Chapter 2
Recursive Bayesian Estimation
of Partially Observed Dynamic Systems

Abstract In the current Chapter, recursive Bayesian inference of partially
observed dynamical systems is reviewed. As a tool for structural system identi-
fication, nonlinear Bayesian filters are applied to dual estimation problem of linear
and nonlinear dynamical systems. In so doing, dual estimation of state and
parameters of structural state space models is considered; EKF, SPKF, PF and EK-
PF are used for parameter identification and state estimation. Dealing with a SDOF
structure, it is shown that the hybrid EK-PF filter is able to furnish a reasonable
estimation of parameters of nonlinear constitutive models. Assessment of SDOF
systems is followed by identification of multi storey buildings. In this regard,
performances of the EK-PF and EKF algorithms are compared, and it is concluded
that they are nearly the same, and by an increase in the number of storeys of the
building, both of the algorithms fail to provide an unbiased estimate of the
parameters (stiffness of the storeys). Therefore, they are not reliable tools to
monitor state and parameters of multi storey systems.

2.1 Introduction

Recursive inference of the dynamics of a system through noisy observations is
normally pursued within a Bayesian framework. As a result, if there is a priori
information available on probability distribution of observable quantities of the
system and there is a correlation between observable and hidden quantities of the
system, Bayes probability concept is employed to estimate probability distribution
of the hidden state variables. Extensive variety of applications are exploited by
using such approach namely: in econometrics to estimate volatility in the market
(Ishihara and Omori 2012; Yang and Lee 2011; Miazhynskaia et al. 2006), for a
review on the literature see (Creal 2012). In field of robotics, this approach is
applied to develop behaviors for robots (Lazkano et al. 2007), system identification
of the robots (Ting et al. 2011), and their localization (Zhou and Sakane 2007). In
biology, this approach is employed for molecular characterization of diseases
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(Alvarado Mora et al. 2011), finding linkage in DNA (Allen and Darwiche 2008;
Biedermann and Taroni 2012) and for characterization of genomic data (Caron
et al. 2012). In image processing, this approach is used to diagnose diseases from
medical images (Mitra et al. 2005), for image segmentation (Adelino and Ferreira
da Silva 2009), and for image retrieval (Duan et al. 2005). Moreover, this approach
is employed in the following fields such as: object tracking and radars (Jay et al.
2003; Velarde et al. 2008; White et al. 2009); in speech enhancement (Saleh and
Niranjan 2001; Yahya et al. 2010); in mechanical characterization and parameter
identification of materials (Corigliano and Mariani 2004, 2001a, b; Bittanti et al.
1984), mechanical system identification (Mariani and Ghisi 2007; Mariani and
Corigliano 2005) and many other fields which are not mentioned for the sake of
brevity. The aforementioned instances are just a few fields of application of
Bayesian inference schemes; their diversity proves the versatility of such approach
in problem solving processes.

Estimation of state and parameters of a structural system are simultaneously are
dealt with in a recursive fashion in this chapter of the monograph. As new
observations become available, the information concerning the current state of the
system, which is attained through a model of the system, is updated based on the
measured observation. This objective is perceived by utilizing four recursive
Bayesian filters, namely: the extended Kalman filter (EKF), the sigma-point
Kalman filter (S-PKF), the particle filter (PF), and a newly proposed hybrid
extended Kalman particle filter (EKPF). Therefore, to avoid shadowing effects of
high dimensional structures, a single degree-of-freedom system has primarily been
considered. The performances of the filters are standardized to simultaneously
estimate state and parameters of a nonlinear constitutive model of the system.
After the performance of the filters working with a single degree-of-freedom
structure has been verified, we move to the analysis of multi degree-of-freedom
(DOF) structures. To accomplish this aim, a shear type of buildings has been
considered. It should be emphasized that although Bayesian filters under the study
have been adopted in the other fields such as automatic control, their application in
the field of structural engineering demands further investigations. The author of
this book has coauthored three articles on peer reviewed international journals on
this topics (Eftekhar Azam and Mariani 2012; Eftekhar Azam et al. 2012a, b). The
proceeding parts of this Chapter is classified as follows: in Sect. 2.2, the dual
estimation concept for simultaneous estimation of state and parameters of a state-
space model is reviewed. General frames of the recursive Bayesian inference
techniques are discussed in Sect. 2.3; moreover, the Kalman filter, as the optimal
filter of linear state-space models is devoted to Sect. 2.4. Approximate Bayesian
filters for nonlinear systems are dealt with in Sect. 2.5; furthermore in Sect. 2.6 the
numerical results concerning dual estimation of states and parameters of single
DOF and multi DOFs structures are presented. The Chapter is eventually con-
cluded in Sect. 2.7, where the limitations filters under the study are discussed
together with our remedy to solve the issue when applied to simultaneous state and
parameter estimation of high dimensional problems.
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2.2 Dual Estimation of States and Parameters
of Mechanical Systems

In this research, the emphasis is on civil structures. Therefore, mechanical systems
whose dynamics is governed by the famous set of ordinary differential equations
are addressed which governs evolution of their dynamic:

Mii + Dt + R(u,t) = F(1) (2.1)

where M is assigned as the mass matrix, D represents the damping matrix; R (u, f)
stands for possibly displacement dependent internal force, whereas F(z) is des-
ignated as the loading vector; u, & and @ are the nodal displacements, velocities
and accelerations, respectively. Since measurements are normally completed in
discrete time, our attention is limited to a discrete time formulation, where it is
assumed that a part of displacements or accelerations of the system are measured
in evenly spaced time grids.

To embed the mathematical model into algorithms designed for recursive
Bayesian inference, we represent the dynamics of the system in a state-space form;
the details concerning the state-space representation of the mathematical model
(2.1) are presented in the following Sections. Throughout the book, displacement,
velocity and acceleration quantities of the response of the structure are assigned by
the word ‘state’ and we intend to use ‘parameters’ which represent the coefficients
of the internal force term (in linear elastic case, components of the stiffness
matrix). The state vector z thus contains u, & and i@, namely:

Ui
e = | g (2.2)
iy

while parameter vector 9 collects several unknown parameters of the system.
The state space representation of the system thus is expressed as:

2k = fi (k13 9-1) +vp (2.3)
Vi = Hizi + wi (2.4)

where for any time interval [f,_1#], f%(.) is a function of the state z;_; and
parameters 9¥;_; of the system, and evolves the state of the system z;_; to obtain
Zx. H quantifies the correlation between the state and the observable part of the
system, at any given time instant; the name of Eq. (2.4), observation equation,
originates from the aforementioned fact. v; and wy are the zero mean, uncorrelated
Gaussian processes with covariance matrices V¢ and W, respectively. Generally,
observation equation may take any form; however, in the present study, it is
reasonably assumed that observation process consists of a part of the state vector,
namely displacements and/or accelerations of several representative points. As a
result, the observation equation can be expressed as a sum of a linear mapping of
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the state through a Boolean matrix (H?) and an additive, uncorrelated Gaussian
noise stemming from uncertainty of measurement sensor.

In this study, the major mission of Bayesian filters, beyond estimating hidden
part of the state vector, will be the calibration of system model parameters in an
online method. At each time interval [f;_i#], on the basis of the information
contained in the latest observation y,, the algorithms update former knowledge of
the parameter 1 to yield 9. To accomplish this objective, dual estimation of
states and parameters are considered; hence, the parameter vector 9 is increased
by defining the state vector (Mariani and Corigliano 2005):

X = {g’j (2.5)

In addition to the conventional form of state-space equation, which is composed
of evolution and observation equations, dual estimation is pursued via an extra
vectorial equation governing the evolution of the parameters over time according
to:

Y= %1 + V}?. (2.6)

The intuitive idea underlying this extra equation is to allow the unknown
parameters of the system to change over time, starting from an initial guess and
hopefully converge on an unbiased estimate. The possibility of variation to
parameters is provided by white Gaussian fictitious noise v?, added to parameter
evolution. Moreover, the intensity of such a noise should be tuned in order to
obtain an unbiased and converging estimate for the parameters (Bittanti and Sa-
varesi 2000). The state-space equation governing evolution of the increased state
thus is expressed as:

X =fr(xe1) +vi (2.7)
Yi = Hix, + wy (2.8)

where f,(.), maps the extended state vector x; over time; therefore, it features both
Egs. (2.3) and (2.6) in one unique equation.

2.3 Recursive Bayesian Inference

The inference problem can be considered as recursively estimating the expected
value E[x;|y,,] of the state of the system, conditioned on the observations. If the
initial probability density function (PDF) p(xo|y,) = p(x0) of the state vector is
known, the problem consists in estimating p(x|y, ), assuming that the conditional
PDF p(xi—1|y,4_,) is available. The problem can be broken down into in two stages
of prediction and update. As far as the prediction stage, the Chapman—Kolmogorov
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equation furnishes the a-priory estimate of the state PDF at #; (Arulampalam et al.
2002):

P(Xkly i) = /p(xk|xk*1)p(xk*1b’l:kfl)dxkfl' (2.9)

In the updating stage, as soon as the new observation y, becomes available,
Bayes rule is profited to apply correction on the PDF of the state (Cadini et al.
2009):

Plyia) = ¢ pObe)p(ilyra—i) (2.10)

where ¢ is stands for a normalizing constant which depends on the likelihood
function of the observation process. The Egs. (2.9) and (2.10) collectively forge
the basis for any Bayesian recursive inference scheme. The analytical solution of
the integral in (2.9) is not possible except for a limited category of problems,
namely systems which are formulated by linear state space equations and disturbed
by uncorrelated white Gaussian noises (Eftekhar Azam et al. 2012a). In case of a
general nonlinear problem, one should make recourse to approximate solutions,
either by approximating the nonlinear evolution equations via linearization
(Corigliano and Mariani 2004) or via discrete approximate representation of the
PDF of the state vector (Mariani and Ghisi 2007; Doucet and Johansen 2009;
Doucet and Johansen 2009). In the next Section, the major features of the ana-
lytical solution available for linear Gaussian state space model are examined, and
is followed by the Sect. 2.5 which handles approximate solutions for nonlinear
state-space models.

2.4 Linear Dynamic State Space Equations: Optimal
Closed Form Estimator

As addressed in the preceding section, recursive Bayesian estimation of linear
Gaussian state-space models can be calculated analytically. A linear discrete state-
space model is considered which can be obtained by substituting the arbitrary
evolution equation f,(.) in Egs. (2.7) and (2.8) by a linear operator Fy. Therefore,
the state-space equations of such a system are expressed as:

X, = Fixi1 + vy, (211)
Yi = Hixp +wy. (2.12)

If the primary probability distribution of the state is Gaussian, it is straight-
forward to display that a linear operator does not change the Gaussian PDF over
time (Kalman 1960). That is, in the Chapman—Kolmogorov integral at any arbi-
trary time instant #, the functional form of both integrands is a priori known;
moreover, p(xi—1|y;4_;) is constantly a Gaussian probability density function, and
D(x|xr—1) is by definition a Gaussian function as well. As a result, the integral can
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Table 2.1 Kalman Filter

: - Initialization at time 7y:
algorithm

/x\() = E[x()]
P() = E[(JCO — .;C\())(XO - fo)T}
- At time t, for k=1,...,N;:
e Prediction stage:
1. Evolution of state and prediction of covariance
X, = Fixi_y
P, =F P, FT +V
e Update stage:
1. Calculation of Kalman gain:
Gy = P(H! (HP H! + W)™
2. Improve predictions using latest observation:
X = X, + Gk(yk — Hkx,j)
P, = P; — GkaP;

be calculated analytically. Kalman introduced a well-known filter which is the
optimal estimator for linear systems with uncorrelated Gaussian noise in his
seminal study (Kalman 1960); the filter provides an online estimation of first and
second order statistics of a state space model, and it includes a prediction stage
which is simply an evolution of state over time. In the updating stage, by com-
puting the Kalman gain Gy, the filter enhances the predicted values furnished in
previous stage. Readers are referred to Table 2.1 for a detailed description and
algorithmic implementation of the Kalman filter (KF).

2.4.1 The Kalman Filter

In many real life problems, neither the dynamics of the system takes a linear form
nor the uncertainties of transition equation which may be regarded as Gaussian
distributions. Even if the initial distribution of the uncertainties could be assumed
Gaussian, a nonlinear state-space model would change the distribution over time
(Mariani and Ghisi 2007). Therefore, an optimal closed form solution will not be
available for a general nonlinear problem (Doucet and Johansen 2009).

In a mechanical system, the source of nonlinearity might be the material
response to loading (Corigliano and Mariani 2001a, b; Corigliano 1993); however,
even if the material behavior is linear, dual estimation of states and parameter will
result in a bilinear (nonlinear) state space model (Ljung 1999). We illustrate this
issue via an intuitive example by considering the following linear state space
model:

2k = azp—1 + b+ vi (2.13)
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Yk = Hzi + wy (2.14)

where z; and y; denote the state and the observation of the system at a given time
instant #;; a and b represent the linear transition for the state in a given time
interval [f;_#;], while H links the hidden state z; to the observation process. v; and
wy denote the zero mean white Gaussian processes which quantify evolution and
measurement inaccuracies, respectively. In case one is only interested in esti-
mating the state of the system z;, we already know the Kalman filter furnishes the
optimal estimation; however, let us imagine one is also interested in an online
estimation of the parameters of the state space model. For the sake of simplicity,
we assume that only parameter a is of interest. As aforementioned, the trick in dual
estimation framework is to collect the unknown parameter a into the extended
state vector x; and try to track the dynamics of such system via recursive Bayesian
inference algorithms. It is noteworthy that even though parameter a is stationary
by definition, the parameter is allowed to vary in the formulation of dual esti-
mation. In this regard, a transition equation governing evolution of the parameter
is introduced:

ay = ax—1 + VZ' (215)

Equation (2.15), together with (2.13) and (2.14), constitute the required state-
space model for dual estimation of states and parameters. The augmented state

vector x; thus becomes x; = [z ak}T, where x;(1) = zx and x;(2) = ax; con-
sequently Eqgs. (2.13-2.15) become:

x:(1) =x1(2)x,1 (1) + b (2.16)

x(2) = x4-1(2) + 04 (2.17)

i = Hxp(1) + wy (2.18)

or, in matrix form:

RO _[ra@ma®] AL

we=[H 0] {iigﬂ + wi. (2.20)

It is evident that Eq. (2.19) is a nonlinear mapping over the given time interval
[fx_1%]. The aforementioned fact, together with consideration that many real life
problems are nonlinear, substantiates the need for Bayesian inference algorithms
targeting general nonlinear, non-Gaussian problems. The following Section is
devoted to review the approximate solutions available in the literature to deal
recursive Bayesian estimation of nonlinear state-space models.
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2.5 Nonlinear Dynamic State Space Equations:
Approximate Bayesian Estimators

Most of the problems in the real problems, as well as all the problems related to the
identification of the parameters of the systems by use of dual estimation concept
lead to nonlinear state-space models. Hence, developing nonlinear versions of the
KF seemed inevitable from the very beginning. Next subchapter reviews the main
concepts behind the extension of the KF to the nonlinear problems.

2.5.1 The Extended Kalman Filter

A simple remedy to deal with nonlinear state-space models is through an extension
of the Kalman filter, where for each time instant #, the nonlinear state mapping
Sr(xg—1) is linearized by a first order truncation of a Taylor series expansion
around x;_;. To accomplish this goal, the Jacobian of the evolution equation is
used as a surrogate for linear transition matrices in order to update covariance
(Gelb 1974); subsequently, the Kalman gain is used to update state statistics. This
procedure is the extension of the Kalman filter for nonlinear state space models;
thus its name extended Kalman filter (EKF). The extended Kalman filter assumes
the prior p(xx_1|y,4_;) to be Gaussian; however, even if initially Gaussian, a
nonlinear mapping changes its probability distribution. Moreover, a severely
nonlinear mapping of state might change the probability distribution into a tailed
or a bimodal distribution (Adelino and Ferreira da Silva 2009; Van der Merwe
2004) and causes bias in the estimates furnished by the EKF. In addition, the
approximation of the state mapping via its Jacobian is not accurate enough in
several cases; for instance, it does not consider the stochastic nature of the state
vector, and the effect of the neglected terms may become considerable. As a
consequence, the approximation may lead to an inconsistent estimation of the
covariance; hence, a bias or divergence may occur in estimation of the state (Julier
and Uhlmann 1997). For a detailed description of EKF algorithm see Table 2.2,
where V. fy(x)|,_,, , denotes the Jacobian of fi(x) at x = x;_;. To Alleviate the
aforementioned issues posed by highly nonlinear models the first remedy has been
the development of the sigma-point Kalman filter which will be discussed in the
next subsection.

2.5.2 The Sigma-Point Kalman Filter

In case of severely nonlinear systems, the successive linearization approach may
be inaccurate (Mariani 2009b). For certain problems, it may be practically difficult
to adopt: in case of a non holonomic material behavior, to calculate the Jacobian,
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Table 2.2 Extended Kalman

. - Initialization at time 7y:
filter algorithm

36\0 = E[XO}
P() =E {(x() — fo)(x() — EC\Q)T
- At time #, fork =1,...,N;:
e Prediction stage:
1. Computing process model Jacobian:
F, = fok(x)lx:xk,l
2. Evolution of state and prediction of covariance:
X, = Frxi_y
P, =FP, \FI +V
e Update stage:
1. Calculation of Kalman gain:
Gy = P H (HP Hf +W) '
2. Improve predictions using latest observation:
fk = x; + Gk (yk - Hkx,\f)
Py =P, — G:H\ P,

one should know if the current state of the system proceeds toward loading or
unloading (Mariani and Ghisi 2007). The difficulty in estimation of the Jacobian
and also its inadequate accuracy has led to development of a category of deriva-
tive-free filters, called sigma-point Kalman filters, SPKF (Julier et al. 1995, 2000).
The basic idea behind these filters is that it is easier to approximate a probability
distribution compared to a nonlinear state-space model. A SPKF uses a deter-
ministic set of quadrature points, called sigma-points, to handle the Chapman—
Kolmogorov integral (Ito and Xiong 2000). This set of deterministic points can be
used since a-prior distribution of the state is assumed to have a Gaussian functional
form for all the time instants. Hence, it is possible to approximate it through a set
of deterministic points which are parameterized through the mean and covariance
of the state vector. The distribution of the state vector, a multivariate Gaussian
probability distribution, at time #;_; reads:

1 1 e ~
P 1) = ——————zexpl— (xe — B) P (xe — )]
(nylpo) 2

(2.21)

where X;_; and P,_; are the associated mean vector and covariance matrix of the
state vector, respectively.

Once it is established that the a priori distribution of the state vector is a known
Gaussian one, the Chapman—Kolmogorov integral can be recast as a Gaussian
integral of the form [p. u(x)w(x)dx, where p(.) is an arbitrary probability dis-
tribution, whereas (.) denotes the a priori probability distribution of state vector.
Hence (2.9) becomes (Ito and Xiong 2000):
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[ uxk-1)

1 1 ~ Tr1 ~
WGXP[—E(-X}A - xkfl) P,(_l(xk,l - xk,l)]dxk,l

(2.22)
where ®(.) is an arbitrary function of state vector. To numerically handle the
Gaussian integral in (2.22), a discrete representation of (2.21) is necessary as done

by a set of points which feature the same statistics of the original Gaussian dis-
tribution (Ito and Xiong 2000):

v+ pe;, 1<j<n

Z] — _\/mejflh n+1 S] S 2n (2’23)
0, 2n+1
and
2
2(74[:) i=2n+1
n
oly) = r , (2.24)
—— 1<j<2n
2ntp)

where p > 0 is a constant and e, is the kth unit vector in R". Julier and co-workers
(Julier et al. 1995) proposed their S-PKF based on a quadrature rule which, for scalar
functions, is identical to the Gauss-Hermit quadrature rule (Ito and Xiong 2000):

2n+1
[ o~y urol). (2.25)
i=1

The 2n + 1 quadrature points are the minimal number of points necessary to
preserve the first and the second moments of a multivariate normal distribution
(Julier et al. 1995). One can assume w(y;) as quadrature weights, which in this
case are constant in all time instants, while the quadrature points vary over time on
the basis of the information contained in the covariance of the state, at t = #; the
set of sigma-points are:

fk,1 j=2n+1
Lj=19 X1 +HU/Pioy 1<j<n (2.26)
X1 =Y/ Proyj—m) n+1<j<2n

where X;_; denotes the expected value of the state and /Py_1,; stands for jth
column of square root of its associated covariance at t = f;_;. This scheme out-
performs the extended Kalman filter (Mariani and Ghisi 2007); for a detailed
description of SPKF algorithm, see Table 2.3.

In Table 2.3, w*¥ and / are weights adopted in the merging stage at the end of
the time step, to build mean and covariance of the current state. i instead denotes,
a time invariant scaling factor which renders possible capturing local effects of
nonlinear functions. To enhance the performance, the scaling factor y should be
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Table 2.3 Sigma-Point

i - Initialization at time 7y:
Kalman filter algorithm

/x\() = E[x()]
Py = E|(x0 — %0)(% — %o)"]
- At time t, fork=1,...,N;:
e Prediction stage:
1. Deploying sigma-points:
Xi j=2n+1
Ty = St UVPioyy 1<j<n
X1 —U\/Pioyjom) n+1<<2n
2. Evolution of the sigma points:
tj =fx (x;;,-)
3. Estimation of the statistics:
xi =30 oy
P, =R, +V
where

R, = ijgl " (l/w' - x;) (lk,j - x/?)T
e Update stage:
1. Calculation of Kalman gain:
Gy = P H (HP Hf + W)
2. Improve predictions using latest observation:
X =x; + Gy (yk - Hkx,:)
P, = P]: — GkaP;

carefully calibrated to allow appropriate capturing of local nonlinearity effects, by
tuning the distances of each sigma-point from the mean of a priori distribution of
the variable. In the SPKF, the square root \/Py_; is calculated by a Choleski
factorization. The subscript j refers to the jth column of the Choleski factor of the
covariance.

The SPKF approach, similarly to the EKF, is based on the assumption that at
each time instant, the a priori distribution of the state is Gaussian. To deal with a
general class of nonlinear models, the particle filter approach has been developed
by the academic society, the next subsection is devoted to highlight the main
notions of it.

2.5.3 The Particle Filter

To deal with more general problems, it is a common practice to make recourse to
Sequential Monte Carlo methods (Doucet and Johansen 2009) to handle the
Chapman—Kolmogorov integral by numerical approximations. Sequential
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Monte-Carlo methods make no explicit assumptions concerning the form of the
posterior density p(xox|y;,). These methods approximate the Chapman—Kol-
mogorov integrals in (2.9) through finite sums, adopting a sequential importance
sampling on an adaptive stochastic grid. Within this frame, the particle filter

implements an optimal recursive Bayesian estimation by recursively approxi-

mating the complete posterior state density. A set of Np weighted particles x,(f),

drawn from the posterior distribution p(xo.|y;4), is used to map the integrals. To
accomplish this objective, the main trick is to represent the posteriori PDF via
Dirac delta functions pond at discrete sample points, namely the so-called parti-
cles. Without the loss of generality, one can write (Cadini et al. 2009):

p(xolyi) = [ P(80kly 1) 080k — Xoux)de (2.27)

where J(.) denotes the Dirac function.
Assuming the true posterior p(xi|y,,) is known and can be sampled, an
estimated of (2.27) is given by:

1 & :
p(Xox|yix) = Np Z 0 (Xox — Xoy) (2.28)
i=1

where x} are a set of random samples drawn from true posterior p(xo.|y;.). In
practice, it is impossible to efficiently sample from the true posterior; a remedy is
built by making recourse to the importance sampling, i.e. to sample state
sequences from an arbitrarily chosen distribution 7(x¢.|y,,) called importance
function. An unbiased estimate of p(xox|y;,) can then still be made as (Cadini
et al. 2009):

Pcoalyia) = rm(eoalyie) ZEBh 8(sox — xou)de

1 N, . i (2.29)
R E; o' d(Xox — Xpy)

where
ot — PP (XD, (2.30)

B p(yl:k)n(xé):kb)l:k)

is the importance weight associated to the state process xi. In practice, these
weights are difficult to calculate, due to the need of evaluating the integral to
normalize constant p(y,,). Instead, the following weights are used (Gordon et al.
1993):

i — POlx6.0P (0, (2.31)
k Tc(x;c|y1:k)

which are subsequently normalized according to:
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i
Wy

D = = (2.32)
Zj:l oy
Thus, estimate of the posterior distribution reads:
Ny
p(xoxly 1) ~ Z (o — X0)- (2.33)

If the current state of the importance sampling function does not depend on
future observations, i.e. if the importance sampling function satisfies the following
condition (Van der Merwe 2004):

k
m(x1elyie) = nlxily,) H” (xjler-1,315)
j=1

= (XX 1x-1,Y 10 TX A1V 14-1)

(2.34)

and if states can be considered as a Markov process, through the assumption that
the observations are conditionally independent, given the states we obtain (Van der
Merwe 2004):

k
p(xox) = p(xox H (x7lxj—1) (2.35)

k
P 1xlxox) = HP(J’j|xj) (2.36)

thus by using Eqs. (2.34-2.36) in (2.30), the recursive formula for the update of
importance weights becomes (Van der Merwe 2004):

o Pl )p Ol
W, = ), TRkl (2.37)
(X X041V 1k)

For filtering purposes, the estimation of the marginal probability density
p(xily,) of the full posterior is sufficient, that is, if 7w(xk|x1.4—1,Y,4) is substituted
by m(xg|xx—1,y;), the sampling proposal will only depend on x;_; and y,
(Arulampalam et al. 2002). Consequently, the recursive formula for estimation and
update of the non-normalized weights is expressed as (Arulampalam et al. 2002):

o = PP lxi_) (2.38)
S (A '

The (2.38) provides a method to sequentially update the importance weights,
given an appropriate choice of the proposal distribution 7(xx|xg—1,y;). Conse-
quently, any expectations of the form E[g(xy)] = 1 g(xx)p(x0x|y.)dxk, g(.) being
any given function can be approximated through E[g(x;)] ~ j].V:PI wig(xk).
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In (Doucet 1997), it was shown that the proposal distribution 7(xg|xr—1,¥;)
minimizes the variance of the importance weights, conditional on x;_; and y,.
Nonetheless, the distribution p(x;|x;_;) (i.e. the transition prior) is the most popular
choice for the proposal distribution. Although it results in a Monte-Carlo variation
higher than that obtained using the optimal proposal 7(xy|xx_1,y;), the importance
weights are easily updated by simply evaluating the observation likelihood density
n(xg|xx—1) for the sampled particle set, through (Cadini et al. 2009):

W}, = Of_p(yelx})- (2.39)

The variance of these importance weights increases stochastically over time
(Doucet 1997); after a few time steps, one of the normalized importance weights
tends to one, while the remaining weights tend to zero. To address this rapid
degeneracy, a resampling stage may be used to eliminate samples with low
importance weights, and duplicate samples with high importance weights. An
intuitive explanation of particle filtering technique is expressed as: each sample x}
might be a solution of the problem, and its associated weight w} signifies its prob-
ability of being the correct solution. In the resampling stage, the particles with higher
probability are duplicated and in turn, the ones with lower probability are discarded.
Such an approach somehow permits the filter to condense the cloud of particles
around the peak probability zone. An algorithm built in this method was primarily
proposed by Gordon et al. (1993), and has been called in different names such as
bootstrap filter, condensation algorithm etc.; for a detailed algorithmic specification
see Table 2.4.

It is worth underlining that the update stage in the particle filter algorithm is
conducted via evolution of particle weights based on the probability of occurrence
of each particle conditioned on the latest observation. After such weight evolution,
the resampling stage is prescribed to alleviate the degeneracy issue, where
ensemble of the samples is refined to increase the population of the samples which
are more likely and decrease the lower probability population. To this end, dif-
ferent algorithms were proposed in the literature, namely e.g. stratified, systematic,
or residual resampling. Accounting for sampling quality and computational
complexity, the systematic resampling scheme adopted turns out to be the most
favorable one in this study (Hol et al. 2006). The resampling stage is performed by
drawing a random sample Cj from the uniform distribution over (0,1]; afterwards,
the Mth particle for which the value of the random number (; is between values of
the empirical cumulative distribution of particles at M — 1 and M is duplicated by
resampling stage. Details of the systematic resampling (Kitagawa 1996) algorithm
are shown in Table 2.5.

Since particle filter handles the current, the actual PDF of the state to draw
particles in prediction stage, it can appropriately account for non-Gaussian den-
sities. However, as the dimension of the state vector increases, computational costs
associated with numerical integrations increase drastically. It is suggested, as a
rough rule of thumb, not to apply particle filter to problems with dimension of state
vector more than five (Li et al. 2004).
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Tablg 2.4 Particle filter - Initialization at time f:
algorithm N @ =
X0 = Elxq] xy =X

Po = E|(xo — %)(xo — %)'| o) =pOolto) i=1,... N
- Attime t, for k=1,...,N;:
e Prediction stage:
1. Draw particles:
x,(f) ~p<xk|x,(21>i =1,...,Np
e Update stage:
1. Evolve weights:
(o,(f) = w,((izlp(yk\x,(j))i =1,...,Np
2. Resampling, see Table 2.5.
3. Compute expected value:

X = Z, 1 wl(c)xk)

Table 2.5 Systematic

5 . - At time fy, forj=1,...,Np:
resampling algorithm

e draw a random sample {; from uniform distribution over
(0,1]

e find M that satisfies:

i wk <Cj > (Dk

o x0) X0

The sampling distribution used in the generic particle filter can cause serious
problems, since it is not the optimal one and conditioned on the latest observation.
This fact leads to high computational costs, since the cloud of the samples fall far
from the zones with high probability; therefore, many samples have to be drawn in
order to make the algorithm to converge.

2.5.4 The Hybrid Extended Kalman Particle Filter

To alleviate the issues discussed in the previous subsection, our remedy is to keep
using the same sampling distribution; however, after the samples are drawn, we
improve the quality of the ensemble of the samples. Roughly speaking, once the
samples are drawn, they are pushed by an extended Kalman filter toward the zones
of higher probability in order to incorporate data from the latest observations into
each sample.

The reason for exploiting the EKF instead of the SPKF, for enhancing the
quality of sample ensemble, is twofold: first, the difficulty in tuning it in a way to
have all the particles moved appropriately; second, the computational cost of the
SPKF combined with particle filter can be significant, since both adopt numerical
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Table 2.6 Hybrid extended
Kalman particle filter
algorithm

- Initialization at time #y:
56\[) = ]E[X()]x(()i> = :\?\0
Py = E[(xo —Xp)(x0 — fﬂﬂ oy = pWolxo)i=1,...,Np
- At time #, for k =1,...,N;:
e Prediction stage:
1. Draw particles:
x,ii) Np(xk\x,(ﬁl)i =1,...,Np
2. Push the particles toward the region of high probability
through an EKF:

P)" =FpP) FI +V

. ; ; -1
6\ =P H] (HP H] + W)
0 = 60— )

PV =P —GYHPY i=1,..,Np
e Update stage:
1. Evolve weights:
O‘)I(cl) = 031(<'11P(yk|x1((l))i =1,...,Np
2. Resampling, see Table 2.5.
3. Compute expected value or other required statistics:

Xp = Z?]:P] oxl

approximations to handle the quadrature. That is, the EKF is combined with
particle filter frames to update each particle based on the information contained in
the latest observation, see Table 2.6.

In Table 2.6, F; represents the current Jacobians of mappings f,(H).

In what follows, we will assess the performance of the filters through numerical
examples. In the absence of experimental data, for validation of the algorithms, we
rely on pseudo experimental data, i.e. numerical data resulting from direct analysis
contaminated by white Gaussian processes substitute noisy measurements of the
observable part of the state vector.

2.6 Numerical Results for Dual Estimation of Single
Degree and Multi Degrees of Freedom Dynamic
Systems

To numerically solve the set of ordinary differential equations that govern the
dynamics of the system, a Newmark explicit integration scheme has been adopted.
According to (Hughes 2000), the time marching algorithm within the time step
[fx—1%] can be partitioned into:
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e predictor stage:

- . 1 ..
Up =up_ + Aty + AIZ(E — B)uk,1 (240)

e =ty + Ar(1 — )iy (2.41)

e explicit integrator:

iy =M~ (R — (Duy + Kiy)); (2.42)

e corrector stage:
u = ity + Ar* iy (2.43)
i, =ty + At yiiy (2.44)

where Ar = 1, — 1,1 denotes the time step size. To ensure numerical stability in
the linear regime, Af needs to be upper bounded by Bathe (1996):

T,
Aty =2 2.4
tor = (2.45)

where T, is the period associated with the highest oscillation frequency. Even if
At,, can be increased in the reduced model, since higher order oscillations are
filtered out of the numerical solution, in what follows we are keeping Ar constant
in all the simulations. Hence, the speedup reported is therefore to be mainly linked
to the reduction of the number of handled DOFs.

In Corigliano and Mariani (2001b), it was shown that structural effects may
play a prominent role in system identification. They typically lead to shadowing
effects, arising when the sensitivity of measurable variables (like, e.g. displace-
ments or velocities) to constitutive parameters becomes negligible or falls out of
the measurement range (i.e. they become comparable to round-off errors). Such
structural effects practically lead to multiple solutions of the inverse problem in
terms of model parameters update (all difficult to distinguish in the noisy envi-
ronment), and filters provide biased or divergent calibrations, see e.g. (Corigliano
and Mariani 2001a, b, 2004). To solely benchmark performance of the filters, we
primarily focus on dynamics of a single degree-of-freedom structure. Once the
performances of the filters are benchmarked by analyses concerning a single
degree-of-freedom, then we move to the multi degrees of freedom structures to
study the applicability of these methods in more realistic scenarios.
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2.6.1 Single Degree-of-Freedom Dynamic System

Since we are interested in benchmarking the extended Kalman particle filter (EK-
PF) when compared to other Bayesian filters tested in this study (i.e. the EKF, the
SPKF and the PF), the aforementioned structural effects are avoided by focusing
on an undamped single DOF system constituted by a mass (or rigid block) con-
nected to the reference frame through a spring, see Fig. 2.1. The equation of
motion of the system is expressed as:

Mii + R(u) = F(t) (2.46)

where m is the block mass; R(u) is the spring force; F(t) is the external load, which
evolves in time; u and i are the displacement and acceleration of the block,
respectively. The results can be easily extended to the damped case; in such
situation, it is, however, important to have the system continuously to be (or
permanently) excited, so as to avoid vibration amplitudes to progressively
decrease in time, thereby loosing filter efficiency, see (Corigliano and Mariani
2004).

In this study, all the studied filters perform well for dual estimation of a linear
SDOF structure; hence, the results are not discussed for the sake of brevity.
Instead, to assess the filter performance, r is assumed to be a highly nonlinear,
RFS-type function of the displacement u, i.e. of the spring elongation (Rose et al.
1981; Corigliano et al. 2006):

R(u) = auexp[—n u] (2.47)

where a and n are unknown model parameters in need of tuning. Even if inspired
by tight binding studies in atomistic simulations, law (2.47) is to be considered as
phenomenological description of damaging processes taking place inside the
spring: once a peak reaction is attained, softening (i.e. strength degradation) sets in
and drives the state toward a smooth failure, occurring when u — +oc0. Therefore,
the two parameters a and n in (2.47) can be related to the strength ™ and the
toughness G of the spring, through:

a
en
s a (2.48)
G= / Rdu = —
0

where e is the Nepero number.

Law (2.47) can be handled as a tensile envelope, with damage activation/deac-
tivation conditions to be adopted to properly describe unloading/reloading paths, see
e.g. (Mariani and Ghisi 2007). In accordance with previous papers (Mariani 2009a,
b), we instead assume here that damage evolution is captured by strength degra-
dation only, and model (2.45) is managed as a holonomic (nonlinear elastic) law.



2.6 Numerical Results for Dual Estimation of Single Degree 25

| > q@
|—bu(t)

As aforementioned, we focus on pseudo-experimental (numerical) tests only.
They consist in running direct analyses with known (target) values of model
parameters, and then adding a white noise of assigned variance to the system
output. This procedure allows us to obtain scattered measurements, which are then
used to feed the filters.

In order to handle a stable system dynamics, followed by divergence (i.e. by
u — +00) due to the inception and growth of damage in the spring, the applied
load F(t) (see Eq. 2.47) has been assumed to monotonically increase in time
according to:

Fig. 2.1 Single degree-of-
freedom structural system

F(t) = 0.5 + 0.0075¢(N) (2.49)

see also (Corigliano and Mariani 2004). With the mass initially at rest, this loading
condition allows the system to be stable up to t = 150 s; beyond this threshold,
softening in the spring becomes dominant (i.e. the transmitted force gets vanish-
ing), and displacement u diverges.

In the analyses, the mass has been assumed m = 9.72 Ns? /mm, see also
(Corigliano and Mariani 2004). Measurements consist of the current mass dis-
placement only, featuring a noise level characterized by a standard deviation
w = 0.05 mm.

The results relevant to the tracking of the whole system state (i.e. u, & and ii) are
reported in Fig. 2.2, as obtained by running the EK-PF and, for comparison pur-
poses, the PF and the S-PKF. In these plots, the dashed lines represent the target
system response; the orange squared symbols are instead the discrete-time esti-
mations furnished by the filters, and the blue circular symbols stand for the
measurements (that are displacement values only). The figure illustrates that the
three filters are all capable to track the initial, stable oscillations and the transition
to the unstable regime due to inception of softening. Even if a high number of
particles (500 in this analysis) has been adopted, the PF is not able to attain the
same accuracy of the S-PKF; the EK-PF (run using 5 particles) is instead very
accurate, performing slightly better than the S-PKF.

We now move to the system identification task. As usual [see, e.g. (Ljung
1999)], the following results have been obtained by setting the pivotal entries of P
relevant to model parameters to be (at least) two orders of magnitude larger than
those relevant to state variables. By this means, model calibration is enhanced,
since information (actually, innovation) brought by measurements is trusted much
more than the current estimates.
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Fig. 2.2 State tracking. Comparison between target (dashed lines) and tracked (orange squared
symbols) system evolution, in terms of: (left column) displacement u; (central column) velocity u;
(right column) acceleration u. Results obtained by running: (top row) EK-PF; (middle row) PF,
and (bottom row) S-PKF

In terms of time evolution of the estimates of model parameters a and n, it is
shown in Fig. 2.3 that they rapidly converge to the target values in the stable
dynamic regime, independently of the initialization guess (here in the range
between 50 and 150 % of the target values). The SPKF and the PF perform better
than the EK-PF in the short-term time interval, featuring higher convergence rates
without excessive oscillations of the estimates. However, as soon as the system
stability threshold is approached, wild oscillations of increasing amplitude set in
which leads to diverging model calibration furnished by SPKF and PF. On the
contrary, the EK-PF does not show such wild oscillations, and always provides
stable, unbiased estimates.

To obtain insights into the superior performance of the EK-PF, Figs. 2.4 and 2.5
report the projections onto the two model parameter axes of the time evolution of
the (smoothed) distribution of particles deployed by PF and EK-PF, respectively. It
can be seen that step #2 of prediction stage of the Table 2.6 proves to be very
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Fig. 2.3 Model calibration. Time evolution of estimated model parameters (fop row) a and
(bottom row) n, at varying initialization values. Results obtained by running: EK-PF (long-dashed
blue lines), PF (dashed orange lines) and S-PKF (continuous black lines)

efficient in moving the particles toward the region of major interest, with distri-
butions that are not spread over an extensive range of values. This eventually
assists us to avoid divergence of the estimates.

Next, we study the performance of Bayesian filters for a slightly more difficult
task: the dual estimation of a system having a bilinear constitutive model for its
spring. The system is the same as before, but now the relationship between the
force in spring R and the displacement u reads:

o kiu if u<uy

where k; denotes initial slope of the constitutive model of the spring; uy, is the
limit at which spring constitutive model starts its bilinear behavior; and k, denotes
the gradient of force—displacement after the displacement has exceeded uy,.

The strength of the constitutive law (2.50) lies in the versatility in simulating
three different material behaviors, namely the linear-hardening, linear-perfect
plastic and linear-softening. Under monotonically increasing loadings, depending
on the k, value this bilinear constitutive law can be adopted to deal with identi-
fication of parameters of a structure whose behavior may not be known as a priori.
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Fig. 2.4 PF, projections onto the parameters (fop) a and (bottom) n axes of the evolution of
particles

While dealing with joint state and parameter estimation, the main drawback of
such constitutive law is the intricate interrelation of components of the state vector,
when the parameter of the constitutive model are included into the state
vector. Consider the state-space representation of the system, augmented state
vector incorporates ki, kp and uy, so as:

k;
= |k |. (2.51)
um

At each time iteration, the evolution equation, based on the value of u); may
find two different functional form: if displacement of the spring is less than uy,
only the initial linear behavior of the spring gets involved; if displacement of the
spring exceeds u, nonlinearity of spring affects the spring force. Thus filter has to
decide which path to follow as long as deterministic information is not available
for uys. In what follows, the results of application of nonlinear versions of Kalman
filters and Particle filter and also a hybrid extended Kalman particle will be pre-
sented. The results are organized in three sets, each one of the filtering algorithms
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Fig. 2.5 EK-PF, projections onto the parameters (top) a and (bottom) n axes of the evolution of
particles

is assessed when dealing with reference problems of each scenario: linear hard-
ening, linear-perfectly plastic and linear-softening constitutive laws.

As aforementioned, in all the analyses, pseudo-experimental data are used
instead of data coming from experiments; the numerical data contaminated by a
zero mean additive white noise are therefore taken as observations of the system.
The initial slope k; is always assumed to be 3.27 N/nm, while k, = k; /10 for
hardening, k, = 0 for plasticity and k, = —k; to mimic softening behavior. The
value of the threshold of linear behavior u,, is set to 0.46 mm; the mass has been
assumed m = 9.72 st/mm, see also (Corigliano and Mariani 2004; Eftekhar
Azam et al. 2012a). Measurements consist of the current mass displacement only,
featuring a noise level characterized by a standard deviation w = 0.01 mm. In
order to incept a nonlinear behavior due to damage in the spring, the applied load
q has been assumed to monotonically increase in time according to (2.49). Since
the main objective of this study is the calibration of constitutive parameters, we
just include the plots of parameter estimation unless there is a specific reason to
present state estimate plots.
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Fig. 2.6 Results of EKF for estimation of parameters of linear-hardening constitutive law

Figures 2.6, 2.7 and 2.8 show the performance of the EKF in simultaneous
calibrating the three constitutive parameters of linear hardening, linear plastic and
linear softening case, respectively. The filter is run for different initialization
values; it is seen that except for the initializations from target values, in none of the
scenarios the EKF is able to identify the constitutive parameters. As aforemen-
tioned, the EKF is a straight-forward extension of the Kalman filter, based on
linearization of the evolution equation. It is suitably adopted for weakly nonlinear
problems; however, if the nonlinearity is severe, such linearization is not accurate
enough and poor performance is expected. It has to be underlined that tuning of the
filter, in order to obtain unbiased estimate of parameters is not always easy, and we
do not claim that we have tuned optimally the filters for different initializations and
constitutive laws. In essence, three noise covariances associated with each
parameter are tuning knobs of the system (Bittanti and Savaresi 2000). One has to
notice that as the number of the parameters increases, their simultaneous tuning
might become more difficult and algorithm appears to be practically inefficient.

Next, the results relevant to the performance of the SPKF are presented; even
though SPKF has proved to outperform the EKF in many cases, it suffers from
problem of positive definiteness of covariance matrix when dealing with parameter
identification (Holmes et al. 2008), and also the tuning of the scale factor might
become critical (Mariani 2009b). Figures 2.9, 2.10 and 2.11 present the results
obtained by the SPKF when dealing with the three different scenarios of consti-
tutive laws. Similar to the previous case, the filter is run with different initial-
izations to see whether convergence is triggered from different starting points. It is
seen that the performance of SPKF is quite poor, as it is not able to furnish
unbiased estimates of the parameters, except for the case that the initial guess are
set at the target values of parameters. We remind that in excess of three fictitious
noise covariance to be tuned, within the SPKF algorithm also the scale factor
should be tuned accurately; moreover, such a factor is used to allow the filter to
capture local effects of nonlinearities of the evolution equation. Adding this to the
three former parameters, one can see how delicate the task of tuning can become.

Since common extensions of the KF cannot furnish unbiased estimates of
constitutive parameters, we make recourse to Particle filters as they are basically
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2.9 Results of SPKF for estimation of parameters of linear-hardening constitutive law

designed for nonlinear systems with arbitrary uncertainty associated with them.
Figures 2.12, 2.13 and 2.14 show the results of estimation of the parameters of
linear-hardening, linear-perfect plastic and linear-softening constitutive model.
Even though the particle filter is devised for nonlinear/non-Gaussian systems, it is
seen through the graphs that it fails to estimate the parameters appropriately.

dis
the

In designing a PF, it should be noticed that an appropriate initial guess of the
tribution of the state of the system is essential to enhance the performance of
filter. Nevertheless, the value of the covariance of the noise for calibrating the
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. 2.10 Results of SPKF for estimation of parameters of linear-plastic constitutive law
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2.12 Results of PF for estimation of parameters of linear-hardening constitutive law

parameters plays an important role (Arulampalam et al. 2002); moreover, they
should be appropriately adjusted in order to let scattering of the samples in the
feasible range of the parameter. We illustrate these issues via numerical examples.
For ease of tuning, it is primarily assumed that we have quite reasonable a priori
knowledge of k; and u( and aim to estimate only k,. Figures 2.15, 2.16, 2.17, 2.18,
2.19 and 2.20 show the results of analysis for estimation of k,. Looking at Figs. 2.15
and 2.18, they plot the time histories of estimation of the parameter k;, supposing
that the values of k; and uy, are a priori known. Moving from Figs. 2.15, 2.16, 2.17
and 2.18, we have changed the intensity if the tuning noise to highlight its
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Fig. 2.13 Results of PF for estimation of parameters of linear-plastic constitutive law
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Fig. 2.14 Results of PF for estimation of parameters of linear-softening constitutive law

importance in the parameter estimation. In both cases the initial value of the
parameter is set to 50 % of the target value. In the graph shown in Fig. 2.15, the
value of the noise for tuning k; is set to 102 N? /mm?, which permit the evolution of
the particles finally converge to the target value. On the contrary, the noise value
equal to 107 N?/mm? which is used to obtain the results shown in Figs. 2.18, 2.19
and 2.20, does not let the algorithm to sample efficiently, and the ensemble of the
particles does not finally converge to the target values of the parameters.

To compare the performance of the particle filter when the tuning noise
intensity varies, one can confront Figs. 2.16 and 2.19. At t = 100s, as the
parameter k; enters in the system evolution due to the inception of nonlinearity, for
the case with the noise equal to 107*N?/mm?, estimates of the states of the system
diverge, while in with the noise equal to 107>N?/mm? states are estimated un-
biasedly. This corroborates the idea that a small value for tuning noise intensity
prevents the cloud of the particles to efficiently approximate the a posteriori dis-
tribution of the state. To investigate this issue in more details, we have focused on
the histograms of the particles and their associated weights at t = 130 s, where
there is a sharp change in the estimation of displacements (see Fig. 2.17). Looking
at the histograms and particle weights shown in Fig. 2.20, it is seen that the cloud
of the particles, shown via histogram, are far from the observation vicinity (the red
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Fig. 2.16 State estimates when noise covariance is set appropriately (10~ N?/mm?)

vertical line), where the distance of the closest bin to the observation is about
0.15 mm. As a consequence, in Fig. 2.20 all of the particles have found equal
normalized weights; their distance from the observation vicinity is too far, as a
consequence the associated probability with each particle becomes less than the
round-off errors. On the contrary, looking at the same time instant in the case in
which estimates are converging target values, it is seen that the distance of the
closest been to the observation is about 0.004 mm; thus, in Fig. 2.18 the particles
closer to observation have found a more significant normalized weight whereas
other have smaller weights. Such diversity of weights shows that the particles are
distributed in a zone which is close to the observation.

In what precedes, it has been shown that the proper choice of noise covariance has
fundamental effects on the performance of PF. In case of dealing with one single
parameter, it is not difficult to tune the filter; however, while dealing with more
parameters, finding the right combination might become difficult. To address the
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Fig. 2.18 Parameter estimates when noise covariance is not set appropriately (10~* N?/mm?)

issues induced by simultaneous track of the three parameters shown in Figs. 2.11,
2.12, 2.13 and 2.14, for instance the step-function like behavior seen in Fig. 2.14
when calibrating uy, we focus on the state estimation time histories, see Fig. 2.21,
and consider the jump at r = 34 s. To have a closer look at what happens while this
jump occurs, once again we make use of histogram of the distribution of the particles
in two time instants: the beginning of the time step; the end of the time step. Before
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Fig. 2.20 Histogram of observable part of state vector (fop) and associated samples weights
(bottom) though from fop it is seen that the sample cloud is quite far from observation
neighborhood (vertical red line) consequently none of the particles find significant weights
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Fig. 2.21 State estimation by PF, linear softening constitutive law

proceeding with this objective, let us review again the particle filter algorithm. The
procedure is triggered by drawing a number of Np samples from a Gaussian distri-
bution, then at each time instant #; the same number of samples are drawn from
transition prior. By transition prior, we mean a Gaussian distribution which its mean
equals to the value of evolved estimated state at previous time step #;_; while it’s
covariance equals to the covariance of the process noise. This procedure practically is
equal to generation of Np Gaussian random numbers, and adding to them the value of
x; which is evolved through evolution function. In the next stage, the probability of
realization of each sample is computed. In this study, it is assumed that observation
equation is contaminated by a white Gaussian process; hence, calculation of the
probability of realization of each particle will be a function of a norm of the distance
of the particle from the observation. The functional form of a multivariate Gaussian
distribution reads as:

1
—c
V27| X
where p and X denote mean and covariance of the state vector, respectively; |.|
stands for the determinant of the matrix. Within the PF algorithm, the above
mentioned formula is used to compute the probability of realization associated
with each particle x,(f), according to :

L o)W o)
y ) L R vt (%)), 2.53
plu) = (253)

p(z) = 7%(2*!‘)5:71 (z—n) (252)
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Fig. 2.22 Parameter estimation by PF, linear softening constitutive law

However, in case the observable part of the cloud of particles is too far from the
observation y,, the calculated probability will equal zero due to round off errors.
To cope with ill-conditioning, it is set to a small value. As a result, all the particles
will find an equal weight. In this condition, at the resampling stage, the resampled
cloud will not change considerably, and will be similar to the previously existing
cloud of particles. If the observable part of the cloud of particles approaches to
observation vicinity (i.e. the zone in which at least a number of the probabilities
are not affected by round-off error) a sharp change in the estimation of the state
will occur. The gradient of such change in estimation of the observable part of
state vector is obviously toward improvement in the estimate; however, the hidden
(unobserved) part of state entries may or may not change in the direction to
converge to an unbiased estimate, as seen in Fig. 2.22.

To visualize the phenomenon, the time evolution of displacement and param-
eters of the system are shown in the same plot, see Fig. 2.23. Now we regard a few
time intervals of interest, and look at the histograms of particles at some time
instants picked before and after the jump, we keep the time instant r = 11.92 s as
reference instant.

In Fig. 2.24 it is seen that cloud of particles is not including the observation and
the distance of the closest bin to the observation is about 0.2 mm (the value of the
observation is indicated by a red vertical bar in the graph). Consequently, all the
probabilities become zero, due to the round-off errors. To cope with the problem of
ill-conditioning caused by the zero probabilities, in case of a zero probability, it is
set to the smallest value that the computer program used accounts for it. That is, all
the particles find the same weight. Figure 2.26 shows the histograms of k;, k, and
ug respectively. As a consequence of the equal weights of the particles; it is seen
that, before and after resampling stage, the histograms are not changed (Fig. 2.25).
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Fig. 2.24 Histogram of estimated displacements @ r = 11.7 s

Now let us look at r = 11.92, plots included in Figs. 2.27, 2.28 and 2.29 look
considerably similar to previous time instant = 11.7 s; however it seems that the
cloud of samples is now closer to observation, as seen Fig. 2.27.

In what follows, histograms related to time instant t = 12.13 s are assessed.
First see Fig. 2.30, in which the histogram of displacements is shown. Again, the
red bar signifies the value observation y; at related time instant, at its intersection
with horizontal axis. It is seen that they are scattered throughout a wide interval;
however, some particles have approached observation vicinity, as close as required
to have non-zero weights for a couple of the particles, see Fig. 2.32.

To have a more clear idea, in Fig. 2.31 we have enlarged the vicinity of
observation and histogram of resampled particles in order to highlight the changes
in the particle cloud after resampling stage. We have to remark that the plot is an
enlargement also in ordinate. It is clearly seen that a few particles (represented via
blue histogram) have reached quite close to observation (red bar) so that their
associated weight has become significant (see Fig. 2.32); as a consequence, in the
resampling stage, the particles far from observation neighborhood are eliminated,
and the ones close to it are duplicated. Figure 2.32 shows the weights associated
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Fig. 2.25 Weights associated with each particle @ ¢ = 11.7 s before resampling

with each particle. The peaks in Fig. 2.32 are the normalized weights associated
with each particle before the resampling stage. The closer ones have visible peaks;
there are also several peaks which are not visible in Fig. 2.32; once enlarged, those
become visible as well; however they are about ten (see Fig. 2.33), nearly negli-
gible when compared with the number of particles which in this case is 500.

As it is seen in Fig. 2.34, resampled particles do not necessarily move toward
the target value; this is due to the fact that a wrong set of parameters has
accompanied the shift of the samples toward the observation vicinity. Figure 2.34
well described the reason of failure of the PF in estimating states and parameters
namely the distance of could of samples from observation vicinity. In order to
alleviate such a problem, a remedy is to push the cloud of the samples toward
observation vicinity. It can be done by employing the EKF: in each iteration, the
EKEF is used to update each particle by considering the information contained in
the latest observation (de Freitas et al. 2000). More precisely, in the sampling
stage, the samples are drawn from the transition prior; afterwards, each sample is
updated by the EKF and so is pushed toward the observation vicinity. To some
extent, this approach alleviates the problems arouse by choosing a suboptimal
sampling distribution namely the transition prior. Figures 2.35, 2.36 and 2.37 show
performance of a generic PF enhanced by the EKF. It is seen that such approach
substantially improves the estimate of the parameters of the system.

To allow a clear understanding of the algorithm, let us look more closely at
Fig. 2.37. Filter results from the initialization at 50 % of the target values is chosen
just as an example. Figures 2.38 and 2.39 show the state and parameter estimation
obtained through the EK-PF. It is seen that an excellent convergence is achieved.
Figure 2.40 supports the idea that, by updating each individual particle within cloud
of samples via EKF, the ensemble has to approach the zones of high probability.

As one can see in Fig. 2.40, after the EKF stage is implemented, the cloud of
the samples drawn in the sampling stage moves toward the red bar (observation
vicinity). In the resampling stage, the particles with higher probabilities are
duplicated, and the ones with lower probability are eliminated; consequently, the
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Fig. 2.32 Weights associated with each particle @ ¢ = 12.13 s before resampling

cloud of the samples once again approaches the observation vicinity. Assessing
other time instants always reveals the same results.

An extensive assessment of the performances of the Bayesian filters, when
dealing with highly nonlinear dynamics of a SDOF system, has been presented.
Though the studied mechanical system has only one degree-of-freedom, the
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2.37 Results of EK-PF for estimation of parameters of linear-softening constitutive law

extended state vector has three state components (displacement, velocity and
acceleration) and 2 or 3 parameters (in case of a exponential softening constitutive
law two parameters are to be calibrated, whereas in a bilinear one three parameters
exist); consequently the extended state vector is multivariate even in present case.
It was observed that the EKF, SPKF and PF all fail to furnish satisfactory results
concerning identification of the parameters of the system, whereas EK-PF provides
quite reasonable estimation of the states and parameters: for the exponential
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Fig. 2.39 State estimation via EK-PF for a linear softening constitutive law

behavior of the spring the results are unbiased for an extensive range of initial-
izations; for the bilinear spring behavior EK-PF, in some cases, it converges to
unbiased solutions, and in some others, it converges to values affected by small
biases.
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2.6.2 Multi Degrees-of-Freedom Dynamic System

In this Section, dual estimation of state and parameters of a shear type building is
studied, as seen in Fig. 2.41. To start with the simplest case, we focus on the linear
elastic response. By neglecting dissipating phenomena, the governing equations of
motion thus is expressed as:

Mii + Ku = F(1) (2.54)

where M and K denote the stationary mass matrix and stiffness matrix,
respectively:

ny

M= . (2.55)

my
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- knfl + kn *kn
_kn kn

whereas F(z) is the external loading vector; in general, F(¢) can be any kind of
loading. However in this study, we assume that it is a harmonic force applied to the
top floor:

0

Ft) = 0 (2.57)
0 sin wt

where ¢ and w are the amplitude and the frequency of the excitation, respectively.
To numerically solve (2.54), the Newmark explicit time integrator has been used,
see Egs. (2.40-2.44).

To write the equations in a discrete state-space form, we introduce an extended
state z that, at each time instant f;, includes u, & and @ according to:

uy
k= ilk . (2.58)
iy

The state-space form of (2.54) then reads:
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2k = Axzi—1 + By (2.59)
where

I BAPMT'K Al — PAPM 'K —ﬁ(l/z - ﬁ)At“M*‘K + Atz(l/z - ﬁ)l

Av=| —pAM'K I —yAPMK fv(l/z - ﬁ) APM 'K + At(1 — y)I
~MK ~AMK ~ae (1 - p)M-'K
(2.60)
and
BAPM 'R,
B, = | yAtM 'R, (2.61)
M~'R;

In this study, it is assumed that displacements and accelerations of the floors can
be measured; thus the observation equation is written as:

Vi = Hzj +wi (2.62)

where H denotes a Boolean matrix of appropriate dimension, which links the
observation process to the state of the system; w; denotes the associated mea-
surement noise; 5 and y are parameters of the Newmark integration algorithm. For
the dual estimation, the model parameter vector results:

k;

k;
9= | (2.63)

ky

In the numerical analysis, we deal with a multiple-story shear building, fea-
turing the same stiffness and mass values at each floor. We start by considering the
smallest possible number of floors (say two), and see how many parameters are
calibrated unbiasedly. In this regard, we assume m; =25kg and
ki =300kg/m(i = 1: n). The outcomes of state estimation and parameter cali-
bration are a function of the quality and quantity of the information provided to the
algorithms; by quality, we intend the accuracy of measurement devices, accuracy
of the model of the system and initialization guess; by quantity, the number of
degrees of freedom, whose evolution in time is measured, is intended.

This research focuses on the study of the effects of an increasing number of
parameters in dual estimation of multi-dimensional mechanical systems. It has to
be highlighted that the observable quantity is considered to be the displacement of
the top floor only. Covariance of the measurement noise is assumed to be
2.7 x 107%m?; the initial covariance of states (displacement, velocity and accel-
eration) is supposed to be very small (10~'!° m?), whereas diagonal entries of initial
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covariance of unknown parameters are assumed to be 10kg”/m?. In all the
analyses, the covariance of the fictitious noise for tuning the parameters is set to
103 kg? /m?2. Since states are always tracked unbiasedly, for the sake of brevity,
the relevant results are not reported.

To ensure the algorithm has reached an unbiased estimate, it is a common
practice to run analysis starting from different initializations; in case all converge
to the same estimate, then it may be most likely an unbiased estimate. In this case,
we initialize the analyses by values 50 % less and 50 % more than target value.
We begin our numerical assessment by study of a two DOF structure and report the
results of parameter estimation in Fig. 2.42: it is observed that two filters exhibit
the same performances. In EK-PF procedure, 20 particles are deployed; by
increasing the number of particles to 200, changes are visible in the plots of
Fig. 2.42. Hence, the number of the particles was fixed to 20.

Though by increasing the number of particles toward infinity, particle filter can
furnish unbiased estimates (Cadini et al. 2009), in practice, such a number of
particles may be intractable for the current power of computational tools. By
increasing the number of unknown parameters, it is observed that the bias in the
estimates becomes more visible. In Fig. 2.43, it is seen that again both EKF and
EK-PF exhibit the same performance; however, the bias in the estimates is
increased when compared to a 2-DOF system. Moving to a 3-DOF and 4-DOF
system, Figs. 2.43 and 2.44 reports the results when three and four inter-storey
stiffnesses has to be estimated, respectively. Comparing with the case of a 2-storey
shear building, again the bias in the estimate of the parameters increases.
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By exploring the literature concerning online methods for the identification of
structures, one will see that most of it is focused on shear building structures with
less than four stories [e.g. see (Chatzi et al. 2010; Gao and Lu 2006; Koh et al.
1995; Xie and Feng 2011)]. We avoid showing the results concerning estimation of
more complicated structures, since they confirm the same trend observed in this
reported part of the analysis. As the dimension of the state vector (hence the
number of the parameters) increases, estimation of the parameters become
increasingly difficult; in the jargon of dynamic programming, such a problem is
termed curse of dimensionality (Bellman 1957). Powell (2007) illustrates this issue
via an intuitive example: if state space has i dimensions and if each state com-
ponent can take j possible values then we might have i/ possible states, i.e. by a
linear increase in dimension of state vector, the dimension of the space of possi-
bilities increases exponentially.

A possible remedy, for problems featuring high dimensionalities, is represented
by searching for a possible subspace capturing the main variation in data; in
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forthcoming Chapters, applicability of Proper Orthogonal Decomposition (POD) is
primarily shown in constructing reduced order models, and afterwards such a
model will be embedded in filtering schemes.

2.7 Summary and Conclusions

In this chapter, recursive Bayesian inference of partially observed dynamical
systems has been reviewed. As a tool for structural system identification, nonlinear
Bayesian filters are applied to dual estimation problem of linear and nonlinear
dynamical systems. Dealing with a SDOF structure, it has been shown that the
hybrid EK-PF filter is able to furnish a reasonable estimation of parameters of
nonlinear constitutive models. Assessment of SDOF systems is followed by
identification of multi storey buildings. In this regard, performances of the EK-PF
and EKF algorithms are compared, and it has been concluded that they are nearly
the same, and by an increase in the number of storeys of the building, the algo-
rithms fail to provide an unbiased estimate of the parameters (stiffness of the
storeys). Therefore, they are not reliable tools to monitor state and parameters of
multi storey systems.

To develop a robust algorithm to monitor health of the structures via recursive
Bayesian inference, we will make recourse to model order reduction of the
dynamic systems. To this end, next Chapter reviews important features of proper
orthogonal decomposition and its application to model order reduction of dynamic
systems.
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