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Abstract The aim of this contribution is to provide a readable account of Markov
Chain Monte Carlo methods, with particular emphasis on their relations with the
numerical integration of deterministic and stochastic differential equations. The
exposition is largely based on numerical experiments and avoids mathematical
technicalities. The presentation is largely self-contained and includes tutorial
sections on stochastic processes, Markov chains, stochastic differential equations
and Hamiltonian dynamics. The Metropolis Random-Walk algorithm, Metropolis
adjusted Langevin algorithm and Hybrid Monte Carlo are discussed in detail,
including some recent results.

1 Introduction

This contribution presents a—hopefully readable—introduction to Markov Chain
Monte Carlo methods with particular emphasis on their combination with ideas from
deterministic or stochastic numerical differential equations. Markov Chain Monte
Carlo algorithms are widely used in many sciences, including physics, chemistry
and statistics; their importance is comparable to those of the Gaussian Elimination or
the Fast Fourier Transform. We have tried to keep the presentation as self-contained
as it has been feasible. A basic knowledge of applied mathematics and probability1

is assumed, but there are tutorial sections devoted to the necessary prerequisites

1We assume notions such as discrete and continuous random variables, expectation, variance,
conditional probability and independence.
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in stochastic processes (Sect. 2), Markov chains (Sect. 3), stochastic differential
equations (Sect. 6) and Hamiltonian dynamics/statistical physics (Sect. 8). The basic
Random Walk Metropolis algorithm for discrete or continuous distributions is
presented in Sects. 4 and 5. Sections 7 and 9 are respectively devoted to MALA,
an algorithm based on stochastic differential equations proposals, and to the Hybrid
Monte Carlo method, founded on ideas from Hamiltonian mechanics.

We have avoided throughout mathematical technicalities (that in the study
of continuous-time stochastic processes may be overwhelming). We have rather
followed the style of presentation taken by D. Higham in his tutorial paper on
stochastic differential equations [18] and aimed at an exposition based on computer
experiments; we believe that this approach may provide much insight and be a very
useful entry point to the study of the issues considered here.

2 Stochastic Processes

We begin with a few introductory definitions and some useful examples.

2.1 Preliminaries

The definition of stochastic process ([15], Chap. 8) is simple:

Definition 1. Let T be a set of indices. A stochastic process is a family fXtgt2T of
random variables defined on a common probability space .˝;A ;P/.2

In the applications, the variable t often corresponds to time. If T DR, T D Œ0;1/

or T D Œa; b� the process is said to occur in continuous time. If T D f0; 1; : : : g the
process takes place in discrete time and we write fXngn�0.

The variablesXt may take values in a continuous state space like Rd or in a finite
or infinite discrete state space E . In the latter case and without loss of generality,
one may assume that E has been identified with a subset of Z.

By definition, Xt may be seen as a function of two arguments: t and !.3 For a
given value of t , Xt is a function of ! (the chance), so that the value of Xt will be
different in different instances of the random experiment. For a given draw of the

2Recall that (1) ˝ is a set and each point ! 2 ˝ corresponds to a possible outcome of a random
experiment, (2) A (a � -algebra) is the family of those subsets A � ˝ called events to which a
probability P.A/ is assigned, (3) P is a probability measure, P W A ! Œ0; 1�. The probability
space plays very little explicit role in the study of the process; this is carried out in terms of the
distributions of the Xt (see the examples in this section).
3Often the dependence of Xt on ! is not incorporated explicitly to the notation.
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chance !, the value of Xt changes with time. In this way there are two different,
complementary ways to study a given process fXtgt2T :

• By studying the distribution of the variable Xt for each t 2 T and (since in all
interesting cases the Xt ’s are not mutually independent) the distribution of the
pair .Xt1 ; Xt2/ for each t1; t2 2 T , . . . , the distribution of .Xt1 ; : : : ; Xtn/ for each
t1; : : : ; tn 2 T , . . .

• By drawing ! from˝ and studying the map t 7! Xt.!/: a trajectory or path or
realization of the process.

These considerations will hopefully become clearer with the examples that
follow.

2.2 Some Simple Stochastic Processes

Let us examine three well-known, useful examples of time-discrete, discrete state
space processes.

2.2.1 The Symmetric Random Walk

At each time n D 1; 2; : : : , Mary and Paul toss a fair coin and bet one euro. Let
Xn be Mary’s accumulated gain before the .nC 1/-st toss (X0 D 0). Here the state
space is E D Z.

The distributions of the first few Xn are easily found:

P.X0 D 0/ D 1I
P.X1 D �1/ D 1=2; P.X1 D 1/ D 1=2I
P.X2 D �2/ D 1=4; P.X2 D 0/ D 1=2; P.X2 D 2/ D 1=4I
: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

The joint distribution of any pair .Xm;Xn/ may also be determined readily. For
instance for .X3;X4/ we compute:

P.X3 D 1;X4 D 0/ D 3=16;

P.X3 D 1;X4 D 1/ D 0;

P.X3 D 0;X4 D 1/ D 0;

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : :
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Fig. 1 Two possible trajectories of the symmetric random walk, 0 � n � 10

For .X1;X2;X3/:

P.X1 D 1;X2 D 2;X3 D 1/ D 1=8;

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

Sets of four, five, : : : Xn’s are dealt with in the same way.
Note that XnC1 D Xn C Zn,4 where the variables Zn (gain in toss n C 1) are

mutually independent and take values ˙1 with probability 1=2 each. This leads to
the formulae E.Xn/ D 0, Var.Xn/ D n for the expectation and variance.

Figure 1 shows, for 0 � n � 10, two possible trajectories of the process.
A computer-generated, longer trajectory may be seen in Fig. 2, where we note
a few remarkable facts. (A complete study of the symmetric random walk using
elementary means may be found in [9], Chap. 3.)

• The vertical axis covers only a small range slightly larger than Œ�100;100�, in
spite of the fact that Mary’s gains might in principle have been in the range
�10;000 � Xn � 10;000. This happens because the standard deviation �.Xn/
equals

p
n.

4In general, a process fXngn�0 is a random walk if XnC1 D Xn C Zn, where Zn is independent
of Xn,. . . ,X0.
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Fig. 2 A typical trajectory 0 � n � 10;000 of the symmetric random walk

• While the game is “fair” i.e. E.Xn/ D 0, Mary has been winning most of the
time. This is not a peculiarity of the particular trajectory shown: typically either
Mary is ahead most of the time or Paul is ahead most of the time.

• In the first two or three thousand tosses Mary and Paul tied (Xn D 0) a few times.
Since after a tie the game restarts afresh—the coin has no memory—one would
have expected that similar ties would keep happening after, say, n D 3;000.
Clearly this has not been the case. Our intuition suggests that, if Ti is the number
of tosses between consecutive ties, then the average An D .T1 C � � � C Tn/=n

should converge to a limit as n ! 1. However it may be proved that the size of
An grows proportionally to n, so that T1 C � � � C Tn grows like n2. In fact it is
likely that one among T1, . . . , Tn be of size proportional to n2.

2.2.2 The Non-symmetric Random Walk

Everything is as before but Mary’s chance of winning an individual bet is now p ¤
1=2 so that Paul’s is q D 1 � p.

For the distributions of the Xn we find now:

P.X0 D 0/ D 1;

P.X1 D �1/ D q; P.X1 D 1/ D p;

P.X2 D �2/ D q2; P.X2 D 0/ D 2pq; P.X2 D 2/ D p2;

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :
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Fig. 3 Non-symmetric random walk, p D 0:55, 0 � n � 10;000. The expectation of X10;000 is
1,000 and its typical deviation � 100. Drift offsets fluctuations due to chance

From XnC1 D Xn C Zn we compute E.Xn/ D n.p � q/ and Var.Xn/ D 4npq.
Since the expectation grows like n and the standard deviation only like

p
n, the drift

arising from the lack of fairness of the coin, p ¤ q, will in the long run dominate
the fluctuations due to chance, even if jp � qj is very small. This is borne out in
Fig. 3, where p D 0:55.

2.2.3 The Ehrenfest Diffusion Model

This was proposed in 1907 by P. Ehrenfest (1880–1933) to illustrate the second law
of thermodynamics. Two containers, left and right, are adjacent to each other and
contain gas that may move between them through a small aperture. There are in total
M molecules. At each time n, a molecule, randomly chosen among the M , moves
to the other container. Let Xn be the number of molecules in the left box before the
.n C 1/-st move. We assume that initially all molecules are in the left container,
X0 D M . The state space is f0; 1; : : : ;M g and the distributions are:

P.X1 D M � 1/ D 1;

P.X2 D M � 2/ D .M � 1/=M; P.X2 D M/ D 1=M;

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :
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Fig. 4 A trajectory of the Ehrenfest model, 100,000 steps for M D 100 molecules. Outside the
initial transient Xn has not left the interval Œ25; 75�

A typical trajectory may be seen in Fig. 4, where we observe that, after an
initial transient, Xn has not left the interval Œ25; 75�, i.e. the molecules distribute
themselves more or less evenly between both containers. It may be shown ([9],
Chap. XVII, Example 7.c) that, with M D 106 the probability of finding, for n
outside the initial transient, more than 505; 000 molecules in one container (i.e. of
finding fluctuations larger than 1 % around the break-even situation Xn D M=2) is
of the order of 10�23. In statistical physics M is of course much, much larger and
the size of the fluctuations around M=2 correspondingly smaller: for all practical
purposes the gas, driven by sheer chance, will remain in the maximum entropy state
Xn D M=2.

3 Discrete State Space Markov Chains

A Markov chain (MC) is a process fXngn�0 where the distribution of XnC1
conditional onX0,. . . ,Xn coincides with the distribution ofXnC1 conditional onXn.
This is sometimes expressed by saying “in order to know the future, the knowledge
of the past does not add anything to the knowledge of the present”. The precise
definition is:
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Definition 2. A discrete-time process fXngn�0 with values in a countable space E
is a Markov chain if for all n � 0 and all states i0; i1; : : : , in�1; i; j 2 E

P.XnC1 D j j Xn D i; Xn�1 D in�1; : : : ; X0 D i0/ D P.XnC1 D j j Xn D i/

(whenever both sides are well defined5).

Markov chains are named after A. Markov (1856–1922). Cases with infinite,
countable state spaces where first considered by A. Kolmogorov in 1936.

If, for each pair of states i; j 2 E; P.XnC1 D j j Xn D i/ is independent of n,
then the MC is called homogeneous; only homogeneous MC are considered in this
paper.

The symmetric and non-symmetric random walks in Sects. 2.2.1 and 2.2.2 are
(homogeneous) MC: the structure XnC1 D Xn C Zn noted before makes it clear
that the knowledge of the values of X0,. . . , Xn�1 adds nothing to the knowledge of
the value of Xn (in both trajectories in Fig. 1 X10 D 4 and the distribution of X11
conditional on the past is the same: X11 D 5 or X11 D 3 with probability 1/2 each).
In the symmetric random walk, the so-called transition probabilities are

P.XnC1 D i C 1 j Xn D i/ D P.Zn D 1/ D 1=2;

P.XnC1 D i � 1 j Xn D i/ D P.Zn D �1/ D 1=2;

P.XnC1 D j j Xn D i/ D P.Zn ¤ ˙1/ D 0; j ¤ i ˙ 1:

The Ehrenfest model (Sect. 2.2.3) is another example of MC. The transition
probabilities are:

P.XnC1 D i C 1 j Xn D i/ D .M � i/=M; i < M;

P.XnC1 D i � 1 j Xn D i/ D i=M; i > 0

(other transitions are impossible).

3.1 The Transition Matrix

The transition probabilities of a MC are defined by

pij WD P.XnC1 D j j Xn D i/:

5Note that e.g. P.XnC1 D j j Xn D i / does not make sense if P.Xn D i / D 0. Here we shall
not pay attention to the difficulties created by probabilities conditioned to events fXn D ig of 0
probability. These difficulties are easily avoided if, as in [9], the Markov chain is defined in the
first place by means of the transition probabilities rather than in terms of the variables Xn.
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Since, as j ranges in E with i fixed, the pij are a probability distribution, we may
write

pij � 0;
X

j2E
pij D 1;

so that the transition matrix P D .pij/.i;j /2E�E is a stochastic matrix.6 The i -th row
of P provides the distribution of XnC1 conditional on Xn D i .

A transition over two steps from i to k must be accomplished through an
intermediate visit to some state j and therefore we may write the Chapman-
Kolmogorov equation

P.XnC2 D k j Xn D i / D X

j

P.XnC1 D j j Xn D i / P.XnC2 D k j XnC1 D j / D X

j

pijpjk:

In this way P.XnC2 D k j Xn D i/ is given by the .i; k/ entry of P2. The entries of
higher powers P3, P4, . . . , give similarly the probabilities of transitions in 3; 4; : : :
steps.

The (unconditional) distribution of each Xn is determined by the distribution of
X0 together with the transition matrix P :

P.Xn D `/ D
X

i

P.X0 D i/ P.Xn D ` j X0 D i/ D
X

i

P.X0 D i/ .P n/i`:

It is customary to collect in a column vector �.n/ the probabilities P.Xn D `/,
` 2 E , and then the preceding formula may be rewritten as

�.n/T D �.0/T P n:

Equivalently one has the following expression for the evolution of the distribu-
tions �.n/:

�.nC1/T D �.n/T P; n D 0; 1; : : : (1)

The joint distributions of .Xm;Xn/, .X`;Xm;Xn/, . . . are also easily determined
once �.0/ and P are known. In practice it is customary to describe a MC by
specifying the transition matrix together with the initial distribution.7 Although
strictly speaking the MC is the sequence fXng, in practice we often speak as though
the chain were the matrix P together with the initial distribution �.0/ or even the
matrix P with an undetermined �.0/.

6If E comprises an infinite number of states, this “matrix” will of course have infinitely many
rows/columns. Sums like

P
j pijpjk that we shall find below have a finite value if P is stochastic.

7See [5], Theorem 8.1 for the construction of the Xn and the underlying probability space.
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3.2 Classifying Markov Chains

The following concept is needed in order to define persistent states:

Definition 3. For each state i 2 E define the return time Ti (a random variable) by:

Ti WD inffn � 1 W Xn D ig 2 Œ0;1�:

Here it is understood that the inf of the empty set is 1. Note that n � 1 so that,
in particular X0 D i does not imply Ti D 0.

Definition 4. A state i 2 E is persistent or recurrent if P.Ti < 1 j X0 D i/ D 1.
Otherwise it is called transient.

A recurrent state i 2 E is positive if E.Ti j X0 D i/ < 1. Otherwise it is called
null.

If i is persistent and the chain is started at i , then the number of visits to i
(i.e. the number of values of n with Xn D i ) is infinite with probability 1 (see [5],
Theorem 8.2).

For the chain

P D
2

4
1=2 1=2 0

0 1=2 1=2

0 1=2 1=2

3

5 (2)

the second state is persistent. In fact, if started at 2, the chain returns to 2 in one
move with probability 1/2, in two moves with probability 1/4, etc. The third state is
persistent for the same reason. The first state is transient: conditional to X0 D 1, T1
only takes the values 1 (with probability 1=2) and 1.

The matrix (2) is certainly special: states 2 and 3, on their own, would make
up a MC. This matrix provides an example of reducibility in the sense of the next
definition because moves from 2 to 1 or from 3 to 1 in n steps are impossible for
each n � 1.

Definition 5. A MC is irreducible if for each ordered pair of states i; j 2 E there
exists a number n D 1; 2; : : : such that

P.Xn D j j X0 D i/ > 0:

The following important result holds ([6], Chap. 3, Sect. 1.3):

Theorem 1. For an irreducible chain, one of the following three possibilities holds
true:

• All states are positive recurrent.
• All states are null recurrent.
• All states are transient.

If, in addition, E is finite, then the chain is necessarily positive recurrent.
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The Ehrenfest model, the symmetric random walk, and the non-symmetric
random walk are irreducible and provide examples of the three possibilities in the
theorem ([6], Chap. 3, Example 1.2). For the symmetric random walk the fact that
the expected waiting time for the first tie Xn D 0 is infinite is related to some of the
counterintuitive features we saw in Fig. 2; for instance to the fact that the averageAn
of the first n times between successive returns to equilibrium does not approach a
finite limit. For the Ehrenfest model positive recurrence implies that, except for a set
of trajectories with probability 0, in each trajectory there are infinitely many nr such
that Xnr D M : all the molecules will be back in the left container infinitely many
times! There is no contradiction with Fig. 4: the expectation E.TM j X0 D M/ is
positive but exponentially small as we shall see.

3.3 Stationary Distributions

The following concept is extremely important.

Definition 6. A probability distribution � on E (�i � 0, i 2 E ,
P

i �i D 1) is
called a stationary or invariant or equilibrium distribution of the MC with transition
matrix P if

X

i

�ipij D �j ; j 2 E;

or, in matrix notation,

�T P D �T : (3)

From (1) it follows that if X0 possesses the distribution � and � is invariant,
then all the Xn, n D 0; 1; 2; : : : share the same distribution; we then say that the
chain is at stationarity. Note that at stationarity the Xn are identically distributed
but, except for trivial cases,8 not independent. It is easy to see that the symmetric
and non-symmetric random walk do not possess invariant probability distributions.
For the Ehrenfest model the distribution

�i D
 
M

i

!
1

2M
(4)

is readily seen to be invariant. Note that �i coincides with the probability that, when
each of the M molecules is randomly assigned to the left or right container (with
probability 1=2 each), then the left container receives i molecules.

8If all the rows of P are equal, XnC1 is independent of Xn.
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As a further example consider the doubly stochastic matrix (
P

j pij DP
i pij D 1, pij � 0):

P D
2

4
1=4 1=2 1=4

1=4 1=4 1=2

1=2 1=4 1=4

3

5 : (5)

The invariant distribution is Œ1=3; 1=3; 1=3�: at stationarity all states have the same
probability, something that happens with all doubly stochastic transition matrices.

The following general result holds ([6], Chap. 3, Theorems 3.1, 3.2):

Theorem 2. Assume the chain to be irreducible. Then it is positive recurrent if and
only if there is a stationary distribution. The stationary distribution �, if it exists is
unique and �i D 1=E.Ti j X0 D i/ > 0 for each i 2 E .

Since from (4) �M D 2�M , the theorem shows that in Fig. 4 the expected
number of interchanges for all 100 molecules to return to the left container is 2100 �
1:27 � 1030.

3.4 Reversibility

Consider a MC with a stationary distribution such that �i > 0 for each i 2 E

(a particular case is given by an irreducible, positive recurrent chain, see
Theorem 2). The matrixQ with entries qij D �j pji=�i is stochastic,

X

j

qij D
X

j

�j pji

�i
D �i

�i
D 1;

and also has �i as an invariant distribution

X

i

�iqij D
X

i

�j pji D �j
X

i

pji D �j :

What is the meaning of Q? Assume that the initial distribution �.0/ coincides
with � (i.e. the chain is at stationarity) then:

P.Xn D j j XnC1 D i/ D P.XnC1 D i j Xn D j / P.Xn D j /

P.XnC1 D i/
D pji �j

�i
D qij:

Thus, Q is the transition matrix of a chain where the “arrow of time” has been
reversed, because n and n C 1 have interchanged their roles. As a simple example
consider the chain (5) for which Q D PT , since the stationary distribution is �1 D
�2 D �3 D 1=3. If P is at stationarity the three events fXn D 1;XnC1 D 2g,
fXn D 2;XnC1 D 3g, fXn D 3;XnC1 D 1g have probability 1=6 each, while
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the six events fXn D 1;XnC1 D 1g, fXn D 1;XnC1 D 3g, etc. have probability
1=12 each. For Q it is the events fXn D 2;XnC1 D 1g, fXn D 3;XnC1 D 2g,
fXn D 1;XnC1 D 1=3g that have probability 1=6.

Definition 7. A probability distribution � > 0 and a transition matrix P satisfy the
detailed balance condition if:

8i; j 2 E; �i pij D �j pji: (6)

Of course �i pij is the probability of the event .Xn D i; XnC1 D j /. For the
example (5) the detailed balance condition does not hold: the event .Xn D 1;

XnC1 D 2/ is more likely than the event .Xn D 2;XnC1 D 1/.
Since (6) implies

X

i

�ipij D
X

i

�j pji D �j ;

we may conclude:

Theorem 3. Under the assumption of detailed balance (6):

• � is an invariant distribution with respect to P .
• At stationarity, the reversed matrix Q coincides with P and therefore the chain

and its time-reversal are statistically the same.

The chain is then called reversible with respect to �.

The Ehrenfest chain is in detailed balance with the distribution (4) and hence
reversible with respect to it.

3.5 Ergodicity

The ergodic theorem ([6], Chap. 3, Theorem 4.1) is the foundation of all our later
work:

Theorem 4. Let fXngn�0 be an irreducible, positive recurrent MC and denote by �
its stationary distribution as in Theorem 2. For any function f W E ! R such that

X

i2E
jf .i/j�i < 1

and any initial distribution �.0/, P�.0/ almost sure:

lim
N!1

1

N C 1

NX

kD0
f .Xk/ D

X

i2E
f .i/�i : (7)
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Fig. 5 Ehrenfest’s model: an histogram of the trajectory in Fig. 4 (C signs) and the invariant
distribution (4) (solid line)

The last sum is of course the expectation of f .X/ whenX has the distribution�.
Figure 5 shows the ergodic theorem at work in Ehrenfest’s model. The C signs
measure the frequency with which the M C 1 states 0; : : : ;M have been occupied
along the single trajectory of Fig. 4 and the solid line represents the equilibrium
probabilities (4). For each state i , the probability in (4) is of course the expectation
of the function f such that f .i/ D 1 and f .j / D 0 for j ¤ i (the indicator of the
set fig) and the frequency of occupation is the average of f along the trajectory; we
see in Fig. 5 that both very approximately coincide, in agreement with the ergodic
theorem. In statistical physics one considers an ensemble, i.e. a very large number
of Ehrenfest experiments running in parallel, independently of one another, so that,
at any fixed n, the distribution of the number of molecules in the left containers
across the experiments coincides with the distribution of the random variable Xn.
The ergodic theorem implies that the behavior of a trajectory in a single experiment
started e.g. from X0 D M coincides with the behavior of the ensemble at any fixed
time n when the initial distribution across the ensemble is given by (4), i.e. if the
chain is at stationarity.

Ergodicity makes it possible to compute expectations with respect to the
stationary distribution by computing averages along trajectories. This is the basis
of Monte Carlo algorithms that we shall study in the next sections.



Markov Chain Monte Carlo and Numerical Differential Equations 53

3.6 Convergence to Steady State

With M D 2 molecules, the Ehrenfest transition matrix is

P D
2

4
0 1 0

1=2 0 1=2

0 1 0

3

5 I

it is easy to check that returns to the initial state Xn D X0 are only possible if n is
even. This motivates the following definition.

Definition 8. The period d.i/ of a state i is the greatest common divisor of all the
numbers n such that a return to i in n steps is possible. If d.i/ D 1, the state i is
said to be aperiodic. If d.i/ > 1 the state i is said to be periodic with period d.i/.

It turns out that for an irreducible chain either all states are aperiodic or all states
are periodic and share the same period ([15], Sect. 6.3). One then says that the
chain is aperiodic or periodic respectively. The Ehrenfest chain, regardless of the
number of molecules M , is periodic with period 2 and so are the symmetric and
non-symmetric random walks of Sects. 2.2.1 and 2.2.2.9

The result below ([6], Theorem 2.1) shows that, if we exclude periodic chains,
the distribution �.n/ of Xn in an irreducible, positive recurrent chain will approach
as n " 1 the stationary distribution, regardless of the choice of the distribution of
X0. This fact is sometimes expressed by saying that an irreducible, aperiodic and
positive recurrent chain is asymptotically stationary; for n large the chain “forgets
its origin.”

Theorem 5. Assume that a MC is irreducible, positive recurrent and aperiodic and
let � be the corresponding invariant distribution as in Theorem 2. For each choice
of the distribution10 �.0/ of X0

lim
n!1 j �.0/T P n � �T jD lim

n!1 j �.n/T � �T jD 0:

It is perhaps useful to stress that the ergodic Theorem 4 holds for both periodic
and aperiodic (irreducible, positive recurrent) chains (after all Fig. 5 illustrates
this theorem at work in the periodic Ehrenfest chain). However, if the chain is
irreducible, positive recurrent and aperiodic, the combination of Theorems 4 and 5
implies that the average in the left-hand side of (7) approximately coincides with

9This should not lead to the conclusion that period 2 is the rule for MCs. The three examples in the
last section are not typical in this respect and were chosen in view of the fact that are very easily
described—in each of them transitions may only occur between state i and states i ˙ 1. Any chain
where the diagonal elements of P are all ¤ 0 only contains aperiodic states.
10If �, � are distributions the notation j �T � �T j means

P
i j�i � �i j.



54 J.M. Sanz-Serna

the expectation of f with respect to the distribution �.n/ of Xn, n � 1, regardless
of the choice of the distribution �.0/.

In this connection consider an ensemble of many couples, Marys and Pauls, with
each couple tossing a coin and betting repeatedly (X0 D 0).11 At any fixed n, the
distribution of Xn is symmetric and there will be approximately as many Marys
ahead as Pauls ahead—this is a property of the ensemble. However, as illustrated in
Fig. 2, in the typical trajectory of a single couple either Mary or Paul will be ahead
most of the time. Here what is typical for a single trajectory is markedly different
from what happens in the ensemble; this difference explains why some people find
Fig. 2 disconcerting.

4 Sampling from a Target Distribution by Monte Carlo
Algorithms: The Discrete Case

Markov Chain Monte Carlo (MCMC) algorithms [28] are aimed at computing
expectations12 with respect to a given target distribution � on a state space E , that
for the time being we assume discrete. These algorithms construct a MC fXngn�0
for which � is an invariant distribution and, as pointed out before, invoke ergodicity
to approximate expectations by empirical means along a trajectory as in (7).

MCMC is a very popular technique in computational chemistry and physics;
examples will be considered in later. Bayesian statistics ([30], Sect. 1.3) is another
important field of application. There a prior probability distribution�0 is postulated
on the (discrete) set � of possible values of a parameter 	 appearing in a
probabilistic model (note that � is now the state space and that the different states
are the different values of 	). Then data y are collected and “incorporated” into the
model via Bayes’s theorem to define a posterior distribution for 	

�.	 j y/ D 
.y j 	/�0.	/P
�2� 
.y j �/�0.�/ (8)

(
.y j 	/ is the probability of y when the parameter value is 	 .) As a rule, the
posterior is neither one of the familiar distributions nor tractable analytically and in
order to compute expectations

E.f .	/ j y/ D
X

	2�
f .	/�.	 j y/

it is necessary to resort to Monte Carlo techniques.

11Note that there is no invariant probability distribution, since the chain is null recurrent.
12Of course computing the probability of an event A is equivalent to computing the expectation of
its indicator, i.e. of the random variable that takes the value 1 if ! 2 A and 0 if ! … A.
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The idea behind MCMC methods [26] was suggested by Metropolis and his co-
workers in 1953. The problem to be addressed is essentially13 how to construct a
MC fXngn�0 in a given state spaceE having the target� as an invariant distribution
or, more precisely, how to compute trajectories of that chain in order to be able to
use the empirical average in the left-hand side of (7) as an approximation to the
expectation in the right-hand side. Metropolis algorithms use two ingredients to
obtain realizations from fXngn�0:

1. Realizations u0, u1 . . . of a sequence of mutually independent random variables
U0, U1, . . . with uniform distribution in the unit interval. These realizations are of
course readily available on any computing system.

2. Samples from the distribution of YnC1 conditional on Yn in an auxiliary MC
fYngn�0 in the same state spaceE (not in the MC fXngn�0 we wish to construct!).
At this stage the only requirement we impose on fYngn�0 is that the transition
probabilities p�

ij satisfy the symmetry requirement

8i; j; p�
ij D p�

ji : (9)

For example, if E D Z then fYngn�0 may be defined through YnC1 D Yn C Zn,
where the Zn are mutually independent, integer-valued and with a symmetric
distribution (i.e. P.Zn D i/ D P.Zn D �i/ for each i 2 Z). To generate a sample
of YnC1 j Yn D yn just set ynC1 D yn C zn where zn is a sample of Zn. If Zn D ˙1
with probability 1=2 each, then fYngn�0 is of course the symmetric random walk in
Sect. 2.2.1.

The algorithm is as follows:

• Choose a value i0 for X0 (randomly or e.g. i0 D 0).
• Once values i0,. . . , in of X0; : : : ; Xn have been found:

– Generate a proposed value i�nC1 2 E , from the auxiliary conditional distribu-
tion YnC1 j Yn D in.

– If �i�nC1
=�in > un set XnC1 D i�nC1; in this case we say that the proposal is

accepted. Else set XnC1 D in and we say that the proposal is rejected.

The criterion used to accept or reject the proposal is called the Metropolis
accept/reject rule. After noting that the acceptance probability is14

a D 1 ^
�i�nC1

�in
(10)

13It is also necessary that the chain constructed be positive recurrent. Also not all positive recurrent
chains having the target as equilibrium measure are equally efficient, as the velocity of the
convergence to the limit in (7) is of course chain-dependent.
14^ means min.
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(i.e. the proposal is accepted with probability a), it is not difficult to prove the
following result:

Theorem 6. The transitionsXn 7! XnC1 in the procedure just described satisfy the
detailed balance condition (6) with respect to the target distribution �. Therefore
(Theorem 3), the implied chain fXngn�0 is reversible with respect to �.

Proof. If j ¤ i , to reach j at step n C 1 we require (i) that j is proposed and (ii)
that it is accepted. In this way:

�i pij D �i

�
p�

ij .1 ^ �j

�i
/

�
D p�

ij .�i ^ �j /;

and the last expression is symmetric in i; j in view of (9). ut
A few remarks:

• The target distribution � only enters the algorithm through the ratios in (10) and
hence must be known only up to a multiplicative constant. This is an asset: in
many applications the normalizing constant of the target distribution is extremely
difficult to determine. As an example look at (8) where, for given values of the
data y, the denominator is just a real number that normalizes the distribution (i.e.
it ensures that, as 	 ranges in �, the values of �.	 j y/ add up to 1). In practice,
the computation of that denominator may be impossible if the cardinality of �
is large; when computing the acceptance ratio in the Metropolis algorithm one
may substitute the un-normalized values 
.y j 	/�0.	/ for the true probabilities
�.	 j y/.

• The rejected values of Xn are part of the chain and must be included to compute
the average

1

N C 1

NX

kD0
f .Xk/

used to approximate the expectation of f .
• In practice if the starting location i0 of the chain is far away from the states i for

which the target has a significant size the convergence in (7) will be very slow. It
is then advisable to run the chain for a burn in preliminary period until the states
of higher probability are identified. The values of Xn corresponding to the burn
in phase are not used to compute the averages.

As we shall see later, it is of interest to consider proposals that do not satisfy
the symmetry condition in (9). (For instance we may wish to use proposals YnC1 D
Yn C Zn where the increments Zn do not have a symmetric distribution.) As first
pointed out by Hastings in 1970 [17], to achieve detailed balance the formula (10)
for acceptance probability has then to be changed into

a D 1 ^
p�
i�nC1in

�i�nC1

p�
ini

�

nC1

�in
: (11)
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The proof that this so-called Metropolis-Hastings rule works follows the lines of
the proof of Theorem 6. Further possibilities for the acceptance probability recipe
exist [17].

5 Metropolis Algorithms for the Continuous Case

For the sake of simplicity, our presentation of the Metropolis-Hastings algorithms
has assumed that the target probability is defined on a discrete state space. However
the algorithms are equally applicable to sampling from continuous distributions and
in fact the next sections will only deal with the continuous case. We begin with a
few words on MC with a continuous state space.

5.1 Continuous State Space Markov Chains

We now consider (time-discrete) stochastic processes fXngn�0 where each Xn takes
values in R

d . The definition of MC remains the same: fXngn�0 is a MC if the
distribution of XnC1 conditional on Xn and the distribution of XnC1 conditional on
Xn,. . . ,X0 coincide. The role played in the discrete state space case by the transition
matrix P is now played by a transition kernel K (see e.g. [30], Definition 6.2, [10],
Chap. VI, Sect. 11). This is a real-valued functionK.�; �/ of two arguments. For each
fixed x 2 R

d , K.x; �/ is a Borel probability measure in R
d . For each fixed Borel

set A 	 R
d , K.�; A/ is a Borel measurable function. The value K.x;A/ represents

the probability of jumping from the point x 2 R
d to a set A in one step of the

chain. Hence the formula (1) for the evolution of the distributions �.n/ of the Xn
now becomes

�.nC1/.A/ D P.XnC1 2 A/ D
Z

Rd

�.n/.dx/ K.x;A/;

or in shorthand

�.nC1/.dy/ D
Z

Rd

�.n/.dx/ K.x; dy/: (12)

The condition (3) for a stationary or invariant probability distribution is correspond-
ingly

�.A/ D
Z

Rd

�.dx/ K.x;A/

(for each measurable A) or

�.dy/ D
Z

Rd

�.dx/ K.x; dy/; (13)
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and the detailed balance condition (6) reads
Z

A

�.dx/K.x; B/ D
Z

B

�.dy/K.y;A/; (14)

or

�.dx/K.x; dy/ D �.dy/K.y; dx/:

While conditions exist that guarantee the existence of a stationary probability
distribution and the validity of a corresponding ergodic theorem (see [27, 30],
Chap. 6) the technicalities are much more intricate than in the discrete state space
case and will not be studied here.

In practice the kernel K often possesses a density k.x; y/ (with respect to the
standard Lebesgue measure in R

d ), i.e.K is expressed in terms of the function k of
two variables x 2 R

d , y 2 R
d through the formula

K.x;A/ D
Z

y2A
k.x; y/ dy:

In that case, if �.n/ (i.e. Xn) has a density �.n/.x/, then �.nC1/ has a density
(see (12))

�.nC1/.y/ D
Z

Rd

�.n/.x/ dx k.x; y/:

The density of a stationary distribution satisfies (see (13))

�.y/ D
Z

Rd

�.x/ dx k.x; y/:

and the detailed balance condition (14) becomes

�.x/k.x; y/ D �.y/k.y; x/:

5.2 Accept/Reject with Continuous Targets

If the target has a density � , the Metropolis acceptance probability for the discrete
case given in (10) has to be replaced by

a D 1 ^ �.x�
nC1/

�.xn/
; (15)

where xn is the value of Xn (current location of the chain) and x�
nC1 is the

proposal for the next location. This formula requires that the proposal be based on a
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symmetric kernel (in the case with densities the density of the proposal kernel must
satisfy k�.x; y/ 
 k�.y; x/). The Hastings formula (11) may be similarly adapted.

5.3 The Random Walk Metropolis Algorithm

As mentioned in the discrete case, a simple way of generating proposals is to use a
random walk format:YnC1 D YnCZn where now theZn are independent identically
distributed continuous random variables in R

d . A common choice is to take eachZn
to be a normal (Gaussian) d -variate distribution N.m;C / with density given by:

1

.2�/d=2 det.C /1=2
exp

�
�1
2
.x �m/T C�1 .x �m/

�
: (16)

Here m 2 R
d is the expectation E.Zn/ and C is the d � d symmetric positive

definite matrix of the covariances of the d (scalar) componentsZn;i of Zn, i.e.

cij D E..Zn;i �mi/.Zn;j �mj //:

Of course in the scalar (d D 1) case, (16) becomes

1

.2�/1=2�
exp

�
� 1

2�2
.x �m/2

�
; (17)

where �2 is the variance.
For m D 0 the normal distribution (16) is symmetric and therefore the proposal

satisfies the symmetry condition required to apply the Metropolis accept/reject
formula (15). The overall procedure is then called a Metropolis Random Walk
(RW) algorithm. In the absence of other information, it is reasonable to use in (16)
a scalar covariance matrix C D h2Id (so that the scalar components Zn;i of the
random vector Zn have a common variance h2 and are uncorrelated). Then the RW
proposal is

X�
nC1 D Xn C hZn; Zn � N.0; Id /: (18)

Let us present an example. Assume that the (univariate) target probability
density is15

/ exp.�ˇV.x//; V .x/ D x4: (19)

15The symbol / means proportional to. To obtain a probability density it is necessary to divide
exp.�ˇV .x// by the normalizing constant

R
R
V .x/ dx. As pointed out before the Metropolis

algorithm does not require the knowledge of the normalizing constant.
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Fig. 6 Histogram of the target density / exp.�x4/ obtained by the RW algorithm with h D 1

Anticipating here some elements of the discussion in Sect.8.3, we mention that (19)
would arise in statistical physics as Boltzmann density for a system consisting of a
single particle in a potential well with potential V.x/ interacting thermally with the
environment at absolute temperature / 1=ˇ (more precisely ˇ D 1=.kBTa/ where
kB is Boltzmann’s constant and Ta the absolute temperature). If ˇ is close to 1
(low temperature) the particle will be at the location x D 0 of minimum potential
energy. As the temperature increases, the particle is hit e.g. by moving molecules
in the environment, and it may leave the minimum x D 0. In an ensemble of such
systems the value of x will be distributed as in (19).

We have applied to the target (19), the RW algorithm (18). With ˇ D 1, h D 1

and N D 1;000;000 steps, we obtained the histogram in Fig. 6.
Of course the N correlated samples of the target generated by the algorithm

contain less information than N independent samples would afford and, therefore,
high correlation impairs the usefulness of the samples delivered by the algorithm.
In this connection, the choice of the standard deviation h in (18) has a marked effect
on the performance of RW. A lower value of h leads to fewer rejections, but the
progress of the chain is then slow (i.e. the locations xnC1 and xn at consecutive steps
are close to one another). Therefore the correlation between the random variables
Xn and XnC1 is then high. Large values of h lead to more frequent rejections. Since
at a rejected step the chain does not move, xnC1 D xn, this also causes an increase
of the correlation between Xn and XnC1.
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Fig. 7 RW: decay of the empirical correlation coefficient �� between Xn and XnC� as a function
of the lag �

The empirical auto-covariance with lag � of the samples x0; : : : ; xN given by the
algorithm is


� D 1

N C 1

N��X

iD0

�
xi � bm

��
xiC� � bm

�
; bm D 1

N C 1

NX

iD0
xi ;

and accordingly �� D 
�=
0 represents the empirical auto-correlation coefficient.
We would then like that the value �� approaches zero as quickly as possible as �
increases. Figure 7 illustrates the behavior of �� as h varies. Note that the number
of rejections increases with h and that h D 1; 2 are the best choices among those
considered.16

16For further details of the statistical analysis of the sequence of samples xi the reader is referred
to [13].



62 J.M. Sanz-Serna

6 Stochastic Differential Equations

In the RW algorithm the choice of proposals is completely independent of the
target distribution. It is plausible that, by incorporating into the proposals some
knowledge of the target, MCMC algorithms may take large steps from the current
position without drastically reducing the chance of having the proposal accepted.
Stochastic differential equations (SDEs) provide a means to improve on random
walk proposals.

The rigorous study of continuous-time stochastic processes in general and of
SDEs in particular is rather demanding mathematically. Here, in the spirit of [18],
we present an algorithmic introduction, focused on how to simulate such processes
in the computer. This kind of simulation provides much insight and is a very useful
first step for those wishing to study these issues.

6.1 The Brownian Motion

It is well known that the Brownian motion of pollen grains in water is named
after the Scottish botanist R. Brown who described it 1827. For three quarters of
a century the causes of the motion remained unclear, until in 1905 A. Einstein
offered a complete explanation in terms of shocks provided by the molecules of
water, thus furnishing the definitive proof of the molecular nature of matter. The
mathematical Brownian motion (also called the Wiener process or Wiener-Bachelier
process) was first studied by Bachelier in 1900 and then by Wiener in the 1920s. The
standard or normalized, scalar Brownian motion is a real-value stochastic processBt
(t 2 Œ0;1/) with the following characteristic features, [12], Chap. 3, [5], Sect. 37:

1. B0 D 0.
2. It has independent increments (i.e. if 0 � s1 < t1 < s2 < t2, the random variables
Bt1 � Bs1 and Bt2 � Bs2 are independent).

3. For t > s, Bt � Bs � N.0; t � s/,17 0 � s < t (see (16)).
4. It has continuous paths t 7! Bt .

A d -dimensional Wiener process takes values in R
d and its components are

independent one-dimensional Wiener processes. The mathematical construction of
B may be seen e.g. in [12], Chap. 3, [5], Sect. 37.18

After discretizing the variable t on a grid t D 0;�t; 2�t; : : : , the d -dimensional
Wiener process may be simulated [18] by the recursion

BnC1 D Bn C p
�tZn;

17	 means “has a distribution.”
18These references also show that (4) is essentially a consequence of (1), (2) and (3).
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Fig. 8 Two simulated trajectories of the standard Brownian motion

where Bn is the approximation corresponding to tn D n�t and the Zn are inde-
pendent variables with distribution N.0; Id / (see (16)). Note that the simulated
(discrete time) process fBng has then independent Gaussian increments with the
right expectation E.Bn/ D 0 and variance Var.Bn/ D tn.

Figure 8 depicts two simulated trajectories for 0 � t � 1, �t D 0:0001.
Since over a time interval of small length �t the increment BnC1 � Bn has the
relatively large standard deviation

p
�t , simulated paths have a rugged look. In fact,

before discretization, the Wiener paths are almost surely nowhere differentiable, [5],
Theorem 37.3, [12], Chap. 3, Theorem 2.2.19

6.2 The Euler-Maruyama Method

A stochastic differential equation has the form ([24], Chap. 2, [12], Chap. 5)

dXt D f .Xt ; t/dt C �.Xt ; t/dBt ; (20)

where f takes values in R
d , � takes values in the d � d 0 real matrices and Bt is

a d 0-dimensional Wiener process. The first term in the right-hand side provides a

19The trajectories of the Wiener process are in fact complex objects. For instance, with probabi-
lity 1, the set Z.!/ of values t for which a trajectory Bt .!/ vanishes is closed, unbounded, without
isolated points and of Lebesgue measure 0, [5], Theorem 37.4.
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Fig. 9 Ten trajectories of the stochastic differential equation (21)

deterministic drift; the second random noise or diffusion. The expression dBt does
not make sense, since, as pointed out above, the paths t 7! Bt are non-differentiable.
In fact the differential equation is shorthand for the integral equation

Xt D X0 C
Z t

0

f .Xs; s/ds C
Z t

0

�.Xs; s/dBs ;

where the last term is an Ito integral ([12], Chap. 4, [24], Chap. 1). Simulations may
be carried out by the Euler-Maruyama discretization [18]:

XnC1 D Xn C�tf .Xn; n�t/C p
�t�.Xn; n�t/Zn;

where the Zn are independent � N.0; Id 0/.
As a simple example consider the scalar problem

dXt D Xtdt C dBt ; t > 0; X0 D 1 (21)

(the initial condition here is deterministic, but cases where X0 is a random variable
often occur). Without noise, the solution would of course be Xt D exp.t/. The
Euler-Maruyama discretization is (Zn � N.0; 1/):

XnC1 D Xn C�tXn C p
�tZn; n D 0; 1; : : : ; X0 D 1:

Ten trajectories of the simulated solution Xt , 0 � t � 1, may be seen in Fig. 9
(�t D 0:0001). Clearly the paths exhibit an upward drift, corresponding to the
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Fig. 10 Histogram of 100;000 samples of XtD1, where Xt is the solution of the stochastic
differential equation (21). The line is the Gaussian density with mean e and variance .e2 � 1/=2

tern Xtdt in (21), while at the same time showing a diffusion whose variance
increases with t . In order to visualize the drift better, we have simulated 100;000
trajectories in 0 � t � 1 with step-size �t D 0:001, recorded the value of XtD1
for each trajectory and produced an histogram by distributing those 100;000

values into 15 bins centered at �4;�3; : : : ; 10. The result may be seen in Fig. 10.
A Gaussian density with mean e and variance .e2� 1/=2 provides an excellent fit to
the distribution of XtD1.

6.3 The Fokker-Planck Equation

How did we find the probability distribution of the solution Xt at t D 1? The
densities �.x; t/, x 2 R

d , of the solution Xt of the SDE (20) obey the Fokker-
Planck equation [23], Sect. 2.2.120

@t�.x; t/C
dX

iD1
@i

�
f i �.x; t/

�
D 1

2

dX

i;jD1
@i@j

�
ai;j �.x; t/

�
; (22)

20The terminology Fokker-Panck is used in physics; in probability the equation is known as
Kolmogorov’s forward equation, see e.g. [10], Chap. X, Sect. 5.
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where a D ��T , superscripts denote components and f and a are of course
evaluated at .x; t/. Let us see some examples.

6.3.1 Fokker-Planck Equation: No Drift

Consider first the scalar equation without drift: dXt D dBt . When X0 D 0 the
solution is of course Bt and may be seen as describing the abscissa of a particle
that moves due to random shocks from the environment. The Fokker-Planck
equation (22) is the familiar heat equation

@t�.x; t/ D 1

2
@xx�.x; t/I

this governs the diffusion of the trajectories of the particle corresponding to
different realizations of the process or, in the language of ensembles, the diffusion
of an ensemble of particles, initially located at the origin, that evolve randomly
independently from one another.

If the initial condition for the partial differential equation is a unit mass located
at x D 0 (the initial location of the particle is 0 independently of the chance), then
the solution, by definition, is the fundamental solution of the heat equation, which
has the familiar expression:

�.x; t/ D 1p
2�t

exp

�
�1
2

x2

t

�
:

Comparing with (17), we conclude that Xt � N.0; t/; this of course matches the
fact that Bt � N.0; t/ as we know.

6.3.2 Fokker-Planck Equation: No Diffusion

Assume now that the SDE is the standard ordinary differential equation (ODE)
dXt D f .Xt ; t/dt so that the dynamics are deterministic. The Fokker-Planck
equation (22) reads

@t� C r � .�f / D 0;

where we recognize the familiar Liouville equation for the transport of densities by
the ODE (see e.g. [21], Sect. 10.1). The trajectories of the ODE are characteristic
curves of this first-order linear partial differential equation.
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6.3.3 Fokker-Planck Equation: A Linear Example

For the problem (21), the Fokker-Planck equation (22) is given by

@t� C @x.x�/ D 1

2
@xx�:

The solution with initial data given by a unit mass at x D 1 is found to be:

1p
2��.t/

exp

�
�1
2

.x �m.t//2

�2.t/

�
;

with

m.t/ D exp.t/; �2.t/ D exp.2t/ � 1
2

:

Comparison with (17) shows that the solution has, at each t , the Gaussian distribu-
tion with variance �2.t/ and expectation m.t/ (this average exp.t/ coincides with
the solution when the noise is turned off so that the equation becomes dXt D Xtdt).

7 Metropolis Adjusted Langevin Algorithm

The Metropolis adjusted Langevin algorithm (MALA) [32] is an instance of a
MCMC where proposals are based on an SDE for which the target � is an invariant
density, cf. [30], Sect. 7.8.5. Without loss of generality (densities are positive) the
target density is written as � / exp.L /. Then the proposal is (cf. (18))

X�
nC1 D Xn C h2

2
rL .Xn/C hZn; Zn � N.0; Id /:

The middle term in the right-hand side (absent in the RW proposal) provides an
increment in the direction of steepest ascent in L , thus biasing the exploration
of the state space towards high-probability areas. Since the proposal kernel is not
symmetric, the Hastings accept/reject mechanism must be used.

More generally, one may use a preconditioned version of the proposal

X�
nC1 D Xn C h2

2
M�1rL .Xn/C h

p
M�1Zn;

with M a symmetric positive definite d � d constant matrix. The idea is that M
should be taken “large” in those directions in state space where smaller increments
are desirable because the target varies more quickly.
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The recipe for the proposal is an Euler-Maruyama step with step-length �t Dp
h for the SDE

dXt D 1

2
M�1rL .Xt /dt C

p
M�1dBt

whose Fokker-Planck equation has the target / exp.L .x// as a stationary (time-
independent) solution. This implies that, at stationarity in the chain, the proposals
will be distributed (except for the Euler discretization error) according to the
target: therefore high acceptance rates will be attained. In practice it is of course
impossible to start the chain from the stationary distribution, but chains are likely to
be asymptotically stationary (Sect. 3.6) and high acceptance rates may be expected
in that case.

The paper [33] proves that if the target consists of d independent copies of the
same distribution then the RW algorithm requires h / 1=d to have O.1/ acceptance
probabilities as d ! 1. MALA improves on that because, as shown in [31], it may
operate with larger values of h, namely h / .1=d/1=3. These papers also show that
these algorithms perform best when the acceptance probability is approximately
0.234 for the RW case and 0.574 for MALA. These results have recently been
extended [25, 29] to situations where the target is not product of equal copies.

As an example of the use of MALA, consider target density

/ exp.�.1=2/k.r � 1/2/; r D jxj; x 2 R
d :

This is the Boltzmann density (Sect. 8.3) for the motion of a spring in d dimensions.
Here we take d D 100, k D 100; the probability is concentrated in the neighbor-
hood of the unit sphere jr j D 1, i.e. essentially on a manifold of dimension 99.
We have applied the RW and MALA algorithms. Figures 11 (RW) and 12 (MALA)
show the projections of the draws x onto the two-dimensional plane .x1; x2/ (the
corresponding marginal distribution is concentrated in the neighborhood of the
origin in the .x1; x2/-plane) and the correlation in the variable x1. Clearly MALA is
able to take larger steps allowing for a faster exploration of the distribution.

8 Hamiltonian Dynamics

We now turn our attention to Hamiltonian systems, a topic that is essential to
formulate the Hybrid Monte Carlo method to be discussed in the next section.

8.1 An Example: Systems of Point Masses

The study of the motion of a conservative system of point masses in three-
dimensional space is of much interest in many branches of science. Examples
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Fig. 11 RW results for a stiff spring in R
100. Samples of the coordinates x1, x2 and autocorrela-

tion in x1

range from molecular dynamics, where the particles are molecules or atoms, to
astrophysics, where one deals with stars or galaxies. If � is the number of particles,
mi the mass of the i -th particle, and ri 2 R

3 its radius vector, Newton’s second law
reads:

mi

d2

dt2
ri D �ri V .r1; : : : ; r�/; i D 1; : : : ; �;

where the scalar V is the potential and �ri V is the net force on the i -th particle
(ri means gradient with respect to ri ). This is of course a system of 3� second-
order scalar differential equations for the 3� cartesian components ri;j of the ri ,
j D 1; 2; 3. After introducing the momenta

pi D mi

d

dt
ri ; i D 1; : : : ; �; (23)

the equations may be rewritten in first-order form:

d

dt
pi D �ri V .r1; : : : ; r�/; i D 1; : : : ; �:



70 J.M. Sanz-Serna

−1 0 1

−1.5

−1

−0.5

0

0.5

1

1.5

X1

X
2

0 5 10 15 20
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9 h = 0.1

100 steps

22 rejections

LAG

C
O

R
R

E
LA

T
IO

N

Fig. 12 MALA results for a stiff spring in R
100. Samples of the coordinates x1, x2 and

autocorrelation in x1

These 3� scalar equations, together with the 3� scalar equations in (23) provide a
system of D D 2 � 3 � � first-order scalar differential equations for the D cartesian
components of the vectors ri and pi , i D 1; : : : ; �. With the introduction of the
Hamiltonian function

H D
X

i

1

2mi

p2i C V.r1; : : : ; r�/ (24)

the first-order system takes the very symmetric canonical form:

d

dt
pi;j D � @H

@ri;j
;

d

dt
ri;j D C @H

@pi;j
; i D 1; : : : ; �; j D 1; 2; 3: (25)

Note that H represents the total mechanical energy in the system, composed of a
kinetic part

X

i

1

2mi

p2i D
X

i

1

2
mi

�
d

dt
ri

�2

and a potential part V .



Markov Chain Monte Carlo and Numerical Differential Equations 71

The use of the Hamiltonian format in lieu of Newton’s equations is essential in
statistical mechanics and quantum mechanics.

8.2 Hamiltonian Systems

In the phase space RD , D D 2d , of the points .p; x/,

p D .p1; : : : ; pd / 2 R
d ; x D .x1; : : : ; xd / 2 R

d ;

to each smooth real-valued function H D H.p; x/ (the Hamiltonian) there
corresponds a first-order differential system of D canonical Hamiltonian equations
(cf. (25)):

d

dt
pj D � @H

@xj
;

d

dt
xj D C @H

@pj
; j D 1; : : : ; d: (26)

In mechanics, as it was the case in (25), the variables x 2 R
d describe the config-

uration of the system, the variables p are the momenta conjugate to x [2] and d is
the number of degrees of freedom.

Canonical Hamiltonian systems appear very frequently in science; virtually all
situations where dissipation is absent or may be neglected may be brought into
Hamiltonian form. At the same time, Hamiltonian systems possess properties not
frequently found in “general” systems. Before discussing such special properties,
it is convenient to introduce the flow f˚t gt2R of the system (26). For each fixed
(but arbitrary) t (see [35], Sect. 2.1), ˚t is a map in phase space, ˚t W RD ! R

D ,
defined as follows: for each point .p0; x0/, ˚t.p0; x0/ is the value at time t of the
solution .p.t/; x.t// of the canonical equations (26) with value .p0; x0/ at time 0.
The simplest example has d D 1 and H D .1=2/.p2 C x2/, the canonical system
is .d=dt/p D �x, .d=dt/x D p (the harmonic oscillator). The solution with initial
value .p0; x0/ is

p.t/ D p0 cos t � x0 sin t; x.t/ D p0 sin t C x0 cos t;

and therefore˚t is the rotation in the plane that moves the point .p0; x0/ to the point

˚t.p0; x0/ D �
p0 cos t � x0 sin t; p0 sin t C x0 cos t

�I

f˚tgt2R is the one-parameter family of rotations in the plane. Note that, in general,
˚t.p0; x0/ means:

• If t is varied while keeping .p0; x0/ fixed: the solution of (26) with initial
condition .p0; x0/.

• If t is fixed and .p0; x0/ regarded as a variable: a transformation ˚t in phase
space.



72 J.M. Sanz-Serna

• If t is regarded as a parameter: a one-parameter family f˚tgt2R of transforma-
tions in phase-space. This family is a group: ˚t ı ˚s D ˚tCs , ˚�t D ˚�1

t .

We now describe the properties of Hamiltonian systems that we shall require
when formulating and analyzing the Hybrid Monte Carlo method.

8.2.1 Properties of Hamiltonian Systems: Conservation of Energy

The function H is a conserved quantity or first integral of (26). In fact, along
solutions:

d

dt
H.p.t/; x.t// D

X

j

�
@H

@pj

d

dt
pj C @H

@xj

d

dt
xj

�

D
X

j

�
� @H
@pj

@H

@xj
C @H

@xj

@H

@pj

�
D 0;

and therefore

H.p.t/; x.t// D H.p.0/; x.0/:

In terms of the flow, this property simply readsH ı ˚t D H for each t .
For the example (25) with � point masses, we pointed out that H measures the

total energy; therefore the conservation ofH corresponds to conservation of energy.
This is also the case for most Hamiltonian problems.

8.2.2 Properties of Hamiltonian Systems: Conservation of Volume

For each t , ˚t is a volume preserving transformation in phase space ([35], Sect. 2.6):
for each (Borel) subset A � R

D ,

Vol
�
˚t.A/

� D Vol.A/:

For the simple example of the harmonic oscillator, this corresponds to the obvious
fact that the area of a planar set A does not change when the set is rotated. In
general, conservation of volume is a direct consequence of Liouville’s theorem:
the solution flow of a differential system Pz D G.z/ is volume preserving if and only
if the corresponding vector field G is divergence-free ([2], Sect. 16). Indeed for a
canonical system the divergence is

dX

jD1

�
@

@pj

�
� @H
@xj

�
C @

@xj

@H

@pj

�
D 0:
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In terms of the flow, conservation of volume simply reads: det.˚ 0
t / 
 1, for

each t where ˚ 0
t denotes the Jacobian of ˚t .

8.2.3 Properties of Hamiltonian Systems: Reversibility

Consider now the momentum-flip symmetry S in phase-space defined by

S.p; x/ D .�p; x/

and assume that H ı S D H , i.e. the Hamiltonian is an even function of the
momenta as in (24) and many other mechanical systems. If .p.t/; x.t// is a solution
of the canonical equations (26), so is .bp.t/;bx.t// WD .�p.�t/; x.�t//. The proof
is simple:

d

dt
bpi .t/ D d

dt
pi.�t/ D �@H

@xi
.p.�t/; x.�t// D �@H

@xi
.bp.t/;bx.t//

and similarly for xi . Since .bp.0/;bx.0// D S.p; x/, this fact, called reversibility of
the flow, may be compactly written as

˚t ı S D S ı ˚�t I

see Fig. 13 that portraits the two-dimensional phase space of the Hamiltonian
function

H.p; x/ D 1

2
p2 C V.x/; V .x/ D .x2 � 1/2: (27)

The significance of reversibility is well known: if a movie is made of a motion
of a reversible system and projected backwards what we see is also a possible
(forwards) motion of the system. In Fig. 13, if the forwards movie shows the
sequence of configurations x.t/ from t D 0 to t D T (top circle to top diamond),
when projected backwards will display in reversed order the same configurations
and that sequence of configurations corresponds to the solution that at time t D 0

starts at the lower diamond and reaches the lower circle at t D T .

8.3 The Canonical Density

Consider a mechanical system whose time-evolution, when isolated from rest of
the universe, is governed by the canonical equations associated with a Hamiltonian
H.p; x/ (for instance our earlier system of � point masses). As discussed above, the
value of H.p.t/; x.t// (the energy) along the evolution remains constant. Assume



74 J.M. Sanz-Serna

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

x

p
t = 0

t = T

t = −T

t = 0

Fig. 13 Reversibility: ˚t ı S D S ı ˚�t . Begin from the lower circle, flip the momentum to
get the upper circle and use the solution flow to reach the upper diamond after T units of time.
The final result is the same as one would get by first evolving �T units of time to reach the lower
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now that this system is not isolated but interacts with an environment at constant
temperature (for instance our point masses collide with water molecules of a heat
bath that surrounds them). There will be exchanges of energy between the system
and the environment, the value of H will not remain constant and the canonical
equations (26) will not describe the time evolution. The energy exchanges with
the environment must be modeled as random and therefore, for each fixed t ,
.p.t/; x.t// are random variables that need to be described statistically. Once
thermal equilibrium with the environment has been reached, the stochastic process
.p.t/; x.t// possesses a stationary probability distribution: this is the Maxwell-
Boltzmann distribution with density

/ exp.�ˇH.p; x//; ˇ D 1

kBTa
(28)

(here Ta is the absolute temperature of the environment and kB the Boltzmann
constant). The corresponding ensemble is called the canonical ensemble ([36],
Sect. 12.5.3, [21], Sect. 10.2). Thus, at any temperature, a canonical ensemble
contains few systems at locations of high energy. However, as the temperature Ta
increases locations of high energy become more likely.
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8.3.1 The Maxwell-Boltzmann Distribution

As an example consider again the system of point masses with Hamiltonian (24).
The canonical density (28) is

/ exp

 
�ˇ

 
�X

iD1

1

2mi

p2i C V.r1; : : : ; r�/

!!
;

and since the exponential may be rewritten as a product, the � C 1 random vectors
p1 2 R

3; : : : ; p� 2 R
3, .r1; : : : ; r�/ 2 R

3� are mutually independent. The density
of pi is then ([11], Sect. 40.4), as first established by Maxwell in 1859,

/ exp.� ˇ

2mi

p2i /;

and comparison with (16) shows that the distribution of pi is Gaussian with zero
mean and covariance matrix .mi=ˇ/I3. In particular there is no correlation among
the three cartesian componentspi;j of pi and each of these components has variance
mi=ˇ D mikBTa. It follows that the kinetic energy p2i;j =.2mi/ of the i -th mass
along the j -axis has an ensemble average .1=2/kBTa; in other words the absolute
temperature coincides, up to a normalizing factor, with the kinetic energy in any of
the 3� degrees of freedom of the system (in fact this is the definition of absolute
temperature [11], Sect. 39.4).

The configuration, specified by .r1; : : : ; r�/ 2 R
3� , is, as noted above, indepen-

dent of the momenta, and possesses the density

/ exp .�ˇV.r1; : : : ; r�// :
In statistical mechanics this is called the Boltzmann density for the potential V ([11],
Sect. 40.2).

8.3.2 Preservation of the Canonical Density by the Hamiltonian Flow

We shall need later the following result:

Theorem 7. For each fixed t , the canonical density (28) is preserved by the flow˚t
of the Hamiltonian system (26):

Z

˚t .A/

exp.�ˇH.p; x// dp dx D
Z

A

exp.�ˇH.p; x// dp dx;

for each (Borel) subset A of the phase space RD .

Proof. Change variables .p; x/ D ˚t. Qp; Qx/ in the first integral; H.˚t . Qp; Qx// D
H. Qx; Qp/ by conservation of energy and the required Jacobian determinant is unity
by conservation of volume. ut
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In an image due to Gibbs, one places at t D 0 points in the phase space R
D of

H in such a way that they are distributed with probability density / exp.�ˇH/.
Each point represents a system in the canonical ensemble. As t varies each point
will move in the phase space following (26); the theorem implies that the density at
any point .p; x/ will remain constant.

8.4 Numerical Methods for Hamiltonian Problems

The analytic integration of Hamilton’s canonical equations (26) is usually impos-
sible and one has to resort to numerical integrators. In the last 25 years it has
become clear that when integrating Hamiltonian problems it is essential in many
applications to use numerical methods that possess conservation properties similar
to those shared by Hamiltonian systems, like reversibility, conservation of volume,
etc. The construction and analysis of such numerical methods is part of the field of
geometric integration, a term coined in [34]. An introductory early monograph is
[35] and a more recent expositions are given in [16, 22]. Here we limit ourselves to
the material required later to describe the Hybrid Monte Carlo method.

Each one-step numerical method to integrate (26) is specified by a map  �t W
R
D ! R

D , where�t represents the step-length. The approximation .pmC1; xmC1/
to the true solution value .p..mC 1/�t/; x..mC 1/�t// is obtained recursively by

.pmC1; xmC1/ D  �t .p
m; xm/:

In this way the approximate solution at time T (for simplicity we assume that
T=�t is an integer) is obtained by applying T=�t times the mapping  �t , or, in
other words, the true T -flow ˚T D ˚

T=�t
�t is approximated by �T WD  

T=�t
�t , the

composition of  �t T=�t times with itself.
It turns out that it is impossible to construct a general integrator  �t that exactly

preserves energy and volume ([35], Sect. 10.3.2). Faced with this impossibility, it is
advisable to drop the requirement of exact conservation of energy and demand exact
conservation of volume.21 The best-known volume preserving, reversible algorithm
to integrate Hamiltonian systems is the Verlet/Stoermer/leapfrog algorithm applica-
ble when the Hamiltonian has the special (but common) form (cf. (24))

H D 1

2
pTM�1p C V.x/I

21More precisely it is customary to insist in the integrator being symplectic [35], Chap. 6;
symplecticness implies conservation of volume and satisfactory—but not exact—conservation of
energy, [35], Sect. 10.3.3. The Verlet scheme is symplectic.
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M a constant positive definite symmetric matrix—the so-called mass matrix. For
our purposes we may think of this method as a splitting (fractional step) algorithm,
see [35], Sect. 12.4. The Hamiltonian H is written as a sum H D H.1/ C H.2/ of
potential and kinetic parts with

H.1/.p; x/ D V.x/; H.2/.p; x/ D 1

2
pTM�1p:

For the Hamiltonian H.1/, the equations of motion are .d=dt/p D �.@=@x/V .x/,
.d=dt/x D 0, with solutions

p.t/ D p0 � t
@

@x
V.x0/; x.t/ D x0:

For the Hamiltonian H.2/, the equations of motion are .d=dt/p D 0, .d=dt/x D
M�1p leading to

p.t/ D p0; x.t/ D x0 C tM�1p0:

Then the method is defined by the familiar Strang’s splitting recipe:

 �t WD ˚
.1/

�t=2 ı ˚.2/
�t ı ˚.1/

�t=2

(˚.i/ is the flow of H.i/). In this way, given .pm; xm/, we compute the approxi-
mation .pmC1; xmC1/ D  �t .p

m; xm/ at the next time level by means of the three
fractional steps:

pmC1=2 D pm � �t

2

@

@x
V.xm/;

xmC1 D xm C�tM�1pmC1=2;

pmC1 D pmC1=2 � �t

2

@

@x
V.xmC1/:

Since the individual transformations

.pm; xm/ 7! .pmC1=2; xm/;

.pmC1=2; xm/ 7! .pmC1=2; xmC1/;

.pmC1=2; xmC1/ 7! .pmC1=2; xmC1/

are flows of canonical systems they preserve volume. As a result  �t (which is the
composition of the three) and �T D  

T=�t
�t preserve volume.

The reversibility of  �t (and hence that of �T i.e. S ı �T D ��1
T ı S ) is easily

checked and is a consequence of the symmetric pattern of the Strang splitting.
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More sophisticated reversible, volume preserving splitting algorithms exist, but
the Verlet method is commonly used in molecular simulations and other application
areas.

9 The Hybrid Monte Carlo Method

The Hybrid Monte Carlo (HMC) algorithm originated in the physics literature [8]
and, while it may be used in other application fields such as Bayesian statistics (see
e.g. [14]), its description requires to think of the given problem in physical terms.
Let us first present the idea that underlies the method.

9.1 The Idea

Without loss of generality, we write the target density �.x/ in the state space
R
d as exp.�V.x// and, regardless of the application in mind, think of x 2 R

d

as specifying the configuration of a mechanical system and of V.x/ as the corre-
sponding potential energy. We choose arbitrarily T > 0 and a positive definite sym-
metric matrixM (M is often diagonal). Next we consider the Hamiltonian function

H D 1

2
pTM�1p C V.x/

and think of p as momenta and of M as a mass matrix. For the canonical
probability distribution in the phase space R

D , D D 2d , with density (we set
ˇ D 1 for simplicity)

/ exp.�H/ D exp
�

� 1

2
pTM�1p

�
� exp

� � V.x/�

the random vectors p 2 R
d and x 2 R

d are stochastically independent (we found
a similar independence in Sect. 8.3.1). The (marginal) distribution of x is our target
�.x/ D exp.�V.x// and p has a Gaussian density / exp

� � .1=2/pTM�1p
�

so
that samples from p are easily available. In this set-up, Theorem 7 suggests a means
to construct a Markov chain in R

d reversible with respect to the target �.x/:

Theorem 8. Define the transitions xn 7! xnC1 in the state space R
d by the

following procedure:

• Draw pn from the Gaussian density / exp
�� .1=2/pTM�1p

�
.

• Find .p�
nC1; xnC1/ D ˚T .pn; xn/, where ˚T is the T -flow of the canonical

system (26) with Hamiltonian functionH .

Then xn 7!xnC1 defines a Markov chain in R
d that has the target �.x//

exp.�V.x// as an invariant probability distribution. Furthermore this Markov
chain is reversible with respect to �.x/.
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Proof. The Markov property is obvious: the past enters the computation of xnC1
only through the knowledge of xn. If Xn is distributed � �.x/, then, by the choice
of pn, the random vector .Pn;Xn/ has the canonical density / exp.�H/. By
Theorem 7, .P �

nC1; XnC1/ also has density / exp.�H/; accordingly, the density
of XnC1 will be the marginal �.x/. The reversibility of the chain is a simple
consequence of the reversibility of the flow ˚T . ut

The main appeal of this procedure is that, unlike the situation in RW or MALA,
the transitions xn 7! xnC1 are non-local in the state space Rd , in the sense that xnC1
may be far away from the previous state xn. Figure 13, as we know, corresponds
to the double well potential V in (27) with minima at x D ˙1, so that the target
exp.�V.x// has modes (locations of maximum probability density) at x D ˙1. If
the current location xn is the abscissa of the circles in that figure and the drawing
of pn leads to the point .pn; xn/ depicted by the upper circle, then the T -flow of the
Hamiltonian system yields the upper diamond and xnC1 will be the corresponding
abscissa. In this way the procedure has carried out, in a single step of the Markov
chain, a transition from the neighborhood of the mode at x D 1 to the neighborhood
of the mode at x D �1.

Note that, once xnC1 has been determined, the momentum vector p�
nC1 is dis-

carded and a fresh pnC1 is drawn. Therefore the next starting location .pnC1; xnC1/
will haveH.pnC1; xnC1/ ¤ H.p�

nC1; xnC1/ D H.pn; xn/. This makes it possible to
explore the whole phase space in spite of the fact that each point only flows within
the corresponding level set of the energyH .

Unfortunately the procedure in Theorem 8 cannot be implemented in practice:
the required flow ˚T is not explicitly known except in simple academic examples!

9.2 The Algorithm

In order to turn the procedure we have studied into a practical algorithm, the
exact flow ˚T is replaced by a numerical approximation �T as in Sect. 8.4 and
an accept/reject mechanism is introduced to assure that the resulting chain still has
the target as an invariant distribution. The accep/reject recipe is greatly simplified if
integrator �T is volume preserving and reversible, something we assume hereafter
(Verlet is integrator of choice).

The transition xn 7! xnC1 in HMC is as follows:

• Draw a value pn from the density exp
� � .1=2/pTM�1p

�
.

• Find .p�
nC1; x�

nC1/ D �T .pn; xn/ (i.e. perform T=�t time-steps of the chosen
numerical integrator with step-length �t). Discard p�

nC1 and take x�
nC1 as

proposal.
• Set xnC1 D x�

nC1 with probability

1 ^ exp
�

� �
H.p�

nC1; x�
nC1/�H.pn; xn/

��

(acceptance). If the proposal is rejected set xnC1 D xn.
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Fig. 14 RW results for a stiff spring in R
3. Samples of the coordinates x1, x2 and autocorrela-

tion in x1

Analyses of HMC are given in [7, 37]. The following result, whose proof is
postponed to Sect. 9.3, holds:

Theorem 9. In the situation just described, the transitions xn 7! xnC1 define a
Markov chain reversible with respect to the target �.x/ / exp.�V.x//.

Some comments are in order. If the exact flow ˚T were known and we used it as
“numerical integrator”, i.e. �T D ˚T , then, by conservation of energy,

exp
�

� �
H.p�

nC1; x�
nC1/ �H.pn; xn/

�� D 1

and every proposal would be accepted: one is then back in the procedure covered by
Theorem 8. In a similar vein, the better the numerical scheme �T preserves H the
higher the probability of acceptance.22

22In this connection it may be worth noting that the proof of Theorem 9 demands that the mapping
�T is time reversible and volume preserving, but would work even if�T were not an approximation
to the true ˚T . However if �T is not close to ˚T , the acceptance probability will be low.
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Fig. 15 MALA results for a stiff spring in R
3. Samples of the coordinates x1, x2 and autocorrela-

tion in x1

With HMC, a Markov chain step xn 7! xnC1 requires T=�t time-steps of the
numerical integrator. In the particular case where the integrator is the Verlet scheme
and �t D T , so that there is a single time-step per step of the chain, it is easy to
check that HMC is identical to MALA with h D �t (more precisely, given xn, the
proposal x�

nC1 and the accept/reject mechanism are the same in both algorithms).
This equivalence is somewhat surprising as MALA proposals are motivated by an
SDE, whereas HMC proposals are based on deterministic Hamiltonian dynamics.23

After this equivalence MALA/HMC one may think of HMC as a non-local version
of MALA.

The paper [4] shows that if the target consists of d independent copies of the same
distribution, then the Verlet time-step�t should be chosen / .1=d/1=4 to have O.1/
acceptance probabilities as d ! 1. For reversible, volume preserving integrators
of (necessarily even) order 2�, �t / .1=d/1=.4�/. This compares favorably with the
corresponding relations for RW and MALA reported in Sect. 7.

23Recall that when the MALA proposal is seen as an Euler-Maruyama step for an SDE, the MALA
parameter h coincides with the square of the time-step�t . However in the relation of MALA with
HMC studied in this section, h D �t as we have just pointed out.
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Fig. 16 HMC results for a stiff spring in R
3. Samples of the coordinates x1, x2 and autocorrela-

tion in x1

In our description in Sect. 8.4 we observed that the Verlet algorithm is based
on splitting H into its kinetic and potential part. This is not the only possibility of
splitting, see [3,38]. Modifications of HMC may be seen in [1,19,20], among others.

We now turn our attention to an example. As in Sect. 7, consider the target
/ exp.�.1=2/k.r � 1/2/, k D 100 but now d D 3. We show the draws in the
two-dimensional plane of the random vector .x1; x2/ (the corresponding marginal
is approximately uniform on the unit disk) and the correlation in the variable x1.
Figures 14–16 show results for RW, MALA and HMC (with Verlet integration)
respectively. The superiority of HMC in this example is manifest.

9.3 Proofs

The proof of Theorem 9, borrowed from [23], is based on some lemmas. We shall
use repeatedly the fact that the momentum-flip symmetry S , S.p; x/ D .�p; x/,
preserves the canonical probability measure �: �.S.A// D �.A/ for each Borel
subset A of RD .
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Lemma 1. Consider a Borel probability measure � in R
D that is preserved by the

momentum-flip symmetry S and a transition kernel K in the phase space R
D that

satisfies the following analogue of the detailed balance condition (14):

Z

A

�.d�/K.�; B/ D
Z

B

�.d�/K.S.�/; S.A// (29)

for each (Borel measurable) A, B . Then (cf. Theorem 3):

• The measure � is invariant with respect to K .
• At stationarity, the chain�0; : : : ; �N generated by K is statistically the same as

the chain S.�N /; : : : ; S.�0/.

Proof. With A D R
D , the hypothesis (29) implies,

Z

RD

�.d�/K.�; B/ D
Z

B

�.d�/K.S.�/;RD/ D
Z

B

�.d�/ D �.B/I

this proves stationarity (see (13)).
By definition of conditional probability,

P
�
S.�n/ 2 S.A/ j S.�nC1/ 2 S.B/�

D P
�
�n 2 A j �nC1 2 B� D P

�
�n 2 A ^�nC1 2 B�

P
�
�nC1 2 B� : (30)

Let us rewrite the last fraction. At stationarity P
�
�nC1 2B�DP

�
�n 2B�; further-

more, after the change of variables � D S.�/, (29) becomes (recall that�.S.d�// D
�.d�/)

Z

A

�.d�/K.�; B/ D
Z

S.B/

�.d�/K.�; S.A//;

which means

P
�
�n 2 A ^�nC1 2 B� D P

�
�n 2 S.B/ ^�nC1 2 S.A/�

Taking these results back to (30)

P
�
S.�n/ 2 S.A/ j S.�nC1/ 2 S.B/�

D P
�
�n 2 S.B/ ^�nC1 2 S.A/�

P
�
�n 2 S.B/� D P

�
�nC1 2 S.A/ j �n 2 S.B/�:

ut
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Lemma 2. As above, let � be a measure preserved by the momentum-flip map S .
Assume that K� is a (proposal) Markov kernel in R

D , such that the measures

K��S.�/; S.d�/
�
�.d�/; K�.�; d�/ �.d�/

in R
D �R

D are equivalent (i.e. each has a density with respect to the other), so that
there is a function r such that

r.�; �/ D K��S.�/; S.d�/
�
�.d�/

K�.�; d�/ �.d�/
: (31)

Define a Markov transition �n 7! �nC1 in R
D by:

• Propose ��
nC1 according to K�.�n; �/.

• Accept (�nC1 D ��
nC1) with probability 1 ^ r.�n; �

�
nC1/. If rejection occurs set

�nC1 D S.�n/.

The chain defined in this way satisfies the generalized detailed balance condi-
tion (29) and, in particular, � is an invariant measure.

Proof. The kernel of the chain is:

K.�; d�/ D �
1 ^ r.�; �/�K�.�; d�/C �

1 � ˛.�/� ıS.�/.d�/;

where

˛.�/ D
Z

RD

�
1 ^ r.�; �/�K�.�; d�/

is the probability of acceptance conditioned to �n D � and ı denotes a point unit
mass (Dirac’s delta).

We have then to show that

�
1 ^ r.�; �/�K�.�; d�/ �.d�/C�1 � ˛.�/� ıS.�/.d�/ �.d�/ D (32)
�
1 ^ r.S.�/; S.�/�K��S.�/; S.d�/

�
�.d�/C �

1 � ˛.S.�//� ı�.S.d�// �.d�/;

a task that we carry out by proving that the first and second term in the left-hand
side coincide with the first and second term in the right-hand side respectively. For
the second terms, if 
 is a test function, the change of variables � D S.� 0/ enables
us to write

Z

RD�RD


.�; �/
�
1 � ˛.S.�//� ı�.S.d�// �.d�/ D

Z

RD�RD


.S.� 0/; �/
�
1 � ˛.S.�//� ı�.d� 0/ �.d�/
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and, by definition of ı, the last integral has the value

Z

RD


.S.�/; �/
�
1 � ˛.S.�//� �.d�/:

Now the change of variables � D S.�/ and the definition of ı allow us to continue

Z

RD


.S.�/; �/
�
1 � ˛.S.�//� �.d�/ D

Z

RD


.�; S.�//
�
1 � ˛.�/� �.d�/

D
Z

RD�RD


.�; �/
�
1 � ˛.�/

�
ıS.�/.d�/ �.d�/:

This proves that the second terms in (32) are equal. For the first terms note that
r.�; �/ D 1=r

�
S.�/; S.�/

�
. Thus:

�
1 ^ r.�; �/�K�.�; d�/ �.d�/ D �

r.S.�/; S.�// ^ 1� r.�; �/ K�.�; d�/�.d�/

and by definition of r this has the value:

�
1 ^ r.S.�/; S.�/�K��S.�/; S.d�/

�
�.d�/:

ut
Lemma 3. Let � be the measure in R

D with density exp.�H/, where H ı S D H

and assume that �T is a reversible and volume preserving transformation in phase
space (in particular the numerical solution operator associated with a reversible,
volume preserving integrator for the Hamiltonian system associated withH ). Define
a transition kernel by

K�.�; d�/ D ı�T .�/.d�/:

Then � and K� satisfy the requirements in Lemma 2 and the Metropolis-Hastings
ratio r in (31) has the value exp

� � .H.�T .�// �H.�//
�
.

Proof. For the measure in the numerator of (31), the integral of a test function 
 is

IN D
Z

RD�RD


.�; �/ ı�T .S.�//.S.d�// �.d�/:

Changing � D S.� 0/ leads to

IN D
Z

RD�RD


.S.� 0/; �/ ı�T .S.�//.d� 0/ �.d�/

D
Z

RD



�
S.�T .S.�///; �

�
�.d�/:
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Now use the reversibility of �T and the definition of � to write

IN D
Z

RD


.��1
T .�/; �/ exp.�H.�// d�

and then change � D �T .�/

IN D
Z

RD


.�; �T .�// exp.�H.�T .�/// d�:

(Note we have used here conservation of volume.)
The integral with respect to measure in denominator of (31) is:

ID D
Z

RD�RD


.�; �/ ı�T .�//.d�/ �.d�/ D
Z

RD


.�; �T .�// exp.�H.�// d�

and a comparison with IN leads to the sought conclusion. ut
After these preparations we may present the proof of Theorem 9.

Proof. Consider the chain C in the phase space R
D of the variable .p; x/ such that

one step .pn; xn/ 7! .pnC1; xnC1/ of C is the concatenation of two sub-steps:

1. Discard the value of the momentum pn and replace it by a fresh sample from the
Maxwell distribution for the momentum.

2. Take a step of the chain defined in Lemmas 2 and 3.

Both sub-steps preserve � (for the second use Lemma 2) and as a consequence
so does the chain C . The x-marginal of C is the chain in the HMC algorithm and
will preserve the marginal density exp.�V.x//. ut
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