
Chapter 2

Constitutive Formulations

Abstract Controversy about the frame indifference principle, the concept of

non-local continuum field theories, local constitutive formulations, differential

constitutive equations of linear viscoelasticity, Oldroyd, K-BKZ, FENE (Finitely

Extensible Non-linear Elastic) class of constitutive equations, Smoluchowski and
Fokker–Planck diffusion equations, constant stretch history flows, fading memory

and nested integral representations of the stress, order fluids of the integral and

differential type, constitutive formulations consistent with thermodynamics, max-

imization of the rate of dissipation in formulating thermodynamics compatible

constitutive structures, Burgers equation which is finding a gradually widening

niche in applications, minimum free energy and maximum recoverable work in the

case of linearized viscoelastic constitutive structures, implicit constitutive theories,

which define the stress field when the viscosity depends for instance on the

constitutively undetermined pressure field, and which have found new focus in

applications such as elastohydrodynamic lubrication are discussed and progress

made is summarized. Canonical forms of Maxwell-like constitutive differential

equations and single integral constitutive equations are presented and commented

on together with the Hadamard and dissipative type of instabilities they may be

subject to.
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A pervasive and central problem to Non-Newtonian Fluid Mechanics and by

association also central to the analysis of secondary flows is the formulation of

constitutive equations. The underpinning reason for many diverse non-linear phe-

nomena in the flow of non-linear fluids is the capability of viscoelastic fluids to

accumulate recoverable strains in the course of the forcing. Viscoelastic flows are

far more complex due to the effects of fading memory, which do not exist in the

case of viscous fluids. As a direct consequence, the evolution of stress under steady

deformation is non-linear and linear, respectively, for most viscoelastic and viscous

fluids. This aspect makes even problems posed for non-linear fluids in geometri-

cally simple settings difficult to solve analytically and recourse has to be made to

numerical approach. Of course, processing flows in industry take place in compli-

cated geometries and under high deformation rates, which makes the problem

almost intractable analytically. But these difficulties pale by comparison with the

unresolved issue in Non-Newtonian Fluid Mechanics of how to formulate a uni-

versal constitutive equation.

Constitutive equations in the broader meaning of the term are required to close

the balance and conservation equations of mathematical physics. The balance laws

in continuum physics are expressed in integral form as:

d

dt

ð
Σ

F0 x; tð Þ dΣ ¼ �
ð
∂Σ

Gini d∂Σþ
ð
Σ

f dΣ, x∈Σ, t∈Rþ, Gi∈RN i ¼ 1, 2, 3

which represents the rate of change of the given vector of densities F0∈RN in terms

of the fluxes of quantities Gi through the surface ∂Σ of the closed volume with unit

normal ni and velocity ui. Regularity assumptions allow the above system to be

expressed in differential form as:

∂F0

∂t
þ ∂Fi

∂xi
¼ f , Fi ¼ F0ui þGi

In continuum mechanics, the balance laws, the mass conservation, the linear

momentum balance, and the energy balance are explicitly written as:

∂ρ
∂t

þ ∂ρui
∂xi

¼ 0,
∂ρ ui
∂xi

þ ∂
∂xi

ρui uj � Tij

� � ¼ ρbj

∂E
∂t

þ ∂
∂xi

Eui þ qi � Tij uj
� � ¼ ρ bi ui, E ¼ ρu2

2
þ ρε

Here, E, ρ, T, q, and ε are the energy per unit volume, the mass density, the total

stress tensor, the heat flux vector, and the internal energy per unit volume, respec-

tively. The stress tensor T can further be decomposed into T ¼ �p 1 + S, where

S is the extra-stress tensor and p and 1 stand for the pressure and the unit tensor,

respectively. It should be noted that when b and r, which represent the body

force field and the heat supply, vanish this set of field equations (balance laws) is
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called conservation laws. Clearly to have a closed system, another set of equations

called constitutive equations relating, for example, the velocity field to the stresses

is required.

Ruggeri [1] classifies constitutive equations as local and non-local in space

and/or in time. His definition of non-locality is conceptually entirely different than

non-local constitutive formulations of Eringen [2] (see Sect. 2.1) and should not be

confused with Eringen’s formulation of balance laws. For example, in the case

of frictionless Euler fluids, the caloric and thermal equations of state ε ¼ ε (ρ, θ),
p ¼ p (ρ, θ) expressing internal energy ε and pressure p in terms of the density ρ
and temperature θ are local type of constitutive equations. When ploughed back

into the balance equations, these equations of state yield a system of hyperbolic
differential equations. On the other hand, the Navier–Stokes type of formulation for

the extra-stress is given as:

S ¼ 2vDD þ 1λdivv,

where DD stands for the traceless deviatoric part of the rate of deformation tensor

D and v and λ are phenomenological viscosity coefficients, and the Fourier’s law of

heat conduction q are classified as non-local in space. Constitutive equations with
memory in which the stress depends not only on the deformation but also on the

history of the deformation are classified as non-local in time. When Navier–Stokes

formulation and the Fourier’s law are substituted into the balance equations, one

gets a system of differential equations of parabolic type in contrast with the Euler

equations. If the equations for a mixture are considered Fick’s diffusion laws [3]

must be added to Fourier’s law of heat conduction and the Navier–Stokes formu-

lation of the stress–strain relationship to close the system thereby increasing the

number of phenomenological constants embedded in the system to be solved. Again

when the set of equations for the mixture is substituted into the balance equations

a system of parabolic differential equations with second-order spatial derivatives

and first-order time derivatives is obtained. Similarly, the well-known Darcy’s

equation [4] for flow in porous media is an approximation to the balance of linear

momentum for the Newtonian fluid flowing through a rigid, porous solid body at the

lowest order of the Maxwellian iteration process in a mathematical sense. In a

physical sense, it is a very good approximation in capturing the behavior of the fluid

in special circumstances, but fails spectacularly in other circumstances. The same

can be said of the diffusion equations of Fick’s which do work well under certain

conditions. Fick’s and Darcy’s equations are only approximations and should not be

conferred the status of physical laws just because they lead to remarkably good

predictions in special circumstances, see Rajagopal [5].

Any constitutive equation must obey without fail two cornerstone principles, the

material frame indifference principle (objectivity principle) and the entropy prin-

ciple. The former states that all constitutive equations are independent of the

observer or stated differently balance laws are invariant with respect to Galilean

transformations, and the latter requires any solution of the full system of differential
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equations to satisfy the entropy balance law with a non-negative entropy produc-

tion, see Coleman and Noll [6] and Müller [7], as given by:

∂ ρSð Þ
∂t

þ ∂
∂xi

ρSui þΦi
� � � 0

where Φi and S denote the entropy production (flux) and entropy density,

respectively.

Ruggeri points out that Müller [8] proved in a landmark paper that the

Navier–Stokes and Fourier equations violate the frame indifference principle.

Truesdell [9] refuted the conclusions of Müller in vigorous terms. However, in

spite of Truesdell rebuttal, the matter is far from settled. According to Ruggeri [1],

the controversy since the publication of Müller’s work in 1972 as to whether or not

the frame indifference principle is a universal principle has spawned several

attempts to modify the Fourier and Navier–Stokes equations to recover objectivity.

Ruggeri [1] does not specifically address the arguments of Truesdell [9] in his

refutation; however, he and others are clearly believers in the truth of the arguments

of Müller [8].

Bressan [10] and Ruggeri [11] and more recently Ruggeri [1] working indepen-

dently suggested a way out of the dilemma: Fourier and Navier–Stokes equations

are not truly constitutive equations, but approximations representing the full set of

hyperbolic equations in the limit of Maxwellian iteration resulting in a set of

parabolic differential equations. The full set of equations describing the behavior

of any physical system must be hyperbolic in agreement with the relativity princi-

ple, which holds that all disturbances propagate with finite speed. To quote Ruggeri

[1] “Fourier and Navier–Stokes equations are the first approximations of the
Maxwellian iteration of the extended thermodynamics (ET) balance law system,
and therefore they are not true constitutive equations and do not need to satisfy the
frame indifference principle.” The question naturally arises as to whether or not the
entropy principle, which is satisfied by the full hyperbolic problem, holds in

the parabolic limit. The issue has been settled by Ruggeri [1] who proved that the

entropy principle is preserved in the parabolic limit.

2.1 Non-local Constitutive Formulations

It is relevant to note at this point that all constitutive equations in use for non-linear

viscoelastic fluids formulated, either from a continuum or molecular perspective,

are based on the principle of local action. That is the material response at a point

depends only on the conditions within an arbitrarily small region about that

point. However, there exists a large class of problems in continuum mechanics

that cannot be simulated and satisfactory predictions of flow behavior made on the

basis of the principle of local action. To bring resolution to these problems

development of non-local continuum field theories of material bodies, where
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non-local intermolecular attractions are important, is required. An example of

striking anomaly that defies classical treatment is several decades of viscosity rise

in fluids flowing in microscopic channels. In the field of electromagnetic theory,

superconductivity cannot be treated by the classical field theories and in solid as

well as fluid mechanics several branches of high-frequency waves are not predicted

and short wavelength regions deviate grossly from experimental observations.

Physicists often have recourse to atomic lattice dynamics to shed some light on

these problems. From this perspective, a unified development of the field equations

of non-local continuum field theories is a hitherto unexplored necessity.

The domain of the applicability of the classical field theories is intimately

connected to the length and time scales. Denoting by L the external characteristic

length such as wavelength and by l the internal characteristic length such as

granular distance for example, classical field theories predict sufficiently accurate

results in the region L/l >> 1. Local theories fail when L/l � 1 and recourse has to

be made to either atomic or non-local theories to account for the long-range

interatomic attractions. With time a factor in dynamical problems, there is a similar

scale T/τ where T is the external characteristic time such as the time scale of the

applied pressure gradient or other applied loads and τ is the internal characteristic
length, for example, the time scale of transmission of signal from one molecule to

the next. Classical theories fail when T/τ � 1. Thus, the physical phenomenon in

space–time requires non-locality and memory effects scaled by L/l and T/τ. Eringen
[2], a pioneer in this field, points out that sometimes non-locality is inherent to the

process like in solid state physics where the non-local attractions of atoms are

prevalent, and the material is considered to consist of discrete atoms connected by

distant forces from other neighboring atoms. Hence clearly, non-local field theories

and lattice dynamics are related. Further, non-local formulations have the potential

to provide bases to explain hitherto unexplained phenomena by classical field

theories in rheology, biology, neural systems, and other fields.

Eringen [2] generalized local principles to develop natural extensions of the

fundamental laws of physics to non-locality by reformulating the energy balance

law in global form using the axiom of Galilean invariance and by requiring that the

behavior of a material point in the body is influenced by the state of all points of the

body at all past times. Classical notions posit that material points of a body form a

continuum and that their behavior is governed by the relationships between phys-

ically independent objects called variables such as mass, charge, electric field,

magnetic field assigned to the material point, and a set of response functions such

as stress, internal energy, and heat. These relationships called constitutive laws are
constructed based on the thermodynamic conditions of admissibility and additional

postulates. The non-locality formulations of the basic laws encompass non-locality

in both space and time that is memory dependence is woven into the theory. In

non-local theories, the energy balance law is valid for the whole body and the state

of the body at a material point is described by material functionals. This means that

complete knowledge of the independent variables at all points of the body is

required to describe the state of the body at each point. In practice, the Cauchy

stress S at a material point X would be given in terms of a kernel K defined as an
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influence function with finite support, that is, it is identically zero for all points

lying beyond a certain radius r, and the local stress σ at X
0
:

S Xð Þ ¼
ð
B

K X� X
0�� ��� �

σ X
0

� �
dV X

0
� �

where dV represents the infinitesimal volume around X0.
To quote Eringen [2], “Non-local field theories may provide mathematical

methods for the exploration of many failures of classical field theories and for the
discoveries of new physical phenomena and/or explanations of the old ones.” For

instance, the experimentally observed drastic change in fluid viscosity near rigid

surfaces as compared to bulk viscosity in polymeric thin films can be explained

only through the application of non-local constitutive formulations, see Eringen [2]

and Eringen and Okada [12]. Specifically within a channel depth less than 30 nm,

the measured viscosity of PS-cyclohexane (a solution of polystyrene in a non-polar

solvent cyclohexane) is found to be several decades higher than the bulk viscosity,

see Israelashvili [13, 14]. The viscosity measured near rigid surfaces is drastically

higher than the bulk viscosity measured away from the walls. Based on observa-

tions it is conjectured that, near the surface, a thin layer of the order of 5–10 nm of

polymeric fluid becomes rigid, reducing the channel depth. Eringen and Okada [12]

argue that long-range intermolecular forces and molecular packing effects must be

taken into account to successfully explain this phenomenon and proceed to show

that this type of drainage phenomena can be fully explained by use of the non-local

theory and by assuming that in very thin films microstructural effects play a

dominant role meaning that the viscosity of the fluid depends on the molecular

shapes and orientations. It is generally accepted that the molecules of orientable

fluids, such as polymers and suspensions, undergo rather sharp orientation and

shape changes in the vicinity of rigid boundaries. Eringen and Okada [12] conclude

that the non-local theory they develop successfully predicts viscosity change with

channel depth as well as the evolution of the thickness of very thin films on spinning

disks. They point out that agreement of viscosity predictions with experiments is

excellent to depths from 0 to 300 nm and advocate the use of non-local lubrication

theory for squeezed films in narrow gaps of the order of several angstroms and

further make the point that non-local lubrication theory is the key to an understand-

ing of many dynamic processes involving very thin liquid films.

The inception of non-local theories is not new. But in spite of its age, the literature

on non-local field theories is not extensive and is based essentially on the develop-

ments initiated by Eringen and his co-workers. A brief compendium of their contri-

butions to the archival literature includes discussion of the non-local continuum

theory of flowing media with or without microstructural effects, Eringen [15, 16],

applications to turbulence, Speziale and Eringen [17], application to diffusion of

gases, Demiray and Eringen [18], and applications to magnetohydrodynamics,

Eringen [19]. Discussions of the theory of non-local electromagnetic fluids and

application of the theory to dispersive waves in dielectric fluids, as given by
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McCay and Narasimhan [20] and Narasimhan and McCay [21], respectively, are

some of the important developments in the field. Another interesting application

pointing to the potential of non-local theories of Eringen was highlighted by Speziale

[22]. After demonstrating the inability of the popular isotropic k–ε turbulencemodel to

describe secondary flows in turbulent tube flow of linear fluids, Speziale [22] shows

that it is difficult to remedy this defect in the k–εmodel by taking the anisotropic part

of the Reynolds stress tensor to be a non-linear function of themean velocity gradients.

However, the non-local Stokesian fluid theory of Eringen does remedy this shortcom-

ing of the k–ε model and yields secondary flows in qualitative agreement with

experiments, see Speziale [23]. No further developments were initiated in this prom-

ising approach since the early 1980s. A full review of the advances made in non-local

theories is beyond the scope of this book. Interested readers are referred to the above

cited literature for an in-depth more comprehensive picture of the developments

achieved in the field. Interest in the potential of non-local theories is on the rise in

particular in solid mechanics, see Reddy [24] and Thai [25].

2.2 Local Constitutive Formulations

It is fair to say that no deep understanding of the nature of viscoelasticity has been

reached as yet, that is no fundamental universal stress–strain relationship has

been discovered. That leaves the field with more than ten popular constitutive

equations (CE) in competition. Which is worse yet some of these CEs may yield

acceptable results for certain types of flows by comparison with data, but they fail to

fall in that category in other types of flows. This leads us to the inevitable concept of

classes of flows and CEs, a situation opposite to the linear (Newtonian) Fluid

Mechanics case. In the latter, Navier–Stokes equations are universal and apply to

all types of flows of all homogeneous linear fluids. Most popular CEs in use at this

time were developed without consideration of the relationship of constitutive

formulations to thermodynamic principles with the exception of multiple integral

formulations with fading memory, which in turn suffer from the lack of a unique

way to specify the memory functionals. In addition to ignoring thermodynamic

principles, most of the CEs of both differential and single integral type, which are

able to describe in a limited way some of the observed phenomena in particular at

low Deborah De numbers (the ratio of the characteristic relaxation time of the fluid

to the characteristic processing time) or equivalently at low We numbers (the ratio

of elastic forces to viscous forces) typical of laboratory settings, often turn out to be

non-evolutionary. This limited ability to describe the observed phenomena within

a relatively narrow range of strain rates usually seen in standard laboratory tests

(that is at low De) such as start-up, steady state, and relaxation tests gets much

worse at the high De numbers prevalent in processing flows in industry at least two

orders of magnitude higher than those seen in the reported tests. At these high De
numbers, the non-linear effects of elasticity become dominant. In addition to failing

to describe the flow even qualitatively in the region of high De numbers almost all

CEs exhibit various instabilities. Even molecular-based CEs such as those based on
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the reptation concept relatively successful in describing the behavior of dilute

solutions and in general the behavior of concentrated solutions in the region of

linear and weakly non-linear deformations yield very poor description of non-linear

data and show physically unrealistic and unstable behavior in particular in numer-

ical simulations in the high De number range. The reason for these instabilities is

still elusive. Are they related to the real physical instabilities observed or are they

inherent to the mathematical structure of the constitutive formulations? It is difficult

to distinguish between the unstable behavior caused by poor modeling of the

non-linear stress–strain relationships and the real experimentally observed physical

instabilities these equations are supposed to predict. Some light has been shed on

the issue by the recent work of Leonov and co-workers [26] who gave rigorous

proof that the instabilities displayed by the two classes of viscoelastic CEs in

general use, the class of differential Maxwell-like, and the class of time–strain

separable single integral CEs, are not related to the physical instabilities observed in

particular at high De numbers and are not caused by poorly formulated numerical

algorithms, but rather that they are due to violations of fundamental principles in

the formulation of the CEs themselves. Specifically almost all the popular CEs of

differential and single integral type turn out to be either Hadamard unstable or

dissipative unstable or both. Hadamard and dissipative instabilities are addressed in

Sects. 2.8 and 2.9, respectively.

2.3 Different Approaches to Local Constitutive

Formulations

Historically, the first comprehensive framework to derive CEs pioneered by

Oldroyd [27] and further developed by prominent figures like Rivlin, Green,

Ericksen, and Lodge postulated non-linear and quasi-linear relationships between

the observable variables, the stress and the strain rate tensors and yielded CEs able

to describe, albeit qualitatively, non-linear viscoelastic phenomena. The systematic

framework developed by Oldroyd for the rheological behavior of rate type visco-

elastic fluids introduced frame indifference restrictions, convective derivatives of

physical quantities to obtain properly frame-invariant constitutive relations and the

idea that the current state of stress in a body may depend on the deformation history

of the body. He generalized the linear viscoelastic CE by writing it in tensorial form

and imposing admissibility conditions. However, the method lacked a thermody-

namic basis and hence could not describe important phenomena such as dynamic

birefringence, non-isothermal flow, and diffusion, and the resulting equations were

often non-evolutionary that is solutions grew exponentially with time describing

physically non-plausible evolutions. If the theory is not consistent with the second

law of thermodynamics, dissipative phenomena cannot be modeled.
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But it should be noted that the principles in setting up CEs for viscoelastic fluids

established by Oldroyd [27, 28] are nothing less than a quantum leap in this subject.

Oldroyd type CEs remain the simplest suitable for modeling the dynamics of dilute

polymeric solutions under general flow conditions. It is remarkable that a molecular

basis consisting of a suspension of dumbbells connected by infinitely extensible

springs (Hookean) in a Newtonian solvent leads to the Oldroyd-B as well. Oldroyd-

B model has a finite (constant) shear viscosity and the extensional viscosity blows

up at a finite extensional rate due to infinitely extensible interconnecting Hookean

springs connecting the dumbbells. In addition, it predicts a zero second normal

stress difference and consequently cannot be used to investigate secondary flows

(see Siginer [29], Sect. 3.4). The shortcomings of the Oldroyd models led to the

introduction of more sophisticated molecular based models, notably the variants

FENE-P and FENE-CR of the FENE (Finitely Extensible Non-linear Elastic) class
of models (see Sect. 2.3.2.2). For the sake of completeness, the structure of the

Oldroyd-B model is reviewed below. The model relates the extra-stress tensor S to

the rate of deformation tensor D through the constant shear viscosity η0 and the

characteristic relaxation and retardation times of the fluid λ1 and λ2, respectively.

Sþ λ1 S
∇ ¼ η0 Dþ λ2 D

∇
� �

The upper-convected derivative �∇
� �

equal to the material derivative of (•) as it

would appear to an observer in a frame of reference attached to the particle is

defined as:

S
∇ ¼ DS

Dt
� S∇u� ∇uð ÞTS

with D(•)/Dt standing in for the material derivative and the exponent (T) indicating

transpose. If the Newtonian (solvent) and elastic (polymeric) contributions to the

extra-stress tensor are separated as:

S ¼ ηsDþ τ

The elastic stress τ will satisfy the constitutive relation:

τþ λ1 τ∇ ¼ ηpD

The polymeric and solvent viscosities ηp and ηs are related through η0 ¼ ηs + ηp
and are as given below:

ηp ¼ η0 1� λ2
λ1

� �
, ηs ¼ η0

λ2
λ1
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The linear momentum balance written in terms of the elastic stress with f, u, p
and ρ representing the body force, the velocity, and the pressure fields and the

density reads as:

ρ
Du

Dt
¼ f�∇pþ ηsΔuþ∇ � τ

It is noted that the concept of rate type materials predates Oldroyd and goes back

to Maxwell [30], Boltzmann [31], and Jeffreys [32] who developed linear

one-dimensional models to describe the viscoelastic response of materials in

different contexts. For example, Maxwell was interested in the elastic and viscous

behavior exhibited by gases. He realized that air can store energy and consequently

can display viscoelastic behavior and devised the equation which bears his name.

Jeffreys’ interest in the viscoelastic response of the Earth’s mantle led him to

formulate the CE which bears his name. Modeling of rate type materials was

taken up later by Leonov [33], Mattos [34], and Rajagopal and Srinivasa [35]

who developed, in that order, thermodynamically consistent theories of non-linear

CEs. Their ideas will be summarized in Sect. 2.5.

2.3.1 Linear Viscoelasticity

Following the ground breaking work of Maxwell [30], Boltzmann [31], and Jeffreys

[32], models that can be categorized as of the rate type have been developed to

describe the viscoelastic response of materials based on mechanical analogs. Early

attempts to develop viscoelastic models were limited to one-dimensional CEs,

which were based on the mechanistic models of springs and dashpots representing

the coexistence of the two at a material point. This in turn supposes an additive

elastic and viscous response at each material point. Banding together such springs

and dashpots in series and parallel leads to a great variety of one-dimensional

models. All such models lead to rate type models (or equivalent integral models)

with the possibility of a spectrum of relaxation times for the material. It is not

reasonable to expect a polymeric liquid of a broad molecular weight distribution to

be characterized in terms of a single relaxation time; thus, the introduction of the

generalized Kelvin–Voigt and the generalized Maxwell models, which mechanis-

tically are conceived of dashpots and springs set either in series or in parallel. For

instance, the generalized Maxwell model can have a finite number of Maxwell

elements (a Maxwell element consists of a spring and a dashpot set in series) each

with a different relaxation time from a countable infinity of Maxwell elements.

Figure 2.1a shows the generalized Maxwell model with the individual elements set

in parallel. A generalized Maxwell model with the elements set in series would be

no different than the regular Maxwell model. Figure 2.1b and c shows the gener-

alized Kelvin–Voigt model (a Kelvin–Voigt element consists of a spring and a
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dashpot set in parallel) with a countable set of individual elements arranged in

series and in parallel.

A canonical differential equation for linear viscoelasticity can be written down

as a linear relationship between the stress σ and the strain γ:

1þ
XN
n¼1

αn
∂n

∂tn

 !
σ ¼

XM
m¼0

βm
∂m

∂tm
γ ð2:1Þ

The coefficients of the time derivatives αn and βm are constants. They are

independent of the deformation measures, strain γ in this case or stresses σ, and
represent material parameters such as viscosity and rigidity modulus. This equation

can only entertain small changes in the variables because the time derivatives are

Fig. 2.1 Canonical

spring-dashpot models.

(a) Maxwell relaxation

processes in parallel.

(b) Distribution of

Kelvin–Voigt retardation

processes in parallel.

(c) Distribution of

Kelvin–Voigt retardation

processes in series

(Adapted from Carreau

et al. [63]); ηi and Gi

represent the viscosities

and the relaxation moduli,

respectively
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ordinary partial derivatives; thus, it applies to linear viscoelasticity. N and M can

be chosen as N ¼ M or N ¼ M � 1. Judicious choices for the parameters yield the

well-known one-dimensional Kelvin and Maxwell models as well as the more

complicated Jeffreys and Burgers models. For instance, if only β0 6¼ 0 representing

the rigidity modulus is not zero the equation for linearly elastic behavior (Hookean)

is obtained. If on the other hand only β1 6¼ 0, the equation which defines Newtonian

viscous flow is obtained with β1 representing the viscosity. If both β0 and β1 are
non-zero, one of the simplest models of linear viscoelasticity the Kelvin–Voight

model is derived. The linear Maxwell model stems from assuming that α1 and β1 are
the only non-zero parameters with α1 representing the relaxation time and setting

α1 ¼ λ and β1 ¼ η.

σ þ λσ
� ¼ ηγ

�

The next level of complexity would be assuming three of the parameters are

non-zero. If α1 6¼ β1 6¼ β2 6¼ 0, Jeffreys model with two time constants α1 ¼ λ1
and β2 ¼ λ2 is obtained.

σ þ λ1σ
� ¼ η γ

� þ λ2 €γ
� �

Where the notations (•) and (••) indicate first and second time derivatives.

Suitable choices of the three model parameters lead to two alternative

spring–dashpot models, extensions of the Kelvin–Voigt model and of the Maxwell

model, which do correspond to the same mechanical behavior described by Jef-

freys’ model. They consist of a Kelvin–Voigt element and a dashpot in series

(Fig. 2.2), and a Maxwell element arranged in parallel with a dashpot.

It is interesting to remark as a historical footnote that Jeffreys’ equation was

independently derived much later by Fröhlich and Sack [36] in a different context

that of the flow of a suspension of elastic spheres in a linearly viscous fluid, and

later by Oldroyd [37] for the flow of a dilute emulsion of an incompressible viscous

liquid in another. Oldroyd [37] further showed that the effect of the interfacial

slippage can be included in the simulation of the flow of a dilute emulsion if another

two parameters in (2.1) are assumed to be non-zero, see Barnes et al. [38].

The well-known one-dimensional Burgers model [39, 40] involving four

simple elements (two springs with different relaxation times and two dashpots

with different viscosities) is obtained at the next level of complexity if four

Fig. 2.2 Spring-dashpot

equivalent of the Jeffreys

model (Adapted from

Carreau et al. [63]

with permission)

20 2 Constitutive Formulations



parameters in (2.1) are assumed to be non-zero. One mechanical analogue of the

Burgers model corresponds to a Kelvin–Voigt solid element and a Maxwell fluid

element set in series as shown in Fig. 2.3a, the springs and dashpots representing

energy storing and energy dissipating devices. Another mechanical analogue would

correspond to two Maxwell elements set in series, see Fig. 2.3b. In terms of the

parameters of the Maxwell type of mechanical representation depicted in Fig. 2.3b,

the equation assumes the following form with λi, i ¼ 3, 4 representing time

constants as:

σ þ λ3 þ λ4ð Þσ� þ λ3 λ4€σ ¼ η3 þ η4ð Þγ� þ η3 λ4 þ η4 λ3ð Þ €γ ð2:2Þ

There are other mechanical representations of the Burgers model, variants of

the same set of two springs and two dashpots arranged differently, see Fig. 2.8a, b.

This popular rate type one-dimensional viscoelastic model has been extensively used

to describe the behavior of a variety of geological materials such as Earth’s mantle

besides viscoelastic fluids and its uses have been extended recently to asphalt and

asphalt mixes by Rajagopal and his co-workers, Murali Krishnan and Rajagopal [41]

and Murali Krishnan et al. [42]. The aggregate matrix in an asphalt concrete mixture

has a small relaxation time, whereas the asphalt mortar matrix has relatively larger

relaxation time, thus asphalt concrete mixture exhibits Burgers-like fluid behavior.

The one-dimensional Burgersmodel is general enough to include the one-dimensional

Oldroyd,Maxwell, andNavier–Stokesmodels as subsets. For instance, if λ3 λ4¼ 0, the

Burgers model given in (2.2) reduces to the one-dimensional Oldroyd-B model.

Although Oldroyd may have been aware of this, he did not consider a proper

generalization of the Burgers model to three dimensions. That has been done recently

by Murali Krishnan and Rajagopal [41] who used the thermodynamic framework,

to systematically generate CEs for rate type viscoelastic fluids, developed by

Rajagopal and Srinivasa [35] to formulate a thermodynamically compatible three-

dimensional generalization of the one-dimensional Burgers model. Quintanilla and

Fig. 2.3 Equivalent representations of the 4-parameter linear Burgers model; (a) Kelvin–Voigt

and Maxwell elements in series; (b) two Maxwell elements in parallel (Reprinted from Barnes

et al. [38] with permission)
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Rajagopal [43, 44] studied the mathematical properties of the three-dimensional

generalization of the Burgers model with constant material moduli (see Sect. 2.5.2).

2.3.2 Non-linear Viscoelasticity

Polymer solutions and melts can be looked at as networks of entangled long chains

that could move over each other. Polymer chains which are not chemically cross-

linked nevertheless may interact with each other to form transient networks. These

temporary cross-links (constraints) do not occur at specific sites along the polymer

chain but are caused by entanglements, topological constraints arising from any one

given chain’s inability to pass through another. Green and Tobolsky [45] originally

developed network theories for solid rubber-like materials based on these concepts.

The theory of rubber elasticity was extended later to polymeric melts by Lodge

[46, 47], and Yamamoto [48–50] who developed semi-phenomenological theories.

This was followed by “reptation” theories due to the work of De Gennes [51] and

Doi and Edwards [52]. The molecular approach has been generally successful for

the viscoelastic behavior of polymeric liquids with linear or weakly non-linear

deformations. However, when attempts are made to describe strong mean field

flows quite arbitrary assumptions have to be made to reach plausible predictions.

It is also an open question whether the rheological equations based on molecular

considerations in existence in the literature are consistent with the second law of

thermodynamics.

2.3.2.1 K-BKZ Type of Constitutive Formulations

The molecular theory of Doi and Edwards [52] to describe the dynamics of polymer

melts is based on the idea that the motion of a molecule perpendicular to its

backbone is severely constrained by surrounding molecules that form a tube

along which the linear polymer chain is free to diffuse. The theory is too compli-

cated to lend itself to analytical and even numerical investigations due to the

difficulty in determining the orientation of a given segment of the polymer chain

in the deformation history resulting from the coupling of different parts of the long

chain as the chain retracts along the length of the tube. To make the theory

accessible to computations Doi–Edwards introduced the “independent alignment”

assumption, which requires that each chain segment deforms independently of the

others. With this assumption Doi–Edwards model leads to an equation similar

to the well-known K-BKZ (Kaye–Bernstein–Kearsley–Zapas) model (2.3), inde-

pendently proposed by Kaye [53] and Bernstein et al. [54]. We note that the

“independent alignment” assumption has its own limitations as shown by Marrucci

and Grizzuti [55] and Marrucci [56].
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T ¼ �p1þ S ¼ �p1þ
ðt

�1

∂ϕ
∂IC�1

IC�1 , IC, t� t 0
� �

C�1 t 0ð Þ þ ∂ϕ
∂IC

IC�1 , IC, t� t 0
� �

C t 0ð Þ
	 


dt 0

ð2:3Þ

T, S, 1, ϕ, and C ¼ FTF stand for the total stress tensor, extra-stress tensor, the unit

tensor, the potential, and the right Cauchy–Green strain tensor with F and FT

representing the deformation gradient tensor and its transpose together with IC�1

and IC the first invariants, traces ofC�1 and C, respectively, and t and t0 stand for the
present and past times. p represents the constitutively indeterminate part of the stress.

It is remarkable that K-BKZ theory is exact in respect of the single-step strain

response, and it performs reasonably well in other standard tests; however, the

predictive power is not good at all for double-step strain response. A modification

was proposed by Wagner [57] to remedy shortcomings of this sort by setting as:

∂ϕ
∂IC

¼ 0,
∂ϕ
∂IC�1

¼ μ t� t 0ð ÞH IC�1 ; IC
� �

T ¼ �p1þ S ¼ �p1þ
ðt

�1
μ t� t 0ð ÞH IC�1 ; IC

� �
C�1 t 0ð Þ dt 0

A different modified form of the K-BKZ equation to predict accurately the

constant tensile stress and constant elongation rate experiments was suggested by

Wagner [58] as:

T ¼ �p1þ S ¼ �p1þ
ðt

�1
μ1 IC�1 , IC, t� t 0
� �

C�1 t 0ð Þ þ μ2 IC�1 , IC, t� t 0
� �

C t 0ð Þ� �
dt 0

Other modifications of the K-BKZ model are also possible by splitting

the kernel into time and strain-dependent parts. These can be found in popular

texts on Rheology and Non-Newtonian Fluid Mechanics, Tanner [59], Schowalter

[60], Larson [61], Bird et al. [62], and Carreau et al. [63]. The examples above

have been given for two reasons: K-BKZ equation, and its modified versions,

which represent a high level of structural complexity remain popular in spite of

their shortcomings as they pass reasonably well some standard laboratory tests

such as single-step strain, double step strain, uniaxial elongation, etc. But it is

glaringly obvious that, very much like in the K-BKZ example and its modification

by Wagner to remedy the shortcoming of the K-BKZ in double-step strain

experiment given above, the ad hoc modifications do not go beyond a band-aid

effect as the altered K-BKZ that may perform acceptably well in the double-step

strain experiment is quite likely to fail in the next test of higher level of

complexity.
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2.3.2.2 Constitutive Formulations of the FENE Type

Another example along these lines are the variants FENE-P and FENE-CR of

the FENE (Finitely Extensible Non-linear Elastic) class of CEs, developed by

Bird et al. [64], and Chilcott and Rallison [65], respectively. They were formu-

lated to remedy the shortcomings of the Oldroyd-B equation (see Sect. 2.3).

Oldroyd-B model can also be derived starting from a molecular basis consisting

of a suspension of infinitely extensible Hookean dumbbells in a Newtonian

solvent. It was natural to ask what would come out of considerations based on a

more sophisticated interconnecting spring force law leading to finite extensibility
of the interconnecting springs. One of the known deficiencies of the FENE-P

model is that it does not show “stress hysteresis,” see Gosh et al. [66], Larson

[61]. For real polymers, two conformations with the same end-to-end distance can

have different internal configurations, leading to different values of stress. In the

FENE-P model, the stress depends only upon the current end-to-end distance so

hysteresis is not present.

It turns out that Oldroyd-B model predicts that the extensional viscosity ηe
given by:

ηe ¼ 2η0
1� 2λ2ε

�� �
1� 2λ1ε

�� �þ η0
1þ λ2ε

�� �
1þ λ1ε

�� �
is subject to blow-up instability at a finite extension rate ε

� ¼ 2λ1ð Þ�1
. ηo is the

constant shear viscosity and λ1 represents the relaxation time, see Fig. 2.4.

Fig. 2.4 Extensional

viscosity ηe versus the
characteristic relaxation

time of the fluid λ1 times the

extension rate ε
�
-Oldroyd-B

constitutive model

(Reproduced from Owens

and Phillips [81] with

permission)
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The instability can be explained using the molecular basis as the dumbbells are

infinitely extended at this extension rate. FENE-P model has a monotonically

decreasing shear viscosity with increasing shear (shear-thinning) and bounded

extensional viscosity for example. The basis of the FENE-CR model is empirical.

It predicts constant shear viscosity and bounded and continuous extensional

viscosities. It has been touted as a good model to simulate the flow of Boger fluids

(almost purely elastic fluids with barely detectable shear-thinning if any) as there

seems to be good quantitative fit with the experimental data available in the

literature, Chabbra et al. [67] and Sizaire and Legat [68], and numerical simulations

based on the FENE-CR model. None of these models is suitable for the study of

secondary flows as they all predict a zero second normal stress difference. We note

in passing that Bird and Wiest [69] is a good reference to consult for CEs for

polymeric liquids.

To overcome the problem of the infinite extensibility of the Hookean spring

(linear spring force F law) connecting the dumbbells, the idea of finite extensibility

of the string (non-linear spring force F law) introduced byWarner [70] can be used.

F ¼ HQ 1� trQ�Q

Qo

 �2
" #�1

With a spring law of this type the maximum length the spring can be extended isQo.

The major issue one runs into when using a non-linear force law of the Warner type

is the impossibility to arrive at a CE for the configuration probability density
function ψ (pdf), or the configurational distribution function as it is sometimes

called, directly from the diffusion (Fokker–Planck) equation (2.4), which can be

done with the linear Hookean spring law ending up with the Oldroyd-B.

∂ψ
∂t

¼ ∇uTQ
� � � ∂ψ

∂Q
� ζ12 kT

∂2ψ

∂Q2
þ ∂
∂Q

� ψ Fð Þ
" #

¼ 0 ð2:4Þ

where k and T stand for a constant of proportionality and the temperature, respec-

tively. The diffusion equation (2.4) is another form of the Smoluchowski equation
(2.5) and is derived from it after some algebraic manipulation:

∂ψ
∂t

¼ ∂
∂Q

� ∇uTQ� ζ12 kT
∂
∂Q

þ F

� �	 

ψ ¼ 0 ð2:5Þ

It is worthwhile to note that the Fokker–Planck is an evolution equation, which

describes the evolution of the probability density via a stochastic ordinary differ-

ential equation or a deterministic ordinary differential equation with stochastic

initial values. Smoluchowski and Fokker–Planck equations are natural extensions

of the Langevin equation. They combine macroscopic drag forces with microscopic

Brownian forces, and they cannot be solved in the conventional deterministic sense.
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However, if an ensemble average of dumbbells is considered and the probability ψ
of finding the end-to-end vector Q of the dumbbell at (x, t) is sought the solution of
the Fokker–Planck diffusion equation in a probabilistic sense is feasible. The

solution of the Fokker–Planck equation (2.4) yields the probability ψ [Q(x, t),t]
dQ of finding a dumbbell with end-to-end vector Q in the range Q to Q + dQ at

(x, t). Thus, ψ (pdf) yields information on the probability of finding a dumbbell

with a given configuration at a material point. The problem is Fokker–Planck
equation is analytically intractable even for simple flows. Numerical solutions are

only feasible for very low dimensional configuration space, in other words not

possible at all given present-day computational resources. The alternative to

attempting to solve the Fokker–Planck equation (2.4) is to resort to closure approx-
imations to eliminate the ψ (pdf) and to arrive at a closed form CE for the state

variables. To circumvent this difficulty, Bird et al. [64] taking their inspiration from

Peterlin [71] (thus the “P” in FENE-P) made the following approximation for the

spring force law to get closure and arrive at a CE for the ψ (pdf):

F ¼ HQ 1� tr Q�Qð Þ
Q0

 �2
" #�1

ð2:6Þ

in which the spring law is preaveraged. H, F, Q, and Qo represent some positive

parameter, the force in the spring, the end-to-end vector connecting the dumbbells,

and a constant, respectively. Kramers’ expression for the extra-stress tensor S, which

relates S to the ensemble average of the dyadic product Q � F reads as:

S ¼ �nkT 1þ ηs Dþ n Q� Fh i

where n, k, and T represent the number density of the dumbbells, a constant of

proportionality, and the temperature, respectively. The ensemble average h • i of

any function f of the dyadic product Q � F is defined in terms of the probability

density function ψ (Q, t) introduced by Chandrasekhar [72]. For instance the

Brownian forces generated by the solvent molecules impacting on the beads of the

dumbbells are computed through:

f Q� Fð Þh i ¼
ð ð ð

f Q� Fð Þψ Q; tð ÞdQ

The Giesekus form for the extra-stress tensor, sum of the Newtonian (ηs D) and the

elastic stress tensors � n
2ζ12

∇
Q�Qh i

h i
reads as,

S ¼ ηsD� n

2ζ12

∇
Q�Qh i

ζ12 ¼ ζ�1
1 þ ζ�1

2
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ζ1 and ζ2 are the constants of proportionality (friction coefficients) arising from

Stokes’ law. Due to the Stokes’ law the drag force on a given bead is directly

proportional to the difference between the surrounding medium and the bead velocity

itself. If the bead is spherical with radius a and ηs is the solvent viscosity the drag

force on the ith bead is given by ζi ¼ 6πηs ai. Taking the upper-convected derivative
of the Kramer’s expression for the extra-stress tensor to eliminate hQ � Qi between
the Kramers and Giesekus forms of the elastic stress tensor, one arrives at the

Oldroyd-B equation for the polymeric stress if the Hookean spring is of the simple

form F ¼ HQ. If it is of the form (2.6) the FENE-P equation is obtained.

Z Sð ÞSþ λ1 S
∇ � D

Dt
lnZ Sþ nkT 1ð Þ½ �

	 

¼ nkTλ1D

Z Sð Þ ¼ 1þ 3

b
1þ trS

3nkT

� �
λ1 ¼ 2Hζ12ð Þ�1

, b ¼ hQ2
0

kT

where b is a dimensionless extensibility parameter. It can be shown that with

increasing b shear-thinning becomes less pronounced and in the limit b ! ∞
a constant shear viscosity is recovered (Oldroyd-B fluid). It can also be shown

that for all values of b, the extensional viscosity ηe is a continuous function of the

extension rate ε
�
in steady uniaxial extensional flow and that as ε

� ! 1

ηe � 3ηs
3 η0 � ηsð Þ

����
ε
�!1

! 2

3
bþ 3ð Þ ð2:7Þ

where ηe, ηs and η0 represent the extensional viscosity, the solvent viscosity, and the
zero shear viscosity, respectively. Figure 2.5 shows the variation of the ratio in (2.7)

Fig. 2.5 Non-dimensional

polymeric contribution

to the extensional

viscosity λ1ε
�
- FENE-P

constitutive model

(Reprinted from Owens

and Phillips [81] with

permission)
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as a function of the nondimensional extension rate the characteristic relaxation time

of the fluid λ1 times the extension rate ε
�
. In the limit b ! ∞, the trend shown in

Fig. 2.5 collapses onto the behavior shown in Fig. 2.4.

The closure approximation due to Peterlin [71] leads to the following evolution

equation for the configuration tensor hQ � Qi ¼ L,

∂L
∂t

þ u �∇L� ∇ � uð ÞTL� L ∇ � uð Þ ¼ 1� 1

1� trL
b

L ¼ 1� S ð2:8Þ

In numerical solutions which make use of the FENE-P model, this evolution

equation is solved for the configuration tensor L, the polymeric contribution S to the

total stress is computed from the right-hand side of (2.8) and the result is inserted into

the linear momentum balance. For most flows FENE-P closure gives reasonable

qualitative agreement with direct computations with the FENE theory. However,

there are some cases such as the start-up of uniaxial extensional flow followed up

by relaxation the FENE-P theory is unable to predict qualitatively experimental

observations, which the FENE theory can. This and other cases of failure prompted a

search for other, perhaps more realistic closure approximations such as the second-

order closure models FENE-L, and FENE-LS (S stands for “simplified”), Lielens

et al. [73, 74] who took their inspiration from Verleye and Dupret [75].

2.3.2.3 Oldroyd-B Type Constitutive Formulations

Another stream of efforts to remedy the deficiencies of the Oldroyd-B model over

the years has been to add additional terms to the Oldroyd-B constitutive structure to

produce shear-thinning, a second normal stress difference and a bounded exten-

sional viscosity. All these equations can be grouped under as:

Sþ λ S
∇ þf S;Dð Þ ¼ ηpD

where S, λ, ηP, and D represent the extra-stress tensor, the relaxation time, the

polymeric contributed viscosity and the rate of deformation tensor, respectively,

and S
∇
stands for an appropriate frame indifferent convected derivative. Perhaps, the

most well-known models of this family of CEs are the popular Phan-Thien–Tanner

[76, 77] and Giesekus models [78, 79] (see Sect. 2.6), both of which exhibit bounded

extensional viscosities, second normal stress differences, and shear-thinning. Both

the Phan-Thien–Tanner and Giesekus models involve upper-convected derivatives.

It should be observed that both of these models were motivated by the requirement

that the extensional viscosity should increase with extension rate but remain

bounded at all extension rates.

With the continuum-mechanical Oldroyd family of equations, which can be

viewed as continuum-mechanical generalizations of the UCM equation, as the

order of the CE is systematically increased to improve the predictive capability of
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the CE, the number of constants increases rapidly to pose a challenge for an

accurate experimental determination of the constants. In addition, even the 8 con-

stant Oldroyd model lacks a term that would make the extensional viscosity to

increase with extension rate and yet remain bounded at all times. To produce an

equation with the same predictive capability as Giesekus CE for instance, one has to

go to higher orders in deriving Oldroyd type of CEs thereby increasing the number

of constants further beyond 8 making the CE more unwieldy. The two versions of

the Phan-Thien–Tanner [76, 77] and Giesekus [78, 79] models were introduced

with the goal to make this particular constitutive feature part of the predictive

capability of the CE. Giesekus equation for instance is nothing more than the UCM

equation with an added quadratic term in stress (see Sect. 2.6) to insure that the

extensional viscosity increase with extension rate but remain bounded at all exten-

sion rates. Although Giesekus proposed the equation that carries his name based on

molecular arguments, it is remarkable that the Giesekus CE can be derived starting

from a continuum perspective as well. Observation can be made that Oldroyd class

of CEs are useful in modeling dilute polymeric solutions, whereas more sophisti-

cated differential models such as the models in the FENE class of CEs, Phan-

Thien–Tanner and Giesekus models to name a few of the popular differential

models and integral models of the K-BKBZ class, which model a viscoelastic

fluid as a relaxing rubber, are more appropriate for more concentrated solutions.

Models in the K-BKBZ class can be viewed as continuum-mechanical generaliza-

tions of the integral equivalent of the UCM equation also called the Lodge equation

[46, 47]. Both of these classes of models, differential and integral, account for

shear-thinning and finite extensibility among other desirable features.

A major difficulty with classical constitutive models (Maxwell, Oldroyd,

Giesekus, Phan-Thien–Tanner, and others) in modeling complex flows is the

inability of these CEs to control independently the shear and extensional properties

of the fluid. Therefore, even a qualitative description of both shear dominated and

extension dominated flows is almost impossible to arrive at with a universal set of

parameters. For example, with most models the viscosity can be determined using a

steady simple shear flow. However, there is little flexibility left, if not none, when it

comes to fitting experimental extensional data. As an example consider the UCM

model. The model predicts that the extensional viscosity is given by:

ηe ε
�� � ¼ 2η0

1� 2λε
�� �þ η0

1þ λε
�� �

Note that ηe ! ∞ as λε
� ! ½, and there are no parameters in this expression to fit

experimental data, so that extensional viscosity is fixed and prescribed. In contrast,

the FENE-CR model predicts,

ηe ε
�� � ¼ 3 ηe þ

ηP
1þ αð Þ 1� 2αð Þ

� �
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α ¼ λε
�

1� Q2

b

� �
where Q denotes a non-dimensionalized dumbbell configuration vector. Exten-

sional viscosity remains bounded (tends to a fixed finite value) when λε
� ! 1 for

finite values of α, and there is a free parameter in this model to fit experimental data:

Peters et al. [80] proposed a new class of CEs to control independently the shear

and extensional properties of the fluid in order to remedy the failure of some of the

well-known popular CEs to model complex flows as described in the preceding

paragraph. In this approach, the viscosity is considered to be a function of the

relaxation time λ and a modulus G both of which are assumed to be functions of

the invariants of the extra-stress tensor. For example in this approach, the general-

ized version of the UCM model would read as:

Sþ λ Sð Þ S∇ ¼ G Sð Þλ Sð ÞD ð2:9Þ

Both the relaxation time λ and the modulus G are functions of the extra-stress

tensor S in (2.9) with the notation �∇
� �

indicating upper-convected derivative. They

are chosen to be functions of the invariants of the extra-stress tensor whilst

maintaining the viscosity fixed. This functional dependence is loose; the only caveat

being the original Maxwell model should be recovered in the limit of infinitesimal

strains with the proviso that the product G(S)λ(S) describes experimental shear

viscosity data with enough accuracy. It is suggested that proposed enhanced models

are better in predicting the flow structure in some of the benchmark problems such as

4:1 contraction, the cross-slot geometry, and flow past a cylinder than their

unenhanced counterparts, which do fail to predict important features of the flow

structure. For instance, the Phan-Thien–Tanner and Giesekus models fail to predict

maximum stress levels and stress relaxation in areas with high planar elongational

strain observed in the experiments, Owens and Phillips [81]. Peters et al. [80] fixed

the viscosity and determined the parameters in the enhanced models from a cross-

slot experiment measuring the velocities and stresses by particle tracking

velocimetry and birefringence method, respectively, and used the enhanced models

to predict the flow in a 4:1 contraction and flow past a cylinder. In both cases,

numerical simulations with the enhanced Phan-Thien–Tanner and Giesekus models

were better than the numerical simulations based on their unenhanced counterparts.

2.4 Constitutive Equation Formulations Based

on Rational Continuum Mechanics

The rational continuum mechanics approach to formulating rheological equations

of state, developed mainly by mathematicians starting in the 1940s by the likes

of Reiner, Rivlin, and Truesdell was continued and put on solid mathematical
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foundation in the 1950s and following decades with the milestone contributions of

Noll and Coleman, Truesdell and their colleagues, Truesdell and Noll [82]. It is no

exaggeration to say that the dawn of a new era in continuum mechanics started with

the papers of Reiner [83–85] and Rivlin [86–92]. A general approach to non-linear

CEs was suggested by the former for the first time, and Rivlin was the first to obtain

exact solutions to physical non-linear problems with response to arbitrary defor-

mations. Both pioneers considered not only problems in non-linearly viscous fluids

but in finitely strained non-linear elastic materials as well, which is the hallmark of

continuum mechanics from the point of view of unified field theories. As Truesdell

and Noll write in [82] “By 1949 all work on the foundations of Rheology done

before 1945 had been rendered obsolete.” Revolutionary ideas were introduced of

which the occurrence of the second-order normal stress effects in both non-linear

fluid and solid mechanics is a good example.

2.4.1 Constant Stretch History Flows

The Reiner–Rivlin CE is the most general frame-invariant constitutive equation for

steady extensional flows. It is the most general CE for isotropic incompressible

fluids in which the stress does not depend on the time derivatives of the velocity

gradient, but depends on the instantaneous velocity gradient alone.

S ¼ 2η1Dþ 2η2D
2

ηi ¼ ηi IID; IIIDð Þ, IID ¼ 2D : D, IIID ¼ detD

S and D are the extra-stress and rate of deformation tensors, respectively. The

constitutive parameters ηi are functions of the second IID and third IIID invariants

of the rate of deformation tensorD. Steady extensional flows are part of a larger class

of flows termed “motions of constant stretch history.” Viscometric motions, in

which all particles (material elements) have steady simple shearing histories, are

the other important member of this family of motions with constant stretch history.

A fluid element is undergoing a motion with constant stretch history if the element

experiences a steady velocity gradient in a special frame that could be rotating with

respect to the laboratory frame of reference. In the rotating frame, the particle sees a

constant velocity gradient, but in the laboratory frame the motion may not be steady,

that is the velocity gradient in the laboratory frame may be time dependent, whereas

it is constant in the rotating frame. The flow is a constant stretch history flow if all the

particles undergo motions with a constant stretch history. It is important to realize

that the shear rate may vary from material element to material element in a visco-

metric flow; however, the history of the deformation is the same for all particles.

Different flow configurations in which particle pathlinesmay be straight or curved or

otherwise of different geometrical pattern may produce constant deformation his-

tory flows (viscometric flows). Some simple viscometric flows are flow in a cone and

plate geometry and flow in the annulus between a stationary inner cylinder and
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rotating outer cylinder or vice versa. Some of the viscometric flows are not easy to

envision; however, all viscometric flows have a common feature, shearing material

surfaces that slip past each other. These surfaces are everywhere orthogonal to the

velocity gradient, they may bend however they do not stretch with the distance

between any two surfaces staying constant at all times even though they may not be

parallel. The stress tensor for any viscometric flow has the same four components,

the shear stress, and the three normal stresses. This is because in an appropriately

rotated reference frame the components of the stress tensor will always be the same
four components because in all viscometric flows all fluid elements experience a

steady shearing history. Experimentally, the shear stress S12 ¼ f D12 ¼ γ
�� �
and only

the differences in the normal stresses can be measured, the first normal stress

difference N1 ¼ S11 � S22 and the second normal stress difference N2 ¼ S22 � S33.
These are called the three viscometric functions.

Although in a rotated laboratory frame of reference the stress tensor is a function

of S12,N1 and N2 alone in an arbitrary frame the stress tensor in a viscometric flow is

given by Criminale et al. [93] as:

S ¼ 2ηD� Ψ 1 D
∇ þ4Ψ 2D

2

η ¼ S12
D12

, Ψ 1 ¼ N1

D2
12

, Ψ 2 ¼ N2

D2
12

S ¼ 2ηD� Ψ 1 D
∘ þ 2Ψ 1 þ 4Ψ 2ð ÞD2

This is the CEF (Criminale–Ericksen–Filbey) CE named after their discoverers

[93]. S, D, η, Ψ 1, Ψ 2, �∇
� �

and �
�� �

in the above stand for the total stress tensor, the

rate of deformation tensor, the viscosity, the phenomenological coefficients, the

first and second normal stress coefficients Ψ 1 and Ψ 2, the upper-convected deriv-

ative, and the corotational time derivative, respectively.

Mathematically rigorous necessary and sufficient conditions to determine if the

velocity field can be reduced to a motion of constant stretch history were established

byWang [94]. Clearly for steady extensional flows, the description of the flow requires

only the rate of deformation tensor D and its square D2; if one goes a degree of

complexity higher the description of viscometric flows will require either the upper-

convected derivativeD
∇
or the corotational derivativeD

∘
. If we consider another degree

of complexity higher, planar motions of constant stretch history, the same tensors

and the convected derivatives are sufficient to provide a description of the flow,

however the phenomenological coefficients are not the same, Larson [95]. The general

structure of the CEF equation stays the same with added dependence of the pheno-

menological coefficients on a parameter called “flow strength coefficient” St.

S ¼ 2η IID, Stð ÞD� Ψ 1 IID, Stð ÞD∘ þ 2Ψ 1 IID, Stð Þ þ 4Ψ 2 IID, Stð Þ½ �D2 ð2:10Þ
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St ¼ 2
trD2
� �2
D
�� �

: D
�� �

Flow classification as laid out by Tanner and Huilgol [96] requires that for strong

constant stretch flows St > 1, for weak flows St < 1. In the former case, at least one

eigenvalue of the velocity gradient has a positive real part, and in the former it has none.

The former implies thatmaterial lines are stretched in time (exponentially), whereas the

latter means that material lines oscillate in time. In the third case, when St ¼ 1material

lines grow monotonically in time, but not exponentially. These considerations imply

that almost all three-dimensional flows are strong flows. Steady elongational flow

differs from steady shear flow in that some material lines may grow exponentially in

time, but in steady shear flow they grow linearly in time. Thus, according to this

classification, steady elongational flows are termed strong flows, whereas shear flows

areweakflows. If nowwe consider onehigher level of complexity and lookat onhow to

represent constitutively axisymmetric constant stretch flows, the representation

becomes a lot more complex than (2.10), and perhaps this line of inquiry describing

the behavior of subclasses of motions should cautiously end at this level in favor of

developing a more general approach.

2.4.2 Simple Fluids

The rational continuum mechanics approach was the first theory predicated on a

solid thermodynamic basis and thus was able to describe the properties of all

viscoelastic liquids by a set of invariant and thermodynamically consistent heredi-

tary functionals with “fading memory,” which implies that the properties of the

material after it has been unloaded will be the same as they were before it was loaded

if stresses or pressures applied are not large enough to cause irreversible change. The

response of a simplematerial to any deformation history is determined by the totality

of its responses to pure stretch histories. In particular, the total volumetric deforma-

tion has to be reversible if the medium has fading memory regardless whether the

compressibility of the polymeric medium has been taken into account or not, Leonov

[33]. There is no doubt that rational continuum mechanics approach has been very

influential in formulating CEs for non-linear viscoelasticity. Given their importance

the milestone developments it spawned will be reviewed next.

2.4.2.1 Fading Memory and Nested Integral Representations

of the Stress

Truesdell and Noll [82] termed “simple fluids” those in which the present stress is

determined by the history of the first spatial gradient of the deformation function.
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However, this is too general a principle to be of predictive value and it is relaxed

through the adoption of the principle of “fading memory” which states that “defor-
mations that occurred in the distant past should have less influence in determining
the present stress than those that occurred in the recent past,” which is another way
of saying that the material would behave like a solid for sufficiently rapid defor-

mations and like a Newtonian fluid for sufficiently slow deformations. The princi-

ple of fading memory can be interpreted as a requirement of smoothness for the

stress response functional I (see 2.12 and 2.13). The rate at which memory fades is

characterized by the norm (2.11) of the linear function space of histories of the

deformation G(s). In computing the norm the values of G(s) are weighted by a

weight function h(s) which decays with receding time into the distant past.

G sð Þk kh ¼
ð1
0

h sð Þ G sð Þj j½ �2ds
0@ 1A1=2 ð2:11Þ

G sð Þj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tr G sð Þ2
h ir

The collection of all histories with finite recollection of the above type forms a

Hilbert space. It is worthwhile commenting that two histories may or may not differ

very little in norm depending on whether their values are close to each other for

small s (recent past) even though they may be far apart for large s (distant past). The
influence of the history of the deformation in the distant past on the present

deformation state depends on how fast the weight function h(s) fades as time

recedes into the distant past.

The constitutive behavior of simple fluids is governed by the principles of

causality, material objectivity, and local action. A better light may be shed on the

idea of local action in a “simple fluid” and indeed in all fluids if one considers that

in the viscometric flow of a “simple fluid” viscosity is governed only by the local

velocity gradient and higher velocity gradients are assumed to be inconsequential in

this respect. An underlying precept of the principle of “simple fluid” is that the

microstructure in all types of flows is assumed to be small enough compared with

the distance over which the state of the stress changes. These assumptions allow the

use of the right Cauchy–Green strain tensor C ¼ FTF to describe the history of

the deformation of the particle rather than using the complete description of the

deformation history of all the particles in the material body to predict the future

deformation of the neighborhood of a given material particle. The general isotropic,

tensor valued tensor response functional I of a simple fluid may be written as:

T ¼ �p ρð Þ1þ I
1

s¼0
G X; sð Þ, ρ tð Þ½ �

G X; sð Þ ¼ Ct t� sð Þ � 1, Ct ¼ FT
t F

where p(ρ) is a scalar function of the density ρ and T, Ct, and Ft are the total stress,

the relative right Cauchy–Green strain tensor, and the relative deformation gradient,
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respectively with G(X, s) representing the history of the strain on the particle

located at X at rest. For incompressible simple fluids, this expression reduces to:

T ¼ �p1þ I
1

s¼0
G X; sð Þ½ � ð2:12Þ

or equivalently,

T ¼ �p1þ I1

t 0¼t

t 0¼�1
C X; t 0ð Þ½ � ð2:13Þ

The response functional I satisfies the isotropy relation:

Q I
1

s¼0
G X; sð Þ½ �

� �
QT ¼ I

1

s¼0
QG X; sð ÞQT
� � 8Q

for all orthogonal tensors Q. As it stands not much can be deduced from (2.12) and

(2.13) except certain symmetries of T given the symmetry of Ct. Green and Rivlin

[97, 98] and Green et al. [99] in a series of papers developed an integral expansion

of the functional I for finite strains, which led to the integral type of fluids of order

n. They assume that a suitable function space endowed with a suitable topology can

be assigned to the domain of the response functional I, and that I is continuous

with respect to that topology. Given these premises, Stone–Weierstraβ theorem

can be used to show that the response functional I can be uniformly approximated

by integral polynomials, that is the response functional can be expanded into a

uniformly approximating series of multiple integral terms with tensor polynomial

integrands as:

I
1

s¼0
G X; sð Þ½ � ¼

X1
1

Sn ¼
ð1
0

K1 sð ÞG sð Þdsþ
ð1
0

ð1
0

K2 s1; s2ð Þ G s1ð ÞG s2ð Þds1ds2

þ
ð1
0

ð1
0

ð1
0

K3 s1; s2; s3ð Þ G s1ð ÞG s2ð ÞG s3ð Þds1ds2ds3 þ 	 	 	

ð2:14Þ

where the even order kernel tensors Ki ultimately define the material functions and

therefore the behavior of the fluid. For isotropic liquids the integrands are isotropic

tensor polynomials and the Ki are isotropic tensors of even order. Mathematically

manageable forms of the stress response functional I can be obtained if I is

linearized around some deformation history Go assuming functional differentiabil-

ity of either Fréchet or Gateaux type.
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I
1

s¼0
G X; sð Þ½ � ¼ I0 G0½ � þ δI G0j G00½ � þ δ2I G0j G00,G00½ �

þ δ3I G0j G00,G00,G00½ � þO G00j j4
� �

where δ(i)I represent functional derivatives evaluated at Go and the history of the

particle is expressed as the sum of the history of the base state Go and the history of

the deviation Goo from the base state.

G X; sð Þ ¼ G0 X; sð Þ þG00 X; sð Þ ð2:15Þ

Any functional representation would mathematically make sense only in a

suitable function space when the functional representation is continuous with

respect to an appropriate continuity measure in that space. The topological structure

of the chosen space determines the behavior of the fluid. Under different topologies,

the fluid will behave differently in each and every topology. The assumed topology

determines the structure of the space and defines the domain, the class of admissible

deformation histories, which in turn defines the range of the response functional the

collection of all possible stresses under the assumed topology. The continuity of the

response functional under the assumed topology defines in what way stresses at the

present time are dependent on the strains the material has been subjected to in the

past. The principle of “fading memory” which defines how strongly the present

stresses depend on the recent deformation history and how weakly the material

remembers the effect of the imposedstrains in the distant pastwas introduced earlier in

this section. The theories in this section live in the rapidly decaying weighted fading

memorynorm (2.11) introducedbyColemanandNoll [100], and reviewedbyTruesdell

and Noll [82].

The structure of (2.14) may be better understood physically if we consider that

the single integral term represents the effect on the stress of the strain increments

added at various times in the past, and that the effect of an increment at one time has

no influence on the effect of another increment at a later time. The double and triple

integral terms estimate the contribution to the stress from two and three contribu-

tions to the strain added at different times, respectively.

Theories of fading memory have been formulated by Wang [101], Coleman and

Mizel [102], and Saut and Joseph [103] besides Coleman and Noll [100]. A theory

of fading memory is strongly dependent on the measure of continuity appropriate to

the space in which the constitutive relationship is valid. Coleman and Noll use a

Hilbert space with a rapidly decaying fading memory norm. The domain of the

response functional in their formulation admits a large class of deformation histo-

ries some of which may not be smooth. Coleman and Noll’s theory allows shocks,

whereas Saut and Joseph’s theory [103] does not.
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2.4.2.2 Order Fluids of the Integral Type

The response functional IN of the integral fluid of Nth order is obtained if the series
(2.14) are truncated after the Nth term. The CE for an incompressible fluid of the

first order reads as:

T ¼ �p1þ S1, S1 ¼
ð1
0

ζ sð ÞG sð Þds ð2:16Þ

and the CE for an incompressible second-order fluid of the integral type is given by:

T ¼ �p1þ S1 þ S2

S2 ¼
ð1
0

ð1
0

β21 s1; s2ð Þ trG s1ð Þ G s2ð Þ þ β22 s1; s2ð Þ G s1ð ÞG s2ð Þ½ � ds1ds2 ð2:17Þ

Whereas the integral fluid of order three reads as:

I3

1

s¼0
G X; sð Þ½ � ¼

X3
1

Sn, S3 ¼
X4
1

S3i ð2:18Þ

S31 ¼
ð1
0

ð1
0

ð1
0

β31 s1; s2; s3ð Þ G s1ð ÞG s2ð ÞG s3ð Þ ds1ds2ds3 ð2:19Þ

S32 ¼
ð1
0

ð1
0

ð1
0

β32 s1; s2; s3ð Þ trG s1ð Þ G s2ð ÞG s3ð Þ ds1ds2ds3 ð2:20Þ

S33 ¼
ð1
0

ð1
0

ð1
0

β33 s1; s2; s3ð Þ trG s1ð Þ trG s2ð ÞG s3ð Þ ds1ds2ds3 ð2:21Þ

S34 ¼
ð1
0

ð1
0

ð1
0

β34 s1; s2; s3ð Þ tr G s1ð Þ G s2ð Þ½ �G s3ð Þ ds1ds2ds3 ð2:22Þ

Where the unknown kernel functions ζ(s), β21(s1, s2), β22(s1, s2), β31(s1, s2, s3), and
β32(s1, s2, s3), β33(s1, s2, s3), β34 (s1, s2, s3) are material-dependent functions. The

strain historyG(X, s) in (2.15) may be given a more explicit form if the strain history

deviationGoo is expanded in a power series in terms of a small physical parameter ε:

G X; sð Þ ¼
X1
0

εnGn X; sð Þ
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Further assuming that the response functional is analytic with respect to ε to

allow the existence of functional derivatives of the Fréchet type and following

Joseph [104] an approximation to the response functional can be constructed as a

Fréchet series pivoted around the base state Go:

I
1

s¼0
G X; sð Þ½ � ¼ I

1

s¼0

X1
0

εnGn X; sð Þ
" #

¼ I0 G0½ � þ I,ε G0:εG1½ �

þ 1

2!
I,εε G0:ε

2G2, εG1, εG1

� �
þ 1

3!
I,εεε G0:ε

3G3, ε
2G2, εG1, εG1, εG1

� �þ 	 	 	

ð2:23Þ

I,ε, I,εε, and I,εεε indicate Fréchet derivatives of the 1st, 2nd and 3rd orders,

respectively, with respect to ε. Next the response functional of the integral fluid

of order N can be rewritten through identifying the structure of the integral fluid of

order N with the N-term Fréchet expansion of the stress response functional around

the rest state Go as:

IN

1

s¼0
G X; sð Þ½ � ¼

XN
1

εn

n!

∂n
S

∂εn

����
ε¼0

¼
XN
1

εnS nð Þ ð2:24Þ

where the partial derivative is evaluated at Go at ε ¼ 0. Note that due to

incompressibility:

trG X; sð Þ ¼ ε2 trG2 X; sð Þ þO ε3
� �

S2 
 O ε3
� �

, S32 
 O ε4
� �

, S33 
 O ε5
� �

, S34 
 O ε3
� � ð2:25Þ

The Fréchet derivatives S(n) in (2.23) evaluated at the rest stateGo obtained from

equations (2.16) to (2.23) above and expressed in terms of the first Rivlin–Ericksen

tensor alone [see (2.26) for the definition of Rivlin–Ericksen tensors] and new

kernel functions derived from the kernel functions in (2.17)–(2.22) are collected in

the Appendix.

The process that leads to Fréchet stress representations in (2.24) assumes that the

functional derivatives of the stress response functional evaluated at the base state

can be represented as integrals. Although Riesz theorem provides a theoretical basis

for the representation of the first functional derivative δI at Go as a single integral

with the integrand linear in the strain history deviationGoo representation theorems

to justify the representation of the second δ2I and third functional δ3I derivatives

atGo as double and triple-nested integrals bilinear and trilinear, respectively, inGoo

do not exist, and the above representations as double and triple-nested integrals are

nothing more than a constitutive hypothesis to be tested through comparison of

predictions with experimental facts.
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Joseph [105, 106] gave the canonical forms of the functional derivatives

evaluated at Go when Go is either a rigid body rotation or the rest state when the

small parameter ε in (2.24) represents a small amplitude perturbation. Previously,

small amplitude perturbations of steady viscometric flows were investigated by

Pipkin and Owen [107] who derived the canonical form of the first Fréchet

derivative and consistency relationships between δI and viscometric functions

and determined that 13 elements of δI are non-zero due to material symmetry,

isotropy, and incompressibility. Zahorski [108, 109] investigated flows with pro-

portional stretch histories, which includes nearly viscometric flows as a subclass

and derived the canonical form for the first functional derivative with the same

number of independent constitutive functions as Pipkin and Owen [107].

Applications of order fluids of the integral type are rare due to the difficulties in

determining the constitutive parameters, which are numerous even at the third

order, and to the difficulties in numerical implementation. More will be said

about this issue later on in this section after the introduction of the order fluids of

the differential type and differential fluids of grade n. However, successful uses
exist in the literature. For example, Siginer [110, 111] used the response functional

of the third-order fluid expressed in terms of the Fréchet stresses to study the

non-linear effects and anomalous flows stemming from nearly viscometric flows

due to longitudinal and transversal boundary vibrations superposed on the

Poiseuille flow and the pulsating pressure gradient driven flow of rheologically

complex fluids. From an experimental point of view, the kernel (memory function)

of the first integral in (2.14) or ζ(s) in (2.16) is not difficult to determine as it turns

out that it is the derivative of the linear relaxation function G(t). However, higher-
order kernels are not so easy to find.

In the development of the order fluids of the integral type, the relative right

Cauchy–Green strain tensor Ct has been used to describe the deformation history.

Truesdell and Noll [82] remark that any other equivalent deformation measure such

as Ct
�1 or the relative right stretch tensor Ut ¼ √Ct could have been used as well.

They further note that “the concept of a material of the integral type depends on the

choice of the deformation measure”, which means that a material which is of the

integral type with respect to Ct is not of the integral type with respect to Ut.

The kernel ζ(s) is not difficult to determine experimentally as it is the deriv-

ative of the linear time-dependent shear relaxation function (modulus) G(t) of the
fluid in stress relaxation. However, higher-order kernels are not easy to determine.

The results of Beavers [112], who used the quasi-unsteady flow field and defor-

mation measurements of the free surface on the simple fluid between torsionally

oscillating cylinders to determine the kernels of the second-order integral fluid,

are particularly noteworthy in this regard. The physical interpretation of the

single integral form in (2.16), which defines linear viscoelastic behavior, is that

the integral represents the effect of strain increments added at various times

in the past such that the effect of any given increment at time t1 is independent
of the effect of another increment at a later or earlier time. The possibility of

such an influence is recognized in the double integral form, which estimates

the contribution to the stress from two contributions to the strain added at

different times.
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2.4.2.3 Order Fluids of the Differential Type

In an isotropic fluid, the extra-stress tensor at a given instant t depends only on the

gradients of the velocity, acceleration, and higher time derivatives at the same

instant t. Rivlin and Ericksen [113] introduced in 1955 the Rivlin–Ericksen tensors

Ak as:

Ak x; tð Þ ¼ ∂k

∂t0k
C x; t; t 0ð Þ

�����
t0¼t

ð2:26Þ

and used invariance arguments to show that the dependence of the extra-stress

S on these gradients must be through combinations of An, and that this dependence

can be expressed as a tensor valued polynomial function f of the first

N Rivlin–Ericksen tensors for a differential fluid of order N. If the fluid is isotropic,
they showed that f must be an isotropic function of its arguments as:

S ¼ f A1;A2; . . . ;ANð Þ

They further proved that f reads as in (2.27) if S depends only onAi i ¼ 1, 2, and

given by:

S ¼ f A1;A2ð Þ ¼
X2
0

X2
0

φmn Am
1A

n
2 þ An

2A
m
1

� � ð2:27Þ

The scalar functions φmn are functions of the traces of products ofA1 andA2. It is

remarkable that the form (2.27) was obtained under the assumption of isotropy

alone and no other assumption about the nature of the tensorial function f or about
the magnitude of the deformation for instance the shear rate. In viscometric flows

all Rivlin–Ericksen tensors of order higher than two are zero, and as a consequence

(2.27) becomes exactly equivalent to the general CE for an incompressible simple

fluid in depicting the dependence of the stress on the deformation history.

The partial derivative in (2.26) with respect to t0 is taken following the particle in
the Lagrangian sense that is at fixed x and t. All Rivlin–Ericksen tensors are

symmetric and any Rivlin–Ericksen tensor An of order n has dimension t�n where

t is time. Higher-order tensors can be deduced from the following recurrence

relation in an Eulerian frame of reference:

Akþ1 ¼ D

Dt
Ak þ ∇uð ÞAk þ Ak ∇uð ÞT, A1 ¼ 2D ð2:28Þ

One way to derive the CE for an order fluid of the differential type is to replace

G(s) in (2.12) or equivalently C in (2.13) with its expansion in a Taylor series in the

An for sufficiently smooth motions:

40 2 Constitutive Formulations



C t0ð Þ ¼ 1� A1 t� t0ð Þ þ 1

2!
A2 t� t0ð Þ2 þ 1

3!
A3 t� t0ð Þ3 þ 	 	 	

This process leads to the CE of frictionless fluids (Euler equations) at the zeroth

order and viscous Newtonian fluids at the first order:

T ¼ �p1, T ¼ �p1þ η0A1

At the next order, it leads to the differential fluid of second order with constant

shear rate viscosity and the first and second normal stress coefficients Ψ 1 and Ψ 2

(widely used by rheologists but not by practitioners of continuum mechanics),

respectively.

T ¼ �p1þ η0A1 þ Ψ 1 þ Ψ 2ð ÞA2
1 � 1

2
Ψ 1A2 ð2:29Þ

The fluid of the third-order features a viscosity that changes with the shear rate

and the relaxation modulus λ, and has additional material constants φi, i ¼ 1, 2, 3.

T ¼ �p1þ η0 1þ λ2φ1 trA
2
1

� �
A1 þ Ψ 1 þ Ψ 2ð ÞA2

1 � 1

2
Ψ 1A2

þ φ2λ
3 A1A2 þ A2A1ð Þ þ φ3λ

3A3

The major drawbacks of these models are for the second-order model an

inability to simulate shear-rate dependent viscosity in addition to unsuitability to

describe unsteady flows due to the onset of instabilities. In fact all unsteady flows

are too fast to simulate even for order fluids of higher order as instabilities set in,

Joseph [114]. Further, the third-order model sets a limit on the maximum allowable

shear rate for the model to depict a realistic shear stress behavior. Beyond that limit,

the third-order model does not predict a monotonically increasing shear stress with

shear rate, Bird et al. [62]. These remarks are valid as well for differential fluids of

grade n whose structure will be summarized next.

Coleman and Noll [100] introduced in 1960 “retarded histories” of the defor-

mation in terms of a retardation parameter α as:

Gα x; t; sð Þ ¼ G x, t, α sð Þ, 0 < α < 1

with the corresponding modified Rivlin–Ericksen tensors:

Aα
k x; tð Þ ¼ αk �1ð Þk ∂k

∂ α sð Þk G x, t,α sð Þ
�����
αs¼0

, 0 < α < 1

When the recollection kG(s)kh of the history in the topology defined in (2.11) is

small, that is taking the present configuration of the material as reference kG(s)kh
is small in the recent past even though it may have been large in the distant past,
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the general constitutive equation (2.12 and 2.13) with fading memory is well

approximated by writing the new extra-stress tensor Sα as a multilinear isotropic

function of the modified Rivlin–Ericksen tensors Aα
k (x,t). Coleman and Noll

[100] were able to show that it was possible to expand the retarded extra-stress

Sα to various orders when the strain history is retarded by a factor α to give

the stress to within terms of order O(αn) in the retardation factor α. These

expansions are known as “the retarded motion expansions.” At the first four

orders they read as:

Sα1 ¼ η0A
α
1 þO αð Þ

Sα2 ¼ Sα1 þ βAα
1A

α
1 þ γAα

2 þO α2
� �

Sα3 ¼ Sα2 þ β1A
α
3 þ β2 Aα

1A
α
2 þ Aα

2A
α
1

� �þ β1 trAα
2

� �
Aα

1 þO α3
� �

Sα4 ¼ Sα3 þ γ1A
α
4 þ γ2 Aα

1A
α
3 þ Aα

3A
α
1

� �þ γ3A
α
2A

α
2 þ γ4 Aα

1A
α
1A

α
2 þ Aα

2A
α
1A

α
1

� �þ γ5 trAα
2

� �
Aα

2

þ γ6 trAα
2

� �
Aα

1A
α
1 þ γ7trA

α
3 þ γ8tr Aα

2A
α
1

� �� �
Aα

1 þO α4ð Þ

where η0 represents the zero shear viscosity and β, γ, βi, γj, i ¼ 1, 2; j ¼ 1, 2, . . ., 8
are constants. These asymptotic approximations to the response functional when a

given flow with history G(s) is retarded are called “fluids of the differential type

of grade n.” It should be observed that these asymptotic expansions apply only to

“slow” and “slowly varying” flows. For good predictive results, both conditions

should be met. For instance, consider the flow structure near a reentrant corner

in tube flow. If boundary conditions are of the no-slip type, flow in the vicinity of

the corner will be slow for moderate Reynolds numbers. However, flow around

the corner can never be regarded as “slowly varying” in any sense and retarded

asymptotic expansions of the differential fluids of grade n type should not

be used.

Rivlin [115] has shown that if 8Ak ¼ 0 for k � 3, the extra-stress S can be

expressed as a function of eight polynomials αi, i ¼ 1, . . ., 8 in trA1, trA2, trA
2
1,

trA3
1, trA

2
2,trA

3
2, trA1A2, trA

2
1A2, trA1A

2
2, trA

2
1A

2
2:

S ¼ α01þ α1A1 þ α2A2 þ α3A
2
1 þ α4A

2
2 þ α5 A1A2 þ A2A1ð Þ þ α6 A2

1A2 þ A2A
2
1

� �
þ α7 A2

2A1 þ A1A
2
2

� �þ α8 A2
1A

2
1 þ A2

2A
2
2

� �
ð2:30Þ

It turns out that is exactly the case for steady simple shearing flows u ¼ (Dxy

y, 0, 0). Thus (2.30) is exact for steady shearing flows. Criminale et al. [93] further

simplified (2.30) and showed that it can be reduced to one involving only A1, A2,

and A2
1. If the fluid is also incompressible trA1 ¼ 0 and the polynomial coefficients
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become function of Dxy ¼ γ
�
alone. Further inspection of the coefficients leads to

writing the final expression as:

T ¼ �p1þ η0 γ
�� �
A1 þ Ψ 1 γ

�� �þ Ψ 2 γ
�� �� �

A2
1 � 1

2
Ψ 1 γ

�� �
A2 ð2:31Þ

Ψ i ¼ Ni

γ
�� �2 , i ¼ 1, 2

Ni are the first and the second normal stress differences and γ
�
represents the shear rate.

This equation is called the CEF (Criminale–Ericksen–Filbey) equation. It is exact not

only for simple shearing flows, but for all flows where 8Ak ¼ 0 for k � 3 and has

found many applications. The second-order fluid model (2.30) is the same as the CEF

equation (2.31) in structure except that second-order fluid model has constant coeffi-

cients. The latter applies to any flow that is slow and slowly varying and the former to

any steady shearing flow even if the flow as a whole is not viscometric.

As sound as the foundation of the theory may be, unfortunately no unique way of

specifying the memory functionals, the kernels in a series of multiple integral

approximation to the response functional, has been found as yet and hence pre-

dictions are very difficult if not impossible. The restrictions imposed on the

constitutive functionals by thermodynamics and invariance leave enough room to

allow an enormous choice of memory functionals rendering the method of little

value for practical applications. In addition, it should be noted that in any approx-

imation to the response functional be it order fluids of the integral type, order fluids

of the differential type or differential fluids of grade n the number of material

constants rises rapidly with increasing order n of the approximation posing seem-

ingly insurmountable experimental difficulties in determining these constants.

Siginer [116] notes that although it is next to impossible to determine a large

number of parameters from a single experiment of rheometry, it may be possible

to determine the parameters sequentially from a series of rheometrical experiments

at the lower orders, and outlines a series of experiments involving free surface

rheometry and pulsating flow experiments in tubes to determine the material

constants of the integral fluid of order three with fading memory. In spite of these

difficulties, integral fluid of order two with fading memory has been successfully

used to describe some quasi-unsteady flows such as rod climbing on oscillating rods

and to determine the material constants in the second functional derivative of the

fluid of order two, Beavers [112], and the fluid of order three with the third

functional derivative in (2.23) or (2.24) has been used to investigate two nearly

viscometric flows, non-linear effects of tube wall vibration on the Poiseuille flow of

viscoelastic fluids, Siginer [110], in torsional oscillations of a layered medium of

immiscible viscoelastic liquids driven by an oscillating rod, Siginer [117], and

pulsating flow of rheologically complex fluids in round tubes, Siginer [111], Siginer

and Letelier [118] and Letelier et al. [119].

2.4 Constitutive Equation Formulations Based on Rational Continuum Mechanics 43



2.5 Constitutive Equation Formulations Consistent

with Thermodynamics

Recent developments related to compatibility of rate type CEs with thermodynam-

ics and the restrictions on the material constants for compliance with the second law

are interesting. For incompressible fluids, a rearrangement of (2.30) with

p representing the pressure and truncation at the third order reads as:

T ¼ � p1þ μA1 þ α1A2 þ α2A
2
1 þ β1A3 þ β2 A1A2 þ A2A1ð Þ þ β3 trA2

1

� �
A1

L ¼ gradu, 2D ¼ Lþ LT

A1 ¼ 2D, Anþ1 ¼ An þ LTAn þ AnL

where p is the constitutively indeterminate part of the total stress, 1 is the unit tensor,

μ is the zero shear viscosity, and α1, α2 together with β1 , β2 , β3 are material

constants. Considering this equation to be an exact model in its own right in the sense

described by Fosdick and Rajagopal [120], not an approximation places restrictions

on the material coefficients via thermodynamical considerations unlike the case of

the retardation approximation. The Clausius–Duhem inequality is required to hold

and the Helmholtz free energy is constrained to be a minimum when the fluid is

locally at rest, in particular β1 ¼ β2 ¼ 0 and μ � 0, α1 � 0, β3 � 0, α1 þ α2j j �ffiffiffiffiffiffiffiffiffiffiffiffiffi
24μβ3

p
due to these thermodynamical requirements reducing the thermodynamics

compliant form to:

T ¼ � p1þ μA1 þ α1A2 þ α2A
2
1 þ β3 trA2

1

� �
A1

Trouble is available experimental data indicates that α1 < 0 for the working

fluids in the experiments, which poses a dilemma as it contradicts the thermody-

namically dictated restrictions worked out by Fosdick and Rajagopal [120]. One

may then conjecture that the fluids in the experiments are not fluids of grade three or

they abide by a more encompassing constitutive equation of which the fluid of

grade three is the truncated form. There has been no definitive resolution to this day

to these conflicting experimental and analytical results. However, some light has

been shed on the issue by the seminal paper of Müller and Wilmanski [121]. Ther-

modynamics places the restrictions μ > 0, α1 > 0, α1 + α2 ¼ 0 on the material

constants of the second-order fluid taken as an exact model in its own right for

compatibility with the second law, Dunn and Fosdick [122]. However experiments

indicate that μ > 0, α1 < 0, α1 + α2 6¼ 0. Dunn and Fosdick [122] also showed

that disregarding thermodynamics and assuming that α1 < 0 leads to instabilities

and in quite arbitrary flows instability and boundedness are unavoidable. That the

instabilities persist even if μ > 0, α1 < 0, α1 + α2 6¼ 0 is assumed was shown

by Fosdick and Rajagopal [123]. In addition, Joseph [114] has shown that for

the second-order fluid, and indeed for fluids of arbitrary higher order, the rest
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state is unstable. Müller and Wilmanski [121] rederive the second-order fluid model

within the framework of the extended irreversible thermodynamics introduced by

Müller [124] and find that α1 may be negative. They also find that there are no

instabilities and the speeds of the shear waves determined by the viscosity and the

normal stress coefficients are finite. The same holds for the family of all rate type
equations of which the second-order fluid is part of. Extended thermodynamics puts

different restrictions on the material parameters of rate type equations. The idea

behind extended irreversible thermodynamics is to take the stress and the heat flux

as independent variables. Each one of them is governed by a balance equation. As

balance equations are not conservation equations, they include fluxes. The imme-

diate consequence is that the classical constitutive equations, the Navier–Stokes

theory and the Fourier’s law, are no longer constitutive equations in their own right
but rather arise at the first order of the Maxwellian iteration process, Müller [124],

Müller and Wilmanski [121]. Following the lead of Müller and Wilmanski the

Reiner–Rivlin and Rivlin–Ericksen second-order fluids are derived by Lebon and

Cloot [125] in the framework of extended irreversible thermodynamics and the

resulting equations with the attached thermodynamics restrictions imposed by

extended thermodynamics was used to analytically solve the problem of the

Marangoni convection in a thin horizontal layer of a non-Newtonian fluid subjected

to a temperature gradient in microgravity. Although it is not directly related to

non-Newtonian fluid mechanics, we note that Depireux and Lebon [126] studied

non-Fickian diffusion in a two-component mixture at uniform temperature in the

framework of extended irreversible thermodynamics. The idea here is to elevate the

dissipative diffusion flux to the status of independent variable and derive an

evolution equation for the diffusion flux to show that in the linear regime the

classical Fick’s laws are recovered. The results in the non-linear regime lead to

non-Fickian diffusion laws different from the well-known Fick’s laws.

A thermodynamically consistent framework to derive CEs to model motions of

viscoelastic fluids with arbitrarily large strains and strain rates using an internal

parameter based on ideas with their origin in solid mechanics was introduced and

developed by Leonov in a series of publications culminating in his 1987 review

paper, Leonov [33]. For instance, the classical solid mechanics idea of storing

elastic energy is interesting because some important phenomena, such as the

dependence of viscosity on rate of shear and the normal stress effects such as the

die-swell and rod climbing may be connected with the ability of the fluid to store

elastic energy temporarily. The framework of deriving CEs with a single relaxation

mode based on the recoverable strain tensor, an internal parameter, which arises

from the formalism of irreversible thermodynamics together with the kinematics of

the flow, is presented in detail with examples in [33]. The rheology of polymeric

fluids with narrow molecular weight distribution (MWD) can be described by a

single relaxation mode in particular at relatively high shear rates as the shear rate is

increased although the description will not agree with experimental data at low

shear rates as the shear rate is further reduced. Several relaxation modes are needed

if the MWD of the polymeric system is rather wide. Leonov demonstrates that a

rheological single mode theory with a single tensorial internal parameter is
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powerful enough to describe all the viscoelastic phenomena in the standard test

cases of simple shear and uniaxial elongation. The approach advocated by Leonov

[33] based on quasi-linear irreversible thermodynamics with the recoverable strain

tensor considered as an internal parameter is not as general as the “fading memory”

approach with memory functionals, but nevertheless contains considerable

arbitrariness due to the many unknown material functions that are only weakly

restricted by the dissipative inequalities imposed by thermodynamical compliance

considerations. But the firm thermodynamic basis makes it preferable to the tradi-

tional rheological approach introduced by Oldroyd. In addition, it does not lead to

non-evolutionary equations, it can be used in non-isothermal and compressible

flows, and it can yield information about the recoverable strain tensor, which is

often measured experimentally.

In all fairness as innovative and original that it may be the pioneering thermo-

dynamically consistent theories with internal parameters with their origin in solid

mechanics advocated by Leonov to derive CEs for viscoelastic fluids was built on

the work of Kluitenberg [127–129] who was the first to propose the kinematic idea

of dividing the total infinitesimal strain tensor in viscoelastic media into recover-

able and irreversible parts. In his own words Leonov’s contribution was “a ther-

modynamic description of the viscoelastic behavior of polymer-like liquids for the

general case of arbitrary and finite recoverable strains” (p. 7 in [33]). That of course

does not detract in any way from the achievement of Leonov in devising the first

manageable thermodynamic theory of the viscoelastic fluid behavior.

Mattos’ [34] work is another example of thermodynamically consistent

approach to devise a constitutive theory with an internal parameter for rate type

materials within the framework of the thermodynamics of irreversible processes.

Dissipative phenomena can be accounted for only if the second law of thermody-

namics is part of the methodology. The procedure described by Mattos to obtain

constitutive relations permits a generalization of classical rheological models of

Oldroyd [27], Maxwell [30], and Jeffreys [32] by including microstructural effects.

Helmholtz free energy is assumed to be an isotropic and differentiable function of a

finite set of independent and objective variables that can also be used to model the

interaction of microstructure with the macrostructure; thus, for instance Mattos’

method allows internal spin unlike the framework developed by Leonov. It should

be noted that internal spin can be included in Leonov’s methodology, but so far this

has not been done. The original theory presented by Leonov [33] does not include

internal spin. The variables in the Helmholtz free energy in Mattos’ theory are the

absolute temperature, the density, and a measure of strain. The choice of a partic-

ular objective time derivative and of two thermodynamic potentials is sufficient to

develop a methodology to define a complete set of constitutive equations. Temper-

ature plays an important role in complex flows of viscoelastic fluids in many

industrial applications, such as injection molding of polymers. Mattos’ theory

allows an adequate modeling of thermomechanical couplings when dissipation

due to changes of the material structure must also be taken into account.

The rate of dissipation d based on the second law of thermodynamics distin-

guishes between admissible (d � 0) and inadmissible processes (d < 0). If the
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rate of dissipation d is always equal to zero, the admissible process is reversible. In

terms of the Helmholtz free energy per unit mass ψ , Cauchy stress T, the stretching
tensor D, internal energy per unit mass e, absolute temperature θ, total entropy per

unit mass s, and the heat flux vector q, the local form of the second law of

thermodynamics, the Clausius–Duhem inequality reads as:

d ¼ T � D� ρ ψ
� þ s θ

�� �
þ q � g � 0 ð2:32Þ

ψ ¼ e� θ s, g ¼ �grad logθð Þ

where �ð Þ
�

indicates the material time derivative of the entity between the parentheses.

The class of fluids considered is that for which the Helmholtz free energy ψ can

be expressed as an isotropic and differentiable function of the absolute temperature θ,
of the density ρ, of a measure of strain ε whose objective time derivative is the

stretching tensor D ε∇
h i

¼ D [see (2.33) for the definition of the objective time

derivative �∇
� �

used], and a number of other independent objective auxiliary variables

that may be introduced into the constitutive model theory to describe various facets of

the interaction of the microstructure of the material with its macrostructure such as a

scalar variable for instance to account for the proportion of broken connections

between structural units in a macromolecule. In Mattos’ theory, these variables are

related to dissipative mechanisms, or in other words to irreversible changes of the

microstructure. For simplicity, Mattos [34] considers only one such additional inde-

pendent objective variable A:

ψ ¼ ψ ρ;D;A; θð Þ

Since the material time derivative of an objective tensorial quantity is not

necessarily objective, the use of special time derivatives in rate type constitutive

equations is required to ensure objectivity. The choice of a particular derivative is

tantamount to a constitutive assumption. A number of choices can be made for the

objective time derivative �∇
� �

any one of which appears as the material derivative

of (�) to an observer in a frame of reference attached to the particle and rotating with

it at an angular velocity equal to the instantaneous value of the spin of the particle.

Mattos [34] assumes an objective time derivative �∇
� �

of the following type in

terms of the asymmetric partW of the velocity gradient tensor L, or spin tensor as it

is also called sometimes, and a skew-symmetric second- order tensor WR, which

is associated with the micro-motions of the material structure, the relative rotation

of the material structure with respect to the continuum.

�ð Þ
∇

¼ �ð Þ
�

þ �ð Þ W�WR
� �� W�WR

� � �ð Þ ð2:33Þ

IfWR ¼ 0 (2.33) collapses onto the Jaumann objective derivative. (W � WR) is

the spin of the particle associated with the independent movement of a unit vector
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n attached to the material point n
� ¼ W�WR

� �
n. The constitutive assumption that

governs the rate of energy dissipation d is expressed as a function of the stretching

tensor D and the objective derivative (2.33) of the auxiliary variable A that relates

the microstructure to macrostructure, dm ¼ D;A
∇

� �
3 dm ¼ 0; 0ð Þ ¼ 0.

The coupling of the changes at the microstructure level with the macrostructure

can be achieved not only by the choice of the thermodynamic potentials ψ and ϕ
and their arguments but also by the choice of the relative spin WR. Besides the

possible couplings caused by products of the variables ρ, ε, A, and θ in the free

energy potential, the objective derivative chosen may induce a secondary coupling

between different physical mechanisms depending on the expression adopted for

WR ¼ f (T, D, A) the full expression for which is quite complicated. Mattos [34]

chooses to use the first term WR ¼ C (AD � DA) [C is a constant] only in the full

expression forWR ¼ f (T,D,A) on the premise that is good enough for an adequate

phenomenological description of the fluid’s behavior. The following form (assump-

tion) is introduced for dm ¼ D;A
∇

� �
:

dm ¼ ∂ϕ
∂D

� Dþ ∂ϕ

∂A
∇
� A∇ � 0 8 D;A

∇
� �

ð2:34Þ

where ϕ is a differentiable function of D and A
∇

such that ϕ(0, 0) ¼ 0. Equation

(2.34) implies that the total energy dissipation due to mechanical effects is the sum

of the rate of energy dissipation due to viscous phenomena [the first term on the RHS

of (2.34)] and dissipation due to changes in the microstructure of the material [the

second term on the RHS of (2.34)]. The inequality of the second law of thermody-

namics is automatically satisfied in any process if (2.34) holds, no matter the nature

of the external stimuli, the boundary and the initial conditions. The potentials ψ and

ϕ are not required to be convex functions. The convexity of ϕ is not necessary but is

sufficient for (2.34) to be valid.

Using (2.32) and (2.33) and (2.34), it can be shown that the following constitu-

tive relations always hold if incompressibility trD ¼ 0 is imposed:

s ¼ �∂ψ
∂θ

, ρ
∂ψ
∂A

� ∂ϕ

∂A
∇

¼ 0, T ¼ �p1þ ρ
∂ψ
∂ε

þ ∂ϕ
∂D

ð2:35Þ

The choice of the expression for the relative spinWR and for the potentialsϕ and ψ
completely characterizes a given fluid in isothermal flows. The addition of the

Fourier’s law together with (2.35) forms a complete set of thermodynamics compliant

constitutive equations for fluids undergoing non-isothermal flows. For compressible

flows trD 6¼ 0 (2.35)3 is replaced with
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T ¼ �ρ2
∂ψ
∂ρ

1þ ρ
∂ψ
∂ε

þ ∂ϕ
∂D

ð2:36Þ

where the first term on the RHS represents the thermodynamic pressure. The second

term on the RHS of (2.35)3 and (2.36) represents the reversible or elastic part and

the third term the irreversible part due to viscous dissipation. A more general theory

can be constructed if ϕ is conceived of to be a function of ϕ ¼ ϕ D;A
∇
; ρ; ε;A; θ

� �
.

Mattos shows how the general theory yields the generalized Newtonian fluid,

the Bingham fluid, and the viscoelastic Maxwell model. If ψ is a differentiable

isotropic function of θ and A

ψ A; θð Þ ¼ ψm Að Þ þ ψ t θð Þ

and the potential ϕ is a differentiable, isotropic function of D and A
∇
not identically

equal to zero, one gets from (2.35):

T ¼ �p1þ ∂ϕ
∂D

, ρ
∂ψm

∂D
� ∂ϕ

∂A
∇

¼ 0

which can be reduced to a model with shear-rate-dependent viscosity. If on the

other hand,

ψ ρ; ε;A; θð Þ ¼ ψm ρ; ε;Að Þ þ ψ t θð Þ ¼ 1

ρ
ψ̂ ε;Að Þ þ ψ t θð Þ

with ψ̂ a differentiable function of (ε, A) one gets from (2.35),

T ¼ �p1þ ∂ψ̂m

∂ε
þ ∂ϕ
∂D

∂ψ̂m

∂A
� ∂ϕ

∂A
∇

¼ 0

which can be reduced to the generalized Maxwell CE if ψ̂ and ϕ have the following

forms:

ψ̂m ε;Að Þ ¼ 1

2
λ ε� Að Þ � ε� Að Þ

ϕ A
∇
� �

¼ 1

2
κ A

∇ �A∇

where λ and κ are constitutive constants.

2.5.1 Maximization of the Rate of Dissipation

A thermodynamic framework that leads to a rational methodology for developing

constitutive relations for the viscoelastic response of materials with instantaneous
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elasticity was worked out by Rajagopal and Srinivasa [35]. The methodology

provides a unified basis to study a wide class of material response such as traditional

plasticity, twinning, solid-to-solid phase transition, multinetwork theory, and

includes, as special subcases, classical elasticity, classical linearly viscous fluid,

and viscoelasticity. The viscoelastic response is determined by a stored energy

function that characterizes the elastic response from the “natural configuration” of the

material and a rate of dissipation function that describes the rate of dissipation due to

viscous effects. It is noted that the material body may possess a single, many, or an

infinite number of natural configurations. For instance, the classical elastic solid has a

single natural configuration, whereas the traditional plastic material and the classical

linear viscous fluid have an infinite number of natural configurations. So, the theory

is actually based on the evolution of the natural configuration of the material.

The evolution of the natural configuration driven by external stimuli is determined

by a thermodynamic criterion, which shapes the response function of the material to

maximize the entropy production. The evolution of the natural configuration

is determined by the rate of dissipation, or to be more precise, the maximization of

the rate of dissipation. In a purely mechanical context, the response of the material is

characterized by constitutively prescribing the stored energy (or Helmholtz potential)

and the rate of dissipation functions. Since in a closed system the entropy increases to

achieve its maximum equilibrium value, the quickest way in which the maximum

could be reached is by maximizing the rate of dissipation.

In constructing CEs compatible with the thermodynamics of irreversible pro-

cesses, the usual procedure is to require that the second law of thermodynamics in

its general form is satisfied that is the rate of entropy production is non-negative for

all processes. Taking for instance the case of viscous fluids with implicit CEs, that is

fluids with CEs of the type F T;Dð Þ ¼ 0 or of the more general type:

F T;T
∇
; . . . ; T

∇
nð Þ

;D;D
∇
; . . . ; D

∇
nð Þ

0B@
1CA ¼ 0

where �ð Þ
∇
nð Þ

T and D stand for the n Oldroyd derivatives, total stress and the rate of

deformation tensors) when the viscosity is pressure-dependent and the CE is no

longer an explicit relationship between the Cauchy stress and the kinematical

variables, the usual procedure is to assume a CE for the total (Cauchy) stress

T in terms of the rate of deformation D and absolute temperature θ, assume that

Fourier’s law holds for the heat flux vector q and use the non-negativity of the rate

of entropy production ξ for all processes to obtain certain restrictions on constitu-

tive equations. However, if a certain rate of entropy production is desired, addi-

tional assumptions are required to choose a specific CE from the class of admissible

entropy production functions (response functions) that will produce the specific

entropy production rate and will define by the same token the rate of change of the
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state variables of the material. Clearly such a choice would lead to a non-negative

entropy production in terms of the state variables.

The idea that among all competing constitutive assumptions for the selection of an

appropriate entropy producing process the one which maximizes the rate of entropy

production is the right choice goes back to Ziegler [130]. Rajagopal and Srinivasa in a

series of publications starting in 1998 [131] first related to solid mechanics and later

extended to cover fluids [35] further clarified and developed this principle and applied

it tomaterial CEs in entropy producing processes. In a later publication, Rajagopal and

Srinivasa [132] show that linear phenomenological evolution laws that satisfy

the Onsager relations such as Fourier’s law of heat conduction, Fick’s law, Darcy’s

law, Newton’s law of viscosity, and others all corroborate the assumption that

quadratic forms for the rate of entropy production lead to linear phenomenological

relations that satisfy the Onsager relations. For other forms of entropy production that

are not quadratic for which the Onsager relations and related theorems cannot be

applied they discuss how the ideas ofOnsager can be generalized to include non-linear

phenomenological laws and they outline a procedure to obtain non-linear laws.

In addition to further developing the maximum entropy production approach to

selecting a CE to describe the behavior of the material, they show that this approach

is not in contradiction of thewell-knownOnsager [133] and Prigogine [134] principles

that lead to the minimization of the rate of entropy production. They clarify

that the Onsager and Prigogine principles refer to totally different circumstances.

Maximization of the rate of entropy production leads to a constitutive choice amongst

a competing class of constitutive relations in Rajagopal and Srinivasa’s theory

resulting in a non-negative rate of entropy production, which can be viewed as

a Lyapunov function. This Lyapunov function reaches a minimum as the body

tends towards equilibrium in time. It is this latter minimum that is referred to as the

“Onsager’s principle.”

Rajagopal and Srinivasa were interested in [35] in modeling viscoelastic fluids,

which exhibit instantaneous elastic response. The central idea at the very founda-

tion of their theory is that the body possesses numerous natural configurations. The

response of the material is “elastic” from these natural configurations, and the rate

of dissipation determines how these natural configurations evolve. Rajagopal and

Srinivasa [35] postulate that the evolution of the natural configuration is described

by maximizing the rate of dissipation function. They recognize that this require-

ment is not necessarily a fundamental principle and that there may be other pre-

scriptions to define the evolution of the natural configuration. For instance, different

forms of the stored energy function and the rate of dissipation function lead to

different models, which describe different types of responses. They show that the

choice of a neo-Hookean elastic response for the stored energy function from

the current natural configuration of the material and a maximized rate of dissipation

function that is quadratic in the stretching tensor associated with the current

configuration lead to Maxwell-like models, and another choice for the rate of

dissipation function leads to an Oldroyd-B type of model, which under further

restrictions of small elastic strains reduces to the Oldroyd-B model.
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It is well known that the introduction of the frame-invariant time derivatives

leads to non-linear models. Thus whereas the one-dimensional Maxwell model is

linear, the frame-invariant higher dimensional model is non-linear. The theory of

Rajagopal and Srinivasa [35] is not based on a generalization from one dimension

to three dimensions. Consequently there is no need to choose a particular frame-

invariant rate a priori. The rates that appear in the constitutive equation are dictated

by the choice of the stored energy function and the rate of dissipation function.

The three-dimensional counterpart of the well-known one-dimensional Maxwell

model, with the mechanical analog of a spring and a dashpot in series, is rigorously

derived in [35]. It is also shown that if the displacement gradients are small, this

non-linear, three-dimensional version of the Maxwell model collapses onto the

classical upper-convected Maxwell model.

In a more recent 2009 paper Karra and Rajagopal [135], following up the earlier

work of Rajagopal and Srinivasa [35], extend the thermodynamic framework

developed in [35] for rate-type models for viscoelastic fluids with instantaneous

elasticity to rate-type models for viscoelastic fluids without instantaneous elasticity.
They start from the premise that the response from the natural configuration to the

current configuration is like that of a generalized Kelvin–Voigt solid. When the

external load is removed, the body moves back to the natural configuration with

some “relaxation time” which is greater than the intrinsic time tm. If this relaxation
time is set to a value less than the intrinsic time tm, the class of models that can be

generated using the framework developed in [35] is obtained. Using the thermody-

namic framework developed, they derive constitutive relations which in one

dimension reduce to a dashpot and a Kelvin–Voigt element (a spring and a dashpot

in parallel) in series whose viscosities are stretch dependent.

Given the field equations with the divergence operator (∇•) taken with respect to

the current configuration κt, Fig. 2.6:

∇ � u ¼ 0, ρ
Du

Dt
¼ ∇ � TT þ ρ f , TT ¼ T ð2:37Þ

where u, T, f, and ρ stand for the velocity field, the Cauchy stress tensor, the body

force field, and the density, and the local form of balance of energy as:

ρ
De

Dt
¼ T � L�∇ � qþ ρ r ð2:38Þ

where e, L, q, and r represent the specific internal energy per unit mass, the velocity

gradient tensor, the heat flux vector, and the specific radiant energy, respectively,

[the gradient in the material derivative in (2.37) and (2.38) is taken with respect to

the current configuration κt, Fig. 2.6], and the second law of thermodynamics in the

form of the energy dissipation equation as:

T � D� ρψ
� ¼ ρθζ ¼ ξ � 0 ð2:39Þ
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where T, D are the Cauchy stress and the rate of deformation tensor, respectively,

ψ is the specific Helmholtz free energy, ζ is the rate of entropy production, and ξ is
the rate of dissipation with θ representing the absolute temperature. The specific

Helmholtz free energy is chosen to be a function of the first and second invariants of

the Cauchy–Green left stretch tensor Bp(t) as:

ψ ¼ ψ Bp tð Þ
� � ¼ ψ̂ IBp tð Þ , IIBp tð Þ

� �
, Bp tð Þ ¼ Fp tð ÞFT

p tð Þ ð2:40Þ

The exact form cannot be determined given that infinity of functions could pass

through any finite number of given experimental points. Fp(t) defines the mapping

from the tangent space at a material point in the natural configuration κp(t) to the

tangent space at the same material point in the current configuration κt, see Fig. 2.6.
The following comes out of (2.40):

Fig. 2.6 The natural configuration κp(t) corresponding to the current configuration κt and the

relevant mappings from the tangent spaces of the same material point in κR, κt, and κp(t). The
response from the natural configuration κp(t) is like a Kelvin–Voigt solid and the response of κp(t)
from the reference configuration κR is purely dissipative. The corresponding one-dimensional

spring dashpot analogy consists in a dashpot in series with a Kelvin–Voigt element as shown

(Adapted from Karra and Rajagopal [135] with permission)
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ψ
� ¼ 2

∂ψ̂
∂IBp tð Þ

þ IBp tð Þ
∂ψ̂

∂IIBp tð Þ

 !
Bp tð Þ � ∂ψ̂

∂IIBp tð Þ
B2
p tð Þ

" #
� Dp tð Þ ¼ Tp tð Þ � Dp tð Þ ð2:41Þ

Dp tð Þ ¼ 1

2
Lp tð Þ þ LT

p tð Þ
� �

, Lp tð Þ ¼ F
�

p tð ÞF�1
p tð Þ

Where (•)T and (•)�1 indicate the transpose and the inverse, respectively, and

the material time derivative of the second-order tensor F is defined with respect

to the current configuration κt, see Fig. 2.6,

F
� ¼ ∂F

∂t
þ∇F � u

and the principal invariants of the second-order Cauchy–Green left stretch tensor

Bp(t) are defined as:

IBp tð Þ ¼ trBp tð Þ, IIBp tð Þ ¼
1

2
trBp tð Þ
� �2 � trB2

p tð Þ
h i

, IIIBp tð Þ ¼ detBp tð Þ

The index p(t) is an abbreviation for κp(t) and refers to the natural configuration

κp(t) corresponding to the current configuration κt. Knowledge of the current

configuration κt and the natural configuration κp(t) corresponding to the current

configuration is sufficient to determine Fκp tð Þ and Bκp tð Þ . Removing the external

stimuli present in the current configuration κt responsible for the deformation will

take the body back to the natural configuration κp(t). The natural configuration and

hence Fκp tð Þ is determined by instantaneous elastic unloading for viscoelastic fluids

endowed with instantaneous elastic response. For viscoelastic fluids without instan-

taneous elastic response, the natural configuration is obtained by removing the

external stimuli in a way consistent with the class of thermodynamic processes that

are allowable.

The rate of dissipation is a function of the stretching tensor Dp(t) and

Cauchy–Green left stretch tensor Bp(t) between the κp(t) to κt, the stretching tensor

DG between κR and κp(t):

ξ ¼ ξ Bp tð Þ;Dp tð Þ;DG

� � ð2:42Þ

G is defined as the mapping that takes κR into κp(t),

G ¼ FκR!κp tð Þ ¼ F�1
κp tð ÞFκR , LG ¼ G

�
G�1, DG ¼ 1

2
LG þ LT

G

� �

The body dissipates energy during its motion from κp(t) to κt as well as during its
motion from κR to κp(t), the former because of the healing of the polymer networks
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and the latter due to the sliding of polymer chains over one another. The rate

of dissipation ξ is maximized using (2.39) and the isochoric motion assumption

trDp(t) ¼ trDG ¼ 0 as constraints [tr(∙) is the trace operator for the second-order

tensors] to derive the CEs flowing out of the rate of dissipation assumption (2.42).

The maximization process which uses the method of “Lagrange multipliers” starts

by substituting (2.41) into (2.39),

T � D� ρTp tð Þ � Dp tð Þ ¼ ξ Bp tð Þ;Dp tð Þ;DG

� �
Details can be found in [135]. To illustrate the power of the method developed,

specific choices (2.43) and (2.44) are made for the Helmholtz potential and the rate

of dissipation, respectively, as:

ψ ¼ ψ̂ IBp tð Þ , IIBp tð Þ

� �
¼ μ

2ρ
IBp tð Þ � 3
� �

ð2:43Þ

ξ Bp tð Þ;Dp tð Þ;DG

� � ¼ ηpDp tð Þ � Bp tð ÞDp tð Þ þ ηGDG � Bp tð ÞDG ð2:44Þ

The stored energy chosen here is that for a neo-Hookean material with μ its

elastic modulus, whereas the rate of dissipation is similar to that of a “mixture” of

two Newtonian-like fluids (in the sense that the dissipation is quadratic in the

symmetric part of the velocity gradient), whose dissipation also depends on the

stretch (specifically the stretch from the natural configuration to the current config-

uration), with viscosities ηG and ηp. The former term on the right-hand side of (2.44)

is due to the dissipation during the motion from κR to κp(t) and the latter term is due

to dissipation during the motion from κp(t) to κt. Note that with the above choices for
ψ and ξ, as the body moves from the κp(t) to κt, there is both storage (like a

neo-Hookean solid) and dissipation (like a Newtonian-like fluid) of energy simul-

taneously, and hence κp(t) evolves like the natural configuration of a Kelvin–Voigt-

like solid with respect to κt.
With the specific forms for theHelmholtz potential and the rate of dissipation (2.43)

and (2.44) adopted the rate of dissipation is maximized with the constraint that the

difference between the stress power and the rate of change of Helmholtz potential is

equal to the rate of dissipation and any other constraint that may be applicable such as

incompressibility. The class of models developed exhibit fluid-like characteristics

incapable of instantaneous elastic response when none of the material moduli that

appear in the model are not zero. Maxwell-like and Kelvin–Voigt-like viscoelastic

materials spawn out of this class when some material moduli are assigned special

values. A specific model which stores energy like a neo-Hookean solid is derived

with a rate of dissipation which depends on the stretching tensor associated with the

natural configurationand the stretching tensor between thenatural configurationand the

current configuration, seeFig.2.6. Themodel reduces to either theMaxwell-likefluid or

the Kelvin–Voigt-like solid under certain restrictions on the material parameters.
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It is interesting to note that instead of (2.39) one could equally well have chosen

a rate of dissipation without any stretch dependence and quadratic in the symmetric

part of the velocity gradient:

ξ Dp tð Þ;DG

� � ¼ ηpDp tð Þ � Dp tð Þ þ ηGDG � DG

to end up after the maximization process with a variant of the CEs, which result

from the adoption of (2.43), Karra and Rajagopal [135].

2.5.2 Burgers Equation

One-dimensional Burgers equation (2.2) for linear viscoelasticity was presented in

Sect. 2.3.1. Burgers equation is increasingly important to seemingly disconnected

branches of science and engineering as many uses in practice from polymeric

fluids to the description of the deformation of geological materials are common.

The generalization of the one- dimensional Burgers equation to three dimensions on

a thermodynamically compatible basis was worked out recently by Quintanilla and

Rajagopal [43, 44] using the thermodynamic framework developed by Rajagopal

and Srinivasa [35] to systematically generate CEs for rate-type viscoelastic fluids

with instantaneous elasticity. They show that Cauchy stress in a generalized

Burgers fluid is given by:

T ¼ �p1þ S

Sþ λ1 S
∇ þλ2 S

∇∇ ¼ η1Dþ η2 D
∇ þη3 D

∇∇

A
∇ ¼ DA

Dt
� LA� ALT, A ¼ S;Dð Þ ð2:45Þ

where T, D, and S represent the total stress, the symmetric part of the velocity

gradient L, and the extra-stress tensor, respectively. (�p1) is the indeterminate part

of the stress due to the constraint of incompressibility, and the notation ð�Þ
∇∇

indicated

the application of the Oldroyd derivative operator twice. For isochoric motions

trD ¼ 0, substituting (2.45) into the linear momentum equation with u and f
representing the velocity and body force fields:

ρ
Du

Dt
¼ ∇ � Tþ ρ f

and linearizing they obtain the following system:

ρ
∂eu
∂t

¼ �∇qþ Δûþ ρb ð2:46Þ
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eu ¼ uþ λ1
∂u
∂t

þ λ1
∂2

u

∂t2
ð2:47aÞ

û ¼ η1uþ η2
∂u
∂t

þ η3
∂2

u

∂t2
ð2:47bÞ

They note that when η3 ¼ 0, η3 ¼ 0 ¼ λ2, and η2 ¼ η3 ¼ λ2 ¼ 0, the linear

form of the Burgers fluid, the linear form of the Oldroyd-B fluid, and the linear

version of the Maxwell fluid, respectively, are recovered. And of course, the

Navier–Stokes representation for constitutively linear fluids is obtained when λ1 ¼
η2 ¼ η3 ¼ λ2 ¼ 0. The boundary-initial-value problem defined by the system

(2.46) and (2.47a, 2.47b) and the boundary-initial conditions:

u x; tð Þj∂Σ ¼ 0, u x; 0ð Þ ¼ u0,
∂u
∂t

x; 0ð Þ ¼ u01,
∂2

u

∂t2
x; 0ð Þ ¼ u02, x∈Σ

ð2:48Þ

is studied in a three-dimensional bounded domain Σ with smooth boundary ∂Σ. They
show in [43] that the stability condition for Burgers fluids (η3 ¼ 0) is λ1η2 > η1λ2.
They prove in [44] continuous dependence on the initial data and uniqueness of

unsteady solutions for generalized Burgers fluids (η3 6¼ 0) in bounded three-

dimensional domains whenever conditions λi > 0, ηi > 0 are met, and the exponen-

tial decay of solutions of the homogeneous problem (2.46), (2.47a, 2.47b), and (2.48)

(bi ¼ 0) in three-dimensional bounded domains Σwith smooth boundary∂Σ when in

addition to λi > 0, ηi > 0 the following conditions hold λ1 η3 > λ2 η2, η3 > λ2 η1,
η2 > λ1 η1. Next they ask the questionwhat happens if λi > 0 and ηi > 0 are still valid

but λ1 η3 > λ2 η2, η3 > λ2 η1, η2 > λ1 η1 do not hold, and they prove that the solutions
to uniaxial shearing flows are unstable if λi > 0 and ηi > 0 hold but, η3 + λ1η2 >
λ2η1, η3 + λ1η2 � λ2η1, [λ2η1 � (η3 + λ1η2)]

2 < 4η2η3λ1 do not hold. As the condi-

tion of stability in the case of the Burgers fluids (η3 ¼ 0) is λ1η2 > λ2η1 the class of
parameters for the generalized Burgers fluids (η3 6¼ 0) where stability is expected is

larger than the class for the Burgers fluid.

A major step in devising thermodynamically consistent CEs is to recognize that

several different sets of stored energy and rate of dissipation function can lead to the

same three-dimensional non-linear CE. Karra and Rajagopal [136] consider four

different sets of stored energy and rate of dissipation functions to obtain four

seemingly different three-dimensional sets of CEs for the stress, each one of

which with equal claim to the status of three-dimensional generalization of the

Burgers model as all four can be made to collapse on the one-dimensional model

developed by Burgers [39, 40]. The choice of two scalar functions for the stored

energy and the rate of dissipation leads to a CE for the stress, a tensor with six scalar

components. Historically, the development of many of the one-dimensional CEs to

describe the response of viscoelastic materials were based on analogies with

mechanical systems of springs (to store energy), and dashpots (to dissipate

energy/produce entropy). Karra and Rajagopal [136] demonstrate within the
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context of these mechanical spring–dashpot systems how the same CE for the stress

(Burgers equation) can be obtained by choosing different stored energy and rate of

entropy production functions each one of which would correspond to a different

network of springs and dashpots with the same response.

A body capable of instantaneous elastic response that exists in a configuration κt
under the action of external stimuli, on the removal of the external stimuli could return

to a configuration κp(t) referred to as a natural configuration corresponding to the

configuration κt. However, more than one natural configuration could be associated

with the configuration κt based on the rate of removal of the external stimuli.

Instantaneous removal and removal with a finite speed will imply return to different

natural configurations. The natural configuration that is accessed depends on the

process class allowed. Karra and Rajagopal [136] assume that the natural configura-

tion is the one due to instantaneous unloading, the body responding in an instantaneous

elastic manner. They note that even within the context of instantaneous elastic

unloading, itmight be possible that the bodymay go to different natural configurations

κpi tð Þ, i ¼ 1, . . ., n. That is because a point is a mathematical creation that does not

exist, and in reality what is modeled is a sufficiently small neighborhood of a point in

the body. Energy can be stored and dissipated in different ways by the material

enclosed in this neighborhood. Various arrangements of springs and dashpots can

lead to the same net storage of energy of the springs and the dissipation by the

dashpots. In other words, the chunk of material in the neighborhood of the point can

respond in an identical manner for different ways in which the springs and dashpots

are put together. Karra and Rajagopal [136] work with two natural configurations to

incorporate in the CEs to be derived two relaxation times possessed by Burgers-like

fluid bodies.

The second law of thermodynamics merely requires that the entropy production

be non-negative. The requirement of maximization of the rate of entropy advocated

by Rajagopal et al. [35, 41–44, 131, 132, 135, 136] narrows the range of choices one

can make from the class of rate of entropy production functions. In the following,

the process for the derivation of the first set of three-dimensional CEs detailed in

[136] will be outlined.

Let κR denote the undeformed reference configuration of the body. It is assumed

that the body has two natural configurations to which it can be instantaneously

elastically unloaded. This implies two different mechanisms of storing energy,

which would correspond within one-dimensional mechanical analog to two differ-

ent springs. The body can get from the reference configuration to the two evolving

natural configurations denoted by κpi tð Þ, i ¼ 1, 2 (Fig. 2.7) via two dissipative

responses. Let Fi, i ¼ 1, 2, 3 denote the gradients of the motion from κR to κp1 tð Þ,
κp1 tð Þ to κp2 tð Þ, and κp2 tð Þ to κt, respectively.

Defining the left Cauchy–Green stretch tensors Bi and the velocity gradients Li

with their corresponding symmetric parts Di

Bi ¼ FiF
T
i , Li ¼ F

�

iF
�1
i , Di ¼ 1

2
Li þ LT

i

� �
, i ¼ 1, 2, 3,
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the specific stored energy ψ and the rate of dissipation ξ are assumed to be of the

following form, with the gradient of the motion from κp1 tð Þ to κt denoted by Fp, given

that the instantaneous elastic responses from κp1 tð Þ and κp2 tð Þ are isotropic:

ψ ¼ ψ B3;Bp

� �
, ξ ¼ ξ D1;D2ð Þ ð2:49Þ

Bp ¼ FpF
T
p , Fp ¼ F3F2, Lp ¼ F

�

pF
�1
p

In virtue of incompressibility of the body, the specific forms are further

narrowed down to:

ψ ¼ ψ B3;Bp

� � ¼ μ3
2ρ

1 � B3 � 3ð Þ þ μp
2ρ

1 � Bp � 3
� � ð2:50Þ

ξ ¼ ξ D1;D2ð Þ ¼ η01 D1 � D1 þ η02 D2 � D2 ð2:51Þ

In this, μ3, and μp are the elastic moduli and η01 and η02 are the viscosities which
account for the energy storage and energy dissipation, respectively. The assumptions

(2.50) and (2.51) mean that the body possesses instantaneous elastic response from the

two evolving natural configurations κp1 tð Þ and κp2 tð Þ to the current configuration κt
(Fig. 2.7); the body stores energy like a neo-Hookean solid during its motion, from

κp1 tð Þ to κt, and from κp2 tð Þ to κt. In addition, the response is linear viscous fluid like, as

Fig. 2.7 Illustration of the natural configurations for the model used: κR is the reference config-

uration, κt denotes the current configuration; κp1 tð Þ and κp2 tð Þ denote the two evolving natural

configurations. The body dissipates energy like a viscous fluid as it moves from κR to κp1 tð Þ and
from κp1 tð Þ to κp2 tð Þ. The body stores energy during its motion from κp2 tð Þ to κt, and κp1 tð Þ to κt
(Adapted from Karra and Rajagopal [136] with permission)
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the body moves from κR to κp1 tð Þ and from one natural configuration κp1 tð Þ to the other
κp2 tð Þ. The assumptions (2.50) and (2.51) lead to the CEs (2.52) and (2.53).

T ¼ �p1þ μ3 B3 þ μpBp,

μ3 B3ð Þ2 ¼ 1

3
μ23tr B3ð ÞB3 � η2

2
μ3 B

∇ p
3

ð2:52Þ

1

2
μ3μp BpB3 þ B3Bp

� �þ μpBp
2 ¼ 1

3
tr μ3 B3ð Þ þ tr μpBp

� �� �
μpBp � η1

2
μp B

∇
p

ð2:53Þ

The notation �ð Þ
∇

p and �ð Þ
∇

, indicates the Oldroyd derivatives, the former when the

natural configuration κp1 tð Þ is made the reference configuration κR, and the viscos-

ities ηi, i ¼ 1, 2 are redefined versions of the original viscosities ηi
0
, i ¼ 1, 2 in

(2.51). They proceed to show that (2.52) and (2.53) can be reduced in one dimen-

sion to the one- dimensional Burgers equation (2.54):

σ þ η2
2μp

þ η2
2μ3

þ η1
2μp

 !
σ
� þ η1η2

4μpμ3
€σ ¼ η1 ε

� þ η1η2
2μp

1þ μp
μ3

� �
€ε ð2:54Þ

corresponding to the spring–dashpot mechanical analog (a) in Fig. 2.8 [comparison

of (2.54) with (2.2) is invited]. σ and ε denote the stress and the linearized strain in

Fig. 2.8 Various spring-dashpot arrangements which reduce to the one-dimensional Burgers’

fluid model (Adapted from Karra and Rajagopal [136] with permission)
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one dimension, respectively, and the notation �ð Þ� and �ð Þ��

indicates first and second

derivatives with respect to time.

Karra and Rajagopal [136] proceed to show that the specific stored energy ψ and

the rate of dissipation ξ can be chosen in three more different ways, similar but

different than (2.50) and (2.51), each set of which yields a different set of three-

dimensional CEs of the same type as (2.52) and (2.53), all of which can be reduced

in one dimension to the one-dimensional Burgers equation (2.2) corresponding,

respectively, to the mechanical analogs (b–d) shown in Fig. 2.8.

2.5.3 Minimum Free Energy and Maximum
Recoverable Work

Many studies done on the free energy of materials with memory both solids and

fluids have shown that the free energy is not necessarily uniquely defined. There

may be many free energies associated with any given state of these material bodies.

Free energy expressions form a bounded and convex set with a minimum and a

maximum element. The determination of explicit forms for the free energy has

become an interesting problem, the study of which started in the 1960s has

continued to this day spawning several expressions that have been proposed for

viscoelastic solids, Breuer and Onat [137], Day [138], Graffi [139, 140], Morro and

Vianello [141], Graffi and Fabrizio [142], Fabrizio and Morro [143], Fabrizio

et al. [144, 145], Del Piero and Deseri [146], Deseri et al. [147], Fabrizio and

Golden [148], and Deseri et al. [149]. Recent papers by Amendola [150, 151] and

Amendola and Fabrizio [152] addressed the problem of determining a general

closed form explicit expression for the isothermal minimum free energy of isotro-
pic, incompressible, and linearly viscoelastic fluids with fading memory together

with the maximum recoverable work related to the minimum free energy. A general

closed expression is given for the isothermal minimum free energy of a linearized

incompressible viscoelastic fluid, whose constitutive equation is expressed by a

linear functional of the history of strain by Amendola [150] who also in a follow-up

work adapted to linearized incompressible viscoelastic fluids some expressions for

the free energy previously proposed and studied for viscoelastic solids, Amendola

[151]. The maximum recoverable work related to the minimum free energy of the

system given in terms of Fourier-transformed quantities for incompressible linear-
ized viscoelastic fluids was investigated by Amendola and Fabrizio [152] and

corresponding expressions were derived. That the minimum free energy is related

to the maximum work obtainable from a given material at a given state σ(t) starting
from an initial state σi(t) was already shown in the 1960s and early 1970s, Breuer

and Onat [137, 153] and Day [138]. The work of Amendola is built on the method

and the procedure introduced by Golden [154] and Gentili [155], respectively, in

the scalar case for linear viscoelastic solid materials. They work with the linearized
form for small strains of the general CE (2.12) or (2.13). The particle which is at x at
the present time t in an Eulerian frame was at r(x, t0) at time t0 > t, and the extra-

stress tensor is a functional of the past history of the strain tensor C. Let the relative
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displacement u be defined as r � x ¼ u(S, x), where S represents the extra-stress,

and assume that ∂u
∂x << 1 which implies that higher powers of ∂u

∂x can be neglected

in deriving an explicit CE from (2.12) or (2.13). Then the following holds:

C ¼ FTF ! 2C ¼ ∂u
∂x

þ ∂u
∂x

� �T

þO
∂u
∂x

���� ����2
 !

! 2E ¼ ∂u
∂x

þ ∂u
∂x

� �T

¼ ∇uþ ∇uð ÞT

whereE is the small strain tensor.Assumingnow that the extra-stressSdepends linearly

on E for small enough strains, the following linearized form of (2.12) is obtained:

T x; tð Þ ¼ �p x; tð Þ1þ 2

ð1
0

ζ x; sð Þ Et x; sð Þ � E x; tð Þ½ �ds ð2:55Þ

whereE(x,t) is the instantaneous value of the strain at time t andEt(x,s) ¼ E (x, t � s)
8 s ∈ (0, +∞) ¼ R++ is the past history of the strain. The material function ζ(x,s)
is such that the shear relaxation modulus G(s) given by:

G sð Þ∈L1 0;1½ Þð Þ ! G sð Þ ¼ �
ð1
s

ζ τð Þdτ, lim
s!þ1G sð Þ ¼ 0, G sð Þ > 0

must satisfy restrictions imposed on the constitutive equation (2.55) by thermodynamic

principles. The material defined by (2.55) is a simple material in the sense defined

by Coleman and Owen [156]. The thermodynamic restrictions on the constitutive

equation (2.55) have been derived by Fabrizio and Lazzari [157] who proved the

following theorem: The constitutive equation (2.55) for linear viscoelastic fluids is
compatible with the Second Law of Thermodynamics if and only if for every relaxation
modulus G (s):

G sð Þ ∈ L1 0;1½ Þð Þ:
ð1
0

G sð Þds 6¼ 0

the following inequality holds:

ð1
0

G sð Þ cos ωsð Þds > 0 8ω ∈ R

where R represents the set of real numbers. The constitutive equation (2.55)

characterizes the behavior of a simple fluid and as such its properties can be

described in terms of states σ(t) and processes P, Noll [158]. The stress-power

w reads as:
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w σ tð Þ,P tð Þ½ � ¼ T tð Þ � L tð Þ ¼ T tð Þ � D tð Þ, TT ¼ T, 2D ¼ Lþ LT

The strain rate tensor by virtue of the linear approximation collapses onto the

time derivative of the small strain tensor E, that is D tð Þ ¼ E
�
tð Þ. The state σ(t) of a

system is given by the relative strain history Et
r(s) expressed in terms of the

instantaneous value E(x,t) of the strain and the past history of the strain Et(x,s) as:

σ tð Þ ¼ Et
r sð Þ ¼ Et x; sð Þ � E x; tð Þ½ � 8s ∈ 0;1ð Þ ¼ Rþþ

The work W done on the material on a path γ up to time t going from an initial

state σi(t) to a state σ(t) ¼ σ(σi,P) ¼ Et
r by means of an admissible process P is

given by:

W σ;Pð Þ ¼
ð
γ

T sð Þ � E� sð Þds ¼
ðt

�1
T sð Þ � D sð Þds

¼ 2

ðt
�1

ðþ1

0

ζ sð ÞEτ
r sð Þds

0@ 1A � E� τð Þdτ

If the process is isothermal, the second law of Thermodynamics collapses onto

the dissipation principle, the Clausius–Duhem inequality, which stipulates that the

work done during any cycle (σ,P) must satisfy:

W σ;Pð Þ ¼ ∮T tð Þ � D tð Þdt � 0

where the equality sign applies only to reversible cases, Fabrizio and Morro

[159]. The minimum free energy ψm[σ(t)] coincides with the maximum recoverable
work WR[ σ(t) ] that is the maximum work that can be extracted from a given state
σ(t) of the fluid ψm[σ(t)] ¼ WR[σ(t)]. Amendola [151] has shown that the maximum

free energy ψM in the case of materials of type (2.55) is given by:

ψM σ tð Þ½ � ¼
ðt
0

T Et
r sð Þ� � � E� sð Þds

and that any other free energy ψ[ σ(t)] corresponding to a different process would

satisfy the inequality:

ψ σ tð Þ½ � �
ðt
0

T sð Þ � E� sð Þds $ ψ
� � T Et

r sð Þ� � � E� sð Þ

This can be written as an equality by introducing a non-negative dissipation

function D(t):
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ψ
� þ D tð Þ ¼ T Et

r tð Þ� � � E� tð Þ ð2:56Þ

Amendola considers free energy expressions based onGraffi–Volterra functionals
already introduced for viscoelastic solids, Graffi [139, 140] and Volterra [160]. The

corresponding functional for linearized viscoelastic fluids of type (2.55) is given by:

ψG tð Þ ¼ �
ð1
0

ζ sð Þ Et
r sð Þ�Et

r sð Þ ds, ζ sð Þ � 0,
dζ sð Þ
ds

� 0 8s ∈ Rþ

The internal dissipation DG( t) a non-negative entity for all admissible histories

is given as:

DG tð Þ ¼
ðþ1

0

dς sð Þ
ds

Et
r sð Þ � Et

r sð Þ ds � 0

Day’s [138] free energy worked out for viscoelastic solids can also be adapted

to the case of linearized viscoelastic fluids of type (2.55) as:

ψD tð Þ ¼ 1

G 0ð Þ
ðþ1

0

ς sð Þ Et
r sð Þ ds

� �2

There are other forms of free energy formulations based on different

functionals such as the most general representation for free energy, the

Breuer–Onat functional previously studied in the context of viscoelastic solids as

well [137, 153].

ψ tð Þ ¼
ð1
0

ð1
0

G12 s; uð Þ Et
r uð Þ�Et

r sð Þduds ð2:57Þ

G12 s; uð Þ ¼ ∂2

∂s∂u
G s; uð Þ, G12 þ1, uð Þ ¼ G12 s, þ1ð Þ ¼ 0 ð2:58Þ

The last two conditions are required because the integral in (2.57) must exist for

finite relative histories Et
r.

G s; uð Þ ¼
ðþ1

s

ðþ1

u

G12 s0, u0ð Þ ds0du0 , G þ1, uð Þ ¼ G s, þ1ð Þ ¼ 0,

G 0; sð Þ ¼ G s; 0ð Þ ¼ G sð Þ
ð2:59Þ

Integration by parts yields:
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ψ tð Þ ¼
ð1
0

ð1
0

G s; uð Þ E� t uð Þ�E� t sð Þduds ð2:60Þ

A dissipation function which satisfies (2.56) is also derived by evaluating the

time derivative of (2.60) as:

ψ
� ¼ T tð Þ � E� tð Þ þ

ðþ1

0

ðþ1

0

G1 s; uð Þ þ G2 s; uð Þ½ �E� t uð Þ � E� t sð Þduds ð2:61Þ

G1 s, þ1ð Þ ¼ G2 þ1, uð Þ ¼ 0, G1 s; 0ð Þ ¼ G2 0; sð Þ ¼ ζ sð Þ

The Breuer–Onat internal dissipation is obtained from (2.56) and (2.61) as:

Dm tð Þ ¼ �
ðþ1

0

ðþ1

0

L12 s; uð Þ Et
r uð Þ � Et

r sð Þduds

¼ �
ð1
0

ð1
0

L s; uð Þ E� t uð Þ�E� t sð Þduds � 0 ð2:62Þ

L12 s; uð Þ ¼ ∂2

∂s∂u
L s; uð Þ, L s; uð Þ ¼ G1 s; uð Þ þ G2 s; uð Þ ð2:63Þ

The free energy of Golden [154] originally developed for linear viscoelastic

solids was derived for linear viscoelastic fluids of type (2.55) by Amendola [151].

It reads as:

ψm tð Þ ¼ 1

π

ðþ1

�1
qt�ð Þ ωð Þ

��� ���2dω ð2:64Þ

qt�ð Þ ωð Þ ¼ � lim
z!ω�

1

2π i

ðþ1

�1

iω
0
G �ð Þ ω

0� �
Et
rþ ω

0� �
ω0 � zð Þ dω

0
,

ω� ¼ lim
α!0þ

ω� iαð Þ, z ∈ C

ð2:65Þ

C represents the set of 8 complex numbers. The subscript (�) is used to indicate

that the corresponding function of ω, a function of z ∈ C, has zeros and singular-

ities only for z ∈ C�, and (•)+ represents the half-range Fourier transform (•) :

R ! Rn:
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�ð Þþ ωð Þ ¼
ðþ1

0

�ð Þ sð Þe�iωsds,

�ð Þ ωð Þ ¼
ðþ1

�1
�ð Þ sð Þe�iωsds ¼ �ð Þþ ωð Þ þ �ð Þ� ωð Þ, 8ω ∈ R

ð2:66Þ

The Fourier transform of the strain history Et
r is denoted by E

t
rþ. Details of these

complex computational developments can be found in [151].

A relaxationmodulus for linear viscoelastic solids defined as a discrete spectrumof

a sum of exponentials was considered byGolden [154] who derived the corresponding

minimum free energy with related internal dissipation in the frequency domain.

His method and example has been applied by Amendola and Fabrizio [152] to

linearized viscoelastic fluids of type (2.55), which will be summarized in some detail

below as an example.

G tð Þ ¼ μie
�αit 8t � 0

0 8t < 0

	
, μ 0ð Þ ¼

Xn
i¼1

μi > 0, α1 < α2 < :::: < αn�1 < αn,

αi > 0, μi > 0

To calculate the free energy of the material from (2.64) first the half range

Fourier (cos) transform Gc(ω) of G(t) is computed as:

Gc ωð Þ ¼
Xn
i¼1

αiμi
α2i þ ω2

Defining a new function K ωð Þ with no zeros at any ω ∈ R or at infinity,

in terms of Fourier half range transforms (2.66) such that

K ωð Þ ¼ 1þ ω2ð ÞGc ωð Þ ¼ K þð Þ ωð Þ K �ð Þ ωð Þ. It follows that Gc(ω) ¼
G(+)(ω) G(�)(ω) andG �ð Þ ωð Þ ¼ K �ð Þ ωð Þ 1� iωð Þ�1

,

K ωð Þ ¼
Xn
i¼1

αiμi
1þ ω2

α2i þ ω2
! K ωð Þ ¼ K1

Yn
m¼1

γ2m þ ω2

α2m þ ω2

� �
,

K1 ¼ lim
ω!1K ωð Þ ¼

Xn
i¼1

αiμi > 0

ð2:67Þ

where γ21 ¼ 1 and γ2j , j ¼ 1, 2, . . ., n denote the simple zeros of the analytic

function f zð Þ ¼ K ωð Þwith z ¼ �ω2. At most only one of the values γ2j can coincide

with γ21 ¼ 1, which then becomes a zero of multiplicity 2. The factorization (2.67)2

yields together with G �ð Þ ωð Þ ¼ K �ð Þ ωð Þ 1� iωð Þ�1
:
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G �ð Þ ωð Þ ¼ i k1ω�1
Yn
m¼1

ωþ iδm
ωþ iαm

� �
¼ i k1ω�1 1þ i

Xn
r¼1

Ar

ωþ iαr

 !
, k1 ¼

ffiffiffiffiffiffiffiffi
K1

p
Ar ¼ δr � αrð Þ

Yn
i¼1, i6¼r

δi � αr
αi � αr

� �
, r ¼ 1, 2, . . . , n; δj, j ¼ 2, 3, . . . , n

where δ1 ¼ γo ¼ 0; δj ¼ γj, j ¼ 2, 3, . . ., n. When n 6¼ 1

qt�ð Þ ωð Þ ¼ k1
Xn
m¼1

Am
Et
rþ �iαmð Þ
ωþ iαm

Et
rþ �iαmð Þ ¼

ðþ1

0

Et
r sð Þ e�αmsds

ψm tð Þ ¼ 2K1
Xn
i, j¼1

AiAj

αi þ αj

ð1
0

ð1
0

e� αis1þαjs2ð ÞEt
r s1ð Þ � Et

r s2ð Þds1ds2

8<:
9=;

For the particular case when n ¼ 1, the expression for the free energy is obtained

through (2.65) and (2.64) as:

qt�ð Þ ωð Þ ¼ k1A1

Et
rþ �iα1ð Þ
ωþ iα1

! ψm tð Þ ¼ μ1α
2
1

ð1
0

e�α1sEt
r sð Þ ds

24 352

The expression for the related internal dissipation when n ¼1 reads as:

Dm tð Þ ¼ 2μ1α
3
1

ð1
0

e�α1sEt
r sð Þ ds

24 352

Computing Breuer–Onat free energy Amendola and Fabrizio [152] find from

(2.59)1 and (2.57) as:

G12 s; uð Þ ¼ 2

K1

Xn
i, j¼1

α2i α
2
j μiμj

αi þ αj
� �

BiBj

e� αis1þαjs2ð Þ > 0

ψm tð Þ ¼ 2

K1

Xn
i, j¼1

α3i α
3
j μiμj

αi þ αj
� �

BiBj

ð1
0

ð1
0

e� αis1þαjs2ð Þ Et
r s1ð Þ � Et

r s2ð Þ ds1ds2

8<:
9=;
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Br ¼ δr þ αrð Þ
Yn

l¼1, l 6¼r

δl þ αr
αl þ αr

� �
> 0, r ¼ 1, 2, . . . , n

and the dissipation based on Breuer–Onat functional is computed from (2.63)1 and

(2.62)1, respectively as:

L12 s1; s2ð Þ ¼ � 2

K1

Xn
i, j¼1

α3i α
3
j μiμj

BiBj
e� αis1þαjs2ð Þ < 0

L s1; s2ð Þ ¼ �2 K1
Xn
i, j¼1

AiAj

αiαj
e� αis1þαjs2ð Þ < 0

Dm tð Þ ¼ 2

K1

Xn
i, j¼1

α3i α
3
j μiμj

BiBj

ð1
0

ð1
0

e� αis1þαjs2ð Þ Et
r s1ð Þ � Et

r s2ð Þ ds1ds2

8<:
9=;

which can be rewritten as a clearly nonnegative expression

Dm tð Þ ¼ 2

K1

Xn
i¼1

α3i μi
Bi

ðþ1

0

e�αis1Et
r s1ð Þ ds1

 !

�
Xn
l¼1

α3l μl
Bl

ðþ1

0

e�αls2Et
r s2ð Þ ds2

 !

¼ 2

K1

Xn
i¼1

α3i μi
Bi

ðþ1

0

e�αisEt
r sð Þ ds

 !2

� 0

2.5.4 Implicit Constitutive Theories

It could not be emphasized enough that the study of incompressible fluids whose

viscosity is dependent on the pressure in addition to the well-known dependence on

temperature is not a theoretical exercise, and there are many applications in

engineering such as lubrication, film flows, and flows of granular materials where

the dependence on pressure of the viscosity is crucial to model the flow. That the

viscosity in the linear model of the response of fluids to stimuli he constructed could

also depend on the pressure was recognized by Stokes himself back in 1845

[161]. In his remarkably foresighted paper Stokes discussed in fact in detail

departures from the linearly constitutive model that bears his name. He goes on

saying that based on the experiments of Du Buat [162], which seem to show that
increasing the pressure in channel and pipe flow of water does not increase the
viscosity of the water he will assume that the viscosity of water and by analogy the
viscosity of other incompressible fluids is independent of pressure. We know now

that the insight of Stokes was correct and there are situations when the variation of
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viscosity with pressure cannot be neglected and if ignored will lead to unacceptably

large errors. In 1893, Barus [163] determined that at high pressures viscosity varies

exponentially with pressure and proposed μ ¼ μ0 exp(α p) for the relationship

between viscosity and pressure. In this equation, α has units of Pa�1 and p is

measured in Pa (Pascal). The dependence is indeed very substantial at lower

pressures as well. α has been measured for various liquids an example of which is

the Naphthalemic mineral oil, which shows a decreasing trend with increasing

temperature, with temperature quadrupling from 20 to 80 �C α decreases from

~26 to ~16 GPa�1, Höglund [164]. Subsequent attempts to improve on the Barus

formula include those by Roelands [165], Irving and Barlow [166], and Paluch

et al. [167]. Roelands’ formula is given by:

μ ¼ exp lnω0 þ 9:67ð Þ �1þ 1þ 5:1 10�9p
� �n� �� �

where n is a constant is quite good away from the glass transition point. Irving and

Barlow’s empirical formula involves a double exponent and four temperature-

dependent constants A, B, C, and D as:

μ ¼ exp Aexp Bpð Þ � Cexp �Dpð Þf g

Paluch’s formula, which applies to certain low-molecular weight liquids, is

similar to Barus’ with the constant exponent α in Barus’ formula replaced with

C (P0 � p)�1 where C is an empirical constant.

In the first half of the last century, a tremendous amount of work was done on the

response of fluids at high pressure and an exhaustive account of the literature up to

1931 can be found in the authoritative book by Bridgman [168] who had previously

published extensive research on the variation of viscosity of great many fluids with

pressure, Bridgman [169]. In particular, the work of Andrade [170] who suggested

the following relationship for the viscosity η:

η p; ρ; θð Þ ¼ A
ffiffiffi
ρ

p
exp pþ rρ2

� � s

θ

h i
where r, s, and A are constants and θ represents the temperature is noteworthy.

However, as Andrade himself remarks it is not at all clear if such a model would

work for all liquids in a certain temperature range although it would work for

a class of fluids. A body of evidence that pressure-dependent viscosity is enor-

mously important under certain physical situations kept accumulating in the

second half of the last century as well, Griest et al. [171], Johnson and Cameron

[172], Johnson and Tevaarwerk [173], Bair and Winer [174], and Bair and Kottke

[175]. There are situations when a tenfold increase in pressure may lead to

increases in viscosity of the order of O(108) %, whereas the density may change

by a mere 10–20 % for the same tenfold increase in pressure inevitably leading to

the conclusion that the change in density is insignificant, thus assuming that the

fluid is incompressible, as compared to the change in viscosity that may happen
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for instance in elastohydrodynamics, Szeri [176]. The density variation with

pressure p is well correlated by the following empirical equation, where ρ0 is

the density of the liquid as the pressure tends to zero, Dowson and Higginson

[177] as:

ρ ¼ ρ0 1þ 0:6p

1þ 1:4p

� �
Clearly, the change in density ρ is negligible, of the order of 5 % when the

pressure varies for example from 2 to 3 GPa.

Implicit relationships for the stress T of the form F T;D; θð Þ ¼ 0 defining

the dependence of the stress on the deformation gradient D and temperature θ, of
which Navier–Stokes equations are a special subclass, were studied by Rajagopal

[178]. If one assumes that F is an isotropic tensor-valued function of the tensors

T and D, omitting the dependence on the temperature θ and the density ρ for

simplification of the resulting expression, frame indifference and isotropy require

that under the set of all orthogonal transformations O+:

F QTQT,QDQT
� � ¼ QF T;Dð ÞQT 8Q ∈ Oþ

The theory of invariants then implies, Spencer [179]:

α01þ α1Tþ α2Dþ α3T
2 þ α4D

2 þ α5 DTþ TDð Þ þ α6 T2Dþ DT2
� �

þ α7 TD2 þ D2T
� �þ α8 T2D2 þ D2T2

� � ¼ 0
ð2:68Þ

where all nine material functions αi, i ¼ 0, . . ., 8 depend on the invariants trT, trD,
trT2, trD2, trT3, trD3, trTD, trT2D, trD2T, and trT2D2. Rajagopal observes that

density and temperature can be easily incorporated into this process by including

them in the list of quantities on which the material functions depend. Now if one

makes the following choices for the constants in (2.68):

α0 ¼ 1

3
trT, α1 ¼ 1, α2 ¼ �μ trT

a generalization of the Navier–Stokes equations with pressure-dependent viscosity

is obtained.

T ¼ �p1þ 2μ pð ÞD ð2:69Þ

Existence of solutions to models of the type (2.69) has been proven for the space

periodic case by Málek et al. [180] and the existence of weak solutions for steady

flows under homogeneous Dirichlet boundary conditions and to specific body

forces that are not necessarily small by Franta et al. [181]. The remarkable feature

here in this implicit model formulation is that the constraint of incompressibility
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does not need to be enforced through Lagrange multipliers as is the case with the

regular Navier–Stokes theory, or that the constraint stress does no work as it is

routinely assumed in classical continuum mechanics. That this does not need to be

the case in general was first recognized by Gauss [182] in a different context that of

the motion of rigid bodies and was further explored recently in detail by Rajagopal

[183] and Rajagopal and Srinivasa [184] who have shown that it is unnecessary
within the context of continua to appeal to the assumption that the constraint stress

is workless. Rajagopal observes that further generalizations of this approach, which

would include many of the rate-type models that are used to describe viscoelastic
fluids, can be achieved by selecting implicit relations of the form:

F T,T
�
, . . . T

nð Þ
,D,D

�
, . . . D

nð Þ� �
¼ 0

where the superposed dot represents the material derivative and the superscript (n)
stands for nmaterial time derivatives; he further demonstrates how to derive further

generalizations of the Navier–Stokes model, for instance such as

T ¼ �p1þ 2 μ trT, Dj j2
� �n o

D

among others. further extensions of the implicit approach would allow the con-

struction of models for turbulent flows wherein the material functions can depend

on the invariants associated with the stresses and their fluctuations as opposed to

allowing them to only depend on the fluctuations in the velocity gradients.

Another way of approaching the problem would be for example to start with the

assumption that the stress in the fluid depends on the density ρ, temperature θ, and
the velocity gradient∇u. Then it follows from frame-indifference and isotropy that

the stress T in such a fluid is given by (2.70) often referred to as the Stokesian

model:

T ¼ α0 ρ; θ; ID; IID; IIIDð Þ1þ α2 ρ; θ; ID; IID; IIIDð ÞD
þ α4 ρ; θ; ID; IID; IIIDð ÞD2 ð2:70Þ

2D ¼ ∇uþ ∇uð ÞT, ID ¼ trD, 2IID ¼ trDð Þ2 � trD2, IIID ¼ detD

The term α0(ρ,θ,ID,IID,IIID) does not have the meaning of mean normal stress as

neither trD nor trD2 are zero. If one now assumes that the relationship between

stress and strain is linear the Stokesian model reduces readily to by renaming the

equation:
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T ¼ α
_
o ρ; θð Þ þ λ ρ; θð Þ trD

h i
1þ 2μ ρ; θð ÞD

If the fluid is also incompressible, trD ¼ 0, (2.70) reduces to the following:

T ¼ �p1þ α
_
2 θ, IID , IIIDð Þ Dþ α

_
4 θ, IID , IIIDð ÞD2

as the stress T now depends only on the velocity gradient. Here, the pressure ( p) is
the Lagrange multiplier introduced to enforce incompressibility, p ¼ �1/3trT.

Hron et al. [185] studied departures from Newtonian flow configurations in the

same geometrical setting of incompressible fluids whose Cauchy stress is given by:

T ¼ �p1þ 2μ pð Þ Dj jm�2
D ð2:71Þ

which allows for shear-thinning [m ∈ h � 1, 2)] or shear-thickening [m > 2].

If μ( p) is a constant (2.71) represents the behavior of power law fluids.

Hron et al. [185] study the behavior of these fluids when μ( p) ¼ α pγ, μ( p) ¼
exp(α p) to show that that unidirectional Poiseuille flows are possible for linear

dependence of the viscosity on the pressure μ( p) ¼ α p, and explicit exact contin-

uous solutions can be established in that case even if shear-thinning effects are

included. For other forms of the viscosity, with polynomial and exponential depen-

dence on the pressure, unidirectional flows are not possible. They also show that

pressure gradient driven unidirectional flow between moving plates for fluids whose

viscosity depends on certain fractional powers [m ¼ (n + 1)/n, n ∈ N where N is

the set of positive integers] of the norm of the velocity gradient allow

Fig. 2.9 Streamlines—flow over a slot—flow is from left to right: Constant viscosity (a) α ¼ 0;

pressure dependent viscosity—Barus equation (b) α ¼ 100, (c) α ¼ 200, and (d) α ¼ 360

(Adapted from Hron et al. [183] with permission)
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for multiplicity of solutions, a result not possible with the classical Navier–Stokes

fluid and power-law fluids. Bair et al. [186] had shown that fluids of the type (2.71)

with m ¼ 2 are not capable of unidirectional flows and require a secondary flow.

However, Hron et al. [185] show that this finding does not apply to all fluids with

pressure-dependent viscosities as outlined above. They also study two steady plane

flows numerically, flow between two coaxial, eccentric cylinders, and flow past

a slot in a channel. In the former case, they find that although the pressure

field differs from that for the Navier–Stokes solution by nearly two orders of

magnitude, the velocity field is not markedly different. In the latter case, the

dependence of the viscosity on the pressure can significantly change the structure

of the flow field, Fig. 2.9.

Elastohydrodynamic lubrication calculations are routinely based on the classical

Reynolds equation. Reynolds [187] derived the equation named after him under

the assumption of constant viscosity, consistent with Stokes’ assumption that the
viscosity is a constant for the Navier–Stokes fluid. But to account for the increase in
viscosity by several orders of magnitude due to the enormous pressures generated in

an elastohydrodynamic contact, a pressure-dependent viscosity is inserted into

the Reynolds equation a posteriori, thus leading to the neglect of some terms in

the equation had the pressure-dependent viscosity been accounted for right from the

outset in the derivation of the equation. This practice leads to a glaring inconsis-

tency in the current elastohydrodynamic lubrication calculations, which went

unnoticed until Rajagopal and Szeri [188] derived the elastohydrodynamic lubri-

cation equation of Reynolds assuming at the very outset that the viscosity is

pressure dependent. The Reynolds equation derived under the assumptions that

the film is very thin and the body forces can be neglected reads as:

∂
∂x

h3

μ

∂p
∂x

� �
þ ∂
∂z

h3

μ

∂p
∂z

� �
¼ 6U

_∂h
∂x

ð2:72Þ

where h is the film thickness and U
_

is the relative translation or rotation of the

surfaces in the direction of the motion, the x direction.U
_ ¼ Ux 1ð Þ � Ux 2ð Þ if surfaces

are in relative translation like in the case of thrust bearings and U
_ ¼ Ux 1ð Þ þ Ux 2ð Þ

if the surfaces are in relative rotation like in the case of journal bearings. The

difficulties with (2.72) if the viscosity is pressure dependent are apparent right away

because if that is the case the equations of motion cannot be integrated to obtain

(2.72) in the first place. Rajagopal and Szeri [188] derived from the first principles

the following set of equations with three unknowns, which governs the flow of the

lubricating layer in the narrow gap.
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∂p
∂x

¼ μ
∂2

u

∂y2
þ dμ

dp

∂u
∂y

∂p
∂y

þ 2
∂u
∂x

∂p
∂x

� �
,

∂p
∂y

¼ dμ

dp

∂u
∂y

∂p
∂x

,
∂u
∂x

þ ∂v
∂y

¼ 0

ð2:73Þ

To proceed further requires the specification of the explicit dependence of

viscosity on pressure. If an exponential dependence of the Barus type is assumed

together with ∂p/∂y ¼ 0, integrating (2.73)1, using boundary conditions u jy ¼ 0 ¼
Ux(1), u jy ¼ h(x) ¼ Ux(2) and substituting the result in (2.73)3 leads to:

d

dx

h3

μ
� 12α

ðh
0

y h� yð Þ∂u
∂x

dy

0@ 1A dp

dx

24 35 ¼ 6 U
_dh

dx
ð2:74Þ

The modified lubrication equation (2.74) does differ from the classical Reynolds

equation (2.72) because of the additional α term, which may lead to substantially

different results.

Thermodynamical compatibility issues with implicit constitutive equation for-

mulations were further explored by Rajagopal [183] who has shown that the model

of an incompressible fluid with pressure-dependent viscosity is a natural conse-

quence of requiring that the Helmholtz potential ψ depends only on the temperature

θ while the rate of dissipation ξ depends on both the stress T and the symmetric part

of the velocity gradient D. In general, in an implicit theory, the Helmholtz potential

can depend on the stress as well as on the kinematical quantities. Assuming a rate of

dissipation of the form ξ ¼ 2[μ (θ, trT)] D • D and maximizing the rate of

dissipation subject to ξ ¼ T � D� ρ ψ
� � 0 as a constraint, where T • D is referred

to as the stress power and ψ
� ¼ dψ

dt , together with the constraint of incompressibility

leads to a model of type (2.69) with μ constant. We recall that the usual procedure to

derive (2.69) with constant μ is to split the stress into a constraint stress, which does
no work, and a constitutively determined part. Assuming a more general form of the

rate of dissipation ξ ¼ 2 [μ (θ, trT, IID) ] D • D � 0 and the requirement that the

fluid is incompressible leads to models of the type T ¼ � p1 + μ ( p,θ,IID) D.

2.6 Maxwell-Like Differential Equations

A canonical form for a fairly general class of differential single mode Maxwell-like

constitutive equations, which include the Johnson–Segalman [189], Gordon–Schowalter

[190], Phan-Thien–Tanner [76], Phan-Thien [77], White–Metzner [191], upper-

convected Maxwell, Giesekus [78, 79], Leonov [192], and Larson [193] as well as

the molecular based FENE (Finite Extensible Non-linear Elastic) dumbbell model

[194], can be constructed. Then all that is needed to obtain a particular model is to

assign the relevant explicit form to the elastic potential. Leonov and co-workers show

that the first three in this class, Johnson–Segalman, Gordon–Schowalter, and the

non-affine versions of the Phan-Thien–Tanner model:
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f trS½ � Sþ λ S
∘ ¼ 2ηD, T ¼ �p1þ S,

S
∘ ¼ S

� � ∇uT � ξD
� �

S� S ∇uT � ξD
� �T

S
∘ ¼ S

� �ζTS� Sζ� α DSþ SDð Þ, α ¼ 1� ξ

where S
∘
if the Gordon–Schowalter mixed convected derivative (α 6¼ 1, 0, �1), are

Hadamard unstable. However, the original affine version of the upper-convected

Phan-Thien–Tanner equation (α ¼ 1 : S
∘ ! S

r
) is both Hadamard and dissipative

stable. White–Metzner model [191]:

Skl þ λ IIDð ÞS∇ kl ¼ 2η IIDð ÞDkl, IID ¼ 2D : D

λ IIDð Þ ¼ λ0

1þ aλ0 2D : Dð Þ1=2

is both Hadamard and dissipative unstable, and the upper-convected Maxwell model:

Skl þ λS
∇

kl ¼ 2μ Dkl

S
∇ ¼ DS

Dt
�∇uTS� S∇u ¼ S

� �DS� SD

is globally Hadamard stable but dissipative unstable. In the above S, D, T, 1, ζ, u, λ,
η, and ξ represent the extra-stress tensor, the rate of deformation tensor, the total

stress tensor, the unit tensor, the vorticity tensor, the velocity vector, the relaxation

time, the shear viscosity, and the slippage factor, respectively. The second invariant

of the rate of deformation tensor D is represented by IID, and �ð Þ
�

and �ð Þ
∇

refer to

the material derivative and the upper-convected derivative, respectively. Giesekus

[78, 79]:

Sþ λ S
∇ þα

λ

ηp
S2 ¼ ηpD

where ηp is the polymer contributed viscosity and the original Leonov equation

[192] are dissipative unstable, Larson [193] is Hadamard unstable, and the FENE

equation [194] is globally Hadamard and dissipative stable. All in all, there are

three Maxwell-like differential constitutive equation specifications which are stable

both in the sense of Hadamard and dissipative stability: FENE, the original affine

upper-convected Phan-Thien–Tanner and later versions of the Leonov equation.

However, it is worth noting that the first two predict zero second normal stress

difference in simple shear flow and as a consequence cannot be used to predict

secondary flows (see Siginer [29], Sect. 3.4).
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2.7 Single Integral Constitutive Equations

Rivlin and Sawyers [195] presented the canonical form of the single integral type

constitutive equations for incompressible viscoelastic fluids. The extra-stress tensor

S and the evolution equation for the Cauchy strain tensor C in canonical form are

expressed as:

S ¼
ðt

�1
φ1 IC, IC�1 , t� τ
� �

Ct τð Þ � φ2 IC, IC�1 , t� τ
� �

C�1
t τð Þ� �

dτ,

IC ¼ trC, IC�1 ¼ trC�1

ð2:75Þ

C
∇ ¼ ∂C

∂t
þ u �∇C � C �∇u� ∇uð ÞT � C ¼ 0, C jt¼τ ¼ 1

where C�1
t (τ), 1, t, and τ represent the relative Finger deformation tensor, the unit

tensor, the present time, and the past time, respectively. Based on experimental

evidence, time–strain separable kernels can be introduced as:

φn IC, IC�1 , t� τ
� � ¼ dG t� τð Þ

dτ
φ̂ n IC; IC�1

� �
, n ¼ 1, 2

with G(t) representing the relaxation modulus. Assigning explicit forms to the

kernels φn in the non-separable case and to φ̂ n in the separable case leads to

different types of equations proposed in the literature that found favor with the

practitioner. For instance, the well-known Lodge model, the integral representation

of the upper-convected Maxwell equation, is obtained when φ̂ 1 ¼ 1, φ̂ 2 ¼ 0.

The Lodge equation is dissipative unstable. The separable and the non-separable

K-BKZ models of which Lodge equation is a special case are arrived at when

the kernels are expressed in terms of the elastic Hookean modulus G(θ ) a function
of the temperature θ and of the relaxation effects dependent and independent of

the thermodynamic free energy potential (Helmholtz potential) ψ̂ and ψ(t) in the

separable and non-separable time strain–rate cases, respectively:

φ̂ 1 ¼
2ρ

G

∂ψ̂
∂IC

, φ̂ 2 ¼
2ρ

G

∂ψ̂
∂IC�1

, φ1 ¼
2ρ

G

∂ψ tð Þ
∂IC

, φ2 ¼
2ρ

G

∂ψ tð Þ
∂IC�1

The separable K-BKZ class is dissipative unstable. The Larson and Monroe

model [196], which falls in this category:
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φ̂ 1 ¼
2ρ

G

∂ψ̂
∂IC

¼ ∂
∂IC

3

2F1 IC; IC�1

� � ln 1þ F1 IC; IC�1

� �
F2 IC; IC�1

� �� 3
� �
3

	 
( )

φ̂ 2 ¼
2ρ

G

∂ψ̂
∂ IC�1

¼ ∂
∂ IC�1

3

2F1 IC; IC�1

� � ln 1þ F1 IC; IC�1

� �
F2 IC; IC�1

� �� 3
� �
3

	 
( )

F1 ¼ aþ b tanh�1 cF3
3

1þ F2
3

	 

F2 ¼ 1� βð Þ IC þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2β IC�1

p � 1, F3 ¼ IC�1 � IC

is also Hadamard unstable in addition to being dissipative unstable. Here, the

parameters a, b, and c are curve fitting parameters. The popular Wagner equations,

the original (Wagner I) [197] and the modified factorable model (Wagner II) [198]

proposed later, come out of (2.75) when the kernels are defined respectively as:

φ̂ 1 ¼ a exp �bfð Þ þ 1� að Þ exp �cfð Þ, f ¼ β IC þ 1� βð Þ IC�1 , φ̂ 2 ¼ 0,

φ̂ 1 ¼ 1� βð Þf 1 IC; IC�1

� �
, φ̂ 2 ¼ βf 1 IC; IC�1

� �
,

f 1 IC; IC�1

� � ¼ 1

α
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
IC � 3ð Þ IC�1 � 3

� �q
In both of these kernel specifications, a, b, c, α, and β are positive curve fitting

parameters. BothWagner models are Hadamard unstable. Papanastasiou et al. [199]

proposed:

φ̂ 1 ¼ βf 2 IC; IC�1

� �
, φ̂ 2 ¼ 0, f 2 IC; IC�1

� � ¼ β � 3þ α IC þ 1� αð Þ IC�1

� ��1

to which Luo and Tanner [200] suggested the following modification:

φ̂ 2 ¼ χβf 2 IC; IC�1

� �
, χ > 0

Again β, α, and χ are numerical curve fitting parameters with experimental data.

Both Papanastasiou and Luo and Tanner models are Hadamard unstable. It is

surprising to note that none of the single integral time–strain separable kernel type

of constitutive equations is evolutionary, that is, none is both Hadamard and

dissipative stable, and the predictions of some, the derivation of which is partly

based on a molecular approach such as the Larson model, is worse than others. We

note that in any variant of the Rivlin–Sawyers family of CEs if φ2 ¼ 0 or in

separable cases if φ̂ 2¼ 0 the second normal stress difference will be zero and

therefore no secondary flows can be predicted in non-circular tube flows (see Siginer

[29], Sect. 3.4) even though the CE may be Hadamard and dissipative stable.
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2.8 Hadamard Instability

Hadamard instability is well understood in non-linear elasticity. Stability criteria in

the Hadamard sense are equivalent to the conditions of strong ellipticity of the

field equations for dynamic problems in non-linear elasticity. If the solution of the

field equations for a specific Cauchy boundary value problem provides the initial

conditions for marching the solution at subsequent times in the time line, the set of

field equations are called Hadamard stable or evolutionary or well posed. In addition,

there are thermodynamic stability criteria called the GCN+ conditions, which require

the convexity of the thermodynamic elastic potential with respect to the strainmeasure

(Hencky strain), Truesdell andNoll [201]. It turns out that the thermodynamic stability

conditions can be interpreted as necessary conditions for Hadamard stability. But

Leonov [26] shows that the conditions he derives for Hadamard stability for the class

of Maxwell-like differential equations and time–strain separable single integral con-

stitutive equations, which include almost all the equations in popular use, are inclusive

of those for GCN+ stability. That is they are stronger. Although Hadamard instability

for viscoelastic CEs was first studied by Rutkevich [202, 203] as far back as 1969, the

publications were in Russian and remained relatively unknown in the West until

recently. The equivalent of the conditions for Hadamard stability in viscoelasticity

was rigorously worked out by Leonov and his co-workers in a sustained effort in the

early 1990s, Leonov [204] and Kwon and Leonov [205, 206]. They coincide roughly

with the conclusions drawn in the context of non-linear elasticity. Namely when the

extra-stress S is expressed in terms of an elastic potentialW(trC, trC�1, θ ) ¼ ρψ , the
strain energy function for incompressible materials with θ, ρ, ψ , and C representing

the temperature, density, Helmholtz free energy, and the Finger tensor, respectively,

elastic potentialW must satisfy the convexity conditions:

∂W
∂IC

> 0,
∂W
∂IC�1

> 0,
∂2

W

∂I2C

∂2
W

∂I2
C�1

>
∂2

W

∂IC∂IC�1

ð2:76Þ

which are sufficient for Hadamard stability of the set of constitutive and evolution

equations defining S. These conditions are equivalent to stating that the thermody-

namic potential F is a monotonically increasing convex function of the invariants

trC and trC�1.

The consequences of Hadamard instability are devastating. As the solution

cannot be continued or as well is not continuous along the time line very quick

blow-up instabilities with very short-wave disturbances occur with devastating

results for numerical computations which fail to converge. Refining the computa-

tional mesh to improve the results actually worsens them because of the extremely

short wave nature of the disturbances. Hadamard instability can be interpreted

in many cases as due to the amplitude of the initially infinitesimal waves tending

to infinity as the wavelength tends to zero (see also Sect. 1.2). If the constitutive

equation has the ability to provide a non-linear rapid response, the instability may

be smoothed over. This association with the non-linear rapid response of the
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constitutive equation makes the Hadamard instability dependent on the properties

of the type of differential operator in the evolution equation for differential models,

Leonov [26]. One can conclude that for stability, the initially small (infinitesimal)

amplitude of disturbing waves should remain small at all times. An excellent

example of Hadamard stability analysis for the Oldroyd-B and UCM fluids can

be found in Owens and Phillip [81], p. 55–59.

2.9 Dissipative Instability

Every constitutive equation includes a dissipative term or terms. The formulation of

the non-equilibrium terms may give rise to another type of instability called

dissipative instability. This is a relatively new issue in the study of instabilities

which plague non-linear viscoelastic constitutive equations and was initiated by

Leonov [204]. A constitutive equation may be both Hadamard and dissipative

unstable, and a constitutive equation which is Hadamard stable may turn out to

be dissipative unstable. Examples are the White–Metzner and the upper-convected

Maxwell models. The latter is Hadamard stable in a global sense, but is dissipative

unstable because it shows unbounded growth of stress in simple extension when the

elongation rate exceeds the half of the reciprocal relaxation time. The former is

Hadamard unstable (non-evolutionary) because of the dependence of the relaxation

time on the invariant of the deformation rate tensor, Dupret and Marchal [207], the

same dependence which gives the model its capability to predict shear-thinning

behavior. The model is also dissipative unstable for a reason similar to that of the

upper-convected Maxwell model. Specifically whenever the extensional strain rate

exceeds the half of the reciprocal relaxation time, a dissipative instability occurs,

Verdier and Joseph [208]. Necessary and sufficient conditions for dissipative

stability for both the class of Maxwell-like and the class of single integral equations

with time–strain separable kernels were determined in a series of papers by Leonov

and co-workers, Leonov [204] and Kwon and Leonov [205, 206, 209].

Dissipative stability requires that firstly in any flow the free energy and dissipa-

tion functionals remain bounded and secondly steady flow curves in simple shear

and in simple elongation must be monotonically and unboundedly increasing with

respect to the strain rate. The former condition is framed explicitly with the

following statement: The free energy and dissipation functionals will remain

bounded if and only if the Hadamard stable elastic potential function W(Hk)

expressed in terms of the principal values Hk of the Hencky strain measure

H does not grow exponentially:

H ¼ 1

2
lnC, IH ¼ 0

The study of dissipative instabilities is far from being a mature subject and is very

much work in progress as well as the whole field of instabilities related to viscoelastic

constitutive equations even though considerable progress has been made in the last
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two decades and some light has been shed on the perplexing problem of blow-up

instabilities in numerical computations at high Deborah or high Weissenberg num-

bers. It is also fair to conclude based on available studies that a CEwhich is dissipative

stable is also very likely to be Hadamard stable, but the converse is not necessarily

true. It is well known that it is possible to stabilize a Hadamard unstable constitutive

equation by adding aNewtonian term.However, it is lesswell known that sometimes a

Hadamard stable but dissipative unstable CE can be stabilized by changing the elastic

potential. For instance, the single mode evolution equation for the elastic extra-stress

S suggested by Giesekus in its widely used form:

S 1þ αλ

η
S

� �
þ λ S

∇ ¼ 2ηD

is dissipative unstable, but can be stabilized in the dissipative sense if an appropriate

elastic potential is chosen to satisfy the convexity conditions (2.76). Here, α < 0.5, λ
and η are constitutive parameters representing the ratio of the second normal stress

difference to the first normal stress difference, the relaxation time and the viscosity.

Leonov [26] proposed on rigorous grounds a robust Hadamard and dissipative
stable constitutive equation, which works well with melts and concentrated solu-

tions at high De numbers of the order of several hundreds. The extra-stress is

expressed in terms of an elastic potential W(trC, trC�1, θ ) ¼ ρψ , the strain energy

function for incompressible materials is given by:

S ¼ 2
∂W
∂IC

C� ∂W
∂IC�1

C�1

� �
with θ, ρ, ψ , and C representing the temperature, density, Helmholtz free energy,

and the Finger tensor, respectively. For Hadamard stability, elastic potentialWmust

satisfy the convexity conditions (2.76). The evolution equation for the Cauchy

strain measure C is given by:

2λC
∇ þ a IC; IC�1

� �
C2 þ IC�1 � IC

� �
3

C� 1

	 

¼ 0

The dissipative function a is positive definite and has a linear viscoelastic limit.

A general elastic potential is proposed:

W IC; IC�1 ; θ
� � ¼ 3G θð Þ

2 nþ 1ð Þ 1� βð Þ trC

3

� �nþ1

þ trC�1

3

� �nþ1

� 2

( )

which reduces the explicit form for the extra-stress S to:
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S ¼ 1� βð Þ trC

3

� �n

C� β
trC�1

3

� �n

C�1

G(θ) is the linear Hookean elastic modulus and β and n are numerical fitting

parameters. These equations are Hadamard and dissipative stable for 0 � β � 1

and n > 0, and according to Leonov and co-workers have the ability to predict the

behavior of concentrated solutions and melts at very high De numbers of the order

of several hundreds and perhaps De ~ 1,000. The use of these equations in

predicting secondary flows will be explored in Siginer [29].
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