lim
h!0

sup
t6h

sup
jxj6r

1

h
Px.jXt � xj > �/ D 0:

A careful check of the proof reveals that (1.56) is sufficient. Alternatively, if we already have a
càdlàg modification, we can use the simplified argument in [271, Theorem 2]: Just observe in
that proof the following identity fjXt � Xs j > �; supu6T jXuj 6 rg D f2r > jXt � Xs j > �;

supu6T jXuj 6 rg.
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Theorem 1.44 (M. Riesz). Let .E;B.E/; �/ and .F;B.F /; �/ be two �-finite
measure spaces, 1 6 p 6 q 6 1 and assume that

T W Lp.�/C Lq.�/ ! Lp.�/C Lq.�/

is a bounded linear operator. Then T W Lr.�/ ! Lr.�/ is bounded for any
r 2 Œp; q�, and we have the following estimate for the operator norm

kT kLr .�/!Lr .�/ 6 kT k�Lp.�/!Lp.�/�kT k1��Lq.�/!Lq.�/ if
1

r
D 1 � �

p
C�

q
; � 2 Œ0; 1�:

Using p D 1 and the L1-semigroup .T .1/t /t>0 as the left end-point and q D 1 and
the Feller semigroup .Tt /t>0 as the right end-point, we see that Tt jCc.E/ extends to
all intermediate spaces Lp.m/, 1 < p < 1 in such a way that the extensions yield
strongly continuous, sub-Markovian contraction semigroups .T .p/t /t>0 in Lp.m/.

The symmetry assumption (1.57) is quite restrictive and we can relax it in the
following way. Let .Tt /t>0 be a Feller semigroup and denote by T �

t the formal
adjoint of Tt with respect to the space L2.m/, i.e. the linear operator defined by

Z

E

Ttu.x/ � w.x/m.dx/ D
Z

E

u.x/ � .T �
t w/.dx/ 8u;w 2 Cc.E/: (1.58)

Note that T �
t w 2 Mb.E/ since the bounded Radon measures Mb.E/ are the

topological dual of C1.E/. If we know that

T~
t WD T �

t jL1.m/ maps L1.m/ into itself,

then the calculations can be modified under the assumption that T~
t is

sub-Markovian, i.e. 0 6 T~
t u 6 1 for all u 2 L1.m/ such that 0 6 u 6 1.

Lemma 1.45. Let .Tt /t>0 be a Feller semigroup and assume that the operators Tt
are m-symmetric or that the L2.m/-adjoints T~

t WD T �
t jL1.m/ are sub-Markovian.

Then .Tt /t>0 has for every 1 6 p < 1 an extension .T .p/t /t>0 to a strongly
continuous, positivity preserving, sub-Markovian contraction semigroup onLp.m/.

If the domain D.A/ of the Feller generator A contains a subset D which
is dense both in C1.E/ and L1.m/, one can show that the Lp.m/-generators
.A.p/;D.A.p/// coincide on this set with AjD. A proof for the m-symmetric case
and p D 2 is given in Proposition 3.15.

Remark 1.46. There are good reasons to consider semigroups in an Lp-setting and
not only in L2. In general, Lp-theories lead to better regularity and embedding
results than the corresponding L2-theory; moreover, one has much better control
on capacities. Therefore, Lp-semigroups have been studied by Fukushima [114];
building on earlier work of Malliavin, see [215, Part II] for a survey, .r; p/-capacities
were studied by Fukushima and Kaneko [116] in order to get a better grip on
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exceptional (capacity-zero) sets. These are also discussed in [165, 166]. For further
regularity results using Paley–Littlewood theory, we refer to Stein [307]. If we
happen to know that .Tt /t>0 is an analytic semigroup on all spaces Lp , standard
results from semigroup theory tell us that Tt .Lp/ � T

k>1D..�A/k/ and, should
we have Sobolev embeddings, then

T
k>1D..�A/k/ can be embedded into spaces

of continuous and differentiable functions, see [167, Sect. 2]. A concrete application
to gradient perturbations is given in [349, Theorem 1.1 and its proof]. Finally, many
results on functional inequalities are set in Lp spaces, see e.g. Wang [340, Chap. 5].
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