
Chapter 6
Random Planar Geometry

What is a typical random surface? This question has arisen in the theory of two-
dimensional quantum gravity where discrete triangulations have been considered
as a discretization of a random continuum Riemann surface. As we will see the
typical random surface has a geometry which is very different from the one of the
Euclidean plane.

6.1 Uniform Infinite Planar Triangulation (UIPT)

A planar map is an embedding of a finite connected planar graph into the two-
dimensional sphere up to continuous deformations that preserve the orientation. We
deal with planar maps because the little additional structure they bear compared to
planar graphs enable us to do combinatorics with them more easily. A planar map
is called a triangulation if all its faces have degree three and is called rooted if it has
a distinguished oriented edge. We denote Tn the set of all rooted triangulations with
n faces.

The following theorem defines the model of Uniform Infinite Planar Triangula-
tion (UIPT):

Theorem 6.1 ([AS03]). Let Tn be uniformly distributed over Tn and let .Tn; �/

(with a slight abuse of notation) be its associated graph rooted at the origin of the
root edge of Tn then we have the following convergence in distribution with respect
to dloc

.Tn; �/ �!
n!1 .T1; �/; (6.1)
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54 6 Random Planar Geometry

where .T1; �/ is a random infinite rooted planar graph called the Uniform Infinite
Planar Triangulation (UIPT).1

The geometry of UIPT is very interesting and far from the Euclidean one. For
examples, Angel showed [Ang03] that the typical volume of a ball of radius r

in UIPT is of order r4. This random graph (and its family) has been extensively
studied over the last ten years, see the works of Angel and Schramm, Chassaing and
Durhuus, Krikun, Le Gall and Ménard: : : See also impressive work of Le Gall and
Miermont on a different but related point of view: Scaling limits of random maps.

Remark 6.2. UIPT is in fact a stationary and reversible random graph, hence its
biased version by deg.�/�1 is unimodular. See [AS03].

Unfortunately (or perhaps fortunately?) basic questions about UIPT are still
open. Here is the most basic one:

Conjecture 6.3 ([AS03]). The simple random walk on UIPT is recurrent.

Added in proofs: just solved by Gurel-Gurevich and Nachmias [GG13].
In [BC13] it is shown that the simple random walk on the related Uniform Infinite

Planar Quadrangulation (UIPQ) is subdiffusive with exponent less that 1=3.

Conjecture 6.4 ([BC13]). The simple random walk fXngn�0 on the UIPT is subd-
iffusive with exponent 1=4, i.e.

dgr.X0; Xn/ � n1=4:

6.2 Circle Packing

Since random triangulations and UIPT are planer graphs, it is very tempting to try
and understand their conformal structures. The theory of Circle Packing is well-
suited for this purpose.

A circle packing on the sphere is an arrangement of circles on a given surface
(in our case the sphere) such that no overlapping occurs and so that all circles touch
another. The most standard question regarding circle packing is there density, i.e.,
the portion of surface covered by them. The contact graph of a circle packing is
defined to be the graph with set of vertices which correspond to the set of circles
and an edge between two circles if and only if they are tangent.

Let T S
n be the set of all triangulations of the sphere S2 with n faces with no loops

or multiple edges. We recall the well known circle packing theorem (see Wikipedia,
[HS95]):

1The real theorem actually deals directly with maps.
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Theorem 6.5 (Circle Packing Theorem). If T is a finite triangulation without
loops or multiple edges then there exists a circle packing P D fPcgc2C in the
sphere S2 such that the contact graph of P is T . In addition this packing is unique
up to Möbius transformations.

Recall that the group of Möbius transformations z 7! azCb
czCd

, where a; b; c; d 2 C

and ad � bc ¤ 0 can be identified with PSL2.C/ and that it acts transitively on
triplets .x; y; z/ of S2. The circle packing enables us to take a “nice” representation
of a triangulation T 2 Tn, nevertheless the non-uniqueness is somehow disturbing
because to fix a representation we can, for example, fix the images of three vertices
of a distinguished face of T . This specification breaks all the symmetry, because
sizes of some circles are chosen arbitrarily. Here is how to proceed:

The action on S2 of an element � 2 PSL2.C/ can be continuously extended to
B3 WD f.x; y; z/ 2 R

3; x2 C y2 C z2 � 1g: this is the Poincaré-Beardon extension.
We will keep the notation � for transformations B3 ! B3. The action of PSL2.C/

on B3 is now transitive on points. The group of transformations that leave 0 fixed is
precisely the group SO2.R/ of rotations of R3.

Theorem 6.6 (Douady-Earle). Let � be a measure on S2 such that #supp.�/ � 2.
Then we can associate to � a “barycenter” denoted by Bar.�/ 2 B3 such that for
all � 2 PSL2.C/ we have

Bar.��1�/ D �.Bar.�//:

We can now describe the renormalization of a circle packing. If P is a circle
packing associated to a triangulation T 2 T S

n , we can consider the atomic measure
�P formed by the Dirac’s at tangency point of the disks in P

�P WD 1

#tangency points

X

x is a tangency
point

ıx:

By transitivity there exists a conformal map � 2 PSL2.C/ such that Bar.��1�P /D0.
The renormalized circle packing is by Definition �.P /, this circle packing is unique
up to rotation of SO2.R/, we will denote it by PT . This constitutes a canonical
discrete conformal structure for the triangulation.

Here are some open problems regarding circle packing on the sphere:

Open problem 6.7. If Tn is a random variable distributed uniformly over the set
T S

n , then the variable �PTn
is a random probability measure over S2 seen up to

rotations of SO2.R/. By classical arguments there exist weak limits �1 of �PTn
.

1. (Schramm) Determine coarse properties (invariant under SO2.R/) of �1, e.g.
what is the dimension of the support? Start by showing singularity.
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2. Uniqueness (in law) of �1? In particular can we describe �1 in terms of the
Gaussian Free Field? Is it exp..8=3/1=2GFF /, does KPZ hold? See [dup] for
more details.

3. The random measure �1 can come together with d1 a random distance on S2.
Can you describe links between �1 and d1? Does one characterize the other?

6.3 Stochastic Hyperbolic Infinite Quadrangulation (SHIQ)

Recently Guth et al. [GPY11] studied pants decomposition of random surfaces
chosen uniformly in the moduli space of hyperbolic metrics equipped with the Weil-
Peterson volume form and a combinatorial analogue obtained by randomly gluing
Euclidean triangles (with unit side length) together. They showed that such a random
compact surfaces with no genus restriction have large pants decomposition, growing
with the volume of the surface. This suggests that the injectivity radius around a
typical point is growing to infinity. Gamburd and Makover [GM02] showed that as
N grows the genus will converge to N=4 and using the Euler’s characteristic the
average degree will grow to infinity.

Take a uniform measure on triangulations with N triangles conditioned on the
genus to be CN for some fixed C < 1=4, then we conjecture that as N grows to
infinity the random surface will locally converge in the sense of [BS01b] (see Sect. 5
above) to a random triangulation of the hyperbolic plane with average degree 6

1�4C
.

In particular we believe that the local injectivity radius around a typical vertex will
go to infinity on such a surface as N ! 1.

We would like to present here a natural quadrangulation that might describe such
a local limit in the context of quadrangulations. A variant for triangulations might
describe the limit with a specific supercritical random tree.

There exist nice and useful bijections between maps and labeled trees especially
the so-called Schaeffer bijection. A variant of the UIPT (for quadrangulation) can
be constructed from a labeled critical Galton-Watson tree conditioned to survive,
see [CMM12] for details. Here we propose the study of a random quadrangulation
constructed from a labeled super critical Galton-Watson trees.

Consider T3 the full ternary tree given with a root vertex � 2 T3 and embedded
in the plane R

2. Assign independently to each edge e of the tree a random variable
de uniformly distributed over f�1; 0; C1g. This procedure yields a labeling ` of the
tree T3 by setting the label of any vertex u as the sum of the de’s along the geodesic
line between � and u.

A corner c of the tree T3 is an angular sector between two adjacent edges. There
is a natural (partial) order on the corners of T3 given by the clockwise contour of
the tree T3. We then extend the Schaeffer construction to the labeled tree .T3; `/

as follows: For each corner c of T3 associated to a vertex of label l , draw an edge
between c and the first corner in the clockwise order whose associated vertex has
label l � 1. Consider the quadrangulation obtained using only the edges added and
not the original tree we started with. T3 can be replaced by any tree.
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It can be checked that all these edges can be drawn such that they are non-
crossing and the resulting map is a infinite quadrangulation (with a root vertex �)
that we call the Stochastic Hyperbolic Infinite Quadrangulation. It should be thought
as a hyperbolic analogue of the UIPT/Q.

Here are several questions and observations regarding SHIQ:

• Does the SHIQ admits spatial Markovity? If it is indeed a local limit then yes.
• Starting with a super critical Galton Watson tree it easily follows that a.s. the

quadrangulation has exponential volume growth. Estimate it. Are there limit
theorem for ball size analogous to the branching process theory?

• Does the SHIQ has positive anchored expansion a.s. (see [Vir00] for the study
of anchored expansion). This will imply positive speed and bounds on return
probability.

• Using [BLS99] it is possible to show that simple random walk has positive speed.
• Is the sphere at infinity topologically S1? Does SRW converges to a point on the

sphere at infinity? Is the sphere at infinity the Martin boundary? See [Anc88] for
details.

• Show that the Self Avoiding Walk is a.s. ballistic on the SHIQ? Adapt the theory
of Poisson Voronoi percolation on the hyperbolic plain [BS01a] to the SHIQ.
Study SHIQ coupled with spin systems such as Ising as for the UIPQ.

6.4 Sphere Packing of Graphs in Euclidean Space

One way to extend the notion of planar graphs in order to hopefully make initial
steps in the context of three dimensional random geometry is to consider graphs
sphere pack in R

3. Some partial results extending ideas from planar circle packing
to higher dimension were presented in [MTTV98, BS09] and [BC11]. The general
theory of packing was recently developed by Pierre Pansu in [Pan]. See [BC11] for
a collection of problems on the subject.

Maybe an extension of Schaeffer’s bijection can used to create graphs sphere
packed in R

3. In Schaeffer’s bijection the edges of a planar tree are labeled �1; C1

or 0. Walking around the tree as in depth first search and summing the labels, this
defines a height function on the vertices, two values for each vertex. If an edge is
added between any vertex and the closest vertex in the direction of the walk with a
smaller height a quadrangulation is generated.

We hope that replacing the tree by a planar graph in a related recipe will create
a packable graph. Let G be a planar graph, f W G ! Z, with value differ by at
most one between neighbors. Circle pack G in the Euclidean plain, for any vertex
v 2 G, add an edge from v to the vertex u which is among the closest to v in the
Euclidean metric, with f .u/ < f .v/, (were vertices are identified with the center of
the corresponding circles).
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Open problem 6.8. Is the resulting graph a sphere packed in R
3?

Start with G the square grid. By [MTTV98] we know that packable graphs has
separation function bounded by nd�1=d . Can this be used to construct a counter
example by maybe realizing large expanders in this way?

If the conjecture is true than a natural family of packable graph (perhaps) can
be obtained by taking G to be a random quadrangulation and f the Gaussian free
field on it. We don’t know an example of a transient graph which does not contain a
transient subgraph which is sphere packed in R

3.

Theorem 6.9. Assume G is a finite vertex transitive graph which is sphere packed
in R

d . The diameter of G is bigger than Cd jGj1=d . For some universal constant
depending only on d .

Exercise 6.10. (Level 3) Prove this by combining the fact from [MTTV98] that
packable graphs has separation function bounded by nd�1=d and Theorem 2.1.

For planar finite vertex transitive graphs this follows also from a known structure
theorem [FI79].
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