
Chapter 2
State-of-the-Art on Automatic Analog IC
Sizing

Abstract In this chapter a state-of-the-art review on analog integrated circuit (IC)
design automation tools applied to the specification translation problem is
presented. Having the right topology for a given set of specifications is indis-
pensable for a high performance design. An inadequate topology makes the design
more difficult (or even impossible), and may require unnecessary resources, which
is not acceptable in high performance designs. Once the topology is selected, the
specifications for the overall block are translated to the specifications for the sub-
blocks. The specifications are, in this way, passed through the hierarchy. At the
lowest level, the translation reduces to circuit sizing, whereas at the higher levels it
produce the sub-blocks performance parameters. In the last years, the scientific
community proposed many techniques for the automation of the translation task;
some apply only at circuit-level or only at system level, while others apply to both.
In this study, several circuit-level sizing techniques are sketched and compared,
and then, different model-based optimization approaches are outlined.

Keywords Analog IC design � Automatic specification translation � Knowledge-
based sizing � Optimization-based sizing � Electronic design automation �
Computer-aided-design

2.1 Automatic Circuit-Level Sizing

The techniques for the automation of circuit-level IC sizing are classified into two
main groups [1], knowledge-based and optimization-based based on the techniques
used to address the problem.
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2.1.1 Knowledge-Based Sizing

Early strategies tried to systematize the design by using a design plan derived from
expert knowledge. In these methods, a pre-designed plan is built with design
equations and a design strategy that produce the component sizes that meet the
performances requirements. Figure 2.1 shows the strategy flow of knowledge-
based sizing methodologies.

In IDAC [2], the designer expertise is captured in a design plan where all design
equations are explicitly solved during the execution of the plan. Once the topology
is selected, the plan is executed for the given specifications to produce a first
design. The tool also included local optimization around this first design. IDAC
includes a vast library of plans, featuring voltage references, opAmps, compara-
tors, oscillators, DACs and ADCs. OASYS [3] uses the same overall strategy, but
defines the circuits hierarchically, with a design plan for each sub-block. It also
adds backtracking with design-reuse methodologies to recover from failed designs.
OASYS was extended to include data converters in addition to the original
operational amplifiers. TAGUS [4–6] applies the design plan successfully at
system-level for CMOS data converters. A slightly different approach is found in
BLADES [7], CAMP [8] or ISAID [9, 10], these tools capture the designer’s
knowledge in expert systems using artificial intelligence techniques.

The knowledge-based approach was applied with moderate success. The main
advantage of this approach is the short execution time. On the other hand, deriving
the design plan is hard and time-consuming, the design plan requires constant
maintenance in order to keep it up to date with technological evolution, and the
results are not optimal, suitable only as a first-cut-design.
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2.1.2 Optimization-Based Sizing

Aiming for optimality, the next generations of sizing tools apply optimization
techniques to analog IC sizing. The optimization-based sizing can be classified into
three major subclasses based on different techniques, namely, equation-based,
simulation-based and model-based, which are addressed in the following sub-
sections. A general flow of an optimization-based strategy can be found in Fig. 2.2.

2.1.2.1 Equation-Based

The equation-based methods use analytic design equations to evaluate the circuit
performance. Different optimization techniques are used, the optimization in
OPASYN [11] is done using steepest descent, whereas in STAIC [12] it is used a
successive solution refinements technique. OPTIMAN [13] uses simulated
annealing (SA) applied to analytical models created automatically by ISAAC [14].
DONALD [15] is an interactive design space exploration tool that assists the
designer during circuit sizing by automatic analytical manipulations of the circuit
equations. Maulik et al. [16] define the sizing problem as a constrained nonlinear
optimization problem using spice models and DC operating point constraints,
solving it using sequential quadratic programming. In ASTRX/OBLX [17] a
simulated annealing optimization is performed using and cost function defined by
equations for dc operation point, and small signal Asymptotic Waveform Evalu-
ation based simulation. This evaluation technique is also used in DARWIN [18].

In GPCAD [19] a posynomial circuit model is optimized using Geometrical
Programming (GP), the execution time is in the order of few seconds, but the
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general application of posynomial models is difficult and the time to derive the
model for new circuits is still high. To reduce the long time spent in model
development, automatic techniques were proposed (Gielen et al. in [20] provide a
good overview on symbolic analysis applied to analog ICs). However, some
design characteristics are still not easy to describe in analytical expressions with
sufficient accuracy automatically. Kuo-Hsuan et al. [21] revisited the posynomial
modeling recently, surpassing the accuracy issue by introducing an additional
generation step, where local optimization using simulated annealing and a circuit
simulator is performed. The same strategy is applied in FASY [22, 23] were
analytical expressions are solved to generate an initial solution and a simulation-
based optimization is performed to fine tune the solution.

The equation-based approaches are applied mostly at circuit-level, but some
applications at system-level are also found. In SD-OPT [24] the optimal DR
modulator sub-blocks’ specifications are derived using symbolic equations solved
using stochastic optimization. The sub-blocks itself are then generated using
simulation based techniques. Doboli et al. [25] applies genetic programming
techniques to simultaneously derive the sub-blocks specifications, sub-block
topology selection and transistor sizing. Matsukawa et al. [26] design DR and
pipeline analog to digital converters solving via convex optimization the equations
that relate the performance of the converter to the size of the components.

The equation-based methods’ strong point is the short evaluation time, making
them, like the knowledge-based approaches, extremely suited to derive first-cut
designs. The main drawback is that, despite the advances in symbolic analysis, not
all design characteristics can be easily captured by analytic equations, in addition,
the approximations introduced in the equations yield low accuracy designs espe-
cially for complex circuits.

2.1.2.2 Simulation-Based

With the availability of computing resources simulation based optimization gained
ground. In simulation-based sizing a circuit simulator, like SPICE [27], is used to
evaluate the circuit. In DELIGTH.SPICE [28] the optimization algorithm (phase
I-II-III method of feasible directions) is used to perform local design optimization
around a user provided starting point. Kuo-Hsuan et al. [21] and FASY [22, 23]
use equation-based techniques to derive an approximate solution, and then use
simulation within a simulated annealing optimization kernel to optimize the
design. Cheng et al. [29] use the transistor bias conditions to constrain the problem
and instead of solving the circuit by finding transistor sizes, the problem is solved
by finding the bias of the transistors. The transistor sizes are derived from the bias
point using electric simulation.

FRIDGE [30] on the other hand aims for global optimality by using an
annealing-like optimization without any restriction to the starting point. However,
to restrict the dimensionality of the problem the user still must provide the range
for the optimization variables. In MAELSTROM [31] and ANACONDA [32] the
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evaluation time is reduced by a parallel mechanism that shares the evaluation load
among multiple computers. Given the affinity evolutionary algorithms have with
parallel implementations, it was the base technique chosen in MAELSTROM,
however and because the success of simulated annealing is demonstrated in many
implementations the authors option was to use parallel re-combinative simulated
annealing (PRSA). In ANACONDA the approach is similar but instead of the
PRSA it is applied a variation of pattern search algorithms, named by the authors
as stochastic pattern search.

In order to account for layout induced effects and layout characteristics Castro-
Lopez et al. [33] include the layout effects and parameters in the optimization.
A template based layout generator is integrated in the optimization loop and the
geometrical properties of the layout can be used as constraints or optimized. In
addition layout parasitic are also extracted and used during the circuit’s evaluation.
They use simulated annealing followed by a deterministic method for fine-tuning
to perform the optimization. The layout extraction is done using analytical
equations and layout sampling or using 3-D geometric extraction models.

A different approach is taken in GENOM-POF [34], where a multi-objective
strategy is applied through the use of evolutionary algorithms. The objectives and
constraint functions are evaluated by HSPICE

�
. GENOM-POF outputs the Pareto

optimal fronts (POF) with the tradeoff during the synthesis, so the designer has a
wider range of solutions and choices to the problem of sizing.

Generality and easy-and-accurate model (the circuit netlist), are the strong
points of simulation-based techniques. However, the execution time is large for
complex circuits (*100 variables) and prohibitive at system level, and without the
proper constraints the algorithm may not converge to a good result. Some heuristic
schemes exist to automate the process of defining the constraints [35]. However,
automatic constraint defining mechanisms are not integrated in sizing tools and
their application is somewhat circuit class specific. Cheng et al. [29] uses manually
derived DC point equations to limit the search space for the transistors dimensions.

Being the high execution time the weaker point of these methods, some tech-
niques had been proposed to cope with it. Kuo-Hsuan et al. [21] used equation-
based techniques to derive an approximate initial solution. Cheng et al. [29]
instead of solving the circuit by finding transistor sizes, solved it by finding the
bias of the transistors first, and then, the transistor sizes are derived from the bias
point using electric simulation. In MAELSTROM [31] and ANACONDA [32] the
evaluation time is reduced by a parallel mechanism that shares the evaluation load
among multiple computers.

2.1.2.3 Model-Based

For some simulation-based approaches, macro models, like neural-networks or
support vector machines (SVM), are also used to reduce the execution time caused
by the use of circuit simulator in the loop. These models are automatically gen-
erated using an electric simulator to evaluate the performance of the training set.
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Unlike the equations-based modeling the learning based modeling application to
general circuits is easier; however, there is still the tradeoff between accuracy and
model size and generation time.

Alpaydin et al. [36] use a neural-fuzzy model combined with an evolutionary
optimization strategy where some of the AC performance metrics are computed
using an equation-based approach. De Bernardinis et al. [37] use a learning tool
based in SVMs to represent the performance space of analog circuits. The per-
formance space is modeled using the knowledge acquired from a training set via
circuit simulation.

Wolfe et al. [38] present a performance macro-model based in a neural network.
This model once constructed, is to be used to replace the SPICE [27] simulation
during the synthesis of analog circuits, increasing the efficiency of the performance
parameter estimates’ computation. The training and validation data sets are con-
structed with discrete points, sampled over the design space. The work explores
several sampling methodologies to adaptively improve model quality and applies a
sizing rules methodology in order to reduce the design space and ensure the correct
operation of analog circuits.

Barros et al. [1, 39] present a cell-level synthesis and optimization approach
based on SVMs and evolutionary strategies. The SVM is used to dynamically
model performance space and identify the feasible design space regions while at
the same time the evolutionary techniques are looking for the global optimum. The
evaluation is still done with HSPICE

�
to ensure accuracy, but the number of

evaluation is reduced by using the SVM to prune the candidate solutions.
A different approach is the use of POFs to explore circuit tradeoffs during

synthesis [40], and instead of using a model for the circuits, the non-dominated
solutions are generated (prior to the design task) and the suitable solution is
selected from the already sized solutions. In [41], hierarchically POFs are used to
perform system-level sizing. The POF-based-design execution time is large if the
setup time (the generation of the POFs) is considered, however with the correct
models, the POFs can be generated in a context free manner making then suitable
for reuse.

In Tables 2.1, 2.2 and 2.3 the several tools for analog sizing automation are
summarized and, in Table 2.4, the specification translation tools based on the
techniques applied are compared.

2.2 Motivation for Model-Based Optimization

According to McConaghy and Gielen [42], there is a great improvement on the
efficiency of an optimization cycle for analog IC sizing using electrical simulators, if
models containing knowledge about the circuit are used. In [42] is presented a study
to analyze the impact of different models in the optimization process, which were
conducted for several different techniques: polynomials [43], posynomials [44],
genetic programming [45], feedforward neural networks [46], boosted feedforward
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neural networks [47], multivariate adaptive regression splines [48], support vector
machines [49] and Kriging [50]. The choice of the models was based on their
performance, and the following modeling methods were considered:

• As reference models were used: a constant (set as the mean of the data), a linear
model and a 2nd-order polynomial;

• CAFFEINE [45] tool used a modified form of genetic programming (GP), which
restricts GP to canonical function forms via a grammar;

• Feed forward neural networks (FFNNs) [46] which used the state-of-art training
algorithm OLMAM;

• Boosting [47] creates a ‘‘stack’’ of models, each model is learned on a weighted
version of the data. The overall output is the average of the outputs of the
individual models;

• Multivariate Adaptive Regression Splines (MARS) [48] are piecewise polyno-
mials. In the constructive steps, input variables are iteratively added on as
‘‘as-needed’’ basis for greedily chosen sub-regions of input space. MARS scales
to a high number of input variables but is locally accurate;

• Support vector machines (SVMs) transform inputs into a space of much higher
dimension and do linear regression in that space. A fast-learning variant
LS-SVM [49] was used;

• Kriging [50] originated in geostatistics, but it has been shown to be useful
in optimization. In this model prediction is the value of nearby samples
‘‘corrected’’ by a correlated error calculation.

Of the several existing ways to improve the optimization process efficiency, the
study indicates that the construction of all models was based on the use of a Design
of Experiments (DOE) technique [51].

Since electrical simulation is the bottleneck of the simulator-in-loop techniques,
improving efficiency roughly translates to reducing the number of simulations. For
a proper comparison between different models, a point that must be taken into
account it is the setup time, i.e., the time necessary to create the model, which
generally produces a tradeoff between model performance (accuracy and/or range
of applicability) and model setup time.

Table 2.5 presents a summary of the study for the different models. From
Table 2.5, CAFEINE is the approach with the better performance concerning the
prediction error, while the Polynomial approach has the worst.. Based on this
study, it is fair to forecast that with the type of approach made in CAFFEINE
available, it could replace the simulator in the loop of an optimization process.
However, the setup time of this model is huge when compared to the remaining; a
model that has a setup time higher than the overall execution time is a huge
contradiction.

2.2 Motivation for Model-Based Optimization 17



2.3 Conclusions

Despite the evolution verified in the high and low abstraction levels, both archi-
tecture’s selection, sizing and layout optimization remain the focus of research in
analog EDA methodologies. The industrial commercial tools follow closely the
main trends in academia and R&D workgroups, focusing in the lower level of
abstraction levels dealing with device sizing and layout description levels.

Although much has been accomplished in automatic design of analog circuits,
the fact is that custom generators usable in industrial design environment are not
available. In this survey, some of the most significant analog design automation
tools for circuit-sizing were presented and analyzed to provide a better under-
standing of its advantages and shortcomings. The tools are classified according to
the techniques used and the applicability to cell and (or) system level.

Particularly, the results of Sect. 2.2 present a real motivation for a model-based
optimization. The opportunity to create a new and innovative model, with a good
performance both in terms of accuracy and setup time, arises. In this work, the idea
of acquire knowledge of a circuit and embedding it into the evolutionary opti-
mization kernel is explored. However, the model is used to guide the optimization
kernel in a more efficient search of the solution space rather than replacing the
usage of the circuit simulator to evaluate the performance of the circuit. The
methodology adopted is to automatically generate a model that estimates how
move to better solutions during the optimization. Chapter 3, describes the Gradient
Model introduced in this work, and how it is automatically generated using DOE

Table 2.5 Comparison between several models for sizing automation of ICs

Model Date Heuristics Circuits Simulator Time
setup/
execution

Lang. Error
prediction
(%)

Polynomial
[43]

2005 Polynomial High-speed
CMOS
OTA,
13 inputs
and
6 outputs

SPICE 1–4 min/
\10 min

Matlab 82,6

Posynomial
[44]

2002 Posynomial 1–4 min/
\10 min

Matlab 61,7

CAFFEINE
[45]

2005 Posynomial 12 h/
\10 min

Matlab 22,7

FFNNs
[46]

2002 Neural
networks

3,7 min/
\10 min

Matlab 41,7

Boosted
FFNN
[47]

2002 Neural
networks

7 min/
\10 min

Matlab 43,2

MARS [48] 1991 Polynomial 5 min/
\10 min

Matlab 29,4

LS-SVM
[49]

2002 Support vector
machine

5 min/
\10 min

Matlab 45,9

Kriging
[50]

1998 Geostatistics 5 min/
\10 min

Matlab 34,6
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with two alternatives strategies, the Full Factorial Design and the Fractional
Factorial Design. The model is then integrated into the synthesis tool AIDA, as
will be presented in Chap. 4, and the obtained results are shown in Chap. 5.
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