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Abstract Total variation methods and similar approaches based on regularizations
with `1-type norms (and seminorms) have become a very popular tool in image
processing and inverse problems due to peculiar features that cannot be realized
with smooth regularizations. In particular total variation techniques had particular
success due to their ability to realize cartoon-type reconstructions with sharp edges.
Due to an explosion of new developments in this field within the last decade it is a
difficult task to keep an overview of the major results in analysis, the computational
schemes, and the application fields. With these lectures we attempt to provide such
an overview, of course biased by our major lines of research.

We are focusing on the basic analysis of total variation methods and the extension
of the original ROF-denoising model due various application fields. Furthermore
we provide a brief discussion of state-of-the art computational methods and give an
outlook to applications in different disciplines.

1 Introduction

Reconstructing and processing images with appropriate edges is of central impor-
tance in modern imaging. The development of mathematical techniques that
preserve or even favour sharp edges has become a necessity and created various
interesting approaches. The two most succesful frameworks are two variational
approaches: total variation models on the one hand and models with explicit edges
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in the framework of Mumford and Shah [140] on the other. The latter usually lead
to various difficulties in the analysis (cf. [138]) and numerical realization due to
the explicit treatment of edges and arising nonconvexity, consequently they have
found limited impact in practical applications beyond image segmentation. In these
lectures notes we will discuss various developments for total variation methods,
which can be formulated as convex variational methods. A whole zoo of approaches
to the modelling, analysis, numerical solution, and applications has developed in the
last two decades, through which we shall try to develop a guide.

The starting point of total variation (TV) methods has been the introduction of
a variational denoising model by Rudin et al. [163], consisting in minimizing total
variation among all functions within a variance bound

T V.u/ ! min
u

subject to
Z
�

.u � f /2dx � �2: (1)

Introducing a Lagrange multiplier � it can be shown that this approach is equivalent
to the unconstrained problem of minimizing

EROF.u/ WD �

2

Z
�

.u � f /2dx C T V.u/; (2)

in the following often referred to as the ROF model. In subsequent years this
model was generalized for many imaging tasks and inverse problems and found
applications in different areas.

We will provide a more detailed motivation for total variation regularization in
a rather general setup in Sect. 2. In Sects. 3–5 we provide an overview of various
aspects in the analysis of total variation regularization. In Sect. 6 we discuss the
concepts of Bregman iterations and inverse scale space methods, which allow to
compensate systematic errors of variational methods, e.g. contrast loss in the case
of TV regularization, and gave another boost to research in this area in recent years.
In Sects. 7 and 8 we discuss some variants of the models, with changes concerning
the fidelity term in Sect. 7 and the regularization term in Sect. 8. In Sect. 9 we discuss
some approaches for the numerical solution of the variational problems. Section 10
is devoted to geometric aspects of total variation minimization and the relaxation
of segmentation problems into convex models for functions of bounded variation.
We then proceed to applications, which we mainly incorporate as further links to
literature in Sect. 11. Finally we present some open questions in the modelling and
analysis of TV methods in Sect. 12.

2 The Motivation for TV and Related Methods

In the following we provide basic motivations for the general setup of TV methods
with respect to forward operators, data fidelity terms, and regularization.
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2.1 MAP and Penalized ML Estimation

In order to obtain a general variational model including total variation and similar
penalties we resort to the Bayesian approach for computing solutions to an operator
equation

Au D f v (3)

in the presence of stochastic effects such as noise (cf. e.g. [110, 114, 129]).
In a classical log-likelihood estimation technique one computes a solution by
minimizing the negative log-likelihood of observing f under u, i.e.,

uLL D arg min
u

.� logp.f ju//; (4)

where p.f ju/ denotes an appropriate probability density for observing f given u.
This can usually be identified with the probability density of the noise, e.g. in the
frequently investigated case of additive noise

f D Au C �; (5)

where � is a stochastic perturbation, i.e. noise, we find

p.f ju/ D p�.f �Au/:

The computationally efficient part of the Bayesian approach is to compute the MAP
(maximum a-posteriori probability) estimate, by

uMAP D arg min
u

.� logp.ujf //: (6)

The posterior probability density is obtained from Bayes formula

p.ujf / D p.f ju/p0.u/
Qp0.f / ; (7)

where p0 denotes the prior probability for u and Qp0 is the prior probability for f .
Since the latter will only contribute a constant term in the minimization of the
negative logarithm of the prior probability, Qp0.f / is not important for the MAP
estimate. We can rewrite the MAP estimation in a similar form to log-likelihood
estimation as

uMAP D arg min
u

.� logp.f ju/� logp0.u//: (8)

The negative logarithm of the prior probability density hence acts as a penalty or reg-
ularization functional, which creates a detailed link to total variation methods. Since
the second term penalizes nonsmooth functions in addition to the logarithmic like-
lihood, this approach is also called penalized maximum likelihood (ML) method.
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Since we assume that images of low total variation have a higher prior
probability than those with high total variation, it seems obvious that p0 should
be a monotonously decreasing function of T V.u/. For related methods we of course
need to replace T V by the appropriate prior, we consequently shall write the
general functional J instead of T V . The natural choice in probability is a Gibbs
form (cf. [94])

p0.u/ � e�ˇJ.u/ (9)

with some constant ˇ > 0. We can then rewrite the MAP estimation as

uMAP D arg min
u

.� logp.f ju/C ˇJ.u//: (10)

Rescaling to

�H.u; f / WD � 1
ˇ
p.f ju/ (11)

where � is a parameter depending on ˇ and possibly the noise (see below), we see
that MAP estimation yields a minimization problem of the form

�H.u; f /C J.u/ ! min
u
: (12)

For specific imaging tasks and specific noise models the form of H.u; f / can
be written down, usually by straight-forward calculations. We shall now and in the
following consider a linear image formation model u 7! Au and a Gaussian additive
noise �. We assume that A is a bounded linear operator to some Banach space. This
means that for the “exact” image Ou the data are generated from

f D AOu C �; (13)

where � follows a normal distribution with variance �2 and zero mean. This means
that (formally)

p.f ju/ D pGauss.f �Au/ � exp

�
�kAu � f k2

2�2

�
:

Hence we can define � WD 1
ˇ�2

and obtain the MAP estimation from the variational
problem

�

2
kAu � f k2 C J.u/ ! min

u
: (14)

We shall investigate non-Gaussian noise models leading to nonquadratic fidelity
terms in the variational problem in Sect. 7.
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2.2 Imaging Tasks

Above we have simply modelled image formation by a linear operator A mapping
between some Banach (or ideally Hilbert) spaces. In our case the preimage space
will consist of functions of bounded variation on a domain � � R

d (usually
d D 2; 3). In the following we give an overview how various imaging tasks can
be formulated as such (cf. e.g. [65]):

• Denoising: In the case of denoising (with Gaussian noise) the given (noisy)
image is measured as an element of the Hilbert space L2.�/. The clean image
is usually modelled as an element of a smaller function space X , e.g. a Sobolev
space W 1;p.�/, a Besov space, or in our context usually BV.�/ \ L2.�/. The
operatorA is an embedding operator intoL2.�/ and hence in particular bounded.

• Deblurring: In the case of deblurring, A is modelled as an integral operator of
the form

.Au/.x/ D
Z
�

k.x; y/u.y/ dy (15)

in most cases with a convolution kernel k.x; y/ D Qk.x � y/. For typical kernels
A is a bounded operator from L1.�/ or L2.�/ to L2.�/.

• Decompositon: In an image decomposition model one aims to separate certain
components of the image, e.g. smooth ones from texture. A typical model for
decomposition into two parts is an operator

A W X1 �X2 ! Y; A.u1; u2/ D u1 C u2: (16)

A possible choice of the output space Y � Xi is L2.�/, but if one seeks
decompositions also into oscillatory components such as texture a larger space
such as H�1.�/ is needed.

• Inpainting: The aim of inpainting is to restore respectively extend an image given
in � nD into the inpainting domain D. Hence, the operator A is an embedding
operator from a function space on � n D into a function space on �, which is
again linear and bounded.

• Medical image reconstruction: In medical imaging, the image formation model
depends on the specific modality (cf. e.g. [141]). Examples are the Radon/X-
ray transform (in computerized tomography and PET) or samples of the Fourier
transform (in MRI), in both cases linear bounded operators. Certain modalities
(e.g. electron and optical tomography) need to be modelled by nonlinear
operators, which are still compact however.

• Image segmentation: In edge-based image segmentation one seeks a decomposi-
tion of the image into the smooth parts of the image in some function space and in
particular an edge set � � � of finite .n � 1/-dimensional Hausdorff-measure.
If the edge set is the boundary of some subset of � such as in object-based
segmentation, it is often replaced by a function of bounded variation taking only
the values zero (outside this subset) and one (inside).
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2.3 Regularization Functionals

In the following we consider the variational model

E.u/ D �

2
kAu � f k2 C J.u/ (17)

and discuss some implications of different choices of J .
A simple choice of a regularization functional is a quadratic energy of the form

J.u/ D 1

2

Z
�

jDuj2 dx; (18)

where D W X ! L2.�/m is a linear operator, e.g. a gradient in X D H1.�/,
m D d . We assume that A is a bounded linear operator on X . Then the optimality
condition for (17) with regularization (18) becomes

0 D E 0.u/ D �A�.Au � f /CD�Du: (19)

Hence we see that for D�D being invertible

u D �.D�D/�1A�.f �Au/:

Consequently u 2 R..D�D/�1A�/, the range of the smoothing operator
.D�D/�1A�, and hence the reconstructed image will be blurred. Consider e.g.
the denoising case where D D r and A W H1.�/ ! L2.�/ is the embedding
operator, then

��u D �.f � u/ 2 L2.�/:

By elliptic regularity we thus expect u 2 H2.�/, i.e. the image is oversmoothed and
there are no edges in particular. On the other hand consider X D L2.�/, D being
the identity, and A is an integral operator as in deblurring or image reconstruction.
Then u is in the range of A�, which is again an integral operator (with kernel
k.y; x/). This again implies smoothness of u and the nonexistence of edges.

An obvious next step would be to replace the square in the regularization (18) by
a smooth strictly convex functionR, i.e. to choose

J.u/ D 1

2

Z
�

R.Du/ dx; (20)

in (17). The corresponding optimality condition becomes

0 D E 0.u/ D �A�.Au � f /CD�.R0.Du//: (21)
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The linearization of this equation is given by

�A�Av CD�.R00.Du/Dv/ D g: (22)

IfR is smooth and strictly convex, then the “diffusion” coefficientR00.Du/ is strictly
positive and the linearized operator has analogous smoothing properties as (19).
Consequently we need to expect a similar smoothing behaviour as in the quadratic
case.

As a consequence one might argue that only a regularization functional based on
R being not strictly convex can indeed prevent oversmoothing and should be able to
maintain edges. As we shall see this is indeed the case for total variation. In order
to gain a formal understanding it is instructive to consider R.u/ D 1

p
jujp for p

approaching 1. The corresponding optimality condition becomes

0 D E 0.u/ D �A�.Au � f /CD�.jDujp�2Du/: (23)

For p > 1 a large “gradient” Du will have an impact on the differential operator,
since the Euclidean norm of jDujp�2Du is jDujp�1. In the limit p ! 1 this
behaviour changes and the involved vector field jDuj�1Du has Euclidean norm one
no matter how large Du becomes. Hence, large (infinite) “gradients” Du will not
have particular impact on D�.jDujp�2Du/.

Visually the improvement when choosing p D 1 compared to larger values (e.g.
p D 2) can be observed in Figs. 1 and 2. The noisy versions of the images are used
as input f for two variational denoising methods, a linear scheme (on the lower left)

�

2

Z
�

.u � f /2 dx C
Z
�

jruj2 dx ! min
u

(24)

equivalent to

�.u � f /��u D 0; (25)

and the ROF model (on the lower right)

�

2

Z
�

.u � f /2 dx C
Z
�

jruj dx ! min
u
: (26)

In both cases, a visually optimal value of � is chosen. The linear scheme leads
to significant blurring and non-sharp images, while the ROF model succeeds in
computing reconstructions with sharp edges, which seem much more appealing
to the human eye (cf. [100] for a further interpretation of this effect). Comparing
the ROF reconstructions in Figs. 1 and 2 one observes that the quality of the ROF
solution is better in the case of the blocky image, which ideally corresponds to the
properties of total variation as we shall also see below. In the case of a natural
image the denoising is of lower visual quality (still clearly outperforming the
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Original Image

Linear Variational Scheme

Noisy image

ROF

Fig. 1 A blocky image and its noisy version (top), reconstruction with linear scheme (quadratic
regularization) and with the ROF model

linear scheme) due to various oscillatory patterns (texture) appearing in the image
(compare e.g. the flower bush in the background). In such cases the ROF model still
manages to reconstruct a cartoon of the image, i.e. its major structure without small-
scale textures. Further techniques can subsequently be applied to find textures in the
residual.

A similar reasoning holds for schemes enforcing sparsity. Suppose . j /j2N is an
orthonormal basis of a separable Hilbert space X and

B W `2.N/ ! X; c D .cj /j2N 7!
X

cj j (27)

is the map from coefficients to elements inX . Then one can rephrase linear methods
via the variational problem (Fig. 3)

�

2
kABc � f k2 C 1

2

1X
jD1

!j jcj j2; (28)

with .!j / being a suitable sequence of weights (e.g. !j D 1 corresponds to the
original squared norm in X ). The optimality condition for (28) becomes

!j cj D �.B�A�.ABc � f // � ej ; (29)
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Original Image

Linear Variational Scheme

Noisy image

ROF

Fig. 2 A natural image (lecturers of the summer school) and its noisy version (top), reconstruction
with linear scheme (quadratic regularization) and with the ROF model

where ej is the j -th unit vector. Hence the decay of the coefficients cj is mainly
determined by the properties of the adjoint operator B�A� and the weights !j .
There is no particular reason for achieving a sparse (in particular finite) weight
sequence, one will rather encounter a slowly decaying one. If one generalizes the
regularization to

�

2
kABc � f k2 C 1

p

1X
jD1

!j jcj jp; (30)

the optimality condition becomes

!j cj jcj jp�2 D �.B�A�.ABc � f // � ej : (31)

For p > 1 there still exists a unique simple monotone relation between cj and the
right-hand side, so the decay behaviour is still dominated by !j and B�A�. Again
the limit p ! 1 gives an interesting change, since for cj ! 0 the limit of the left-
hand side can be quite arbitrary. Thus the case p D 1 (or p < 1) will be particularly
interesting also in such situations.
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Fig. 3 From left to right: clean image, denoising with the isotropic ROF model with three different
scale parameters � (decreasing from left to right)

2.4 Total Variation and Variants

The total variation of a function is formally defined as

T V.u/ D
Z
�

jruj dx; (32)

a definition which makes sense if u 2 W 1;1.�/. Since neither the structure
of W 1;1.�/ is very convenient (it is not the dual of a Banach space) nor it
contains piecewise constant functions, it is reasonable to consider a slightly larger
space which has the desired properties, namely the space of functions of bounded
variation. An exact definition of the total variation is (cf. [95])

T V.u/ WD sup
g2C1

0 .�IRd /
jjgjj1�1

Z
�

u r � g dx: (33)

Here we use the vectorial norm

jjgjj1 WD ess sup
x2�

p
g1.x/2 C : : :C gd .x/2; (34)

variants in the choice of the vector norm will be discussed below. The space of
functions of bounded variation is then defined as

BV.�/ D f u 2 L1.�/ j T V.u/ < 1 g: (35)

We shall later verify that BV has indeed the desired properties, see also [6, 86, 95]
for detailed discussions of functions of bounded variation.

The total variation as defined so far was isotropic, in the sense that it is invariant
with respect to rotations in the argument x. This is often an advantage, since the
result becomes independent of the rotation of the input image. Variants of total
variation are basically obtained by changing the norm of the vector g in (33) from
the standard Euclidean norm to different vector norms
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Fig. 4 From left to right: noisy image, denoising with the isotropic ROF model (Euclidean vector
norm), denoising with the anisotropic ROF Model (supremum vector norm), and a ROF model
with adapted anisotropy. From [30]

T V.u/ WD sup
g2C1

0 .�IRd /
�.g/�1 a.e.

Z
�

u r � g dx; (36)

where � W R
d ! R is a nonnegative one-homogeneous functional satisfying a

triangle-inequality. Of course the arising total variation norms are equivalent and
give the same space BV.�/ in the above definition. However, in the reconstruction
the anisotropy of vector norms different from the Euclidean one can have a
significant impact (cf. [30, 83]). While the isotropic total variation (based on the
Euclidean norm) favours rounded edges in reconstructions, anisotropic definitions
can favour different structures, e.g. corners or rectangular structures. This behaviour
is illustrated in Fig. 4.

3 Existence, Uniqueness, and Optimality

In the following we investigate the well-posedness of the general model

�

2
kAu � f k2 C T V.u/ ! min

u2BV.�/ : (37)

This problem has been analyzed first by Acar and Vogel [2], using strong Lp

topologies that are suitable due to compact embedding results for BV.�/. We shall
here present a different analysis based on the weak* topology of BV.�/. In order
to avoid technicalities in the analysis we first eliminate the mean value of u, which
later allows to define an equivalent norm on those functions with mean zero. We
introduce the corresponding subspace

BV0.�/ D f u 2 BV.�/ j
Z
�

u dx D 0 g: (38)
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In the remainder of the paper we shall assume that A1 ¤ 0, where 1 is the constant
function taking the value 1 everywhere. We further assume

hAv;A1i D 0 8 v 2 BV0; (39)

which is true for most of the operators we consider (e.g. denoising, inpainting,
deblurring, decomposition). The main results still hold true if (39) is not satisfied
but with additional technical effort related to the mean value of u.

Lemma 3.1. Let � > 0. Then the minimizer of (37) is of the form

u D v C hf;A1i
kA1k2 1 (40)

with v 2 BV0.�/.
Proof. Each u 2 BV.�/ can be written as u D v C c1 with mean value c 2 R

and v 2 BV0.�/. Since T V.u/ D T V.v/, we can rewrite the functional to be
minimized using (39) as

�

2
kAu � f k2 C T V.u/ D �

2
kcA1 � f k2 C �

2
kAvk2 � �hAv; f i C T V.v/:

Hence in order to compute the optimal c we can simply minimize kcA1 � f k2 with
respect to c 2 R, which yields the desired result. ut

As a result of Lemma 3.1, we can now reduce the minimization over BV0.�/,
shifting f to f � hf;A1i

kA1k2 A1. With abuse of notation we also call the shifted data f
and consider the minimization

E.u/ D �

2
kAu � f k2 C T V.u/ ! min

u2BV0.�/
: (41)

3.1 Coercivity

At the first glance we observe that the total variation is bounded if the functional
in (41) is bounded. Thus we seek coercivity in the norm of BV.�/. A first useful
property of BV -spaces is embedding into Lebesgue spaces (cf. [86, 95]):

Lemma 3.2. Let q

q�1 	 d , then

BV0.�/ ,! Lq.�/:

The embedding is compact if q

q�1 > d .
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From Lemma 3.2 we see that in any dimension there exists q > 1 with
BV0.�/ ,! Lq.�/, even with compact embedding. If the operator A is defined
on such an Lq-space, the analysis could be carried out in the strong topology of
Lq.�/, an approach used e.g. in [2]. We take a different approach using a different
topology in BV0.�/ directly. The main result we shall use to verify coercivity of E
is the following classical theorem (cf. e.g. [122]):

Theorem 3.3 (Banach-Alaoglu). LetX be the dual of some Banach spaceZ. Then
each bounded set in X is precompact in the weak-* topology.

Hence we need to define a weak-* topology onBV0.�/, respectively find a space
whose dual BV0.�/ is. For this sake we define a normed space

Z0 D f r � g j g 2 C1
0 .�IRd / g; (42)

with norm (the norm properties can be checked in a straight-forward way)

kpkZ D inf
g2C1

0 .�IRd /;r�gDp
kgkL1 : (43)

Its completion in this norm is denoted by

Z WD Z0: (44)

We now find BV0.�/ as the dual of Z:

Proposition 3.4. BV0.�/ can be identified with the dual space ofZ defined by (44)

Proof. First of all we observe that for each u 2 BV0.�/ we can construct a linear
functional in Z0 given by

`u W p 7!
Z
�

up dx:

For p D r � gp we have

j`u.p/j D j
Z
�

ur � gp dxj � kgpkL1 sup
g2C1

0 .�IRd /;kgkL1 �1

Z
�

ur � g dx D kgpkL1 T V .u/:

Taking the infimum over all such gp we conclude

j`u.p/j � kpkZ kukBV :

Thus, `u is bounded on Z0 and can therefore be extended in a unique way to a
bounded linear functional on Z. Moreover, for u1 ¤ u2 it is easy to see that `u1 ¤
`u2 , otherwise
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T V.u1 � u2/ D sup
g2C1

0 .�IRd /;kgkL1 �1
.`u1 .g/� `u2 .g// D 0:

This implies that we can identify BV0.�/ with a subspace of Z�.
On the other hand we see that for q� sufficiently large we have Lq�

0 .�/ ,! Z,
where

L
q�

0 .�/ D f v 2 Lq�.�/ j
Z
�

v dx D 0 g:

This can be shown e.g. by regularity results for the homogeneous Neumann problem
for the Poisson equation (note that functions in L

q�

0 .�/ satisfy the solvability
criterion). Thus we obtain the opposite inclusion for the dual spaces, Z� � L

q
0.�/

with q D q�

q��1 . Hence, each functional ` 2 Z� can be identified with a functional
of the form

`.p/ D
Z
�

v p dx

for some v 2 L
q
0.�/. The boundedness of the linear functional ` further implies

T V.v/ < 1, hence v 2 BV0.�/. Thus, we can also identifyZ� with a subspace of
BV0.�/. ut

In order to complete our analysis of coercivity, we need to replace the BV -norm
by the seminorm, i.e., the total variation, since only the latter is bounded on sub-level
sets of E . Hence we prove a Poincare-Wirtinger inequality on BV0.�/:

Lemma 3.5. The total variation is an equivalent norm on BV0.�/.

Proof. It is obvious that

kukBV D kukL1 C T V.u/ 	 T V.u/

and it remains to show that there exists c > 0 with kukBV � cT V.u/ for all u 2
BV0.�/. We prove this assertion by contradiction and hence assume that for each
n 2 N there exists un 2 BV0.�/ with kunkBV > n T V.un/. Now let vn WD

unkunkBV , then T V.vn/ < 1
n

, i.e. T V.vn/ ! 0. Since kvnkBV D 1, we conclude
kvnkL1 ! 1. Since vn is uniformly bounded in BV0.�/, there exists a weak-*
convergent subsequence vnk with some limit v. Due to the compact embedding of
BV0.�/ into L1.�/, this sequence converges strongly in L1.�/ and thus

kvkL1 D lim
k

kvnkkL1 D 1:

By the lower semicontinuity of the total variation in the weak-* topology (see below)
we further conclude

T V.v/ � lim inf
k
T V.vn/ D 0;
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hence T V.v/ D 0, which implies that v is constant and since v 2 BV0.�/ even that
v 
 0. The latter contradicts kvkL1 D 1. ut

We are finally able to state the main coercivity result as a direct consequence of
the properties shown above:

Lemma 3.6. The sub-level set

MC D f u 2 BV0.�/ j E.u/ � C g (45)

is precompact in the weak-* topology of BV0.�/.

We mention that the weak-* topology in BV always implies strong convergence
in L1.�/, hence we can work with sequences in all arguments in the following.

3.2 Lower Semicontinuity

Besides coercivity, a major ingredient is the lower semicontinuity of the functional
E in (41). Since a sum of two functionals is lower semicontinuous if both of them
are, we verify this property separately, starting with the total variation:

Proposition 3.7. The total variation is weak-* lower semicontinuous on BV0.�/.

Proof. Let un *� u and let  k 2 C1
0 .�IRd / with k kkL1 � 1 such that

Z
�

ur �  k dx ! T V.u/:

Then we have due to the weak-* convergence

Z
�

ur �  k dx D lim
n

Z
�

unr �  k dx

D lim inf
n

Z
�

unr �  k dx

� lim inf
n
T V.un/:

Taking now the limit  k ! 1 we find

T V.u/ D lim
k

Z
�

ur �  k dx � lim inf
n
T V.un/;

hence T V is weak-* lower semicontinuous. ut
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For the fitting functional we need to make a basic assumption on the operatorA in
order to obtain weak-* lower semicontinuity, namely a range property of the adjoint
operator

R.A�/ � Z: (46)

Note that for A being a bounded linear operator on BV0.�/, R.A�/ is always a
subset of the dual space (cf. [122]) of BV0.�/. The additional assumption that
R.A�/ lies in the smaller predual space is a regularity assumption on the operatorA.

Lemma 3.8. For � > 0 the functional u 7! �kAu � f k2 is weak-* lower
semicontinuous on BV0.�/.

Proof. Since a positive multiple and a square preserve lower semicontinuity of
a positive functional it suffices to show that u 7! kAu � f k is weak-* lower
semicontinuous. By the dual characterization of a Hilbert space norm (cf. [122])
we have

kAu � f k D sup
';k'kD1

hAu � f; 'i:

Now we can again choose a sequence 'k with norm equal one such that hAu �
f; 'ki ! kAu � f k. Since A�'k 2 Z we can employ weak-* convergence of un to
see

hAu � f; 'ki D hu; A�'ki � hf; 'ki
D lim

n
hun; A

�'ki � hf; 'ki
D lim inf

n
hun; A

�'ki � hf; 'ki
D lim inf

n
hAun � f; 'ki

� lim inf
n

kAun � f k:

Again with the limit k ! 1 we obtain weak-* lower semicontinuity. ut

3.3 Existence

With the above prerequisites we can now show the existence of a minimizer of E
by a standard variational technique:

Theorem 3.9. There exists a minimizer of E in BV0.�/, i.e. a solution of (41).
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Proof. The proof technique is a standard combination of coercivity and lower
semicontinuity, which we give here for completeness. Since

C1 >
�

2
kf k2 D E.0/ 	 inf

u
E.u/ 	 0 > �1;

the infimum of E is finite and hence there exists a minimizing sequence uk with
E.uk/ ! infuE.u/. For k sufficiently large, this minimizing sequence lies in
the sub-level set E.u/ � C with C D E.0/ C 1, which is precompact in the
weak-* topology. Hence uk has a weak-* convergent subsequence, again denoted
by uk without loss of generality. If Ou is the weak-* limit of uk, then the lower
semicontinuity implies

E.Ou/ � lim inf
k
E.uk/ D inf

u
E.u/;

thus Ou is a solution of (41). ut

3.4 Uniqueness

The uniqueness of (41) is related to the convexity of the functional. Since both the
quadratic fitting term and the total variation are convex, (41) is a convex variational
problem, hence the following general result applies (cf. [81]).

Lemma 3.10. The set of minimizers of (41) is convex.

As a consequence we see that we can at least uniquely pick a certain solution by a
different criterion, e.g. by minimizing some squared norm of the set of minimizers.
An obvious candidate is the solution of minimal L2-norm among all minimizers of
(41). Since in this case a strictly convex functional is minimized over a convex set,
the solution is unique.

A general uniqueness result can only be formulated if A is injective:

Theorem 3.11. Let A have trivial nullspace and � > 0. Then (41) has a unique
minimizer.

Proof. If A has trivial nullspace, then the second variation of F.u/ D �
2
kAu � f k2

is given by

F 00.u/.v; v/ D �kAvk2;

which is positive for v ¤ 0. Hence the functional is strictly convex, which implies
that the minimizer is unique. ut
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3.5 Optimality Conditions

In order to obtain optimality conditions for the variational problem (41) we need
a general notion of derivative of the functional E since the total variation is not
differentiable in a classical sense. However, since the total variation is convex, we
can adopt the multivalued notion of a subdifferential (cf. [81]). The subdifferential
of a convex functional J W X ! R [ fC1g at u 2 X (here with X D BV0.�/ is
given by

@J.u/ D f p 2 X� j hp; v � ui � J.v/ � J.u/;8 v 2 X g: (47)

A subgradient p 2 @J.u/ can be identified with the slope of a plane (of codimension
one) in X � R through .u; J.u// that lies under the graph of J .

From the definition of the subdifferential it is straight-forward to see that Ou is a
minimizer of J if and only if 0 2 @J.Ou/. Due to convexity the first-order optimality
condition is not only necessary, but also sufficient. It thus remains to compute the
subdifferential of E to characterize minimizers of (41). Since the quadratic fitting
term is Frechet-differentiable, we can decompose the subdifferential of E into this
derivative and the subdifferential of the total variation (cf. [81]). Thus, the optimality
condition for a minimizer u of E becomes

�A�.Au � f /C p D 0; p 2 @T V.u/: (48)

It thus remains to characterize the subdifferential of the total variation, which is a
rather difficult task. We start with a general property of one-homogeneous functional
(i.e. J.tx/ D jt jJ.x/ for all t 2 R)

Lemma 3.12. Let J W X ! R [ fC1g be a convex one-homogeneous functional.
Then

@J.u/ D f p 2 X� j hp; ui D J.u/; hp; vi � J.v/;8 v 2 X g:

Proof. Using v D 0 and v D 2u in the definition of a subgradient we find

�hp; ui � �J.u/

and

hp; ui � J.2u/� J.u/ D 2J.u/� J.u/ D J.u/:

Thus, hp; ui D J.u/ and the assertion follows. ut
In the case of the total variation we see that for each subgradient the dual norm

is bounded by
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kpk D sup
v2BV0.�/;T V.v/D1

hp; vi � sup
v2BV0.�/;T V.v/D1

T V.v/ D 1:

Hence, we see that

@T V.u/ D f p 2 BV0.�/� j kpk � 1; hp; ui D T V.u/ g: (49)

From the structure of the dual space of BV0.�/ we see that for each p 2
BV0.�/

� with kpk � 1 there exists g 2 L1.�IRd / with p D r � g (the opposite
is not true in general). Hence, the optimality condition can be stated equivalently as

�A�.Au � f /C r � g D 0; kgkL1 � 1; hr � g; ui D T V.u/: (50)

For detailed investigations of subgradients of the total variation and properties of the
dual space and its norm (often called G-norm) we refer to [15, 134, 143, 146, 179].

4 Examples

In the following we present some examples that can be computed exactly in order
to provide further insight into the behaviour of total variation regularization in
general and the ROF-functional (2). In this way one obtains further insight into
structural properties of solutions, but also into remaining deficiencies of total
variation regularization such as staircasing and loss of contrast. Since solutions
cannot be found in closed form in general, the only way to obtain exact solutions
for some functions f is to guess the form of the solution u and verify that �.f � u/
is a subgradient of the total variation at u. Of course some general structural results,
in particular for piecewise constant data (cf. [58, 162]) and numerical experiments
can be a good guideline to find such solutions. The solutions that can be found
in the easiest way are related to eigenvalues, more precisely to the nonlinear
eigenvalue inclusion problem 	u 2 @T V.u/, which has been discussed in [26, 27]
and effectively used in [134] for a celebrated example of an exact solution of the
ROF functional, namely for � being the whole Rd and

f D 
BR.0/ D
�
1 if jxj < R
0 else.

(51)

The solution of this problem is given by

u D
�
1 � 2

�R

�C

BR.0/; (52)
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i.e. u is proportional to f and thus also the subgradient p, hence the solution is
based on an eigenfunction of the total variation. For further exact solutions we refer
to [27, 178].

Note that for each function f 2 BV.�/ satisfying 	f 2 @T V.f / for some
	 	 0 we can explicitly construct the unique minimizer of the ROF functional,
which is of the form u D cf for some c 	 0. With this form the optimality condition
gives for 	 < �

cf � f C 	

�
f D 0;

hence c D 1 � 	

�
yields a solution. If 	 	 � then we can choose c D 0 to obtain

the solution, which follows from a general results shown below: For � sufficiently
small (with explicit bound depending on f ) u 
 0 is always the unique minimizer.

We shall in the following work on a bounded domain, for simplicity considering
d D 1 and � D Œ0; 1�, which allows some elementary computations, since the dual
norm of p is simply kP k1 with P being the primitive of p with P.0/ D 0. We
do not only provide the explicit examples but also check the computations verifying
them, since this might be useful for research on other `1-type regularizations in the
future. Multidimensional examples can be constructed in a rotationally symmetric
setup by completely analogous methods.

4.1 Indicator Functions

We start with an example related to indicator functions of subintervals Œa; b� related
to Meyer’s example (cf. [134]) with input data from (51). Since we are considering
a bounded image domain and not the whole space we need to subtract a normalizing
constant to achieve

R
� f dx D 0, i.e.

f D ˛
Œa;b� � ˛.b � a/: (53)

We are looking for a subgradient p D 	f , which is characterized by kP k1 � 1
and

TV.f / D 2˛.1Cb �a/ D hp; f i D 	

Z 1

0
f .x/2 dx D 	˛2.1�bCa/.b �a/.1Cb �a/;

(54)
which can be solved for 	 to obtain

	 D 2

˛.b � a/.1 � b C a/
: (55)
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The primitive is a piecewise linear function given by

P.x/ D
8<
:

�	˛.b � a/x if x � a;

�	˛.b � a/x C 	˛.x � a/ if a < x < b;
�	˛.b � a/x C 	˛.b � a/ if x 	 b:

The absolute value ofP will attain its maximum at x D a or x D b, hence kP k1 �
1 is equivalent to the two conditions

2a

1 � b C a
� 1 and

2 � 2b
1 � b C a

� 1; (56)

which is obviously satisfied for a D 1 � b, i.e. the interval Œa; b� is placed
symmetrically. Hence, any function of this type is a solution of the nonlinear
eigenvalue problem. We also see the scale aspect in the eigenvalue 	, the small
eigenvalues (large scales) are related to a high product ˛.b � a/, which somehow
characterizes the size of the step in f (the additional factor 1 � b C a can be
interpreted as the effect of the finite domain).

4.2 Staircasing

It has been observed frequently in numerical experiments that total variation
methods inherit staircasing phenomena, i.e. they often tend to produce stair-like step
functions instead of smoothly increasing ones for 1D signals, respectively blocky
structures for 2D images. In order to obtain a better understanding why staircasing
is favoured, we consider two explicit examples in the following. Unfortunately it is
not possible to construct an analytical example of noise that exhibits staircasing due
to Lipschitz regularity results for minimizers of the ROF functional (cf. [59]), but at
least we can give some hints in the right direction. Note also that is was believed for
a long while that real staircasing in the sense of piecewise constant regions separated
by discontinuities is a typical structure in ROF-denoising, however the recent results
in [59] rather indicate that the piecewise constant regions are often rather separated
by steep continuous parts instead.

We start with a stair-like structure

f D ˛

N�1X
kD1


.k=N;1� � ˛
N � 1

2
: (57)

for N being an even number. The total variation of f equals ˛.N � 1/ and thus the
a subgradient p D 	f needs to satisfy
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˛.N � 1/ D 	

Z
f 2 dx D 2	

N

N=2�1X
kD0

�
˛.N � 1

2
� k˛

�2
D 	˛2

12
.2N 2 � 2N � 1/;

which yields

	 D 12.N � 1/

˛.2N 2 � 2N � 1/
: (58)

The primitive is given by

P.x/ D 	˛

N�1X
kD1

�
x � k

N

�C
� 	˛N � 1

2
x;

and jP j attains its maximum at x D 1
2

as

jP.1
2
/j D 	˛

N=2X
kD1

�
1

2
� k

N

�
� 	˛N � 1

4
D 	˛

N

8
D 3N.N � 1/

2.2N 2 � 2N � 1/ :

Thus kP k1 � 1 and hence 	f is a subgradient, i.e. a solution of the eigenvalue
problem.

The second example is a linearly growing function

f .x/ D ˛.x � 1

2
/; (59)

which due to staircasing we do not expect to solve the eigenvalue problem. The
candidate for a minimizer of the ROF functional is of the form

u.x/ D maxf�ˇ;minfˇ; f .x/gg: (60)

We thus have to verify that p D �.f � u/ is a subgradient in @T V.u/. First of all
we compute ˇ from the relation

2ˇ D T V.u/ D
Z 1

0

pf dx D �˛ˇ

�
1

2
� ˇ

˛

�2
;

which yields

ˇ D ˛

 
1

2
�
r

2

�˛

!C
:
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The primitive jP j attains its maximum at x D 1
2

� ˇ

˛
with jP.x/j D 1. Thus

p D �.f � u/ 2 @T V.u/ and hence u is a minimizer of the ROF model, and hence
f is partly replaced by piecewise constant structures.

5 Asymptotics and Stability Estimates

In the following we discuss some asymptotic properties in terms of the Lagrange
parameter � as well as stability estimates with respect to � and the data f . Such
asymptotics have first been investigated by Acar and Vogel [2], error estimates are
due to [47, 72].

5.1 Asymptotics in �

We shall now discuss the asymptotic behaviour of minimizers of (41) with respect
to �. For simplicity we assume that A has trivial nullspace, hence the minimizer is
unique, and we shall denote the functional E and the minimizer for specific � as
E� and u�, respectively. The simplest asymptotic for the variational problem (41)
is the one for � ! 0, for which of course we expect the minimization of the total
variation as the asymptotic problem:

Theorem 5.1. For � # 0 the minimizers of (41) satisfy u� ! 0 in the strong
topology of BV0.�/.

Proof. By the minimization property of u� we have

�

2
kAu� � f k2 C T V.u�/ D E�.u�/ � E�.0/ D �

2
kf k2:

Hence T V.u�/ converges to zero (even with order �). Since T V is an equivalent
norm on BV0.�/ the convergence is also in the norm topology. ut

The above convergence result and its proof can be applied for various regular-
ization functionals, not only for total variation. A specific feature of total variation
(and other `1-type functionals) is that the convergence to zero arises already for
finite �. The key is to investigate the norm in the dual space of BV , which can be
characterized as

kpk� D inf
g2L1.�IRd /;r�gDp

kgk1: (61)

Meyer [134] showed that

Theorem 5.2. Let �kA�f k� � 1. Then u 
 0 is a minimizer of (41).
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Proof. Since

@J.0/ D f p 2 BV � j kpk� � 1 g

we obtain

p D 0 � �A�f 2 @J.0/;

hence 0 satisfies the optimality condition and is a minimizer. ut
More involved and also more interesting is the asymptotic for � ! 1. Since

the fitting term dominates in this asymptotic one expects convergence towards a
solution of Au D f , which can however only be true if f 2 R.A/. In this case
convergence can be verified in the weak-* topology as we shall see below. Before
we provide a general monotonicity property:

Proposition 5.3. The map � 7! kAu� � f k is nonincreasing and the map � 7!
T V.u�/ is nondecreasing. If A�f ¤ 0, then the decrease respectively increase are
strict for � sufficiently large.

Proof. Let 	 > �, then from the definition of u� and u	 as minimizers of the
regularized functional we find

�

2
kAu� � f k2 C T V.u�/ � �

2
kAu	 � f k2 C T V.u	/

and

	

2
kAu	 � f k2 C T V.u	/ � 	

2
kAu� � f k2 C T V.u�/:

By adding these inequalities and simple rearrangement we find kAu	 � f k �
kAu� � f k. Dividing the first inequality by � and the second by 	 and subsequent
analogous comparison yields

T V.u�/ � T V.u	/:

We finally show the strict decrease (increase of TV) by contradiction. Assuming
kAu	 � f k D kAu� � f k, we conclude from the first two inequalities T V.u�/ �
T V.u	/. Hence u� is also a minimizer for the functional with parameter 	 and from
the optimality conditions we see that there exist p; q 2 @T V.u�/ such that

0 D �A�.Au� � f /C p D 	A�.Au� � f /C q;

which implies

p D �

	
q:
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Since both p and q are subgradients of the total variation, we have

T V.u�/ D hq; u�i D �

	
hq; u�i;

which can only hold for u� D 0 since �
	
< 1. u� D 0 can only be a solution if

A�f D 1

�
p:

Since kpk � 1 for a subgradient, this can only be true if kA�f k � 1
�

, which
contradicts A�f ¤ 0 if � is sufficiently large. ut

For exact data, i.e. f in the range of A, we can show the following weak
convergence result:

Theorem 5.4. Let f 2 R.A/, then every subsequence of .u�/ has a weak-*
convergent subsequence. Every weak-* accumulation point is a solution of Au D f

with minimal total variation.

Proof. Let Ou 2 BV0.�/ be an arbitrary solution of Au D f . Then by the definition
of u� we have

�

2
kAu� � f k2 C T V.u�/ � T V.Ou/:

Hence kAu� � f k is of order ��1=2 and converges to zero, while T V.u�/ � T V.Ou/
is uniformly bounded. From the latter we infer the existence of a weak-* convergent
subsequence. For such a weak-* convergent sequence, which we denote by uk WD
u�k with limit u we find from the lower semicontinuity of the fitting term

kAu � f k � lim inf
k

kAuk � f k � lim inf
k

r
2 T V.Ou/

�
D 0

and from the lower semicontinuity of the total variation

T V.u/ � lim inf
k
T V.uk/ � T V.Ou/:

Thus, u is a solution of Au D f with minimal total variation. ut
In the more relevant case of noisy data, i.e. f being a perturbation of g 2 R.A/,

the convergence has to be interpreted relative to the noise, more precisely the
estimated variance of the noise,

�2 WD kf � gk2: (62)
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As usual for ill-posed problems (cf. [82]) convergence is achieved only if � does not
converge to infinity too fast relative to the decrease of the noise level.

Theorem 5.5. Let g 2 R.A/ and f � be noisy data with variance �2, i.e. satisfying
(62). Moreover, let ı� be an estimate of the noise variance such that there exists
c > 0 with

ı� 	 c� 8 � > 0: (63)

Let the Lagrange parameter be chosen such that � D �.ı� / ! 1 as ı� ! 0

such that �.ı�/ı2� ! 0. Then every subsequence of .u�/ has a weak-* convergent
subsequence and every weak-* accumulation point is a solution of Au D g with
minimal total variation.

Proof. In the following we always write � meaning �.ı�/ for brevity. Let Ou be any
solution of Au D g. From the definition of the minimizer we have

�

2
kAu� � f �k2 C T V.u�/ � �

2
kf � � gk2 C T V.Ou/:

Using the noise variance and the properties of the estimator we find

�

2
kAu� � f �k2 C T V.u�/ � �

2
�2 C T V.Ou/ � �

2c
ı2� C T V.Ou/:

Since the right-hand side converges to T V.Ou/, the total variation of u� is uniformly
bounded and kAu��f �k converges to zero, from which the convergence properties
can be infered as in the proof of Theorem 5.4. ut

5.2 Stability Estimates

Error estimation for variational models like the ROF-model was an open problem in
imaging and inverse problems for a rather long period, which is due to the difficulty
to find an appropriate error measure. Intuitively it becomes obvious quite soon that
the total variation norm (or seminorm) cannot be an appropriate measure, since it
penalizes small visual differences too strongly.

Moreover, the above asymptotic analysis gives only weak-* convergence, but no
strong convergence in BV0.�/, hence also error estimation seems out of reach. In
[47] a generalized Bregman distance was introduced as an error measure, which
allowed to derive suitable estimates consistent with the norm estimates in the case
of penalization with a squared norm. The estimation in Bregman distances has been
widely accepted since then and extended to various other situations (cf. [27, 28, 88,
98, 99, 107, 127, 160, 161]). We shall here mainly recall the results obtained in [47],
and start by defining Bregman distances.
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Definition 5.6. Let J W X ! R [ fC1g be a convex functional. For each p 2
@J.u/,

D
p
J .v; u/ D J.v/ � J.u/� hp; v � ui (64)

is a generalized Bregman distance between u and v. Moreover, for q 2 @J.v/

D
q;p
J .v; u/ D hp � q; u � vi (65)

is called a symmetric Bregman distance between u and v.

The Bregman distance is not a distance in the classical sense, since it is not
symmetric in its original form, and it is not strict, i.e. Dp

j .v; u/ D 0 is possible if
v ¤ u. For the total variation in particular contrast changes are not detectable in
the Bregman distance, i.e. for a smooth monotone map F the functions u and F.u/
have zero distance (for any choice of subgradients). On the other hand differences
in edges can be measured well in Bregman distances for the total variation (cf.
[47, 50]), which is of particular interest for total variation techniques.

The stability of the variational problem in terms of the data f is given by the
following result:

Theorem 5.7. Let ui , i D 1; 2 be the minimizers of (41) with data fi . Then there
exists pi 2 @T V.ui / such that the estimate

�kAu1 � Au2k2 C 2D
p1;p2
T V .u1; u2/ � �kf1 � f2k2 (66)

holds.

Proof. Since the ui are minimizers, they satisfy the optimality condition

�A�.Aui � fi /C pi D 0; pi 2 @T V.ui /:

Subtracting them and taking the duality product with u1 � u2 we find

�hA�.Au1 �Au2/; u1 � u2i C hp1 � p2; u1 � u2i D �hA�.f1 � f2/; u1 � u2i:

Using the definition of the adjoint we can rewrite the first term on the left-hand side
as �kAu1 � Au2k2 and we estimate the right-hand side as

hA�.f1 � f2/; u1 � u2i D hf1 � f2; A.u1 � u2/i � kf1 � f2kkAu1 �Au2k

� 1

2
kf1 � f2k2 C 1

2
kAu1 � Au2k2:

Inserting these relations and multiplying by two we obtain (66). ut
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Besides stability at fixed �, quantitative estimates concerning the asymptotics in
� are of interest. Due to the ill-posedness of the operator equation with A additional
conditions on the solution are needed. In particular the existence of a Lagrange
parameter for the constrained problem

T V.u/ ! min
u2BV0.�/;AuDg; (67)

characterizing the solution of minimal total variation, is a standard regularity
assumption. This can be formulated as the source condition (cf. [47, 72])

AOu D g; Op D A�w 2 @T V.Ou/: (68)

Theorem 5.8. Let u� be the minimizer of E and let Ou, Op satisfy (68). Then there
exists p 2 @T V.u�/ such that the estimate

�

2
kAu� � AOuk2 CD

p; Op
T V .u

�; Ou/ � 1

�
kwk2 C �kg � f k2: (69)

holds.

Proof. We start from the optimality condition for u� and subtract . Op C �A�g/ on
both sides to have

�A�.Au� � AOu/C p � Op D � Op C �A�.f � g/:

The duality product with u� � Ou yields

�kAu� �AOuk2 CD
p; Op
T V .u

�; u/ D �h Op; u� � Oui C �hf � g;Au� � AOui:

For the first term on the right-hand side we insert (68) and apply Young’s inequality
to obtain

�h Op; u� � Oui D �hw; Au� � AOui � �

4
kAu� � AOuk2 C 1

�
kwk2;

and for the second term we directly apply Young’s inequality, which finally yields
the desired estimate. ut

The error estimate (69) consists of two parts, a decreasing term of order 1
�

with
a constant depending on the source condition (thus on the smoothness of Ou) and a
second term simply depending on the noise variance. Balancing the terms gives an
indication how to choose the optimal � at given noise, which is of course not directly
possible in practice since kwk is not known.
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6 Bregman Iterations and Scale Spaces

Although the ROF-model (2) had great success in applied imaging, there is still one
deficiency remaining, which is loss of contrast in the reconstruction compared to
the original image. This aspect was highlighted by Meyer [134], who showed that
an application of the ROF-model (2) to the characteristic function of a ball (f from
(51)) results in a shrunk version as the minimizer, with the shrinkage proportional
to 1

�
(cf. Sect. 4). A fundamental reason for the loss of contrast is a systematic error

of variational regularization methods, since in the case of exact data AOu D f we
obviously have

J.u/ � J.Ou/� �

2
kAu � f k2 < J.Ou/

for (17), since typicallyAu ¤ f . For J being the total variation, this means that the
total variation of the reconstruction is smaller than the total variation of the exact
solution, which results in the above mentioned contrast loss.

An approach to overcome this issue has been presented in [148], we here start
with a derivation in the case of the ROF-model (2). Assume that u1 is the minimizer
of (2) for fixed � chosen rather to oversmooth (hence there should be no significant
noise part in u1). Then the main deficiency will be that the residual

v1 D f � u1 (70)

still contains too much signal—actually enough to restore quite detailed information
about the original image as demonstrated in [117]. Since this part is obviously
shrunk too strongly by the ROF-model one might try and add the “noise” back to
the image, so that in another run of the minimization this compensates the loss of
contrast. This means a new image u2 is computed from minimizing

J2.u/ WD �

2

Z
�

.u � f � v1/2dx C T V.u/: (71)

This minimization can be interpreted in an alternative way if we take a look at the
optimality condition for (2), which together with the definition of v1 implies

p1 D �v1 D �.f � u1/ 2 @T V.u1/: (72)

Hence, we can rewrite J2 as

J2.u/ D �

2

Z
�

.u � f /2dx C T V.u/� hp1; ui C hp1; f C v1i: (73)
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Ignoring the constant term hp1; f Cv1i we observe that minimizing J2 is equivalent
to minimize the fitting functional penalized by the Bregman distance to the last
iterate u1 (with subgradient p1).

As a consequence of the above reasoning we can generalize the one-step contrast
correction introduced via (73) to an iterative scheme. We start with u0 and p0 2
@T V.u0/ and then subsequently compute a sequence uk via

ukC1 D arg min
u2BV.�/

�
�

2

Z
�

.u � f /2dx CD
pk
T V .u; uk/

�
; pk 2 @T V.uk/: (74)

This iterative refinement scheme introduced and analyzed in [148] turns out to be
equivalent to the so-called Bregman iteration introduced in [37] for quite general,
but continuously differentiable functionals. The more general form of the Bregman
iteration for computing a minimizer of

J.u/ ! min
u

subject to u 2 arg min
v

H.v; f / (75)

is given by

ukC1 D arg min
u2BV.�/

�
H.u; f /CD

pk
J .u; uk/

�
; pk 2 @J.uk/: (76)

The problem with convex fitting term H.:; f / can be generalized to convex and
possibly nondifferentiable J , but in this case some regularity ofH is still needed to
guarantee well-definedness of the iteration and suitable properties of subgradients.

6.1 Interpretations of the Bregman Iteration

In the following we further discuss different interpretations of the Bregman iteration
in the case of a quadratic fitting functional (Gaussian noise) and general convex
regularization, i.e., we consider

J.u/ ! min
u

subject to u 2 arg min
v

�

2
kAv � f k2; (77)

where A is a linear operator. The corresponding Bregman iteration is defined by

ukC1 D arg min
u2BV.�/

�
�

2
kAu � f k2 CD

pk
J .u; uk/

�
; pk 2 @J.uk/: (78)

We observe that the optimality condition for the minimizer in (78) yields

�A�.AukC1 � f /C pkC1 D pk; (79)
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which can also be seen as an update rule for the dual variable. Such a dual
interpretation of the Bregman iteration will be derived in the following.

Primal-Dual Iteration

If the data f lie in the domain of A, then we can write (77) equivalently as

J.u/ ! min
u

subject to Au D f: (80)

The associated Lagrangian for this problem is

L0.u;w/ D J.u/C hw; Au � f i (81)

which can be augmented without changing minimizers to

L.u;w/ D J.u/C �

2
kAu � f k2 C hw; Au � f i (82)

and the optimality conditions for a saddle point (if it exists, which is a regularity
property not automatic for A being compact) are given by

0 2 @J.u/C �A�.Au � f /C A�w D @uL.u;w/;

0 D Au � f D @wL.u;w/:

A primal dual scheme iterates on both optimality conditions, e.g. by using a
quadratic penalty on w. This yields

0 2 @J.ukC1/C �A�.AukC1 � f /C A�wk;

0 D AukC1 � f D �.wkC1 � wk/:

From the first relation we see that wkC1 is related to the dual variable in the Bregman
iteration by pkC1 D �A�wkC1. With � D 1

�
and applyingA� to the second relation,

we see that this primal-dual scheme is exactly equivalent to the Bregman iteration,
cf. (79). The iteration in the variable wk can be interpreted as a generalization of
the original motivation (70), it describes the update of the residuals. It also delivers
an alternative way to realize the Bregman iteration as in (71), the minimizer can be
computed from minimizing

ukC1 D arg min
u2BV.�/

�
�

2
kAu � f C 1

�
wkk2 C J.u/

�
; (83)

such that again the problem can be realized as the original variational model just
changing the input data.
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The primal-dual interpration also induces an alternative to the Bregman iteration,
by considering an Uzawa-type iteration with an explicit treatment of the constraint

0 2 @J.ukC1/C �A�.AukC1 � f /C A�wk;

0 D Auk � f D �.wkC1 � wk/:

This scheme is equivalent to the iteration

ukC1 D arg min
u2BV.�/

�
�hAu; Auk � f i CD

pk
J .u; uk/

�
; (84)

which linearizes the fitting term and was hence called linearized Bregman iteration
in [55–57] in applications to compressed sensing (J being an `1-norm). The scheme
was also called Landweber-type method in an application to total variation methods
(even allowing A nonlinear) in [20, 21]—due to analogies with classical iteration
schemes for inverse problems.

Updated Bayesian Prior

In the Bayesian setting we computed the MAP estimate by maximizing the posterior
probability density

p.ujf / � p.f ju/p0.u/: (85)

The prior density is usually centered at zero, i.e., u 
 0 maximizes p0. Given the
knowledge from the solution of (17) one could however update the prior probability
distribution. Instead of having a probability centered at zero, it makes more sense
to use a probability at least locally centered at u1, where u1 is the solution of (17).
A simple way to do so is to shift the log likelihood by an affinely linear term, namely
the first-order Taylor approximation around u1, in order to obtain a new prior log
likelihood and probability density, respectively. The shifted prior probability

p1.u/ � exp

�
logp0.u/� logp0.u1/C p0

0.u1/.u � u1/

p0.u1/

�
(86)

now has a maximum at u1 instead of zero. This process of shifting the prior
probability is repeated during the Bregman iteration.

In the case of total variation we even find that the prior probability p1 has a
maximum at each multiple of u1, since @T V.u1/ D @T V.cu1/ for any c 2 R. This
means that the contrast is left competely open by the new prior probability, a reason
why the Bregman iteration can improve upon contrast losses.
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Dual Interpretation

If A�A is invertible, the Bregman iteration can be interpreted as a dual ascent
scheme, preconditioned with .A�A/�1. Defining the standard convex conjugate
(dual functional)

J �.p/ D sup
u
Œhp; ui � J.u/�; (87)

we find ukC1 2 @J �.pkC1/ under appropriate conditions, since pkC1 2 @J.ukC1/.
Hence, (79) can be rewritten as

.A�A/�1.pkC1 � pk/ 2 �A�f � �@J �.pkC1/ (88)

Hence, the Bregman iteration in the dual variable computes

pkC1 D arg max
p

�
� 1

2�
k.A�A/�1=2.pkC1 � pk/k C hp;A�f i � J �.p/

�
: (89)

This is just a proximal point algorithm (with special norm) for the dual problem

hp;A�f i � J �.p/ ! max
p
: (90)

A similar relation holds for the linearized Bregman iteration, in this case we find

.A�A/�1.pkC1 � pk/ 2 �A�f � @�J �.pk/; (91)

i.e., we recover a dual (sub)gradient ascent scheme.

Geometric Interpretation for Total Variation

In the special case of J denoting the total variation we can add a further interpreta-
tion based on a geometric viewpoint. The formal version of the Bregman distance is

D
p
J .v; u/ D

Z
�

.jruj � rv
jrvjru/ dx D

Z
�

.
ru

jruj � rv
jrvj / � ru dx: (92)

The difference rv
jrvj � ru

jruj can be interpreted as the difference in normals to level sets
or edge sets. Hence the Bregman distance measures the alignment of level and edge
sets, and in the iteration (76) there is no further penalty for those edge sets aligned
with the ones of the previous iterates. In particular there is no penalty if the edge sets
are aligned, but the height of the jump is different. This allows the Bregman iteration
to correct contrast losses inherent in (2). The idea of matching normal fields has also
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been used previously, e.g. in pan-sharpening of color and spectral images (cf. [22]),
the connection to the Bregman distance has been established recently (cf. [136]).

6.2 Convergence Analysis

In the following we provide a convergence analysis of the Bregman iteration (78).
For simplicity we assume u0 D 0 and p0 D 0 2 @J.u0/, an extension to arbitrary
initial values satisfying the consistency condition p0 2 @J.u0/ is quite obvious. Our
basic assumption is again the existence of an exact solution Ou satisfying AOu D g

and f is a noisy version of the exact data. We do not further discuss the well-
definedness of the iterates uk , since due to (83) this issue is equivalent to existence
and uniqueness of the original variational problem for arbitrary data, which has
been discussed above. Besides monotone decrease of the residual, the fundamental
property of the Bregman iteration is that the Bregman distance to the exact solution
is decreasing up to some point, with a dissipation governed by the least-squares
functional.

Lemma 6.1. Let uk be a sequence generated by the Bregman iteration (78). Then
the inequalities

kAukC1 � f k � kAuk � f k (93)

and

D
pkC1

J .Ou; ukC1/C �

2
kAukC1 � f k2 CD

pk
J .ukC1; uk/ � D

pk
J .Ou; uk/C �

2
kg � f k2

(94)
hold for all k 	 0.

Proof. Due to the positivity of the Bregman distance and sinceDpk
J .uk; uk/ D 0, we

directly obtain (93) from comparing the functional values in (78) for the minimizer
ukC1 and for uk . We further have

D
pkC1

J .Ou; ukC1/�D
pk
J .Ou; uk/CD

pk
J .ukC1; uk/

D hpkC1 � pk; ukC1 � Oui
D ��hAukC1 � f;AukC1 � gi
D ��kAukC1 � f k2 C �hAukC1 � f; g � f i

� ��
2

kAukC1 � f k2 C �

2
kg � f k2;

where we have inserted the optimality condition (12) for pkC1 � pk . ut
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Of particular importance for the convergence of the scheme is the boundedness of
the total variation, which will again yield weak-* convergence of subsequences. In
the case of noisy data the uniform bound can only be guaranteed for a finite number
of iterations, which can be used determine the stopping index:

Lemma 6.2. Let uk with subgradients pk 2 @J.uk/ be a sequence generated by
(78), then

J.um/ � 5J.Ou/C 2�mkf � gk2 (95)

for all m 2 N.

Proof. Summing (94) and (79) we obtain

D
pm
J .Ou; um/C �

2

mX
kD1

kAuk � f k2 � D
p0
J .Ou; u0/C �m

2
kg � f k2

respectively

pm D ��
mX
kD1

A�.Auk � f /:

From the first inequality we obtain using nonnegativity of Dpm
J .Ou; um/ that

kAum � f k2 � 1

m

mX
kD1

kAuk � f k2 � 2

�m
J.Ou/C kg � f k2

and from the identity for pm we estimate

J.um/ � J.Ou/ � hpm; um � Oui D ��
mX
kD1

hAuk � f;Aum � gi

� �

mX
kD1

kAuk � f k .kAum � f k C kf � gk/

� �

mX
kD1

kAuk � f k2 C �m

2

	kAum � f k2 C kf � gk2


� 4J.Ou/C 2�mkf � gk2;

which yields the assertion. ut
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Hence in the case of exact data (f D g) we have J.um/ � 5J.Ou/ and thus
uniform boundedness of the iterates. Thus we have the following result by standard
reasoning as above:

Theorem 6.3 (Convergence for Exact Data). Let uk with subgradients pk 2
@J.uk/ be a sequence generated by (78) and let f D g. Then there exists a weak-*
convergent subsequence and every weak-* accumulation point solves Au D g. If
A has trivial nullspace, then the sequence uk converges to the unique solution Ou of
AOu D g in the weak-* topology.

In the case of noisy data, boundedness is obtained if mkf � gk2 � C for
some constant C . This provides a criterion for the choice of a stopping index k�
in dependence of the noise level kf � gk:

Theorem 6.4 (Semi-Convergence for Noisy Data). Let ufk with subgradients

p
f

k 2 @J.ufk / be a sequence generated by (78) for specific noisy data f and let
k� D k�.f / be a stopping index satisfying

k�.f /kf � gk2 � C (96)

for some constant C > 0. Then, if fn is a sequence with kfn � gk ! 0, there exists
a weak-* convergent subsequence of fufnk�.fn/

g and every weak-* accumulation point

solvesAu D g. If A has trivial nullspace, then the sequence ufnk�.fn/
converges to the

unique solution Ou of AOu D g in the weak-* topology.

The convergence analysis can be refined further: In [148] an a-posterior stopping
via the discrepancy principle, i.e.,

k�.f / D minf k j kAufk � f k � �kg � f k g (97)

for � > 1 fixed, has been shown to yield convergence. In [50] error estimates for the
Bregman iteration have been derived under the source conditions discussed above.

6.3 Inverse Scale Space Methods

In general it seems favourable to choose a rather small � in the Bregman iteration,
i.e. each iteration step is actually oversmoothing. In this way one slowly iterates
to a point where a stopping criterion is satisfied and should obtain a reasonable
reconstruction at this point of stopping. If � is too large one might end up with a final
reconstruction of bad quality just since the last iteration step went too far. The most
extreme case for large � could be that the Bregman iteration stops after only one
step, i.e. at the solution of (17) for large �—hence it cannot lead to an improvement.
This reasoning indicates to study the limit � ! 0 with a simultaneous increase of
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iteration steps, i.e. t D k� being constant. We can observe the result of this limit by
rewriting (79) as

p.t C �/� p.t/

�
D A�.f �Au.t C �//; (98)

where we define u.k�/ WD uk and p.k�/ WD pk . We see that the Bregman iteration
is just the implicit Euler discretization of a flow, the so-called inverse scale space
flow

@tp D A�.f �Au/; p 2 @J.u/: (99)

This flow has been derived in [49] and called inverse scale space flow, since
it coincides in the case of quadratic regularization with the inverse scale space
methods in [169]. The wording inverse is due to the opposite behaviour to classical
scale space methods or diffusion filters (cf. [194]). While scale space methods start
with the noisy image and smooth increasingly with proceeding time (coarsening of
scales), inverse scale space methods start with the coarsest scale (e.g. the mean value
of the image intensity) and roughen the image with increasing time (refinement
of scales). Inverse scale space methods are computationally more involved than
classical diffusion filtering techniques, but there are several advantages: First of all,
inverse scale space methods can be applied to very general imaging tasks such as
deblurring or other inverse problems, while scale space techniques are restricted
mainly to denoising-type problems. Secondly, appropriate stopping rules can be
derived for inverse scale spaces such as the discrepancy principle

t�.f / D inff t j kAu.t/ � f k � �kg � f k g: (100)

Finally, the quality of reconstructions obtained with inverse scale space methods
seems to be better compared to scale space methods in particular in the case of
total variation and `1-regularization, both visually and with respect to some error
measures (cf. [49, 53]).

Here we shall neither provide details on the analysis of the well-posedness of
the flow (cf. [51] for the challenging case of total variation) nor on the convergence
analysis (cf. [49]) or error estimates (cf. [50]), which are analogous to the case of
Bregman iterations.

It is interesting to consider a relaxation of the inverse scale space method
introduced in [49], with an auxiliary variable w:


@tu D �A�.f �Au/C w � p (101)

@tw D A�.f �Au/ (102)

p 2 @J.u/ (103)
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with small parameters 
 and � . In the limit 
 ! 0 and � ! 0 one expects that
w �p tends to zero, and hence one recovers the inverse scale space flow. A detailed
analysis of this scheme has been given in [126]. An advantage for the numerical
realization is the fact that the relaxed inverse scale space method consists of two
evolution equations, which can be integrated more efficiently than the original
inverse scale space flow.

The application of Bregman iterations and inverse scale space methods to wavelet
denoising has been investigated in [200]. It is well-known that the variational
problem analogous to the ROF functional (cf. [62])

�

2

Z
�

.
X

cj j � f /2 C
X

jcj j ! min
.cj /
; (104)

with f j g denoting the wavelet basis, results into soft-thresholding (also called
soft shrinkage, cf. [79]). The inverse scale space method instead yields a hard-
thresholding formula (with thresholding parameter related to 1

t
) and Bregman

iterations yields firm thresholding (cf. [93]), an intermediate between hard and soft
thresholding.

6.4 Linearized Bregman Methods

The realization of the Bregman iteration still needs the solution of variational prob-
lems of similar structure as the total variation regularized least-squares problem.
Since one expects small steps anyway, it seems reasonable to approximate the
fidelity. The simplest approximation is a linearization of the first term, which yields
the linearized Bregman iteration

ukC1 D arg min
u2BV.�/

�
H.uk; f /C @uH.uk; f /.u � uk/CD

pk
J .u; uk/

�
(105)

with pk 2 @J.uk/. In the case of a quadratic fidelity, the linearization yields the
optimality condition

�A�.Auk � f /C pkC1 D pk: (106)

One observes that the operator A and its adjoint only need to be evaluated in order
to carry out the linearized Bregman iterations, which makes the scheme particularly
attractive for applications where A is nonlocal, e.g. a convolution operator or even
a more complicated image formation model.

A possible disadvantage, which indeed is observed in all numerical tests, is that
(106) is not solvable if J is not strictly convex, since in this case the functional to be
minimized in (105) is not bounded below. Therefore a multiple of a squared norm is
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usually added to the regularization in such cases in order to make the scheme work,
e.g. in the case of total variation

J.u/ D �

2
kuk2

L2
C jujTV : (107)

Ideally one tries to choose � small in order to approximate pure total varia-
tion regularization, which can indeed be achieved. Thus a similar behaviour of
reconstructions as in the original Bregman iteration is obtained, with a significant
improvement of computational efficiency if A can be evaluated easily. A key
observation for the realization of efficient computational methods is that the
subproblem in each step of such a linearized Bregman iteration can be rewritten
as the minimizer of

J k.u/ D �

2
ku � f kk2

L2
C jujT V ; (108)

with f k precomputed from the previous iteration. Thus one just solves a TV-
denoising problem via the ROF-model in each step. Recently the linearized
Bregman method and variations were applied with some success to compressive
sampling problems (cf. [55, 56]), with a regularization term of the form

J.u/ D �

2
kuk2

L2
C jhu; 'kij`1 ; (109)

where .'k/ is an orthonormal basis of some Hilbert space. In that case the
subproblem in each step can be computed explicitely by thresholding of coefficients.
The convergence analysis of linearized Bregman iterations can be found in [20, 21]
in the total variation case, in [56] in the case of `1 regularization, and in [170] for
regularization with powers of strictly convex norms in Banach spaces.

6.5 Total Variation Flow

Total variation flow (or TV flow) is the scale space version of total variation in
the denoising case (cf. [38, 40, 41, 194]). It is obtained if the ROF-model (2) is
considered as an implicit time discretization of a flow with time step � D 1

�
and

iterated to compute u.t C �/ as a solution of

�

2

Z
�

.u � u.t//2 dx C T V.u/: (110)

From the optimality condition one can derive an evolution law in the form of the
differential inclusion

@tu.t/ D �p.t/; p.t/ 2 @T V.u.t// (111)
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with initial value

u.0/ D f: (112)

An analysis of total variation flow can be given in two ways: In [7–9, 25]
the evolution is interpreted as a degenerate parabolic problem and appropriate
entropy solution techniques are constructed. The approach in [87] rather stays with
the variational interpretation of (111) as a gradient flow for total variation and
defines weak solutions via a variational inequality. The existence of the flow as
well as numerical schemes are then analyzed using a smooth approximation of
total variation. Uniqueness and large time-behaviour (cf. [87]), as well as stability
estimates (cf. [50]), can be infered directly from the gradient flow interpretation.
Note that for two solutions u1 and u2 of (111) with subgradients p1 respectively p2
we obtain using the duality product with u1 � u2

1

2

d

dt

Z
�

.u1 � u2/
2 dx D h@tu1 � @tu2; u1 � u2i D �hp1 � p2; u1 � u2i:

The right-hand side equals a negative Bregman distance and is hence not positive,
which directly yields that the flow is non-expansive in the L2-norm. Further
inspections of the behaviour of the dual variable p can then be used to derive error
estimates also in the Bregman distance (cf. [50]).

Visually solutions obtained with TV flow behave similarly than those obtained
from minimizing the ROF-model, in particular they suffer from the same systematic
errors. A surprising result in [39] shows that they are actually the same in the
case d D 1. In particular for small noise levels (for which one uses only a small
final time in the flow), the solutions of (111) can be integrated very efficiently by
explicit methods and hence outperform the variational and inverse scale space model
with respect to computational speed. However, due to the systematic errors and the
difficulties to choose a stopping time in a robust automatic way, some care is needed.
For problems different from denoising the total variation flow and similar scale
space methods cannot be used, since the construction would rely on the inversion of
the operator A, which is neither stable nor computationally efficient in most typical
imaging tasks.

6.6 Other Multiscale Approaches

A multiscale approach with similar appearance as Bregman iterations was intro-
duced by Tadmor et al. [181], who constructed hierarchical decompositions based
on the ROF-functional. The starting point is the usual decomposition

f D u0 C v0; u0 D arg min
u2BV.�/

�
�0

2
ku � f k2

L2
C T V.u/

�
; (113)
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typically with �0 small in order to obtain really a coarse scale in u0. The residual v0
respectively a further sequence of residuals vj can now be further decomposed into

vj�1 D uj C vj ; uj D arg min
u2BV.�/

�
�j

2
ku � vj�1k2L2 C T V.u/

�
: (114)

In order to guarantee a decrease of scales �j needs to be decreased, usually via the
dyadic sequence

�j D 2�j�1: (115)

From this scheme one obtains a decomposition in the form

f D
1X
jD0

uj ; (116)

where increasing index marks decreasing scales.
Variants of this approach have been investigated in [182], where rather general

norms have been investigated, and in [185], where the fidelity term has been changed
to a squaredH�1-norm. A time-continuous version analogous to inverse scale space
flows has been investigated by Athavale and Tadmor [11].

7 Nonquadratic Fidelity

So far we have laid our attention on quadratic fidelity terms, i.e. Gaussian noise
models in the Bayesian framework, since they allow an introduction to the analysis
without too many technical issues. In practice one sometimes encounters non-
quadratic fidelities instead, due to two reasons: non-Gaussianity of the noise model
or / and nonlinearity of the image formation model. We will briefly give an overview
on recent developments for those two cases, which are both still subject of very
active research.

7.1 Non-Gaussian Noise

In several applications we find noise models different from the simple additive
Gaussian assumptions. Such cases can still be treated in the MAP framework, since
only p.f ju/ is to be changed. In the following we discuss some interesting cases
and provide useful references.
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Laplace Noise

Motivated by noise models with additive Laplacian distributed errors, various
authors have considered models of the form

E.u/ D �

Z
†

jf �Auj dy C T V.u/; (117)

with A W BV.�/ ! L1.†/ (cf. [70, 101]).
The existence of minimizers is analogous to the quadratic case considered

above, but uniqueness remains unclear since the fidelity term is not strictly convex
even for A having trivial nullspace. An interesting property of L1 fidelities is the
possibility of exact reconstruction. If the data f satisfy a source condition, then the
reconstruction is exact for finite �, i.e. for � sufficiently large a minimizer of (117)
satisfies Au D f (cf. [28]). Bregman iterations have been generalized to the case of
L1-fidelity in [104], it turned out that well-posedness and convergence can only be
achieved for � changing during the iteration.

For data being indicator functions, the L1-fidelity model has also interesting
geometrical properties, first of all there is an indicator function solution again (cf.
[70]) and the structure of the resulting edge set can be analyzed (cf. [188, 189]).

Poisson Statistics

Poisson-distributed data are the natural case for many image formation models,
where one registers counts of photons (e.g. CCD-cameras, cf. [173, 174]) or
positrons (e.g. PET, cf. [183, 197]). In the case of high count rates the Poisson
distribution can be well approximated by Gaussians, but for lower count rates it
becomes more appropriate to use variational models asymptotically derived directly
from the Poisson statistics. In the case of denoising this yields variational problems
of the form

E.u/ D �

Z
�

�
f log

f

u
� f C u

�
dx C T V.u/ (118)

to be minimized subject to nonnegativity. The extension to image reconstruction
problems is given by

E.u/ D �

Z
†

�
f log

f

Au
� f C Au

�
dy C T V.u/ (119)

with † denoting the measurement domain.
Such models have been proposed and tested already in the late nineties (cf.

[113, 150]), motivated in particular by the bad noise statistics in PET. Due to the
algorithms used at that time, the application for large regularization parameters
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and effective implementation was not able at this time, which prevented significant
practical impact despite the enormous potential in such applications. With improve-
ments in the computational approaches such as splitting methods these nonlinear
models recently again received strong attention and now seem to find their practice
in microscopy and PET (cf. [23, 42, 44, 77, 123, 165]).

An interesting aspect of nonlinear fidelities motivated by the Poisson case
(but actually more general) has been investigated in [44], namely the appropriate
construction of Bregman iterations. It turns out that Bregman iterations can be
constructed in a primal as well as in a dual fashion, which is equivalent in the case
of quadratic fidelities, but produces different methods in the case of nonquadratic
ones.

Multiplicative Noise

Another interesting class of noise models are multiplicative ones, i.e. f D .AOu/ �,
which is found in several applications.

A Gaussian statistic for the noise has been assumed in [164], which leads to the
nonconvex variational problem

�

2

Z
�

.
f

u
� 1/2 dx C T V.u/ ! min

u
;

Z
�

�
f

u
� 1

�
dx D 0: (120)

Aubert and Aujol [13] modeled the noise as Gamma distributed instead, leading to

�

Z
�

.log
Au

f
C f

Au
/ dx C T V.u/ ! min

u
; (121)

which is closer to the Poisson noise case and at least convex in a reasonable subset
of BV functions. In the case of denoising a substitution to a new variable v D ln u
is possible, which leads to a convex variational model if the total variation of v is
used for regularization instead of the total variation of ev (cf. [108]).

Other Fidelities

Several other fidelity terms have been investigated recently, with different motiva-
tions. Bonesky et al. [34] have investigated powers of Banach space norm, to which
also inverse scale space methods and their analysis were generalized in [51].

Motivated by the examples mentioned above and the modeling of textures, Meyer
[134] proposed to use the dual norm of BV as a fidelity, i.e. the variational problem

�ku � f k� C T V.u/ ! min
u2BV.�/; (122)
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for which also interesting theoretical results have been obtained. Due to difficulties
in the numerical solution, several authors have considered other dual Sobolev norms
instead (cf. [147, 185–187]).

Other data fidelities (and also a constraint to probability densities) have been
considered in applications to density estimation (cf. [135, 144]). In [54] the
Wasserstein metric has been used as a fidelity, and the arising regularized optimal
transport has been analyzed.

7.2 Nonlinear Image Formation Models

Another motivation for considering nonquadratic fidelity terms are nonlinear image
formation models as appearing e.g. in ultrasound imaging, optical tomography, or
other inverse problems in partial differential equations. The main theoretical change
in this case is to replace the linear forward operatorA by a nonlinear one, which we
denote by F in the following. The natural extension of the variational model is the
minimization

�

2
kF.u/� f k2 C J.u/ ! min

u
: (123)

Such an approach has been proposed and tested e.g. by Luce and Perez [131] in an
application to parameter identification. Under standard conditions on the operator
F , the existence analysis can be carried out as in the linear case (cf. [2]). A major
theoretical difference to the previously discussed cases is that the fidelity can now
become non-convex, hence there is no uniqueness in general and there might be
undesired local minima.

Error estimates in the nonlinear case can be derived similar to the linear case
[107, 161], however there are differences related to the conditions needed on the
nonlinearity of the operator. Depending on the degree of linearization used, several
variants of Bregman iterations can be constructed for nonlinear models (cf. [20, 21,
170]).

8 Related Regularization Techniques

In the following we discuss some extensions and variants of regularization with total
variation, which can be used for several purposes in image processing and analysis.
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8.1 Higher-Order Total Variation

In several applications it is interesting to obtain piecewise linear instead of piecewise
constant structures. This can be achieved by the higher-order total variation

T V2.u/ WD sup
g2C1

0 .�IRd�d /

jjgjj1�1

Z
�

u .r�/2g dx; (124)

or, alternatively by the variation defined via the Laplacian

T V�.u/ WD sup
g2C1

0 .�/

jjgjj1�1

Z
�

u �g dx: (125)

The second order total variation has been investigated and applied in [68, 105,
171, 176], duality properties have been investigated in [175]. The extension to
higher orders is obvious, but so far hardly investigated, in particular in applications,
probably also due to the difficulty of treating higher-order functionals.

The higher-order total variation has received some attention recently in combi-
nation with the total variation in inf-convolution functionals as proposed in [61],

ICT V.u/ D inf
w2BV2.�/

.T V.u � w/C T V2.w//: (126)

The idea of regularization with the inf-convolution is an optimal decomposition of
the solution into a component in BV.�/ and another one in

BV2.�/ D f u 2 BV.�/ j T V2.u/ < 1 g:
In this way staircasing can be avoided (at least to some extent) since in smoothly
varying regions the higher order total variation dominates. Clearly the staircasing
then appears in the derivative or in other words the variational approach favours a
combination of piecewise constant and piecewise linear structures. This can further
be improved by considering inf-convolutions with even higher order total variations,
of course at the expense of higher computational effort. A slight modification of
the inf-convolution approach that further improves the quality of results has been
proposed recently (cf. [29,36,171,172]), a detailed analysis of the schemes in terms
of underlying function spaces and detailed structure of solutions (e.g. eigenvalue
problems as in the TV case above) remains an interesting open problem.

8.2 Total Variation of Vector Fields

So far we have only discussed methods for scalar-valued functions of bounded
variation. In several cases one would however prefer to work with vector fields, e.g.
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for color or spectral images (cf. [33, 69]) or flow fields (cf. [195]), or even tensors
such as in DT-MRI techniques (cf. [73, 177]). The extension of total variation to
vector valued functions is rather obvious, namely by taking the total variation of
each component. However, there are some subtleties, in particular in the way the
components are combined. Formally we may think of

T V.u/ D
Z
�

k.jru1j; jru2j; : : : ; jrumj/kp dx (127)

for each vector valued function u D .u1; : : : ; um/ W � ! R
m.

Different choices of p have similar effects as in sparsity regularization. For
p D 1 the norm favours the vector .jru1j; : : : ; jrumj/ to be locally sparse, which
means in particular that edge sets for the different components ui will usually not
coincide. This can be reasonable in some applications if the ui represent some kind
of complementary variables, but it is e.g. not desirable for color images, where most
edges are expected to be at the same places for the different color components. In
such cases p 	 2 is more appropriate. For tensor images an analogous discussion
applies to the choice of the suitable matrix norm.

8.3 Smoothed Total variation

In order to avoid difficulties with the non-differentiability of the total variation, i.e.
of the Euclidean norm at zero, smoothed versions are frequently used (cf. [78, 190,
191]).

The most frequently used approximation of the total variation is of the form

T V 
.u/ D
Z
�

p
jruj2 C 
2 dx: (128)

The Huber norm is given by

H
.u/ D
Z
�

h
.jruj/; (129)

where h
 is a locally quadratic approximation of the identity, i.e.

h
.t/ D
(
t t > 

t2



t � 


(130)

The Huber norm can also be obtained as a Moreau-Yosida regularization (cf. [125]
of the total variation

h
.ru/ D min
s

�
jsj C 1

2

js � ruj2

�
: (131)
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A disadvantage of a smoothed approximation is the structure of solutions. Due
to the differentiability at zero, the sharp edges can become smeared out. For very
small 
 that is used to obtain an appropriate approximation of the total variation, the
parameter dependence can lead to significant slow down in computational methods
for differentiable problems.

8.4 Nonlocal Regularization

Nonlocal regularization techniques have emerged recently from a proposed linear
filter by Buades et al. [45] of the form

u.x/ D 1

Cf .x/

Z
�

wf .x; y/f .y/ dy (132)

with weight function

wf .x; y/ D exp

�
� 1

h2

Z
Rd

Ga.t/jf .x C t/ � f .y C t/j2 dt
�

(133)

with GaussianGa. This nonlocal filter generalizes neighbourhood filters in the pixel
domain (like Yaroslavsky and SUSAN filters). It allows to take advantage of patches
appearing in similar form throughout the image domain, which in particular applies
to textures. The significant visual improvement in this respect led to an enormous
increase of research in this direction.

The relation to total variation techniques was established first by Kindermann
et al. [116] with the observation that the nonlocal filter can be realized equivalently
by solving a quadratic variational problem of the form

�

2

Z
�

.u � f /2 dx C 1

2

Z
�

Z
�

wf .x; y/.u.x/ � u.y//2 dx dy: (134)

Modifications of this quadratic problem towards a nonlocal version of the total
variation (respectively the ROF functional) are possible, but not completely unique.
In particular one can define a nonlocal total variation as

T VNL1.u/ D
Z
�

Z
�

q
wf .x; y/ju.x/� u.y/j dx dy (135)

and

T VNL2.u/ D
Z
�

sZ
�

wf .x; y/.u.x/ � u.y//2 dx dy: (136)
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This variational problem can be analyzed in appropriate function spaces and
generalized for other imaging and inversion tasks. An additional difficulty for
problems where the forward operator A is deviating strongly from the identity is
that the weights cannot be computed directly from the data. Two approaches have
been proposed, a computation from a rough solution by linear inversion (cf. [128])
or an updating of the weights from the current solution in an iterative process (cf.
[154, 204]).

As mentioned above, nonlocal techniques can lead to high quality texture
reconstructions in images with repeated structures. A major drawback of nonlocal
methods is the computational effort, since effectively the dimension of the problem
is doubled (i.e. the number of degrees of freedoms in numerical computations
is squared). If no spatial restriction is introduced already the construction of the
weights can lead to overwhelming effort for large size 2D and for 3D images.

9 Numerical Methods

Over the last decades, a variety of numerical methods for TV-minimization has
been proposed, we only provide a short overview here focusing on state-of-the art
approaches.

The basic setup we consider in this section is the minimization of functionals
J W X ! R [ fC1g of the form

J.u/ D �

2
kAu � f k2 C sup

p2K
hu;Dpi; (137)

where A W X ! Y and D W Z ! X are linear operators, usually A being bounded
and compact, while D might be unbounded or with high norm. We assume that X
and Z are Banach spaces with a convex bounded subset K � Z, and that Y is a
Hilbert space. This covers the continuous (with D being the divergence) as well as
the discretized setting.

The regularization functional

R.u/ D sup
p2K

hu;Dpi (138)

is the convex conjugate of the characteristic function of K and hence convex and
positively one-homogeneous. We consider the typical case of K representing a
point-wise constraint, which is the case in all common applications we have in mind.
If X is a space of (generalized) functions on � (either a continuous or discrete set
equipped with a positive measure), then the constraint set K is of the form

K D f p 2 Z j p.x/ 2 M for almost every x 2 � g (139)
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with M � R
m being a bounded convex set. With the convex conjugate of the

charactistic function of M , which we denote by F W Rm ! R [ fC1g,

F.s/ D sup
q2M

q � s (140)

the regularization functional can (at least formally) be written as

R.u/ D
Z
F.D�u/ d	; (141)

with 	 an appropriate measure (see below for standard examples) and D� being the
adjoint of D in the L2-scalar product with this measure.

The driving example is of course total variation regularization. In this case Z is
the space of continuous vector fields vanishing at the boundary of a domain � �
R
d , D D r� is the divergence operator,X an Lp-space on�, andK is the unit ball

K D f p 2 Z j kpk1 � 1 g: (142)

Note that K can indeed be defined by the pointwise constraint jp.x/j � 1 for all
x 2 � and hence (141) holds for weakly differentiable functions u, where D� D
�r and F.p/ D jpj, i.e., the total variation as defined in the first part.

A second important case are so-called sparse or compressive models, which are
based on penalizing the coefficients in some orthonormal basis (or more generally
in a frame) of a separable Hilbert space by a weighted `1-norm. By a suitable
redefinition of the operator A as the effective operator acting on the coefficients,
such algorithms can be rewritten in the above form with X D `2.N/, Z D `1.N/,
D is the multiplication operator

.un/n2N 7! .wnun/n2N;

where .wn/ is a suitable sequence of positive weights, often identical to one, and

K D f p 2 Z j jpnj � 1;8 n 2 N g: (143)

The resulting regularization functional is then the weighted `1-norm

R.u/ D
X
n2N

wnjunj: (144)

This is a special case of (141) with 	 being the sum of weighted discrete point
measures.
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9.1 Optimality Conditions

In the following we provide a unifying formulation of optimality conditions for
(137), which gives a common viewpoint on many existing methods. For this sake
we introduce a gradient variable v and the corresponding constraint

D�u C v D 0: (145)

Under the main assumption that the regularization functional has the representation
(141), the unconstrained variational problem (137) can then be rephrased as the
constrained problem

�

2
kAu � f k2 C

Z
F.v/ d	 ! min subject to D�u C v D 0: (146)

The solution of the constrained problem is a saddle-point of the Lagrangian
(minimum with respect to u and v, maximum with respect to w) given by

L.u; v;w/ D �

2
kAu � f k2 C

Z
F.v/ d	C

Z
.D�u C v/w d	: (147)

The Lagrangian is differentiable with respect to u and w, hence for an optimal
solution the variations with respect to this variable need to vanish. Moreover, the
Lagrangian is convex with respect to v, hence zero needs to be an element of the
subgradient. Note that the minimization problem with respect to v for fixed u and w
is equivalent to the minimization of

Z
.F.v/C vw/ d	; (148)

which is achieved by the pointwise minimization of F.v/ C vw for v.x/ 	-almost
everywhere.

As a consequence of the above considerations we obtain the following optimality
system for the constrained problem

�A�Au CDw D �A�f (149)

@F.v/C w 3 0 (150)

D�u C v D 0 (151)

As we shall see below, most of the methods indeed work without the variable v,
which is the special case of an iteration method that always keeps (151) exactly
satisfied. The above formulation has several advantages however. First of all it is
quite general and allows to interpret many schemes as iterations on these optimality
conditions, in particular also the recently proposed split Bregman method. Secondly,
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the difficulties due to the gradient operator D and the nondifferentiability of F
become separated. This allows to immediately generalize the schemes below to quite
arbitrary operatorsD, and allows to investigate (150) as a pointwise relation. Several
approximations of this relation will indeed distinguish different schemes, they can
be more easily understood when considered in the pointwise sense.

9.2 Primal Approaches

We start with primal iteration approaches, corresponding to iterations on (150) or
smoothed versions thereof, usually with additional damping in (149).

Most of these approaches are based on simplifying the subgradient relation as
an approximation by smoothing, i.e., F is approximated by a family of parameter-
dependent differentiable functionals Fı such that Fı ! F in a suitable sense (e.g.
uniformly) as ı ! 0. Several special approximations have been proposed depending
on the specific choice of F . In the case of F being the Euclidean norm in R

m, the
C1-approximation

Fı.s/ D
p

jsj2 C ı2 (152)

received most attention (cf. [78, 163, 190–192]) due to its simplicity and high
regularity. A quite general way to obtain first-order regular (differentiable with
Lipschitz-continuous derivative) approximations is the Moreau-Yosida regulariza-
tion (cf. [81]) defined by

Fı.s/ D inf
�
ŒF .�/C 1

2ı
js � � j2�: (153)

Even if it cannot be computed in an explicit form it is useful for computation, since
one can just minimize the whole functional with respect to the new variable as well.
In the case of F being the Euclidean norm in R

m, the Moreau-Yosida regularization
can be explicitely calculated as the so-called Huber norm (cf. [10, 109])

Fı.s/ D
�

1
2ı

jsj2 if jsj � 


jsj � 
 if jsj > 
: (154)

A potential disadvantage of such approaches is the slow growth of the regularized
functional Fı at zero. Hence, sparsity is not promoted, since replacing small values
by zero has only little gain in the regularization term (which is then completely
balanced by losses in fidelity terms).

The first scheme proposed in [163] was a gradient descent method, which iterates
(150) explicitely as

wkC1 D F 0
ı .v

k/ (155)
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and then inserts wkC1 in (149). In order to obtain convergence, damping (with
rather small damping parameter � depending on the image size) needs to be used to
compute

ukC1 D uk � �.�A�.Auk � f /CDwkC1/: (156)

Finally, (151) is enforced exactly, i.e. one computes

vkC1 D D�ukC1: (157)

The main disadvantages of the gradient descent approach are the dependence on ı
and in particular on the grid size (respectively number of pixels). In total variation,
the role of � corresponds to a time step in the explicit time discretization of a
parabolic partial differential equation and thus needs to be very small (of the order
of the grid size squared) to maintain stability and convergence to the minimizer.

A popular approach to reduce the severe restriction on � is to use some kind of
semi-implicit time stepping, which still yields linear problems in each time step. In
this way (156) and (157) are solved as a linear system coupled with

L.vk/vkC1 C wkC1 D L.vk/vk � Fı.v
k/; (158)

where L.vk/ is a (discretized) differential operator such that L.v/v approximates
F 0
ı .v/. A quite popular method of this kind is the lagged diffusivity approximation

(cf. [191, 192]) using (152) and

L.v/' D 'pjvj2 C ı2
; (159)

which yieldsL.v/v D F 0
ı .v/. In the denoising case A D I also the Newton method

on the smoothed optimality system can be put in this form if L D F 00
ı and � D 1

�
.

Besides the dependence of ı, a major disadvantage is that the matrix for the linear
system to be solved has to be changed in each iteration step (an approximation L
independent of vk usually does not provide reasonable results) and may be badly
conditioned for small ı.

9.3 Dual Approaches

Instead of using (150), the dual approach rather iterates the equivalent dual
subgradient relation

v C @F �.w/ 3 0: (160)
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Note that the convex conjugate F �.w/ is again the characteristic function of M .
Thus, (160) can be interpreted as the optimality condition for minimizing the linear
functional hv;wi with respect to w 2 M .

As in the primal case one can approximate the dual subgradient relation,
respectively the inclusion q 2 M , via smoothing. Again one can construct the
Moreau-Yosida regularization

F �
ı .q/ D inf

r
ŒF �.r/C 1

2ı
jr � qj2� D inf

r2M
1

2ı
jr � qj2:

It is straight-forward to show that the minimum is attained for r D PM .q/, where
PM is the projection ontoM . Hence, we have

F �
ı .q/ D 1

2ı
jq � PM .q/j2 D 1

2ı
dist.q;M/2:

This smoothing is a penalty method approximating F � from below, i.e. we have
F �.q/ 	 F �

ı .q/ for all q. If F is the Euclidean norm, i.e.M the Euclidean unit ball
in R

m, we have PM .q/ D q

jqj if q … M . Hence

2ıF �
ı .q/ D jq � q

jqj j
2 D jqj2 � 2jqj C 1 D .jqj � 1/2 for q … M:

A compact form for F �
ı is the quadratic penalty

F �
ı .q/ D 1

2ı
maxfjqj � 1; 0g2: (161)

A standard alternative to penalty schemes are barrier approaches, which amounts
to approximating F � from above, i.e. by a family of functionals F �

ı differentiable
on M such that F �

ı .q/ 	 F �.q/ for all q at least close to the boundary of M . The
derivation of specific barrier functionals is usually based on a particular perturbation
related to the complementarity condition for the constraint q 2 M . Since the
complementarity condition needs to be written for the specific inequalities defining
M , the barrier functional has to be derived separately in each case. If F is the
Euclidean norm respectively M is the unit ball in R

m, then the resulting standard
approximation in interior point methods is based on the logarithmic barrier

F �
ı .q/ D �ı log.1� jqj/: (162)

In [139] Newton-type methods for barrier as well as penalty methods are constructed
and also parallelization techniques are discussed. It is shown that in the case
of penalty methods some slope is introduced in the usually flat parts of the
reconstruction but the edges are sharp, while barrier methods keep the flat regions
with introducing some smoothing of the edges. However, if the penalty parameter is
sufficiently small compared to the grid size, this effect disappears.
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In dual iteration approaches, (149) and (151) are satisfied exactly, i.e.

�A�AukC1 CDwkC1 D �A�f (163)

D�ukC1 C vkC1 D 0; (164)

while iterative approximation is carried out on (160) in order to determine wkC1.
Note that A�A needs to be regular in order to solve (163) and (164) for ukC1 and
vkC1, which is not an issue for denoising, but prevents the use of dual methods for
ill-posed problems such as deblurring or inpainting.

An obvious approach is to use a fixed point iteration on (160), i.e.,

wkC1 C �@F �.wkC1/ 3 wk � �vk: (165)

It is easy to see that this is the optimality condition for minimizing

Jk.w/ D 1

2
kw � wk C �vkk2 C �F.w/;

and since F it is the characteristic function ofM it is further equivalent to minimize
the least-squares term subject to w 2 M , which yields

wkC1 D PM.w
k � �vk/;

where PM is the projection onto M . Since vk is the gradient of the dual objective
with respect to w, this iteration is just the dual projected gradient method proposed
in [205]. An older and more popular approach in the same spirit is due to Chambolle
[60] in the case of M being the unit ball (in the Euclidean norm, but extensions to
other norms are obvious). Chambolle did not use exact projection, but

wkC1 D wk � �vk

1C � jvkj ;

which is still consistent. The behaviour of the iteration is very similar to the
projected gradient method. Again a major disadvantage is that � needs to be chosen
very small in order to obtain a stable iteration (note that the dual gradient is a
differential operator of the form v 7! r � .arv//.

9.4 Augmented Lagrangian Methods

Recently the most popular methods are of Augmented Lagrangian type, although
the seminal paper formulated them differently motivated from the Bregman iteration
above, see [96] for this Split Bregman method in detail. The major idea in our setup
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of (149)–(151) is to use an augmented Lagrangian approach, i.e. add multiples of the
(151) to (149) and (150), which clearly yields an equivalent system that however can
be solved uniquely for u and v. Then an iterative update of w in (151) is performed.

The augmented optimality system, with parameter 	 > 0 consists of (151) and

�.A�AC 	DD�/u C 	Dv CDw D �A�f (166)

@F.v/C 	v C 	D�u C w 3 0: (167)

In the case of total variation DD� is the Laplacian, which can be inverted if the
mean value or boundary values are fixed. Moreover, 	v C F.v/ is maximally
monotone and thus has a single-valued inverse, which can be computed explicitely
by shrinkage formulas for the typical choices of M .

In its standard form the iteration first solve (166) and (167) for u and v, i.e.,

�.A�AC 	DD�/ukC1 C 	DvkC1 D �A�f �Dwk (168)

@F.vkC1/C 	vkC1 C 	D�ukC1 3 �wk; (169)

and then perform a gradient ascent step for the dual variable w, i.e.,

wkC1 D wk C 	.D�ukC1 C vkC1/: (170)

A difficulty in the realization of this iteration is the fact that (168) and (169) are fully
coupled, which is usually solved via an inner iteration alternating between these two.
This idea can also be directly incorporated in the outer iteration, replacing (168) by

�.A�AC 	DD�/ukC1 D �A�f � 	Dvk �Dwk; (171)

yielding an approach equivalent to the alternating direction of multipliers method
(ADMM, cf. [35, 158]). Variants can be found in [14, 85, 203].

10 Segmentation via TV Relaxation

While all above approaches were based on computing an image intensity as a
function with values in R (or a closed subinterval), region-based segmentations
rather look for a decomposition of � into subsets with different characteristics.
The relation to functions can be made by two approaches, either via characteristic
functions


.x/ D
�
1 x 2 † � �

0 else
(172)
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or via level set functions (cf. [145])

† D f x 2 � j �.x/ < 0 g (173)

with � continuous. Modern region-based segmentation schemes are based on
minimizing an energy depending on the image characteristics in the two subregions
(some volume integrals of f ) penalized by the perimeter of @† in order to avoid
a classification of noisy parts as small regions to be segmented. The perimeter
provides the main link to total variation methods, since the coarea formula yields

T V.u/ D
Z
R

Per.@fu > ˛g/d˛; (174)

where Per.M/ denotes the perimeter of a set M (the d � 1-dimensional Hausdorff-
measure). For u D 
 or u D H.�/ with 
 and � as above and H the Heaviside
function we obtain fu > ˛g D ; for ˛ 	 1 and fu > ˛g D � for ˛ < 0. In both
cases the perimeter of @fu > ˛g is zero. Moreover, for ˛ 2 .0; 1/ we have

fu > ˛g D †:

Hence, the coarea formula implies

Per.@†/ D
Z 1

0

Per.@†/d˛ D T V.u/:

Thus, the minimization of shape functionals penalized by perimeter as encoun-
tered in image segmentation can be rewritten into problems with total variation
minimization.

A very interesting connection has been established in a series of papers by Chan
et al. [70, 71], who analyzed total variation problems with one-homogeneous fitting

�

Z
�

ju � f j dx C T V.u/ ! min
u
; (175)

as well as the regularized linear functional

Z
�

g u dx C T V.u/ ! min
u
; (176)

subject to bound constraints 0 � u � 1. Based on the co-area formula and a layer-
cake formula for the first integral a connection to shape optimization problems can
be derived. We review this analysis in the case of (176). First of all, the existence of
a minimizer of (176) with either the bound constraint

0 � u � 1 a.e. in � (177)
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or the discrete constraint

u 2 f0; 1g a.e. in � (178)

can be shown:

Lemma 10.1. Let g 2 L1.�/. Then there exists a minimizer of the constrained
minimization problems (176) subject to (177) as well as of (176) subject to (178).

Proof. The admissible set is a subset of the unit ball in L1.�/ and on sublevel sets
of the objective functional

E.u/ D
Z
�

g u dx C T V.u/

we have

T V.u/ � C �
Z
g u dx � C C kgkL1 :

Hence, the sublevel sets of J intersected with the admissible set are bounded in
L1.�/\BV.�/ and consequently compact in the weak* topologies of both spaces.

As we have shown before the total variation is lower semicontinuous in the weak*
topology of BV.�/ and the first integral is a bounded linear functional (of g) on
L1.�/ hence weak* continuous in L1.�/ D L1.�/�. Thus, the functional J is
lower semicontinuous with compact sub level sets, which implies the existence of a
minimizer. ut

The major result is the following exact relaxation of the problem for characteris-
tic functions:

Theorem 10.2. Let u be a minimizer of (176) subject to (177). Then for almost all
˛ 2 .0; 1/, the thresholded function


˛.x/ D
�
1 if u.x/ > ˛
0 else

(179)

is a solution of (176) subject to (178).

Proof. We first of all derive a layer-cake representation of the linear functional via

Z
�

g u dx D
Z
�

g.x/

Z u.x/

0

d˛ dx

D
Z
�

g.x/

Z 1

0


˛.x/ d˛ dx

D
Z 1

0

�Z
�

g 
˛ dx

�
d˛:
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For the total variation we have from the co-area formula

T V.u/ D
Z 1

0

Per.@fu > ˛g/d˛ D
Z 1

0

T V.
˛/ dx:

Together we find that for u being a minimizer of (176) subject to (177)

E.u/ D
Z 1

0

E.
˛/ d˛ 	
Z 1

0

E.u/ d˛ D E.u/;

where we have used E.
˛/ 	 E.u/ for all ˛, since 
˛ is admissible for the
minimization problem (176) subject to (177) and u is the minimizer. The above
relation is only possible if E.
˛/ D E.u/ for almost all ˛ 2 .0; 1/. Hence, for
almost every ˛ the characteristic function 
˛ is a minimizer of (176) subject to
(177). On the other hand (177) is a relaxation of (178), thus 
˛ needs to be a
minimizer of (176) subject to (178). ut

The exact relaxation result in Theorem 10.2 has two important consequences:
First of all, the nonconvex 0 � 1 minimization can be solved equivalently by
minimizing a convex problem, which resolves issues with minimizers. Secondly,
techniques from the analysis of total variation minimization, e.g. existence, asymp-
totic behaviour, and error estimates can be carried over.

A particularly interesting example is the relaxation of the Chan–Vese model [66],
which can be written as the minimization of

JCV .
; c1; c2/ D �

2

Z
�

Œ
.c1 � f /2 C .1 � 
/.c2 � f /2� dx C T V.
/ (180)

subject to (178). The minimization can be realized in an alternating fashion, with
respect to 
 and with respect to the constants c1 and c2. For given 
, the minimizers
c1 and c2 can be computed explicitely as mean values of f , namely

c1 D
R
� 
 f dxR
�

 dx

; c2 D
R
�.1 � 
/ f dxR
�
.1 � 
/ dx : (181)

For the minimization with respect to 
 Theorem (10.2) can be applied with

g D �

2
Œ
.c1 � f /2 C .1 � 
/.c2 � f /2�: (182)

Hence, the minimization of JCV subject to (178) can be relaxed exactly to the
minimization with (177).

Extensions of the relaxation to more general problems in topology optimization
are considered in [46], and a region-based version of the Mumford-Shah model,
which allows exact relaxation is introduced in [168, 198]. Cremers et al. [156]
introduce a lifting method, which allows to treat some nonconvex problems in
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imaging by convex relaxation after considering the graph and the associated 0-1
function in a higher dimension. Extensions to multi-label problems are considered
in [124, 155], those relaxations are not exact however.

11 Applications

So far we have focused on the methodology of total variation whose development
was heavily motivated by practical applications in the past. In this section and the
following we finally take an opposite viewpoint and give a (certainly uncomplete)
overview of the use of total variation methods in practices. We start in this section
with applications in classical imaging tasks from computer vision and image
analysis, before we proceed to applications in natural and life sciences or disciplines
like the arts.

The most obvious application part is image analysis such as denoising, which
was the original motivation for the ROF-model. Recent approaches rather use
modified versions of total variations and in particular nonlocal versions (cf. e.g.
[116,129,130,166]), which are able to deal better with textures (assumed to be self-
repeating patterns in the image). Another obvious application field of total variation
techniques is segmentation as we have seen from the previous chapter. Other image
analysis tasks where total variation methods have been applied successfully are
zooming and superresolution (cf. e.g. [4, 199, 201]), colour enhancement (cf. e.g.
[33,74,133,142]), fusion (cf. e.g. [22,157,193]), flow estimation and video treatment
(cf. e.g. [43,76,195,196], inpainting (cf. [52,64,65,84]), and image decomposition
into a cartoon and texture part (cf. e.g. [12, 16, 17, 30, 40, 83, 134, 147, 186, 187]). In
particular the latter two have led to an investigation of a variety of novel data fidelity
terms, since standard L2-terms are not appropriate. In particular the work by Meyer
[134], who used the dual norm of the TV-norm as data fidelity, was quite influential
and motivated several studies of the dual and predual space of BV. We also refer to
[63] for total variation methods in image analysis.

We have already discussed deblurring and deconvolution above and here mention
further work in blind deconvolution. The extension from deconvolution to blind
deconvolution is rather straight-forward, one usually looks for the point-spread
function in a parametric or non-parametric form as well as for the image. Since the
point-spread function is usually smooth, the majority of approaches restricts the total
variation regularization to the image. With alternating minimization approaches
the numerical realization is quite straight-forward and analogous to standard
deconvolution. An interesting question is whether total variation regularization on
the image combined with classical smoothness priors on the point-spread function is
suitable to overcome the non-uniqueness in blind deconvolution, which is confirmed
by promising computational results, but has hardly been investigated by theoretical
analysis (cf. e.g. [19, 31, 48, 67, 102].

Due their favourable properties, total variation methods have found access
to many applied areas of biomedical imaging. Due to the enormous amount of
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applications in the last two decades, we can only give a selection here and further
links to literature:

• Limited angle CT: Due to the mild ill-posedness and the low noise levels,
regularization is not a big topic in modern standard X-ray tomography. The
situation changes in limited angle CT as e.g. appearing in modern C-Arm devices,
where the ill-posedness of the reconstruction problem is much more severe.
TV regularized reconstructions are usually obtained with the standard quadratic
fidelity term and the forward operator being the Radon transform with limited
angles, see e.g. [149, 153, 184]

• Magnetic resonance (MR) imaging: Image reconstruction in MR is mainly
achieved by inverting a Fourier transform, which can be carried out efficiently
and robustly if a sufficient number of Fourier coefficients, i.e. measurements, is
available, which is usually the case. Regularization and thus also total variation
approaches are mainly needed for special applications such as fast MR protocolls,
which do not allow to measure enough frequencies. This motivation has also
triggered a lot of research in compressed sensing, where for this application effec-
tively a discretized total variation is used (cf. e.g. [132]). Improved approaches
use a decomposition of total variation with a second functional, e.g. based on
wavelets, which can take care of the typical slopes arising between edges in MR
images, cf. [32, 103, 115, 118–120].

• Emission tomography: Emission tomography techniques (cf. [197]) used in
nuclear medicine such as Positron Emission Tomography (PET) and Single
Photon Emission Computed Tomography (SPECT) are a natural target for total
variation regularization due to inherent high noise level, more precisely the
Poisson statistics of the data. We refer to [23, 113, 150, 165–167].

• Microscopy: In modern fluorescence microscopy low photon counts are an issue
in particular in live imaging and in high resolution imaging at nanoscopic scales.
Here total variation methods with data terms appropriate for Poisson noise have
been quite benefitial for denoising and (blind) deconvolution (cf. e.g. [42, 44, 77,
91, 159, 167, 180]).

• Other modalities: For certain highly ill-posed image reconstruction tasks with
expected sharp edges the use of total variation as a regularization is a quite
obvious choice, e.g. in optical tomography (cf. e.g. [1, 80, 152]) or in electron
tomography (cf. e.g. [24, 97]). A less obvious application of total variation is the
study of EEG/MEG reconstructions, where usually rather `1 priors are used since
brain activity is often sparse. Adde et al. [3] however compared total variation
methods to standard density reconstruction techniques and other nonlinear
diffusions and found it clearly outperforms them. In ultrasound, denoising and
segmentation is of interest, where main attention has to be focused on appropriate
modelling of speckle noise in the variational problems (cf. e.g. [112, 168]).

Since imaging is nowadays of high importance, it is not surprising that total
variation methods have found their place there as well. Examples are astronomy
(cf. e.g. [151] and references therein) or geosciences, where hyperspectral imaging
is becoming a standard approach (cf. e.g. [111, 136, 137, 202]). Less expected
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applications appear in the tracking of sharp fronts in weather forecast (cf. [92])
and in the arts, where frescoes have been reconstructed by mathematical techniques
instead of human experience (cf. [18, 89, 90]).

12 Open Questions

We finally provide a discussion of some problems related to the TV zoo, which
may be particularly rewarding for future research. Again the choice of questions
and viewpoints presented here are heavily motivated by our own research and may
be subjective, moreover various yet unexpected questions due to the fast progress in
this field the will certainly pop up in the next years:

• Local choice of regularization parameters: This issue receives growing interest
in many recent investigations, motivated by different scales appearing in images
locally as well as statistical models. Whereas the effects of locally large and small
regularization parameters seem rather obvious in classical smoothing techniques
(e.g. squared Sobolev norms), where small local regularization parameters
allow high variation and approximate discontinuities (such as in the Ambrosio–
Tortorelli model [5]), the effect in total variation is less clear and remains to be
analyzed (cf. e.g. [106]).

• Nonlinear inversion vs. two-step methods: As we have discussed above, total
variation methods can be incorporated into inversion methods and image recon-
struction approaches. However, it is not obvious that the additional difficulties
and increased computational effort is indeed necessary. In several cases results
of a similar quality are achieved by simply using fast linear reconstruction
methods with a subsequent application of the ROF model or variants thereof
(cf. [166, 167]). A detailed analysis under which conditions the incorporation
of total variation or similar methods into the reconstruction algorithms yields
significantly superior results is still open.

• Improved TV models: Several improvements of total variation, in particular
related to the staircasing effect, are currently a topic receiving increasing
attention. A particularly timely topic seems to be the adaptive coupling of several
TV-type functionals, which might concern anisotropy (cf. [30, 83]) or the com-
bination of total variation and higher-order total variation. The latter has already
been investigated via inf-convolution in [61], recently further improvements have
been proposed, which yield promising results but also require a more detailed
analysis (cf. [29, 36, 171, 172]).

• 4D regularization: In many applications high-dimensional image structures
appear, e.g. spectral or time-resolved images. In such cases it seems reasonable
to apply total variation methods for the two or three spatial dimensions, while it
makes less sense to favour piecewise constant structures in the additional direc-
tions. The appropriate combination of total variation with other regularization
functionals related to the additional dimensions remains a challenging topic for
future research.
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• Bayesian modelling: While we have concentrated on variational techniques such
as MAP estimation here, in wide areas of statistics it is much more common to
use conditional mean (CM) estimates. In principle a prior probability related to
total variation can be defined in discretizations in the form p.u/ � e�˛T V.u/ and
the limit can be studied (cf. [121, 129]). However, convergence of CM estimates
appears only with different scaling than in the case of MAP estimation and the
limit is then a Gaussian measures, thus edges are not preserved. Appropriate
models for edge preserving priors remain to be developed in a TV context. An
interesting result in this direction is obtained in [75], who studies the choice
p.u/ � e�˛T V.u/2 instead.
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