
Chapter 2
Mathematical Model of the Safety Factor
and Control Problem Formulation

We are interested in controlling the safety factor profile in a tokamak plasma. As the
safety factor depends on the ratio of the normalized radius to the poloidal magnetic
flux gradient, controlling the gradient of the magnetic flux allows controlling the
safety factor profile. In this chapter we present the reference dynamical model [1]
for the poloidal magnetic flux profile and its gradient (equivalent to the effective
poloidal field magnitude, as defined in [2]), used throughout the following chapters,
as well as the control problem formulation. Some of themain difficulties encountered
when dealing with this problem are also highlighted.

2.1 Inhomogeneous Transport of the Poloidal Magnetic Flux

The poloidal magnetic flux, denoted ψ(R, Z), is defined as the flux per radian of the
magnetic fieldB(R, Z) through a disc centered on the toroidal axis at height Z , having
a radius R, see Fig. 2.1. A simplified one-dimensional model for this poloidal mag-
netic flux profile is considered. Its dynamics is given by the following equation [3]:
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with the geometry defined by:

ρ
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.= ∂V

∂ρ
〈 1

R2 〉

where 〈·〉 represents the average over a flux surface, indexed by the equivalent radius
ρ. The remaining coefficients are: φ, the toroidal magnetic flux; Bφ0 , the value of
the toroidal magnetic flux at the plasma center; η‖, the parallel resistivity of the
plasma; and μ0, the permeability of free space. jni is a source term representing the
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Fig. 2.1 Coordinate system
(R, Z) used in this chapter

total effective current produced by non-inductive current sources. F is the diamag-
netic function and ∂V

∂ρ
is the spatial derivative of the plasma volume enclosed by

the magnetic surface indexed by ρ. A summary of these variables can be found in
Appendix B.

With the following simplifying assumptions:

• ρ << R0 (usually referred to as the cylindrical approximation, where R0 is the
major radius of the plasma);

• the diamagnetic effect causedbypoloidal currents canbeneglected, the coefficients
C2, C3 and F simplify to:

F ≈ R0Bφ0 , C2(ρ) = C3(ρ) = 4π2 ρ

R0

and the spatial derivative of the enclosed plasma volume becomes:

∂V

∂ρ
= 4π2ρR0

Introducing the normalized variable r
.= ρ/a, a being the minor radius of the last

closed magnetic surface, we obtain the simplified model [1, 4]:

∂ψ

∂t
(r, t) = η‖(r, t)

μ0a2

(
∂2ψ

∂r2
+ 1

r

∂ψ

∂r

)
+ η‖(r, t)R0 jni(r, t) (2.2)

with the boundary condition at the plasma center:

∂ψ

∂r
(0, t) = 0 (2.3)

one of the two boundary conditions at the plasma edge:
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∂ψ

∂r
(1, t) = −R0μ0Ip(t)

2π
or

∂ψ

∂t
(1, t) = Vloop(t) (2.4)

(where Ip is the total plasma current and Vloop is the toroidal loop voltage) and with
the initial condition:

ψ(r, t0) = ψ0(r)

Remark 2.1 The validity of this model (derived for Tore Supra) can be extended to
other tokamaks by changing the definition of the values C2, C3, F and ∂V

∂ρ
.

2.2 Periferal Components Influencing the Poloidal
Magnetic Flux

Thedynamics (2.2) depend on the plasma resistivity (diffusion coefficient), the induc-
tive current generated by the poloidal coils (boundary control input) and the non-
inductive currents (distributed control input andnonlinearity),which canbedescribed
as follows.

2.2.1 Resistivity and Temperature Influence

The diffusion term in themagnetic flux dynamics is provided by the plasma resistivity
η‖, which introduces a coupling with the temperature (main influence) and density
profiles. This parameter is obtained from theneoclassical conductivity proposed in [5]
(approximate analytic approach) using the electron thermal velocity and Braginskii
time, computed from the temperature and density profiles as in [6].

The temperature dynamics are typically determined by a resistive-diffusion
equation [2], where the diffusion coefficient depends nonlinearly on the safety factor
profile [7]. A quasi-1D model was proposed in [8] to model the normalized tem-
perature profiles as scaling laws determined by the global (0-D) plasma parameters
and to constrain the temperature dynamics by the global energy conservation. This
grey-box model was shown to provide a sufficient accuracy for the magnetic flux
prediction in [1].

The resistive-diffusion time is much faster (more than 10 times) than the current
density diffusion time, which motivated lumped control approaches based on the
separation of the timescales and using a linear time-invariant model [9, 10]. In our
case, we consider that η‖ varies in time and space, to avoid the strong dependency on
the operating point, but we do not address specifically the problem of a coupling with
the temperature dynamics (thus considering only the linear time-varying contribution
of the resistivity).

As an example, the resistivity calculated with measured temperature profiles is
depicted in Fig. 2.2. This plasma shot is characterized by power modulations of the
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Fig. 2.2 a Spatial distribution for different time instants. b Time evolution at different locations.
Plasma resistivity profiles computed for Tore Supra shot 35952 (modulations on the LH and ICRH
antennas)

lower hybrid (LH) and ion cyclotron radio heating (ICRH) antennas. Note the differ-
ence of three orders ofmagnitude between the plasma center and its edge on Fig. 2.2a,
and the modulated and noisy time-evolution on Fig. 2.2b. The crewels observed after
20 s result from LH modulations (step inputs) at relatively low power and illustrate
an input-to-state coupling effect, as LH is our main input on the magnetic flux.

2.2.2 Inductive Current Sources

The magnetic flux at the boundary ∂
∂t ψ(1, t) is set by the poloidal coils surrounding

the plasma and the central solenoid, and constitutes the inductive current input. This
can be described by the classical transformer model where the coils generate the
primary circuit while the plasma is the secondary, modelled as a single filament. The
dynamics of the coils current Ic(t) and of the plasma current Ip(t) are coupled as [11]:

[
Lc M
M Lp

]
d

dt

[
Ic

Ip

]
= −

[
Rc 0
0 Rp

] [
Ic

Ip

]
+

[
Vc

RpINI

]

where Rc and Lc are the coils resistance and internal inductance, Rp and Lp are the
plasma resistance and inductance, M is the matrix of mutual inductances, Vc is the
input voltage applied to the coils and INI is the current generated by the non-inductive
sources. Note that the values of Rc and Lc are given from the coil properties while
M is obtained from an equilibrium code (i.e. CEDRES++ [12]). Considering the
effects of the plasma current and inductance variations, the loop voltage Vloop is
obtained from [13] with:
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Vloop(t) = − 1

Ip

d

dt

[
LpI2p
2

]
+ M

dIc

dt

In practice, a local control law is set on the poloidal coils to adjust the value of Vc

according to a desired value of Vloop, which can be measured with a Rogowski coil.
If the reference is set on the plasma current Ip instead, then Vc is such that the coils
provide the current necessary for completing the non inductive sources to obtain Ip.

2.2.3 Non-inductive Current: Sources and Nonlinearity

The non-inductive current jni in the magnetic flux dynamics (2.2) is composed of
two types of sources: the controlled inputs and the bootstrap effect.

The controlled inputs are the current drive (CD) effects associated with neutral
beam injection (NBI), traveling waves in the lower hybrid (LH) frequency range
(0.8–8 GHz, the most effective scheme) and electron cyclotron (EC) waves. The
precise physical modeling of the CD effects necessitates a complex analysis of the
coupling between waves and particles, which cannot be used for real-time control
purposes. We consider instead some semi-empirical models for the Lower Hybrid
CurrentDrive (LHCD) andElectronCyclotronCurrentDrive (ECCD) antennas (NBI
is not explicitly included in our control schemes but the general strategywould remain
the same), where the current deposit shape is constrained to fit a gaussian bell [1].
The gaussian shape is identified from experimental data (LHCD) or obtained from
model simplifications (ECCD), while the amplitude of the deposit comes from CD
efficiency computations involving the density, temperature and total current of the
plasma.

For example the shape of LHCD deposit can be adequately approximated by a
gaussian curve with parameters μ, σ and Alh (which depend on the engineering
parameters Plh and N|| and on the operating point) as:

jlh(r, t) = Alh(t)e
−(r−μ(t))2/(2σ 2(t)),∀(r, t) ∈ [0, 1] × [0, T ] (2.5)

Scaling laws for the shape parameters can be built based on suprathermal electron
emission, measured via hard X-ray measurements, see for instance [14] and [15].
The total current driven by the LH antenna is then calculated using scaling laws
such as those presented in [16]. It should be noted that the methods presented in this
book can easily be extended to other current deposit shapes (either for use in other
tokamaks or to change the non-inductive current drives used).

While the impact of Ip on the deposit amplitudewould induce a nonlinearity (prod-
uct between the state and the control input), we neglect this effect by considering an
extra loop on the radio-frequency antennas that sets the engineering inputs accord-
ing to a desired profile. Such strategy is motivated by the fact that the antennas react
much faster than the plasma and can thus generate a desired profile almost instantly.
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The second non-inductive source of current is due to the bootstrap effect, induced
by particles trapped in a banana orbit. Expressing the physical model derived by [17]
in cylindrical coordinates and in terms of the magnetic flux, the bootstrap current is
obtained as:

jbs(r, t) = peR0

∂ψ/∂r

{
A1

[
1

pe

∂pe

∂r
+ pi

pe

(
1

pi

∂pi

∂r
− αi

1

Ti

∂Ti

∂r

)]
− A2

1

Te

∂Te

∂r

}

where pe/i is the electron and ion pressure, Te/i is the electron and ion temperature,
αi depends on the ratio of trapped to circulating particles xt and A1/2(r, t) depend on
xt and on the effective value of the plasma charge. Maximizing the bootstrap effect,
as a “free” source of non-inductive current, is one of the prime objectives for large
tokamaks such as ITER,whichmotivated the bootstrap currentmaximization strategy
proposed in [18]. As the control approaches discussed in this book are focused on
linear time-varying strategies (on the lumped and PDE models), we will consider
small deviations from an equilibrium bootstrap distribution (given by the reference
magnetic flux distribution) and ensure the robustness with respect to these deviations
rather than addressing the nonlinearity directly.

To summarize, jni is considered as the sum of three components:

jni = jlh + jeccd + jbs

2.3 Control Problem Formulation

Based on the previous description of the system dynamics and periferal components
obtained from a physical analysis of the tokamak plasma, this section discusses the
appropriate change of variables to formulate the control problem. We also describe
the control objectives and challenges for an efficient regulation of the safety-factor
profile, which will be answered in the following chapters.

2.3.1 Equilibrium and Regulated Variation

Wedefine η
.= η‖/μ0a2 and j

.= μ0a2R0 jni to simplify the notations. An equilibrium
ψ , if it exists, is defined as a stationary solution of:

0 =
[η

r

[
rψ r

]
r

]
r
+ [

ηj
]

r ,∀r ∈ (0, 1) (2.6)

with the boundary conditions:
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ψ r(0) = 0

ψ r(1) = −R0μ0Ip

2π
(2.7)

for a given couple
(
j, Ip

)
, where, to simplify the notation, for any function ξ depend-

ing on the independent variables r and t, ξr and ξt are used to denote ∂ξ
∂r and ∂ξ

∂t ,
respectively.

Remark 2.2 When seeking an equilibrium by solving (2.6)–(2.7) two cases have to
be considered:

(i) there is no drift in ψ (equivalent to Vloop = 0 at all times using the alternative
boundary condition ψt(1, t) = Vloop(t) in (2.4)) and therefore the solution of
(2.6)–(2.7) verifies:

η

r

[
rψ r

]
r + η j = 0 (2.8)

In this case, ψ (and its spatial derivative) is independent on the value of η and
therefore the stationary solution exists (i.e. there is an equilibrium of the time-
varying system) regardless of the variations in η. This is the case we directly
address in this book.

(ii) there is a radially constant drift in ψ (equivalent to Vloop �= 0 for some times
when using the alternative boundary condition) and therefore the solution of
(2.6)–(2.7) verifies, for some c(t):

η(r, t)

r

[
rψ r(r, t)

]
r + η(r, t)j(r) = c(t) (2.9)

In this case, ψ r does not correspond to an equilibrium since it will be a function
of time and space (in particular, it will be a function of η(r, t) and c(t)), we
will call the corresponding ψ(r, t) a pseudo-equilibrium of the system. It can be
shown to verify:

ψ r(r, t) = 1

r

r∫
0

(
ρ

η(ρ, t)
c(t) − ρj(ρ)

)
dρ (2.10)

with time-derivative:

ψ rt(r, t) = 1

r

r∫
0

(
ρ

η(ρ, t)
ċ(t) − ρη̇(ρ, t)

η2(ρ, t)
c(t)

)
dρ (2.11)

This case is not extensively addressed in this book but the results presented
in Chaps. 4 and 5 will not be severely affected as long as ċ(t) and η̇(r, t) are
bounded in a suitable way. Since a pseudo-equilibrium will exist at each time,

http://dx.doi.org/10.1007/978-3-319-01958-1_4
http://dx.doi.org/10.1007/978-3-319-01958-1_5


18 2 Mathematical Model of the Safety Factor and Control Problem Formulation

the robustness result presented in Theorem 4.2 can be applied, rewriting the
evolution of the system around this pseudo-equilibrium (instead of an actual
equilibrium) and considering w = −ψ rt(r, t) (the time-varying nature of the
pseudo-equilibrium acts as a state-disturbance for the system).

Around the equilibrium (assumed to exist as per the previous remark) and neglect-
ing the nonlinear dependence of the bootstrap current on the state, the dynamics of
the system is given by:

ψ̃t = η

r

[
rψ̃r

]
r
+ η j̃, ∀(r, t) ∈ (0, 1) × (0, T) (2.12)

with boundary conditions:

ψ̃r(0, t) = 0

ψ̃r(1, t) = −R0μ0 Ĩp(t)

2π

(2.13)

and initial condition:
ψ̃(r, 0) = ψ̃0(r) (2.14)

where the dependence of ψ̃
.= ψ −ψ , j̃

.= j− j and η on (r, t) is implicit; Ĩp
.= Ip −Ip

and 0 < T ≤ +∞ is the time horizon.
As the safety factor profile depends on the magnetic flux gradient, our focus is on

the evolution of z
.= ∂ψ̃/∂r (equivalent to deviations of the effective poloidal field

magnitude around an equilibrium), with input u
.= j̃, defined as:

zt(r, t) =
[
η(r, t)

r
[rz(r, t)]r

]
r
+ [η(r, t)u(r, t)]r , ∀(r, t) ∈ (0, 1)× (0, T) (2.15)

with Dirichlet boundary conditions:

z(0, t) = 0

z(1, t) = −R0μ0 Ĩp(t)

2π

(2.16)

and initial condition:
z(r, 0) = z0(r) (2.17)

where z0
.=

[
ψ̃0

]
r
.

Following [19], the following properties are assumed to hold in (2.15):

• P1:K ≥ η(r, t) ≥ k > 0 for all (r, t) ∈ [0, 1]×[0, T) and some positive constants
k and K .
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Fig. 2.3 Cartesian coor-
dinates (x1, x2), and polar
coordinates (r, θ) used in this
book

• P2: The two-dimensional Cartesian representations of η and u are in1

C1+αc,αc/2(Ω × [0, T ]), 0 < αc < 1, where Ω
.= {

(x1, x2) ∈ R
2 | x21 + x22 < 1

}
as shown in Fig. 2.3.

• P3: Ĩp is in C(1+αc)/2([0, T ]).
For completeness purposes, the existence and uniqueness of sufficiently regular

solutions (as needed for the Lyapunov analysis and feedback design purposes in the
next chapters) of the evolution equation is stated, assuming that the properties P1–P3
are verified.

Theorem 2.1 If Properties P1–P3 hold then, for every z0 : [0, 1] → R in
C2+αc([0, 1]) (0 < αc < 1) such that z0(0) = 0 and z0(1) = −R0μ0 Ĩp(0)/2π , the
evolution equations (2.15)–(2.17) have a unique solution z ∈ C1+αc,1+αc/2([0, 1] ×
[0, T ]) ∩ C2+αc,1+αc/2([0, 1] × [0, T ]).

The proof of this result is given in [19] and mainly follows from [20].

2.3.2 Interest of Choosing ψ as the Regulated Variable

A natural question that may arise at this point is why studying the evolution of the
poloidal magnetic flux profile instead of studying directly the safety factor profile.
Considering that the safety factor profile is related to the magnetic flux profile as:

q(r, t) = − Bφ0a2r

ψr(r, t)
(2.18)

the evolution of the safety factor profile is then given by:

1 Here Cαc,βc (Ω × [0, T ]) denotes the space of functions which are αc-Hölder continuous in Ω ,
βc-Hölder continuous in [0, T ]. P2 can be strengthened by assuming that η and u are in C2,1(Ω ×
[0, T ]) which is the case for the physical application.
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qt(r, t) = Bφ0a2r

ψ2
r (r, t)

ψrt(r, t) = q2(r, t)

Bφ0a2r
ψrt(r, t)

and, from (2.2):

qt(r, t) = −q2(r, t)

r

[
η(r, t)

r

[
r2

q(r, t)

]
r

]
r
+ q2(r, t)

Bφ0a2r
[η(r, t)u(r, t)]r (2.19)

or, in a more general form:

qt(ρ, t) = −q2(ρ, t)

μ0ρ

[
η‖(ρ, t)ρ

C2
3(ρ)

[
C2(ρ)C3(ρ)

q(ρ, t)

]
ρ

]
ρ

+ q2(ρ, t)

ρ

[
η‖(ρ, t) ∂V

∂ρ

FC3(ρ)
jni(ρ, t)

]
ρ

which can be obtained from (2.1) and the relation:

q(ρ, t) = − Bφ0ρ

ψρ(ρ, t)

Equation (2.19) is nonlinear in q (making it difficult to extend results obtained
around one equilibrium to other equilibria). This can be solved by working instead
with the so-called rotational transform (denoted ι in [6], which is the inverse of the
safety factor). Nevertheless, the boundary condition in the z variable (i.e. the total
plasma current) can be directly (and precisely) measured using either a continuous
Rogowski coil or several discrete magnetic coils around the plasma (see [6]). There-
fore, in this book, we have chosen to control the safety factor profile by controlling
the z variable.

2.3.3 Control Challenges

Controlling the safety factor profile q in a tokamak is done by controlling the poloidal
magnetic flux profile ψ . In particular, the desired properties of the controller are:

• to guarantee the exponential stability, in a given topology, of the solutions of
equation (2.15) to zero (or “close enough”) by closing the loop with a controlled
input u(·, t);

• to be able to adjust (in particular, to accelerate) the rate of convergence of the
system using the controlled input;

• to be able to determine the impact of a large class of errors motivated by the
physical system and to propose a robust feedback design strategy. Actuation errors,
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estimation/measurement errors, state disturbances and boundary condition errors
should be considered specifically.

The problem under consideration poses several challenges that have to be
addressed, some of which are:

• different orders of magnitude of the transport coefficients depending on the radial
position that are also time-varying;

• strong nonlinear shape constraints imposed on the actuators and saturations on the
available parameters;

• robustness of any proposed control scheme with respect to numerical problems
(in particular given the difference in magnitude of the transport coefficients) and
disturbances;

• coupling between the control applied to the infinite-dimensional system and the
boundary condition;

• the control algorithms must be implementable in real-time (restrictions on the
computational cost).
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