
2Vectors and Linear Maps

The familiar two- and three-dimensional vectors can easily be generalized
to higher dimensions. Representing vectors by their components, one can
conceive of vectors having N components. This is the most immediate gen-
eralization of vectors in the plane and in space, and such vectors are called
N -dimensional Cartesian vectors. Cartesian vectors are limited in two re- Cartesian vectors
spects: Their components are real, and their dimensionality is finite. Some
applications in physics require the removal of one or both of these limi-
tations. It is therefore convenient to study vectors stripped of any dimen-
sionality or reality of components. Such properties become consequences of
more fundamental definitions. Although we will be concentrating on finite-
dimensional vector spaces in this part of the book, many of the concepts and
examples introduced here apply to infinite-dimensional spaces as well.

2.1 Vector Spaces

Let us begin with the definition of an abstract (complex) vector space.1

Definition 2.1.1 A vector space V over C is a set of objects denoted by
|a〉, |b〉, |x〉, and so on, called vectors, with the following properties: vector space defined

1. To every pair of vectors |a〉 and |b〉 in V there corresponds a vector
|a〉 + |b〉, also in V, called the sum of |a〉 and |b〉, such that
(a) |a〉 + |b〉 = |b〉 + |a〉,
(b) |a〉 + (|b〉 + |c〉) = (|a〉 + |b〉) + |c〉,
(c) There exists a unique vector |0〉 ∈ V, called the zero vector, such

that |a〉 + |0〉 = |a〉 for every vector |a〉,
(d) To every vector |a〉 ∈ V there corresponds a unique vector −|a〉 ∈

V such that |a〉 + (−|a〉) = |0〉.

1Keep in mind that C is the set of complex numbers and R the set of reals.
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20 2 Vectors and Linear Maps

2. To every complex number2 α—also called a scalar—and every vector
|a〉 there corresponds a vector α|a〉 in V such thatscalars are numbers
(a) α(β|a〉) = (αβ)|a〉,
(b) 1|a〉 = |a〉.

3. Multiplication involving vectors and scalars is distributive:
(a) α(|a〉 + |b〉) = α|a〉 + α|b〉.
(b) (α + β)|a〉 = α|a〉 + β|a〉.

The bra, 〈 |, and ket, | 〉, notation for vectors, invented by Dirac, is veryDirac’s bra and ket
notation useful when dealing with complex vector spaces. However, it is somewhat

clumsy for certain topics such as norm and metrics and will therefore be
abandoned in those discussions.

The vector space defined above is also called a complex vector space. Itcomplex versus real
vector space is possible to replace C with R—the set of real numbers—in which case the

resulting space will be called a real vector space.
Real and complex numbers are prototypes of a mathematical structure

called field. A field F is a set of objects with two binary operations called ad-concept of field
summarized dition and multiplication. Multiplication distributes over addition, and each

operation has an identity. The identity for addition is denoted by 0 and is
called additive identity. The identity for multiplication is denoted by 1 and
is called multiplicative identity. Furthermore, every element α ∈ F has an
additive inverse −α, and every element except the additive identity has a
multiplicative inverse α−1.

Example 2.1.2 (Some vector spaces)

1. R is a vector space over the field of real numbers.
2. C is a vector space over the field of real numbers.
3. C is a vector space over the complex numbers.
4. Let V =R and let the field of scalars be C. This is not a vector space,

because property 2 of Definition 2.1.1 is not satisfied: A complex
number times a real number is not a real number and therefore does
not belong to V.

5. The set of “arrows” in the plane (or in space) forms a vector space
over R under the parallelogram law of addition of planar (or spatial)
vectors.

6. Let Pc[t] be the set of all polynomials with complex coefficients in
a variable t . Then Pc[t] is a vector space under the ordinary addition
of polynomials and the multiplication of a polynomial by a complex
number. In this case the zero vector is the zero polynomial.

7. For a given positive integer n, let Pc
n[t] be the set of all polynomials

with complex coefficients of degree less than or equal to n. Again it
is easy to verify that Pc

n[t] is a vector space under the usual addition

2Complex numbers, particularly when they are treated as variables, are usually denoted
by z, and we shall adhere to this convention in Part III. However, in the discussion of
vector spaces, we have found it more convenient to use lower case Greek letters to denote
complex numbers as scalars.
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of polynomials and their multiplication by complex scalars. In partic-
ular, the sum of two polynomials of degree less than or equal to n is
also a polynomial of degree less than or equal to n, and multiplying
a polynomial with complex coefficients by a complex number gives
another polynomial of the same type. Here the zero polynomial is the
zero vector.

8. The set Pr
n[t] of polynomials of degree less than or equal to n with

real coefficients is a vector space over the reals, but it is not a vector
space over the complex numbers.

9. Let Cn consist of all complex n-tuples such as |a〉 = (α1, α2, . . . , αn)

and |b〉 = (β1, β2, . . . , βn). Let η be a complex number. Then we de-
fine

|a〉 + |b〉 = (α1 + β1, α2 + β2, . . . , αn + βn),

η|a〉 = (ηα1, ηα2, . . . , ηαn),

|0〉 = (0,0, . . . ,0),

−|a〉 = (−α1,−α2, . . . ,−αn).

It is easy to verify that Cn is a vector space over the complex numbers. n-dimensional complex
coordinate spaceIt is called the n-dimensional complex coordinate space.

10. The set of all real n-tuples R
n is a vector space over the real num-

bers under the operations similar to that of Cn. It is called the n-
dimensional real coordinate space, or Cartesian n-space. It is not n-dimensional real

coordinate space, or
Cartesian n-space

a vector space over the complex numbers.
11. The set of all complex matrices with m rows and n columns Mm×n is

a vector space under the usual addition of matrices and multiplication
by complex numbers. The zero vector is the m × n matrix with all
entries equal to zero.

12. Let C∞ be the set of all complex sequences |a〉 = {αi}∞i=1 such that∑∞
i=1 |αi |2 < ∞. One can show that with addition and scalar multipli-

cation defined componentwise, C∞ is a vector space over the complex
numbers.

13. The set of all complex-valued functions of a single real variable that
are continuous in the real interval (a, b) is a vector space over the
complex numbers.

14. The set Cn(a, b) of all real-valued functions of a single real variable
defined on (a, b) that possess continuous derivatives of all orders up
to n forms a vector space over the reals.

15. The set C∞(a, b) of all real-valued functions on (a, b) of a single real
variable that possess derivatives of all orders forms a vector space over
the reals.

It is clear from the example above that a vector space depends as much
on the nature of the vectors as on the nature of the scalars.

Definition 2.1.3 The vectors |a1〉, |a2〉, . . . , |an〉, are said to be linearly in- linear independence and
linear combination of
vectors defined

dependent if for αi ∈ C, the relation
∑n

i=1 αi |ai〉 = 0 implies αi = 0 for
all i. The sum

∑n
i=1 αi |ai〉 is called a linear combination of {|ai〉}ni=1.
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2.1.1 Subspaces

Given a vector space V, one can consider a collection W of vectors in V,
i.e., a subset of V. Because W is a subset, it contains vectors, but there is no
guarantee that it contains the linear combination of those vectors. We now
investigate conditions under which it does.

Definition 2.1.4 A subspace W of a vector space V is a nonempty subsetsubspace
of V with the property that if |a〉, |b〉 ∈W, then α|a〉 + β|b〉 also belongs to
W for all α,β ∈ C.

The reader may verify that a subspace is a vector space in its own right,The intersection of two
subspaces is also a

subspace.
and that the intersection of two subspaces is also a subspace.

Example 2.1.5 The following are subspaces of some of the vector spaces
considered in Example 2.1.2. The reader is urged to verify the validity of
each case.

• The “space” of real numbers is a subspace of C over the reals.
• R is not a subspace of C over the complex numbers, because as ex-

plained in Example 2.1.2, R cannot be a vector space over the complex
numbers.

• The set of all vectors along a given line going through the origin is a
subspace of arrows in the plane (or space) over R.

• Pc
n[t] is a subspace of Pc[t].

• C
n−1 is a subspace of Cn when C

n−1 is identified with all complex n-
tuples with zero last entry. In general, Cm is a subspace of Cn for m < n

when Cm is identified with all n-tuples whose last n − m elements are
zero.

• Mr×s is a subspace of Mm×n for r ≤ m and s ≤ n. Here, we identify
an r × s matrix with an m × n matrix whose last m − r rows and n − s

columns are all zero.
• Pc

m[t] is a subspace of Pc
n[t] for m < n.

• Pr
m[t] is a subspace of Pr

n[t] for m < n. Note that both Pr
n[t] and Pr

m[t]
are vector spaces over the reals only.

• R
m is a subspace of Rn for m < n. Therefore, R2, the plane, is a sub-

space of R3, the Euclidean space. Also, R1 ≡ R is a subspace of both
the plane R

2 and the Euclidean space R
3.

• Let a be along the x-axis (a subspace of R2) and b along the y-axis (also
a subspace of R2). Then a + b is neither along the x-axis nor along theunion of two subspaces

is not a subspace y-axis. This shows that the union of two subspaces is not generally a
subspace.

Theorem 2.1.6 If S is any nonempty set of vectors in a vector space V, then
the set WS of all linear combinations of vectors in S is a subspace of V. Wespan of a subset of a

vector space say that WS is the span of S, or that S spans WS , or that WS is spanned
by S. WS is often denoted by Span{S}.

The proof of Theorem 2.1.6 is left as Problem 2.6.
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Definition 2.1.7 A basis of a vector space V is a set B of linearly inde- basis defined

pendent vectors that spans all of V. A vector space that has a finite basis is
called finite-dimensional; otherwise, it is infinite-dimensional.

The definition of the dimensionality of a vector space based on a single
basis makes sense because of the following theorem which we state without
proof (see [Axle 96, page 31]):

Theorem 2.1.8 All bases of a given finite-dimensional vector space have
the same number of linearly independent vectors.

Definition 2.1.9 The cardinality of a basis of a vector space V is called the
dimension of V and denoted by dimV. To emphasize its dependence on the
scalars, dimCV and dimRV are also used. A vector space of dimension N

is sometimes denoted by VN .

If |a〉 is a vector in an N -dimensional vector space V and B = {|ai〉}Ni=1 a
basis in that space, then by the definition of a basis, there exists a unique (see
Problem 2.4) set of scalars {α1, α2, . . . , αn} such that |a〉 =∑N

i=1 αi |ai〉.
The set {αi}Ni=1 is called the components of |a〉 in the basis B . components of a vector

in a basis

Example 2.1.10 The following are bases for the vector spaces given in Ex-
ample 2.1.2.

• The number 1 (or any nonzero real number) is a basis for R, which is
therefore one-dimensional.

• The numbers 1 and i = √−1 (or any pair of distinct nonzero complex
numbers) are basis vectors for the vector space C over R. Thus, this
space is two-dimensional.

• The number 1 (or any nonzero complex number) is a basis for C over
C, and the space is one-dimensional. Note that although the vectors are
the same as in the preceding item, changing the nature of the scalars
changes the dimensionality of the space.

• The set {êx, êy, êz} of the unit vectors in the directions of the three axes
forms a basis in space. The space is three-dimensional.

• A basis of Pc[t] can be formed by the monomials 1, t, t2, . . . . It is clear
that this space is infinite-dimensional.

• A basis of Cn is given by ê1, ê2, . . . , ên, where êj is an n-tuple that has
a 1 at the j th position and zeros everywhere else. This basis is called
the standard basis of Cn. Clearly, the space has n dimensions. standard basis of Cn

• A basis of Mm×n is given by e11,e12, . . . ,eij , . . . ,emn, where eij is the
m×n matrix with zeros everywhere except at the intersection of the ith
row and j th column, where it has a one.

• A set consisting of the monomials 1, t, t2, . . . , tn forms a basis of Pc
n[t].

Thus, this space is (n + 1)-dimensional.
• The standard basis of Cn is a basis of Rn as well. It is also called the

standard basis of Rn. Thus, Rn is n-dimensional.
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• If we assume that a < 0 < b, then the set of monomials 1, x, x2, . . .

forms a basis for C∞(a, b), because, by Taylor’s theorem, any function
belonging to C∞(a, b) can be expanded in an infinite power series about
x = 0. Thus, this space is infinite-dimensional.

Remark 2.1.1 Given a space V with a basis B = {|ai〉}ni=1, the span of any
m vectors (m < n) of B is an m-dimensional subspace of V.

2.1.2 Factor Space

Let W be a subspace of the vector space V, and define a relation on V as
follows. If |a〉 ∈ V and |b〉 ∈ V, then we say that |a〉 is related to |b〉, and
write |a〉 	
 |b〉 if |a〉−|b〉 is in W. It is easy to show that 	
 is an equivalence
relation. Denote the equivalence class of |a〉 by �a�, and the factor set (or
quotient set) {�a�||a〉 ∈ V} by V/W. We turn the factor set into a factor
space by defining the combined addition of vectors and their multiplication
by scalars as follows:

α�a� + β�b� = �αa + βb� (2.1)

where �αa + βb� is the equivalence class of α|a〉 + β|b〉. For this equation
to make sense, it must be independent of the choice of the representatives of
the classes. If �a′� = �a� and �b′� = �b�, then is it true that �αa′ + βb′� =
�αa + βb�? For this to happen, we must have

(
α
∣
∣a′〉+ β

∣
∣b′〉)− (α|a〉 + β|b〉) ∈W.

Now, since |a′〉 ∈ �a�, we must have |a′〉 = |a〉 + |w1〉 for some |w1〉 ∈ W.
Similarly, |b′〉 = |b〉 + |w2〉. Therefore,

(
α
∣
∣a′〉+ β

∣
∣b′〉)− (α|a〉 + β|b〉)= α|w1〉 + β|w2〉

and the right-hand side is in W because W is a subspace.
Sometimes �a� is written as |a〉+W. With this notation comes the equal-

ities

|w〉 +W = W, W+W = W, αW = W, αW+ βW = W,

which abbreviate the obvious fact that the sum of two vectors in W is a
vector in W, the product of a scalar and a vector in W is a vector in W, and
the linear combination of two vectors in W is a vector in W.

How do we find a basis for V/W? Let {|ai〉} be a basis for W. Extend it
to a basis {|ai〉, |bj 〉} for V. Then, {�bj �} form a basis for V/W. Indeed, let
�a� ∈ V/W. Then, since |a〉 is in V, we have

�a� ≡ |a〉 +W =
∈W

︷ ︸︸ ︷∑

i

αi |ai〉+
∑

j

βj |bj 〉 +W
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=
∑

j

βj |bj 〉 +W ⇒ �a� =
�∑

j

βj |bj 〉
�

=
∑

j

βj �bj �.

Thus, {�bj �} span V/W. To form a basis, they also have to be linearly inde-
pendent. So, suppose that

∑
j βj �bj � = �0�. This means that

∑

j

βj |bj 〉 +W = |0〉 +W = W ⇒
∑

j

βj |bj 〉 ∈W.

So the last sum must be a linear combination of {|ai〉}:
∑

j

βj |bj 〉 =
∑

i

αi |aj 〉 or
∑

j

βj |bj 〉 −
∑

i

αi |aj 〉 = 0.

This is a zero linear combination of the basis vectors of V. Therefore, all co-
efficients, including all βj must be zero. One consequence of the argument
above is (with obvious notation)

dim(V/W) = dimV− dimW (2.2)

2.1.3 Direct Sums

Sometimes it is possible, and convenient, to break up a vector space into spe-
cial (disjoint) subspaces. For instance, the study of the motion of a particle
in R

3 under the influence of a central force field is facilitated by decompos-
ing the motion into its projections onto the direction of angular momentum
and onto a plane perpendicular to the angular momentum. This corresponds
to decomposing a vector in space into a vector, say in the xy-plane and a
vector along the z-axis. We can generalize this to any vector space, but first
some notation: Let U and W be subspaces of a vector space V. Denote by Sum of two subspaces

definedU+W the collection of all vectors in V that can be written as a sum of two
vectors, one in U and one in W. It is easy to show that U+W is a subspace
of V.

Example 2.1.11 Let U be the xy-plane and W the yz-plane. These are both
subspaces of R3, and so is U+W. In fact, U+W= R

3, because given any
vector (x, y, z) in R

3, we can write it as

(x, y, z) =
(

x,
1

2
y,0

)

︸ ︷︷ ︸
∈U

+
(

0,
1

2
y, z

)

︸ ︷︷ ︸
∈W

.

This decomposition is not unique: We could also write (x, y, z) =
(x, 1

3y,0) + (0, 2
3y, z), and a host of other relations.

Definition 2.1.12 Let U and W be subspaces of a vector space V such that direct sum U⊕W

definedV = U+W and U∩W = {|0〉}. Then we say that V is the direct sum of U
and W and write V = U⊕W.
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Proposition 2.1.13 Let U and W be subspaces of V such that V = U+W.
Then V = U ⊕ W if and only if any nonzero vector in V can be writtenuniqueness of direct sum

uniquely as a vector in U plus a vector in W.

Proof Assume V = U⊕W, and let |v〉 ∈ V be written as a sum of a vector
in U and a vector in W in two different ways:

|v〉 = |u〉 + |w〉 = ∣∣u′〉+ ∣∣w′〉 ⇔ |u〉 − ∣∣u′〉= ∣∣w′〉− |w〉.
The LHS is in U. Since it is equal to the RHS—which is in W—it must be
in W as well. Therefore, the LHS must equal zero, as must the RHS. Thus,
|u〉 = |u′〉, |w′〉 = |w〉, and there is only one way that |v〉 can be written as a
sum of a vector in U and a vector in W.

Conversely, suppose that any vector in V can be written uniquely as a
vector in U and a vector in W. If |a〉 ∈ U and also |a〉 ∈ W, then one can
write

|a〉 = 1

3
|a〉
︸︷︷︸
in U

+ 2

3
|a〉
︸︷︷︸
in W

= 1

4
|a〉
︸︷︷︸
in U

+ 3

4
|a〉
︸︷︷︸
in W

.

Hence |a〉 can be written in two different ways. By the uniqueness assump-
tion |a〉 cannot be nonzero. Therefore, the only vector common to both U

and W is the zero vector. This implies that V = U⊕W. �

More generally, we have the following situation:

Definition 2.1.14 Let {Ui}ri=1 be subspaces of V such that

V = U1 + · · · +Ur and Ui ∩Uj = {|0〉} for all i, j = 1, . . . , r.

Then we say that V is the direct sum of {Ui}ri=1 and write

V = U1 ⊕ · · · ⊕Ur =
r⊕

i=1

Ui .

Let W = U1 ⊕ · · · ⊕ Us be a direct sum of s subspaces (they need not
span the entire V). Write W as W = U1 ⊕ W′, with W′ = U2 ⊕ · · · ⊕ Us .
Let {|ui〉}si=1 be nonzero vectors with |ui〉 ∈ Ui and suppose that

α1|u1〉 + α2|u2〉 + · · · + αs |us〉 = |0〉, (2.3)

or

α1|u1〉 + α
∣
∣w′〉= |0〉 ⇒ α1|u1〉 = −α

∣
∣w′〉,

with |w′〉 ∈ W′. Since α1|u1〉 ∈ U1 from the left-hand side, and α1|u1〉 ∈ W′
from the right-hand side, we must have α1|u1〉 = |0〉. Hence, α1 = 0 because
|u1〉 �= |0〉. Equation (2.3) now becomes

α2|u2〉 + α3|u3〉 + · · · + αs |us〉 = |0〉.
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Write this as

α2|u2〉 + β
∣
∣w′′〉= |0〉 ⇒ α2|u2〉 = −β

∣
∣w′′〉,

where W′ = U2 ⊕W′′ with W′′ = U3 ⊕ · · · ⊕Us and |w′′〉 ∈ W′′. An argu-
ment similar to above shows that α2 = 0. Continuing in this way, we have

Proposition 2.1.15 The vectors in different subspaces of Definition 2.1.14
are linearly independent.

Proposition 2.1.16 Let U be a subspace of V. Then there exist a subspace
W of V such that V = U⊕W.

Proof Let {|ui〉}mi=1 be a basis of U. Extend this basis to a basis {|ui〉}Ni=1
of V. Then W= Span{|uj 〉}Nj=m+1. �

Example 2.1.17 Let U be the xy-plane and W the z-axis. These are both
subspaces of R3, and so is U+W. Furthermore, it is clear that U+W= R

3,
because given any vector (x, y, z) in R

3, we can write it as

(x, y, z) = (x, y,0)
︸ ︷︷ ︸

∈U
+ (0,0, z)
︸ ︷︷ ︸

∈W
.

This decomposition is obviously unique. Therefore, R3 = U⊕W.

Proposition 2.1.18 If V = U⊕W, then dimV = dimU+ dimW. dimensions in a direct
sum

Proof Let {|ui〉}mi=1 be a basis for U and {|wi〉}ki=1 a basis for W. Then it
is easily verified that {|u1〉, |u2〉, . . . , |um〉, |w1〉, |w2〉, . . . , |wk〉} is a basis
for V. The details are left as an exercise. �

Let U and V be any two vector spaces over R or C. Consider the Cartesian
product W ≡ U × V of their underlying set. Define a scalar multiplication
and a sum on W by

α
(|u〉, |v〉)= (α|u〉, α|v〉)

(|u1〉, |v1〉
)+ (|u2〉, |v2〉

)= (|u1〉 + |u2〉, |v1〉 + |v2〉
)
.

(2.4)

With |0〉W = (|0〉U , |0〉V ), W becomes a vector space. Furthermore, if we
identify U and V with vectors of the form (|u〉, |0〉V ) and (|0〉U , |v〉), respec-
tively, then U and V become subspaces of W. If a vector |w〉 ∈ W belongs
to both U and V, then it can be written as both (|u〉, |0〉V ) and (|0〉U , |v〉),
i.e., (|u〉, |0〉V ) = (|0〉U , |v〉). But this can happen only if |u〉 = |0〉U and
|v〉 = |0〉V , or |w〉 = |0〉W . Thus, the only common vector in U and V is the
zero vector. Therefore,

Proposition 2.1.19 Let U and V be any two vector spaces over R or C.
Then their Cartesian product W ≡ U × V together with the operations de-



28 2 Vectors and Linear Maps

fined in Eq. (2.4) becomes a vector space. Furthermore, W = U ⊕ V if U

and V are identified with vectors of the form (|u〉, |0〉V ) and (|0〉U , |v〉),
respectively.

Let {|ai〉}Mi=1 be a basis of U and {|bj 〉}Nj=1 a basis of V. Define the vectors

{|ck〉}M+N
k=1 in W = U⊕V by

|ck〉 = (|ak〉, |0〉V
)

if 1 ≤ k ≤ M

|ck〉 = (|0〉U , |bk−M 〉) if M + 1 ≤ k ≤ M + N.
(2.5)

Then {|ck〉}M+N
k=1 are linearly independent. In fact,

M+N∑

k=1

γk|ck〉 = |0〉W iff

M∑

k=1

γk

(|ak〉, |0〉V
)+

N∑

j=1

γM+j

(|0〉U , |bj 〉
)= (|0〉U , |0〉V

)
,

or
(

M∑

k=1

γk|ak〉, |0〉V
)

+
(

|0〉U ,

N∑

j=1

γM+j |bj 〉
)

= (|0〉U , |0〉V
)
,

or
(

M∑

k=1

γk|ak〉,
N∑

j=1

γM+j |bj 〉
)

= (|0〉U , |0〉V
)
,

or

M∑

k=1

γk|ak〉 = |0〉U and
N∑

j=1

γM+j |bj 〉 = |0〉V .

Linear independence of {|ai〉}Mi=1 and {|bj 〉}Nj=1 imply that γk = 0 for 1 ≤
k ≤ M + N .

It is not hard to show that W = Span{|ck〉}M+N
k=1 . Hence, we have the

following

Theorem 2.1.20 Let {|ai〉}Mi=1 be a basis of U and {|bj 〉}Nj=1 a basis of V.

The set of vectors {|ck〉}M+N
k=1 defined by Eq. (2.5) form a basis of the direct

sum W = U⊕V. In particular, W has dimension M + N .

2.1.4 Tensor Product of Vector Spaces

Direct sum is one way of constructing a new vector space out of two. There
is another procedure. Let U and V be vector spaces. On their Cartesian prod-
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uct, impose the scalar product and bilinearity conditions:

α
(|u〉, |v〉)= (α|u〉, |v〉)= (|u〉, α|v〉)

(
α1|u1〉 + α2|u2〉, |v〉)= α1

(|u1〉, |v〉)+ α2
(|u2〉, |v〉)

(|u〉, β1|v1〉 + β2|v2〉
)= β1

(|u〉, |v1〉
)+ β2

(|u〉, |v2〉
)
.

(2.6)

These properties turn U×V into a vector space called the tensor product of
U and V and denoted by U⊗V.3 The vectors in the tensor product space are
denoted by |u〉 ⊗ |v〉, (or occasionally by |uv〉). If {|ai〉}Mi=1 and {|bj 〉}Nj=1
are bases in U and V, respectively, and

|u〉 =
M∑

i=1

αi |ai〉 and |v〉 =
N∑

j=1

βj |bj 〉,

then Eq. (2.6) yields

|u〉 ⊗ |v〉 =
(

M∑

i=1

αi |ai〉
)

⊗
(

N∑

j=1

βj |bj 〉
)

=
M∑

i=1

N∑

j=1

αiβj |ai〉 ⊗ |bj 〉.

Therefore, {|ai〉⊗ |bj 〉} is a basis of U⊗V and dim(U⊗V) = dimUdimV.
From (2.6), we have

|0〉U ⊗ |v〉 = (|u〉 − |u〉)⊗ |v〉 = |u〉 ⊗ |v〉 − |u〉 ⊗ |v〉 = |0〉U⊗V

Similarly, |u〉 ⊗ |0〉V = |0〉U⊗V .

2.2 Inner Product

A vector space, as given by Definition 2.1.1, is too general and structureless
to be of much physical interest. One useful structure introduced on a vector
space is a scalar product. Recall that the scalar (dot) product of vectors in
the plane or in space is a rule that associates with two vectors a and b, a real
number. This association, denoted symbolically by g : V × V → R, with
g(a,b) = a · b, is symmetric: g(a,b) = g(b,a), is linear in the first (and by
symmetry, in the second) factor:4

g(αa + βb, c) = αg(a, c) + βg(b, c) or (αa + βb) · c = αa · c + βb · c,

gives the “length” of a vector: |a|2 = g(a,a) = a · a ≥ 0, and ensures that
the only vector with zero length5 is the zero vector: g(a,a) = 0 if and only
if a = 0.

3A detailed discussion of tensor products and tensors in general is given in Chap. 26.
4A function that is linear in both of its arguments is called a bilinear function.
5In our present discussion, we are avoiding situations in which a nonzero vector can have
zero “length”. Such occasions arise in relativity, and we shall discuss them in Part VIII.
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We want to generalize these properties to abstract vector spaces for which
the scalars are complex numbers. A verbatim generalization of the forego-
ing properties, however, leads to a contradiction. Using the linearity in both
arguments and a nonzero |a〉, we obtain

g
(
i|a〉, i|a〉)= i2g

(|a〉, |a〉)= −g
(|a〉, |a〉). (2.7)

Either the right-hand side (RHS) or left-hand side (LHS) of this equation
must be negative! But this is inconsistent with the positivity of the “length”
of a vector, which requires g(|a〉, |a〉) to be positive for all nonzero vectors,
including i|a〉. The source of the problem is the linearity in both arguments.
If we can change this property in such a way that one of the i’s in Eq. (2.7)
comes out complex-conjugated, the problem may go away. This requires lin-
earity in one argument and complex-conjugate linearity in the other. Which
argument is to be complex-conjugate linear is a matter of convention. We
choose the first argument to be so.6 We thus have

g
(
α|a〉 + β|b〉, |c〉)= α∗g

(|a〉, |c〉)+ β∗g
(|b〉, |c〉),

where α∗ denotes the complex conjugate. Consistency then requires us
to change the symmetry property as well. In fact, we must demand that
g(|a〉, |b〉) = (g(|b〉, |a〉))∗, from which the reality of g(|a〉, |a〉)—a neces-
sary condition for its positivity—follows immediately.

The question of the existence of an inner product on a vector space is a
deep problem in higher analysis. Generally, if an inner product exists, there
may be many ways to introduce one on a vector space. However, as we
shall see in Sect. 2.2.4, a finite-dimensional vector space always has an inner
product and this inner product is unique.7 So, for all practical purposes we
can speak of the inner product on a finite-dimensional vector space, and asDirac “bra,” 〈 |, and

“ket” | 〉, notation is used
for inner products.

with the two- and three-dimensional cases, we can omit the letter g and use
a notation that involves only the vectors. There are several such notations in
use, but the one that will be employed in this book is the Dirac bra(c)ket
notation, whereby g(|a〉, |b〉) is denoted by 〈a|b〉. Using this notation, we
have

Definition 2.2.1 The inner product of two vectors, |a〉 and |b〉, in a vector
space V is a complex number, 〈a|b〉 ∈C, such thatinner product defined

1. 〈a|b〉 = 〈b|a〉∗
2. 〈a|(β|b〉 + γ |c〉) = β〈a|b〉 + γ 〈a|c〉
3. 〈a|a〉 ≥ 0, and 〈a|a〉 = 0 if and only if |a〉 = |0〉.
The last relation is called the positive definite property of the inner prod-positive definite, or

Euclidean inner product

6In some books, particularly in the mathematical literature, the second argument is chosen
to be conjugate linear.
7This uniqueness holds up to a certain equivalence of inner products that we shall not get
into here.
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uct.8 A positive definite real inner product is also called a Euclidean inner
product, otherwise it is called pseudo-Euclidean.

Note that linearity in the first argument is absent in the definition above,
because, as explained earlier, it would be inconsistent with the first property,
which expresses the “symmetry” of the inner product. The extra operation of
complex conjugation renders the true linearity in the first argument impos-
sible. Because of this complex conjugation, the inner product on a complex
vector space is not truly bilinear; it is commonly called sesquilinear or her-
mitian. sesquilinear or hermitian

inner productA shorthand notation will be useful when dealing with the inner product
of a linear combination of vectors.

Box 2.2.2 We write the LHS of the second equation in the definition
above as 〈a|βb + γ c〉.

This has the advantage of treating a linear combination as a single vector.
The second property then states that if the complex scalars happen to be in
a ket, they “split out” unaffected:

〈a|βb + γ c〉 = β〈a|b〉 + γ 〈a|c〉. (2.8)

On the other hand, if the complex scalars happen to be in the first factor (the
bra), then they should be conjugated when they are “split out”:

〈βb + γ c|a〉 = β∗〈b|a〉 + γ ∗〈c|a〉. (2.9)

A vector space V on which an inner product is defined is called an inner
product space. As mentioned above, a finite-dimensional vector space can
always be turned into an inner product space.

Example 2.2.3 In this example, we introduce some of the most common
inner products. The reader is urged to verify that in all cases, we indeed
have an inner product.

• Let |a〉, |b〉 ∈ C
n, with |a〉= (α1, α2, . . . , αn) and |b〉= (β1, β2, . . . , βn),

and define an inner product on C
n as

natural inner product
for Cn

〈a|b〉 ≡ α∗
1β1 + α∗

2β2 + · · · + α∗
nβn =

n∑

i=1

α∗
i βi .

That this product satisfies all the required properties of an inner product
is easily checked. For example, if |b〉 = |a〉, we obtain 〈a|a〉 = |α1|2 +
|α2|2 + · · · + |αn|2, which is clearly nonnegative.

8The positive definiteness must be relaxed in the space-time of relativity theory, in which
nonzero vectors can have zero “length”.



32 2 Vectors and Linear Maps

• Similarly, for |a〉, |b〉 ∈ R
n the same definition (without the complex

conjugation) satisfies all the properties of an inner product.
• For |a〉, |b〉 ∈ C

∞ the natural inner product is defined as 〈a|b〉 =∑∞
i=1 α∗

i βi . The question of the convergence of this infinite sum is the
subject of Problem 2.18.

• Let x(t), y(t) ∈ Pc[t], the space of all polynomials in t with complex
coefficients. Define

weight function of an
inner product defined in

terms of integrals

〈x|y〉 ≡
∫ b

a

w(t)x∗(t)y(t) dt, (2.10)

where a and b are real numbers—or infinity—for which the integral
exists, and w(t), called the weight function, is a real-valued, continu-
ous function that is always strictly positive in the interval (a, b). Then
Eq. (2.10) defines an inner product. Depending on the weight function
w(t), there can be many different inner products defined on the infinite-
dimensional space Pc[t].

• Let f,g ∈ C(a, b) and define their inner product by

〈f |g〉 ≡
∫ b

a

w(x)f ∗(x)g(x) dx.

It is easily shown that 〈f |g〉 satisfies all the requirements of the inner
product if, as in the previous case, the weight function w(x) is always
positive in the interval (a, b). This is called the standard inner product
on C(a, b).

natural inner product for
complex functions

2.2.1 Orthogonality

The vectors of analytic geometry and calculus are often expressed in terms
of unit vectors along the axes, i.e., vectors that are of unit length and per-
pendicular to one another. Such vectors are also important in abstract inner
product spaces.

Definition 2.2.4 Vectors |a〉, |b〉 ∈ V are orthogonal if 〈a|b〉 = 0. A nor-orthogonality defined

mal vector, or normalized vector, |e〉 is one for which 〈e|e〉 = 1. A basis
B = {|ei〉}Ni=1 in an N -dimensional vector space V is an orthonormal basisorthonormal basis

if

〈ei |ej 〉 = δij ≡
{

1 if i = j,

0 if i �= j,
(2.11)

where δij , defined by the last equality, is called the Kronecker delta.Kronecker delta

Example 2.2.5 Let U and V be inner product vector spaces. Let W =
U ⊕ V. Then an inner product can be defined on W in terms of those on
U and V. In fact, it can be easily shown that if |wi〉 = (|ui〉, |vi〉), i = 1,2,
then

〈w1|w2〉 = 〈u1|u2〉 + 〈v1|v2〉 (2.12)



2.2 Inner Product 33

Fig. 2.1 The essence of the Gram–Schmidt process is neatly illustrated by the process
in two dimensions. This figure, depicts the stages of the construction of two orthonormal
vectors

defines an inner product on W. Moreover, with the identification

U= {(|u〉, |0〉V
) | |u〉 ∈U

}
and V = {(|0〉U , |v〉) | |v〉 ∈ V

}
,

any vector in U is orthogonal to any vector in V.

Example 2.2.6 Here are examples of orthonormal bases:

• The standard basis of Rn (or Cn)

|e1〉 = (1,0, . . . ,0), |e2〉 = (0,1, . . . ,0), . . . , |en〉 = (0,0, . . . ,1)

is orthonormal under the usual inner product of those spaces.
• Let |ek〉 = eikx/

√
2π be functions in C(0,2π) with w(x) = 1. Then

〈ek|ek〉 = 1

2π

∫ 2π

0
e−ikxeikx dx = 1,

and for l �= k,

〈el |ek〉 = 1

2π

∫ 2π

0
e−ilxeikx dx = 1

2π

∫ 2π

0
ei(k−l)x dx = 0.

Thus, 〈el |ek〉 = δlk .

2.2.2 The Gram-Schmidt Process

It is always possible to convert—by taking appropriate linear combinations—
any basis in V into an orthonormal basis. A process by which this may
be accomplished is called Gram–Schmidt orthonormalization. Consider
a basis B = {|ai〉}Ni=1. We intend to take linear combinations of |ai〉
in such a way that the resulting vectors are orthonormal. First, we let
|e1〉 = |a1〉/√〈a1|a1〉 and note that 〈e1|e1〉 = 1. If we subtract from |a2〉 The Gram–Schmidt

process explainedits projection along |e1〉, we obtain a vector that is orthogonal to |e1〉 (see
Fig. 2.1).
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Fig. 2.2 Once the orthonormal vectors in the plane of two vectors are obtained, the third
orthonormal vector is easily constructed

Calling the resulting vector |e′
2〉, we have |e′

2〉 = |a2〉−〈e1|a2〉|e1〉, which
can be written more symmetrically as |e′

2〉 = |a2〉 − |e1〉〈e1|a2〉. Clearly,
this vector is orthogonal to |e1〉. In order to normalize |e′

2〉, we divide it

by
√

〈e′
2|e′

2〉. Then |e2〉 = |e′
2〉/
√

〈e′
2|e′

2〉 will be a normal vector orthogonal

to |e1〉. Subtracting from |a3〉 its projections along the first and second unit
vectors obtained so far will give the vector

∣
∣e′

3

〉= |a3〉 − |e1〉〈e1|a3〉 − |e2〉〈e2|a3〉 = |a3〉 −
2∑

i=1

|ei〉〈ei |a3〉,

which is orthogonal to both |e1〉 and |e2〉 (see Fig. 2.2):

〈e1|e′
3〉 = 〈e1|a3〉 −

=1
︷ ︸︸ ︷
〈e1|e1〉〈e1|a3〉 −

=0
︷ ︸︸ ︷
〈e1|e2〉〈e2|a3〉 = 0.

Similarly, 〈e2|e′
3〉 = 0.

Historical Notes
Erhard Schmidt (1876–1959) obtained his doctorate under the supervision of David
Hilbert. His main interest was in integral equations and Hilbert spaces. He is the
“Schmidt” of the Gram–Schmidt orthogonalization process, which takes a basis of
a space and constructs an orthonormal one from it. (Laplace had presented a special case
of this process long before Gram or Schmidt.)
In 1908 Schmidt worked on infinitely many equations in infinitely many unknowns, in-
troducing various geometric notations and terms that are still in use for describing spaces
of functions. Schmidt’s ideas were to lead to the geometry of Hilbert spaces. This was

Erhard Schmidt
1876–1959

motivated by the study of integral equations (see Chap. 18) and an attempt at their ab-
straction.
Earlier, Hilbert regarded a function as given by its Fourier coefficients. These satisfy
the condition that

∑∞
k=1 a2

k is finite. He introduced sequences of real numbers {xn}
such that

∑∞
n=1 x2

n is finite. Riesz and Fischer showed that there is a one-to-one cor-
respondence between square-integrable functions and square-summable sequences of
their Fourier coefficients. In 1907 Schmidt and Fréchet showed that a consistent theory
could be obtained if the square-summable sequences were regarded as the coordinates
of points in an infinite-dimensional space that is a generalization of n-dimensional Eu-
clidean space. Thus functions can be regarded as points of a space, now called a Hilbert
space.
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In general, if we have calculated m orthonormal vectors |e1〉, . . . , |em〉,
with m < N , then we can find the next one using the following relations:

∣
∣e′

m+1

〉= |am+1〉 −
m∑

i=1

|ei〉〈ei |am+1〉,

|em+1〉 = |e′
m+1〉√

〈e′
m+1|e′

m+1〉
.

(2.13)

Even though we have been discussing finite-dimensional vector spaces, the
process of Eq. (2.13) can continue for infinite-dimensions as well. The
reader is asked to pay attention to the fact that, at each stage of the Gram–
Schmidt process, one is taking linear combinations of the original vectors.

2.2.3 The Schwarz Inequality

Let us now consider an important inequality that is valid in both finite and
infinite dimensions and whose restriction to two and three dimensions is
equivalent to the fact that the cosine of the angle between two vectors is
always less than one.

Theorem 2.2.7 For any pair of vectors |a〉, |b〉 in an inner product space V,
the Schwarz inequality holds: 〈a|a〉〈b|b〉 ≥ |〈a|b〉|2. Equality holds when Schwarz inequality

|a〉 is proportional to |b〉.

Proof Let |c〉 = |b〉− (〈a|b〉/〈a|a〉)|a〉, and note that 〈a|c〉 = 0. Write |b〉 =
(〈a|b〉/〈a|a〉)|a〉 + |c〉 and take the inner product of |b〉 with itself:

〈b|b〉 =
∣
∣
∣
∣
〈a|b〉
〈a|a〉

∣
∣
∣
∣

2

〈a|a〉 + 〈c|c〉 = |〈a|b〉|2
〈a|a〉 + 〈c|c〉.

Since 〈c|c〉 ≥ 0, we have

〈b|b〉 ≥ |〈a|b〉|2
〈a|a〉 ⇒ 〈a|a〉〈b|b〉 ≥ ∣∣〈a|b〉∣∣2.

Equality holds iff 〈c|c〉 = 0, i.e., iff |c〉 = 0. From the definition of |c〉, we
conclude that for the equality to hold, |a〉 and |b〉 must be proportional. �

Notice the power of abstraction: We have derived the Schwarz inequality
solely from the basic assumptions of inner product spaces independent of
the specific nature of the inner product. Therefore, we do not have to prove
the Schwarz inequality every time we encounter a new inner product space.

Historical Notes
Karl Herman Amandus Schwarz (1843–1921) the son of an architect, was born in
what is now Sobiecin, Poland. After gymnasium, Schwarz studied chemistry in Berlin for
a time before switching to mathematics, receiving his doctorate in 1864. He was greatly
influenced by the reigning mathematicians in Germany at the time, especially Kummer
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and Weierstrass. The lecture notes that Schwarz took while attending Weierstrass’s lec-

Karl Herman Amandus
Schwarz 1843–1921

tures on the integral calculus still exist. Schwarz received an initial appointment at Halle
and later appointments in Zurich and Göttingen before being named as Weierstrass’s suc-
cessor at Berlin in 1892. These later years, filled with students and lectures, were not
Schwarz’s most productive, but his early papers assure his place in mathematics history.
Schwarz’s favorite tool was geometry, which he soon turned to the study of analysis. He
conclusively proved some of Riemann’s results that had been previously (and justifiably)
challenged. The primary result in question was the assertion that every simply connected
region in the plane could be conformally mapped onto a circular area. From this effort
came several well-known results now associated with Schwarz’s name, including the prin-
ciple of reflection and Schwarz’s lemma. He also worked on surfaces of minimal area, the
branch of geometry beloved by all who dabble with soap bubbles.
Schwarz’s most important work, for the occasion of Weierstrass’s seventieth birthday,
again dealt with minimal area, specifically whether a minimal surface yields a minimal
area. Along the way, Schwarz demonstrated second variation in a multiple integral, con-
structed a function using successive approximation, and demonstrated the existence of a
“least” eigenvalue for certain differential equations. This work also contained the most
famous inequality in mathematics, which bears his name.
Schwarz’s success obviously stemmed from a matching of his aptitude and training to the
mathematical problems of the day. One of his traits, however, could be viewed as either
positive or negative—his habit of treating all problems, whether trivial or monumental,
with the same level of attention to detail. This might also at least partly explain the decline
in productivity in Schwarz’s later years.
Schwarz had interests outside mathematics, although his marriage was a mathematical
one, since he married Kummer’s daughter. Outside mathematics he was the captain of the
local voluntary fire brigade, and he assisted the stationmaster at the local railway station
by closing the doors of the trains!

2.2.4 Length of a Vector

In dealing with objects such as directed line segments in the plane or in
space, the intuitive idea of the length of a vector is used to define the dot
product. However, sometimes it is more convenient to introduce the inner
product first and then define the length, as we shall do now.

Definition 2.2.8 The norm, or length, of a vector |a〉 in an inner productnorm of a vector defined

space is denoted by ‖a‖ and defined as ‖a‖ ≡ √〈a|a〉. We use the notation
‖αa + βb‖ for the norm of the vector α|a〉 + β|b〉.

One can easily show that the norm has the following properties:

1. The norm of the zero vector is zero: ‖0‖ = 0.
2. ‖a‖ ≥ 0, and ‖a‖ = 0 if and only if |a〉 = |0〉.
3. ‖αa‖ = |α|‖a‖ for any9 complex α.
4. ‖a + b‖ ≤ ‖a‖ + ‖b‖. This property is called the triangle inequality.triangle inequality

Any function on a vector space satisfying the four properties above is
called a norm, and the vector space on which a norm is defined is called a
normed linear space. One does not need an inner product to have a norm.normed linear space

One can introduce the idea of the “distance” between two vectors in
a normed linear space. The distance between |a〉 and |b〉—denoted by
d(a, b)—is simply the norm of their difference: d(a, b) ≡ ‖a − b‖. It can

natural distance in a
normed linear space

9The first property follows from this by letting α = 0.
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be readily shown that this has all the properties one expects of the distance
(or metric) function introduced in Chap. 1. However, one does not need a
normed space to define distance. For example, as explained in Chap. 1, one
can define the distance between two points on the surface of a sphere, but the
addition of two points on a sphere—a necessary operation for vector space
structure—is not defined. Thus the points on a sphere form a metric space,
but not a vector space.

Inner product spaces are automatically normed spaces, but the converse
is not, in general, true: There are normed spaces, i.e., spaces satisfying prop-
erties 1–4 above that cannot be promoted to inner product spaces. However,
if the norm satisfies the parallelogram law,

parallelogram law

‖a + b‖2 + ‖a − b‖2 = 2‖a‖2 + 2‖b‖2, (2.14)

then one can define

〈a|b〉 ≡ 1

4

{‖a + b‖2 − ‖a − b‖2 − i
(‖a + ib‖2 − ‖a − ib‖2)} (2.15)

and show that it is indeed an inner product. In fact, we have (see [Frie 82,
pp. 203–204] for a proof) the following theorem.

Theorem 2.2.9 A normed linear space is an inner product space if and only
if the norm satisfies the parallelogram law.

Now consider any N -dimensional vector space V. Choose a basis
{|ai〉}Ni=1 in V, and for any vector |a〉 whose components are {αi}Ni=1 in
this basis, define

‖a‖2 ≡
N∑

i=1

|αi |2.

The reader may check that this defines a norm, and that the norm satisfies
the parallelogram law. From Theorem 2.2.9 we have the following:

Theorem 2.2.10 Every finite-dimensional vector space can be turned into
an inner product space.

Example 2.2.11 Let the space be Cn. The natural inner product of Cn gives
Cn has many different
distance functions

rise to a norm, which, for the vector |a〉 = (α1, α2, . . . , αn) is

‖a‖ =√〈a|a〉 =
√
√
√
√

n∑

i=1

|αi |2.

This norm yields the following distance between |a〉 and |b〉 = (β1, β2,

. . . , βn):

d(a, b) = ‖a − b‖ =√〈a − b|a − b〉 =
√
√
√
√

n∑

i=1

|αi − βi |2.
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One can define other norms, such as ‖a‖1 ≡∑n
i=1 |αi |, which has all the

required properties of a norm, and leads to the distance

d1(a, b) = ‖a − b‖1 =
n∑

i=1

|αi − βi |.

Another norm defined on C
n is given by

‖a‖p ≡
(

n∑

i=1

|αi |p
)1/p

,

where p is a positive integer. It is proved in higher mathematical analysis
that ‖ · ‖p has all the properties of a norm. (The nontrivial part of the proof
is to verify the triangle inequality.) The associated distance is

dp(a, b) = ‖a − b‖p =
(

n∑

i=1

|αi − βi |p
)1/p

.

The other two norms introduced above are special cases, for p = 2 and
p = 1.

2.3 Linear Maps

We have made progress in enriching vector spaces with structures such as
norms and inner products. However, this enrichment, although important,
will be of little value if it is imprisoned in a single vector space. We would
like to give vector space properties freedom of movement, so they can go
from one space to another. The vehicle that carries these properties is a lin-
ear map or linear transformation which is the subject of this section. First
it is instructive to review the concept of a map (discussed in Chap. 1) by
considering some examples relevant to the present discussion.

Example 2.3.1 The following are a few familiar examples of mappings.

1. Let f :R→ R be given by f (x) = x2.
2. Let g :R2 → R be given by g(x, y) = x2 + y2 − 4.
3. Let F : R2 → C be given by F(x, y) = U(x, y) + iV (x, y), where

U :R2 → R and V :R2 → R.
4. Let T :R→ R

2 be given by T (t) = (t + 3,2t − 5).
5. Motion of a point particle in space can be considered as a mapping

M : [a, b] → R
3, where [a, b] is an interval of the real line. For each

t ∈ [a, b], we define M(t) = (x(t), y(t), z(t)), where x(t), y(t), and
z(t) are real-valued functions of t . If we identify t with time, which is
assumed to have a value in the interval [a, b], then M(t) describes the
path of the particle as a function of time, and a and b are the beginning
and the end of the motion, respectively.
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Let us consider an arbitrary mapping F : V → W from a vector space
V to another vector space W. It is assumed that the two vector spaces are
over the same scalars, say C. Consider |a〉 and |b〉 in V and |x〉 and |y〉 in W

such that F(|a〉) = |x〉 and F(|b〉) = |y〉. In general, F does not preserve the
vector space structure. That is, the image of a linear combination of vectors
is not the same as the linear combination of the images:

F
(
α|a〉 + β|b〉) �= αF

(|x〉)+ βF
(|y〉).

This is the case for all the mappings of Example 2.3.1. There are many appli-
cations in which the preservation of the vector space structure (preservation
of the linear combination) is desired.

Definition 2.3.2 A linear map (or transformation) from the complex vec-
linear map (or
transformation), linear
operator,
endomorphism

tor space V to the complex vector space W is a mapping T : V → W such
that

T
(
α|a〉 + β|b〉)= αT

(|a〉)+ βT
(|b〉) ∀|a〉, |b〉 ∈ V and α,β ∈C.

A linear transformation T : V → V is called an endomorphism of V or a
linear operator on V. The action of a linear transformation on a vector is
written without the parentheses: T(|a〉) ≡ T|a〉.

The same definition applies to real vector spaces. Note that the defini-
tion demands that both vector spaces have the same set of scalars: The
same scalars must multiply vectors in V on the LHS and those in W on
the RHS.

The set of linear maps from V to W is denoted by L(V,W), and this
set happens to be a vector space. The zero transformation, 0, is defined
to take every vector in V to the zero vector of W. The sum of two linear
transformations T and U is the linear transformation T + U, whose action
on a vector |a〉 ∈ V is defined to be (T + U)|a〉 ≡ T|a〉 + U|a〉. Similarly,
define αT by (αT)|a〉 ≡ α(T|a〉) = αT|a〉. The set of endomorphisms of V
is denoted by L(V) or End(V) rather than L(V,V). We summarize these

L(V,W) is a vector
space

observations in

Box 2.3.3 L(V,W) is a vector space. In particular, so is the set of
endomorphisms of a single vector space L(V) ≡ End(V) ≡ L(V,V).

Definition 2.3.4 Let V and U be inner product spaces. A linear map T :
V → U is called an isometric map if10

〈Ta|Tb〉 = 〈a|b〉, ∀|a〉, |b〉 ∈ V.

10It is convenient here to use the notation |Ta〉 for T|a〉. This would then allow us to write
the dual (see below) of the vector as 〈Ta|, emphasizing that it is indeed the bra associated
with T|a〉.
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If U= V, then T is called a linear isometry or simply an isometry of V. It is
common to call an isometry of a complex (real) V a unitary (orthogonal)

isometry

operator

Example 2.3.5 The following are some examples of linear operators in var-
ious vector spaces. The proofs of linearity are simple in all cases and are left
as exercises for the reader.

1. Let V be a one-dimensional space (e.g., V =C). Then any linear endo-
morphism T of V is of the form T|x〉 = α|x〉 with α a scalar. In partic-
ular, if T is an isometry, then |α|2 = 1. If V = R and T is an isometry,
then T|x〉 = ±|x〉.

2. Let π be a permutation (shuffling) of the integers {1,2, . . . , n}. If |x〉 =
(η1, η2, . . . , ηn) is a vector in C

n, we can write

Aπ |x〉 = (ηπ(1), ηπ(2), . . . , ηπ(n)).

Then Aπ is a linear operator.
3. For any |x〉 ∈ Pc[t], with x(t) =∑n

k=0 αkt
k , write |y〉 = D|x〉, where

|y〉 is defined as y(t) =∑n
k=1 kαkt

k−1. Then D is a linear operator, the
derivative operator.derivative operator

4. For every |x〉 ∈ Pc[t], with x(t) =∑n
k=0 αkt

k , write |y〉 = S|x〉, where
|y〉 ∈ Pc[t] is defined as y(t) =∑n

k=0[αk/(k + 1)]tk+1. Then S is a
linear operator, the integration operator.integration operator

5. Let Cn(a, b) be the set of real-valued functions defined in the inter-
val [a, b] whose first n derivatives exist and are continuous. For any
|f 〉 ∈ Cn(a, b) define |u〉 = G|f 〉, with u(t) = g(t)f (t) and g(t) a
fixed function in Cn(a, b). Then G is linear. In particular, the oper-
ation of multiplying by t , whose operator is denoted by T, is lin-
ear.

An immediate consequence of Definition 2.3.2 is the following:

Box 2.3.6 Two linear transformations T : V → W and U : V → W

are equal if and only if T|ai〉 = U|ai〉 for all |ai〉 in some basis of V.
Thus, a linear transformation is uniquely determined by its action on
some basis of its domain space.

The equality in this box is simply the set-theoretic equality of maps dis-
cussed in Chap. 1.

The equality of operators can also be established by other, more conve-
nient, methods when an inner product is defined on the vector space. The
following two theorems contain the essence of these alternatives.

Theorem 2.3.7 An endomorphism T of an inner product space is 0 if and
only if 〈b|T|a〉 ≡ 〈b|Ta〉 = 0 for all |a〉 and |b〉.
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Proof Clearly, if T = 0 then 〈b|T|a〉 = 0. Conversely, if 〈b|T|a〉 = 0 for all
|a〉 and |b〉, then, choosing |b〉 = T|a〉 = |Ta〉, we obtain

〈Ta|Ta〉 = 0 ∀|a〉 ⇔ T|a〉 = 0 ∀|a〉 ⇔ T = 0

by positive definiteness of the inner product. �

Theorem 2.3.8 A linear operator T on an inner product space is 0 if and
only if 〈a|T|a〉 = 0 for all |a〉.

Proof Obviously, if T = 0, then 〈a|T|a〉 = 0. Conversely, choose a vector
α|a〉+β|b〉, sandwich T between this vector and its bra, and rearrange terms
to obtain what is known as the polarization identity polarization identity

α∗β〈a|T|b〉 + αβ∗〈b|T|a〉 = 〈αa + βb|T|αa + βb〉
− |α|2〈a|T|a〉 − |β|2〈b|T|b〉.

According to the assumption of the theorem, the RHS is zero. Thus, if we
let α = β = 1 we obtain 〈a|T|b〉 + 〈b|T|a〉 = 0. Similarly, with α = 1 and
β = i we get i〈a|T|b〉 − i〈b|T|a〉 = 0. These two equations give 〈a|T|b〉 = 0
for all |a〉, |b〉. By Theorem 2.3.7, T = 0. �

To show that two operators U and T on an inner product space are equal,
one can either have them act on an arbitrary vector and show that they give
the same result, or one verifies that U − T is the zero operator by means of
one of the theorems above. Equivalently, one shows that 〈a|T|b〉 = 〈a|U|b〉
or 〈a|T|a〉 = 〈a|U|a〉 for all |a〉, |b〉.

2.3.1 Kernel of a Linear Map

It follows immediately from Definition 2.3.2 that the image of the zero vec-
tor in V is the zero vector in W. This is not true for a general mapping, but
it is necessarily true for a linear mapping. As the zero vector of V is mapped
onto the zero vector of W, other vectors of V may also be dragged along. In
fact, we have the following theorem.

Theorem 2.3.9 The set of vectors in V that are mapped onto the zero vector
of W under the linear transformation T : V → W form a subspace of V
called the kernel, or null space, of T and denoted by ker T. kernel of a linear

transformation

Proof The proof is left as an exercise. �

The dimension of ker T is also called the nullity of V.
nullityThe proof of the following is also left as an exercise.

Theorem 2.3.10 The range T(V) of a linear map T : V → W is a subspace rank of a linear
transformationof W. The dimension of T(V) is called the rank of T.
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Theorem 2.3.11 A linear transformation is 1–1 (injective) iff its kernel is
zero.

Proof The “only if” part is trivial. For the “if” part, suppose T|a1〉 = T|a2〉;
then linearity of T implies that T(|a1〉 − |a2〉) = 0. Since ker T = 0,11 we
must have |a1〉 = |a2〉. �

Theorem 2.3.12 A linear isometric map is injective.

Proof Let T : V → U be a linear isometry. Let |a〉 ∈ ker T, then

〈a|a〉 = 〈Ta|Ta〉 = 〈0|0〉 = 0.

Therefore, |a〉 = |0〉. By Theorem 2.3.11, T is injective. �

Suppose we start with a basis of ker T and add enough linearly inde-
pendent vectors to it to get a basis for V. Without loss of generality, let us
assume that the first n vectors in this basis form a basis of ker T. So let
B = {|a1〉, |a2〉, . . . , |aN 〉} be a basis for V and B ′ = {|a1〉, |a2〉, . . . , |an〉} be
a basis for ker T. Here N = dimV and n = dim ker T. It is straightforward
to show that {T|an+1〉, . . . , T|aN 〉} is a basis for T(V). We therefore have the
following result (see also the end of this subsection).

Theorem 2.3.13 Let T : V →W be a linear transformation. Then12

dimension theorem

dimV = dim ker T + dim T(V)

This theorem is called the dimension theorem. One of its consequences
is that an injective endomorphism is automatically surjective, and vice versa:

Proposition 2.3.14 An endomorphism of a finite-dimensional vector space
is bijective if it is either injective or surjective.

The dimension theorem is obviously valid only for finite-dimensional
vector spaces. In particular, neither surjectivity nor injectivity implies bijec-
tivity for infinite-dimensional vector spaces.

Example 2.3.15 Let us try to find the kernel of T : R4 →R
3 given by

T(x1, x2, x3, x4)

= (2x1 + x2 + x3 − x4, x1 + x2 + 2x3 + 2x4, x1 − x3 − 3x4).

11Since ker T is a set, we should write the equality as ker T = {|0〉}, or at least as ker T =
|0〉. However, when there is no danger of confusion, we set {|0〉} = |0〉 = 0.
12Recall that the dimension of a vector space depends on the scalars used in that space.
Although we are dealing with two different vector spaces here, since they are both over
the same set of scalars (complex or real), no confusion in the concept of dimension arises.
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We must look for (x1, x2, x3, x4) such that T(x1, x2, x3, x4) = (0,0,0), or

2x1 + x2 + x3 − x4 = 0,

x1 + x2 + 2x3 + 2x4 = 0,

x1 − x3 − 3x4 = 0.

The “solution” to these equations is x1 = x3 + 3x4 and x2 = −3x3 − 5x4.
Thus, to be in ker T, a vector in R

4 must be of the form

(x3 + 3x4,−3x3 − 5x4, x3, x4) = x3(1,−3,1,0) + x4(3,−5,0,1),

where x3 and x4 are arbitrary real numbers. It follows that ker T consists
of vectors that can be written as linear combinations of the two linearly
independent vectors (1,−3,1,0) and (3,−5,0,1). Therefore, dim ker T =
2. Theorem 2.3.13 then says that dim T(V) = 2; that is, the range of T is
two-dimensional. This becomes clear when one notes that

T(x1, x2, x3, x4)

= (2x1 + x2 + x3 − x4)(1,0,1) + (x1 + x2 + 2x3 + 2x4)(0,1,−1),

and therefore T(x1, x2, x3, x4), an arbitrary vector in the range of T, is a
linear combination of only two linearly independent vectors, (1,0,1) and
(0,1,−1).

2.3.2 Linear Isomorphism

In many cases, two vector spaces may “look” different, while in reality they
are very much the same. For example, the set of complex numbers C is a
two-dimensional vector space over the reals, as is R2. Although we call the
vectors of these two spaces by different names, they have very similar prop-
erties. This notion of “similarity” is made precise in the following definition.

Definition 2.3.16 A vector space V is said to be isomorphic to another
isomorphism and
automorphism

vector space W, and written V ∼= W, if there exists a bijective linear map
T : V → W. Then T is called an isomorphism.13 A bijective linear map of
V onto itself is called an automorphism of V. An automorphism is also
called an invertible linear map. The set of automorphisms of V is denoted
by GL(V).

An immediate consequence of the injectivity of an isometry and Propo-
sition 2.3.14 is the following:

13The word “isomorphism”, as we shall see, is used in conjunction with many algebraic
structures. To distinguish them, qualifiers need to be used. In the present context, we speak
of linear isomorphism. We shall use qualifiers when necessary. However, the context
usually makes the meaning of isomorphism clear.
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Proposition 2.3.17 An isometry of a finite-dimensional vector space is an
automorphism of that vector space.

For all practical purposes, two isomorphic vector spaces are different
manifestations of the “same” vector space. In the example discussed above,
the correspondence T : C → R

2, with T(x + iy) = (x, y), establishes an iso-
morphism between the two vector spaces. It should be emphasized that only
as vector spaces are C and R

2 isomorphic. If we go beyond the vector space
structures, the two sets are quite different. For example, C has a natural mul-
tiplication for its elements, but R2 does not. The following three theorems
give a working criterion for isomorphism. The proofs are simple and left to
the reader.

Theorem 2.3.18 A linear surjective map T : V → W is an isomorphism if
and only if its nullity is zero.

Theorem 2.3.19 An injective linear transformation T : V → W carries lin-
early independent sets of vectors onto linearly independent sets of vectors.

Theorem 2.3.20 Two finite-dimensional vector spaces are isomorphic if
and only if they have the same dimension.

A consequence of Theorem 2.3.20 is that all N -dimensional vector
only two N -dimensional

vector spaces
spaces over R are isomorphic to RN and all complex N -dimensional vector
spaces are isomorphic to C

N . So, for all practical purposes, we have only
two N -dimensional vector spaces, RN and C

N .
Suppose that V = V1 ⊕ V2 and that T is an automorphism of V which

leaves V1 invariant, i.e., T(V1) = V1. Then T leaves V2 invariant as well. To
see this, first note that if V = V1 ⊕V2 and V = V1 ⊕V′

2, then V2 = V′
2. This

can be readily established by looking at a basis of V obtained by extending
a basis of V1. Now note that since T(V) = V and T(V1) = V1, we must have

V1 ⊕V2 = V = T(V) = T(V1 ⊕V2) = T(V1) ⊕ T(V2) = V1 ⊕ T(V2).

Hence, by the argument above, T(V2) = V2. We summarize the discussion
as follows:

Proposition 2.3.21 If V = V1 ⊕ V2, then an automorphism of V which
leaves one of the summands invariant leaves the other invariant as well.

Example 2.3.22 (Another proof of the dimension theorem) Let T, V, and
W be as in Theorem 2.3.13. Let T′ : V/ker T → T(V) be a linear map defined
as follows. If �a� is represented by |a〉, then T′(�a�) = T|a〉. First, we have
to show that this map is well defined, i.e., that if �a′� = �a�, then T′(�a′�) =
T|a〉. But this is trivially true, because �a′� = �a� implies that |a′〉 = |a〉+|z〉
with |z〉 ∈ ker T. So,

T′(�
a′�)≡ T

∣
∣a′〉= T

(|a〉 + |z〉)= T
(|a〉)+ T

(|z〉)
︸ ︷︷ ︸
=|0〉

= T
(|a〉).
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One can also easily show that T′ is linear.
We now show that T′ is an isomorphism. Suppose that |x〉 ∈ T(V). Then

there is |y〉 ∈ V such that |x〉 = T|y〉 = T′(�y�). This shows that T′ is surjec-
tive. To show that it is injective, let T′(�y�) = T′(�x�); then T|y〉 = T|x〉 or
T(|y〉− |x〉) = 0. This shows that |y〉− |x〉 ∈ ker T, i.e., �y� = �x�. This iso-
morphism implies that dim(V/ker T) = dim T(V). Equation (2.2) now yields
the result of the dimension theorem.

The result of the preceding example can be generalized as follows

Theorem 2.3.23 Let V and W be vector spaces and T : V → W a linear
map. Let U be a subspace of V. Define T′ : V/U → T(V) by T′(�a�) = T|a〉,
where |a〉 is assumed to represent �a�. Then T′ is a well defined isomor-
phism.

Let U, V, and W be complex vector spaces. Consider the linear map

T : (U⊕V) ⊗W → (U⊗W) ⊕ (V⊗W)

given by

T
((|u〉 + |v〉)⊗ |w〉)= |u〉 ⊗ |w〉 + |v〉 ⊗ |w〉.

It is trivial to show that T is an isomorphism. We thus have

(U⊕V) ⊗W∼= (U⊗W) ⊕ (V⊗W). (2.16)

From the fact that dim(U⊗V) = dimUdimV, we have

U⊗V ∼= V⊗U. (2.17)

Moreover, since dimC = 1 we have dim(C⊗V) = dimV. Hence,

C⊗V ∼= V⊗C ∼= V. (2.18)

Similarly

R⊗V ∼= V⊗R ∼= V. (2.19)

for a real vector space V.

2.4 Complex Structures

Thus far in our treatment of vector spaces, we have avoided changing the
nature of scalars. When we declared that a vector space was complex, we
kept the scalars of that vector space complex, and if we used real numbers
in that vector space, they were treated as a subset of complex numbers.

In this section, we explore the possibility of changing the scalars, and the
corresponding changes in the other structures of the vector space that may
ensue. The interesting case is changing the reals to complex numbers.
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In the discussion of changing the scalars, as well as other formal treat-
ments of other topics, it is convenient to generalize the concept of inner
products. While the notion of positive definiteness is crucial for the physical
applications of an inner product, for certain other considerations, it is too
restrictive. So, we relax that requirement and define our inner product anew.
However, except in this subsection,

Box 2.4.1 Unless otherwise indicated, all complex inner products
are assumed to be sesquilinear as in Definition 2.2.1.

Definition 2.4.2 Let F be either C or R. An inner product on an F-linear
complex bilinear inner

product
space V is a map g : V×V → F with the following properties:

(a) symmetry: g
(|a〉, |b〉)= g

(|b〉, |a〉);
(b) bilinearity: g

(|x〉, α|a〉 + β|b〉)= αg
(|x〉, |a〉)+ βg

(|x〉, |b〉),
g
(
α|a〉 + β|b〉, |x〉)= αg

(|a〉, |x〉)+ βg
(|b〉, |x〉);

(c) nondegeneracy: g
(|x〉, |a〉)= 0 ∀|x〉 ∈ V ⇒ |a〉 = |0〉;

with α,β ∈ F and |a〉, |b〉, |x〉 ∈ V.

Non-degeneracy can be restated by saying that for any nonzero |a〉 ∈ V,
there is at least one vector |x〉 ∈ V such that g(|x〉, |a〉) �= 0. It is the state-
ment of the fact that the only vector orthogonal to all vectors of an inner
product space is the zero vector.

Once again we use the Dirac bra and ket notation for the inner product.
However, to distinguish it from the previous inner product, we subscript the
notation with F. Thus the three properties in the definition above are denoted
by

(a) symmetry: 〈a|b〉F = 〈b|a〉F;
(b) bilinearity: 〈x|αa + βb〉F = α〈x|a〉F + β〈x|b〉F,

〈αa + βb|x〉F = α〈a|x〉F + β〈b|x〉F;
(c) non-degeneracy: 〈x|a〉F = 0 ∀|x〉 ∈ V ⇒ |a〉 = |0〉.

(2.20)

Note that 〈 | 〉F = 〈 | 〉 when F = R.

Definition 2.4.3 The adjoint of an operator A ∈ End(V), denoted by AT, is
defined by

adjoint, self-adjoint,
skew 〈Aa|b〉F = 〈a|ATb〉F or 〈a|AT|b〉F = 〈b|A|a〉F.

An operator A is called self-adjoint if AT = A, and skew if AT = −A.

From this definition and the non-degeneracy of 〈 | 〉F it follows that

(
AT)T = A. (2.21)
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Proposition 2.4.4 An operator A ∈ End(V) is skew iff 〈x|Ax〉F ≡
〈x|A|x〉F = 0 for all |x〉 ∈ V.

Proof If A is skew, then

〈x|A|x〉F = 〈x|AT|x〉F = −〈x|A|x〉F ⇒ 〈x|A|x〉F = 0.

Conversely, suppose that 〈x|A|x〉F = 0 for all |x〉 ∈ V, then for nonzero
α,β ∈ F and nonzero |a〉, |b〉 ∈ V,

0 = 〈αa + βb|A|αa + βb〉F
= α2 〈a|A|a〉F︸ ︷︷ ︸

=0

+αβ〈a|A|b〉F + αβ〈b|A|a〉F + β2 〈b|A|b〉F︸ ︷︷ ︸
=0

= αβ
(〈b|A|a〉F + 〈b|AT|a〉F

)
.

Since αβ �= 0, we must have 〈b|(A + AT)|a〉F =0 for all nonzero |a〉, |b〉 ∈ V.
By non-degeneracy of the inner product, (A+AT)|a〉 = |0〉. Since this is true
for all |a〉 ∈ V, we must have AT = −A. �

Comparing this proposition with Theorem 2.3.8 shows how strong a re-
striction the positive definiteness imposes on the inner product.

Definition 2.4.5 A complex structure J on a real vector space V is a linear
operator which satisfies J2 = −1 and 〈Ja|Jb〉 = 〈a|b〉 for all |a〉, |b〉 ∈ V.

Proposition 2.4.6 The complex structure J is skew.

Proof Let |a〉 ∈ V and |b〉 = J|a〉. Then recalling that 〈 | 〉R = 〈 | 〉, on the one
hand,

〈a|Ja〉 = 〈a|b〉 = 〈Ja|Jb〉 = 〈Ja|J2a〉 = −〈Ja|a〉.
On the other hand,

complex structure

〈a|Ja〉 = 〈a|b〉 = 〈b|a〉 = 〈Ja|a〉.
These two equations show that 〈a|Ja〉 = 0 for all |a〉 ∈ V. Hence, by Propo-
sition 2.4.4, J is skew. �

Let |a〉 be any vector in the N -dimensional real inner product space.
Normalize |a〉 to get the unit vector |e1〉. By Propositions 2.4.4 and 2.4.6,
J|e1〉 is orthogonal to |e1〉. Normalize J|e1〉 to get |e2〉. If N > 2, let |e3〉 be
any unit vector orthogonal to |e1〉 and |e2〉. Then |a3〉 ≡ J|e3〉 is obviously
orthogonal to |e3〉. We claim that it is also orthogonal to both |e1〉 and |e2〉:

〈e1|a3〉 = 〈Je1|Ja3〉 = 〈Je1|J2e3〉
= −〈Je1|e3〉 = −〈e2|e3〉 = 0

〈e2|a3〉 = 〈Je1|Je3〉 = 〈e1|e3〉 = 0.

Continuing this process, we can prove the following:
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Theorem 2.4.7 The vectors {|ei〉, J|ei〉}mi=1 with N = 2m form an orthonor-
mal basis for the real vector space V with inner product 〈 | 〉R = 〈 | 〉. In
particular, V must be even-dimensional for it to have a complex structure J.

Definition 2.4.8 If V is a real vector space, then C ⊗ V, together with the
complex multiplication rule

α
(
β ⊗ |a〉)= (αβ) ⊗ |a〉, α,β ∈ C,

is a complex vector space called the complexification of V and denoted
complexification by VC. In particular, (Rn)C ≡ C⊗R

n ∼= C
n.

Note that dimCVC = dimRV and dimRVC = 2 dimRV. In fact, if
{|ak〉}Nk=1 is a basis of V, then it is also a basis of VC as a complex vec-
tor space, while {|ak〉, i|ak〉}Nk=1 is a basis of VC as a real vector space.

After complexifying a real vector space V with inner product 〈 | 〉R = 〈 | 〉,
we can define an inner product on it which is sesquilinear (or hermitian) as
follows

〈α ⊗ a|β ⊗ b〉 ≡ ᾱβ〈a|b〉.
It is left to the reader to show that this inner product satisfies all the proper-
ties given in Definition 2.2.1.

To complexify a real vector space V, we have to “multiply” it by the set
of complex numbers: VC = C ⊗ V. As a result, we get a real vector space
of twice the original dimension. Is there a reverse process, a “division” of a
(necessarily even-dimensional) real vector space? That is, is there a way of
getting a complex vector space of half complex dimension, starting with an
even-dimensional real vector space?

Let V be a 2m-dimensional real vector space. Let J be a complex structure
on V, and {|ei〉, J|ei〉}mi=1 a basis of V. On the subspace V1 ≡ Span{|ei〉}mi=1,
define the multiplication by a complex number by

(α + iβ) ⊗ |v1〉 ≡ (α1 + βJ)|v1〉, α,β ∈ R, |v1〉 ∈ V1. (2.22)

It is straightforward to show that this process turns the 2m-dimensional real
vector space V into the m-dimensional complex vector space VC

1 .

2.5 Linear Functionals

An important example of a linear transformation occurs when the second
vector space, W, happens to be the set of scalars, C or R, in which case the
linear transformation is called a linear functional. The set of linear func-

linear functional tionals L(V,C)—or L(V,R) if V is a real vector space—is denoted by V∗
dual vector space V∗ and is called the dual space of V.

Example 2.5.1 Here are some examples of linear functionals:
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(a) Let |a〉 = (α1, α2, . . . , αn) be in C
n. Define φ : Cn → C by

φ
(|a〉)=

n∑

k=1

αk.

Then it is easy to show that φ is a linear functional.
(b) Let μij denote the elements of an m × n matrix M. Define ω :

Mm×n → C by

ω(M) =
m∑

i=1

n∑

j=1

μij .

Then it is easy to show that ω is a linear functional.
(c) Let μij denote the elements of an n×n matrix M. Define θ : Mn×n →

C by

θ(M) =
n∑

j=1

μjj ,

the sum of the diagonal elements of M. Then it is routine to show that
θ is a linear functional.

(d) Define the operator int : C0(a, b) → R by
integration is a linear
functional on the space
of continuous functionsint(f ) =

∫ b

a

f (t) dt.

Then int is a linear functional on the vector space C0(a, b).
(e) Let V be a complex inner product space. Fix |a〉 ∈ V, and let γ a : V →

C be defined by

γ a

(|b〉)= 〈a|b〉.
Then one can show that γ a is a linear functional.

(f) Let {|a1〉, |a2〉, . . . , |am〉} be an arbitrary finite set of vectors in V, and
{φ1,φ2, . . . ,φm} an arbitrary set of linear functionals on V. Let

A ≡
m∑

k=1

|ak〉φk ∈ End(V)

be defined by

A|x〉 =
m∑

k=1

|ak〉φk

(|x〉)=
m∑

k=1

φk

(|x〉)|ak〉.

Then A is a linear operator on V.

An example of linear isomorphism is that between a vector space and
its dual space, which we discuss now. Consider an N -dimensional vector
space with a basis B = {|a1〉, |a2〉, . . . , |aN 〉}. For any given set of N scalars,
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{α1, α2, . . . , αN }, define the linear functional φα by φα|ai〉 = αi . When φα

acts on any arbitrary vector |b〉 =∑N
i=1 βi |ai〉 in V, the result is

φα|b〉 = φα

(
N∑

i=1

βi |ai〉
)

=
N∑

i=1

βiφα|ai〉 =
N∑

i=1

βiαi . (2.23)

This expression suggests that |b〉 can be represented as a column vector with
entries β1, β2, . . . , βN and φα as a row vector with entries α1, α2, . . . , αN .
Then φα|b〉 is merely the matrix product14 of the row vector (on the left)
and the column vector (on the right).

φα is uniquely determined by the set {α1, α2, . . . , αN }. In other words,
corresponding to every set of N scalars there exists a unique linear func-
tional. This leads us to a particular set of functionals, φ1,φ2, . . . ,φN corre-
sponding, respectively, to the sets of scalars {1,0,0, . . . ,0}, {0,1,0, . . . ,0},
. . . , {0,0,0, . . . ,1}. This means that

Every set of N scalars
defines a linear

functional.
φ1|a1〉 = 1 and φ1|aj 〉 = 0 for j �= 1,

φ2|a2〉 = 1 and φ2|aj 〉 = 0 for j �= 2,

...
...

...

φN |aN 〉 = 1 and φN |aj 〉 = 0 for j �= N,

or that

φi |aj 〉 = δij , (2.24)

where δij is the Kronecker delta.
The functionals of Eq. (2.24) form a basis of the dual space V∗. To show

this, consider an arbitrary γ ∈ V∗, which is uniquely determined by its action
on the vectors in a basis B = {|a1〉, |a2〉, . . . , |aN 〉}. Let γ |ai〉 = γi ∈ C.
Then we claim that γ =∑N

i=1 γiφi . In fact, consider an arbitrary vector |a〉
in V with components (α1, α2, . . . , αN) with respect to B . Then, on the one
hand,

γ |a〉 = γ

(
N∑

i=1

αi |ai〉
)

=
N∑

i=1

αiγ |ai〉 =
N∑

i=1

αiγi .

On the other hand,

(
N∑

i=1

γiφi

)

|a〉 =
(

N∑

i=1

γiφi

)(
N∑

j=1

αj |aj 〉
)

=
N∑

i=1

γi

N∑

j=1

αjφi |aj 〉 =
N∑

i=1

γi

N∑

j=1

αj δij =
N∑

i=1

γiαi .

14Matrices will be taken up in Chap. 5. Here, we assume only a nodding familiarity with
elementary matrix operations.
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Since the actions of γ and
∑N

i=1 γiφi yield equal results for arbitrary |a〉,
we conclude that γ =∑N

i=1 γiφi , i.e., {φi}Ni=1 span V∗. Thus, we have the
following result.

Theorem 2.5.2 For every basis B = {|aj 〉}Nj=1 in V, there corresponds a

unique basis B∗ = {φi}Ni=1 in V∗ with the property that φi |aj 〉 = δij .

By this theorem the dual space of an N -dimensional vector space is also
N -dimensional, and thus isomorphic to it. The basis B∗ is called the dual

dual basisbasis of B . A corollary to Theorem 2.5.2 is that to every vector in V there
corresponds a unique linear functional in V∗. This can be seen by noting that
every vector |a〉 is uniquely determined by its components (α1, α2, . . . , αN)

in a basis B . The unique linear functional φa corresponding to |a〉, also
called the dual of |a〉, is simply

∑N
i=1 αiφi , with φi ∈ B∗.

Definition 2.5.3 An annihilator of |a〉 ∈ V is a linear functional φ ∈ V∗
such that φ|a〉 = 0. Let W be a subspace of V. The set of linear functionals
in V∗ that annihilate all vectors in W is denoted by W0.

The reader may check that W0 is a subspace of V∗. Moreover, if we
extend a basis {|ai〉}ki=1 of W to a basis B = {|ai〉}Ni=1 of V, then we can

annihilator of a vector
and a subspace

show that the functionals {φj }Nj=k+1, chosen from the basis B∗ = {φj }Nj=1

dual to B , span W0. It then follows that

dimV = dimW+ dimW0. (2.25)

We shall have occasions to use annihilators later on when we discuss sym-
plectic geometry.

We have “dualed” a vector, a basis, and a complete vector space. The
only object remaining is a linear transformation.

Definition 2.5.4 Let T : V → U be a linear map. Define T∗ :U∗ → V∗ by15

dual, or pull back, of a
linear transformation

[
T∗(γ )

]|a〉 = γ
(
T|a〉) ∀|a〉 ∈ V, γ ∈ U∗,

T∗ is called the dual or pullback, of T.

One can readily verify that T∗ ∈ L(U∗,V∗), i.e., that T∗ is a linear oper-
ator on U∗. Some of the mapping properties of T∗ are tied to those of T. To
see this we first consider the kernel of T∗. Clearly, γ is in the kernel of T∗ if
and only if γ annihilates all vectors of the form T|a〉, i.e., all vectors in T(V).
It follows that γ is in T(V)0. In particular, if T is surjective, T(V) = U, and γ

annihilates all vectors in U, i.e., it is the zero linear functional. We conclude
that ker T∗ = 0, and therefore, T∗ is injective. Similarly, one can show that
if T is injective, then T∗ is surjective. We summarize the discussion above:

15Do not confuse this “*” with complex conjugation.
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Proposition 2.5.5 Let T be a linear transformation and T∗ its pull back.
Then ker T∗ = T(V)0. If T is surjective (injective), then T∗ is injective (sur-
jective). In particular, T∗ is an isomorphism if T is.

It is useful to make a connection between the inner product and linear
functionals. To do this, consider a basis {|a1〉, |a2〉, . . . , |aN 〉} and let αi =
〈a|ai〉. As noted earlier, the set of scalars {αi}Ni=1 defines a unique linear
functional γ a (see Example 2.5.1) such that γ a|ai〉 = αi . Since 〈a|ai〉 is
also equal to αi , it is natural to identify γ a with the symbol 〈a|, and write
γ a �→ 〈a|.

duals and inner products

It is also convenient to introduce the notation16

(|a〉)† ≡ 〈a|, (2.26)

where the symbol † means “dual, or dagger of”. Now we ask: How does
this dagger operation act on a linear combination of vectors? Let |c〉 =

dagger of a linear
combination of vectors

α|a〉 + β|b〉 and take the inner product of |c〉 with an arbitrary vector |x〉
using linearity in the second factor: 〈x|c〉 = α〈x|a〉+β〈x|b〉. Now complex
conjugate both sides and use the (sesqui)symmetry of the inner product:

(LHS)∗ = 〈x|c〉∗ = 〈c|x〉,
(RHS)∗ = α∗〈x|a〉∗ + β∗〈x|b〉∗ = α∗〈a|x〉 + β∗〈b|x〉

= (α∗〈a| + β∗〈b|)|x〉.

Since this is true for all |x〉, we must have (|c〉)† ≡ 〈c| = α∗〈a| + β∗〈b|.
Therefore, in a duality “operation” the complex scalars must be conjugated.
So, we have

(
α|a〉 + β|b〉)† = α∗〈a| + β∗〈b|. (2.27)

Thus, unlike the association |a〉 �→ γ a which is linear, the association γ a �→
〈a| is not linear, but sesquilinear:

γ αa+βb �→ α∗〈a| + β∗〈b|.

It is convenient to represent |a〉 ∈C
n as a column vector

|a〉 =

⎛

⎜
⎜
⎜
⎝

α1

α2
...

αn

⎞

⎟
⎟
⎟
⎠

.

Then the definition of the complex inner product suggests that the dual of
|a〉 must be represented as a row vector with complex conjugate entries:

〈a| = (α∗
1 α∗

2 . . . α∗
n

)
, (2.28)

16The significance of this notation will become clear in Sect. 4.3.
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and the inner product can be written as the (matrix) product

〈a|b〉 = (α∗
1 α∗

2 · · · α∗
n

)

⎛

⎜
⎜
⎜
⎝

β1

β2
...

βn

⎞

⎟
⎟
⎟
⎠

=
n∑

i=1

α∗
i βi .

Compare (2.28) with the
comments after (2.23).
The complex
conjugation in (2.28) is
the result of the
sesquilinearity of the
association |a〉 ↔ 〈a|.

2.6 Multilinear Maps

There is a very useful generalization of the linear functionals that becomes
essential in the treatment of tensors later in the book. However, a limited
version of its application is used in the discussion of determinants, which
we shall start here.

Definition 2.6.1 Let V and U be vector spaces. Let Vp denote the p-fold
Cartesian product of V. A p-linear map from V to U is a map θ : Vp → U p-linear map

which is linear with respect to each of its arguments:

θ
(|a1〉, . . . , α|aj 〉 + β|bj 〉, . . . , |ap〉)

= αθ
(|a1〉, . . . , |aj 〉, . . . , |ap〉)+ βθ

(|a1〉, . . . , |bj 〉, . . . , |ap〉).
A p-linear map from V to C or R is called a p-linear function in V. p-linear function

As an example, let {φi}pi=1 be linear functionals on V. Define θ by

θ
(|a1〉, . . . , |ap〉)= φ1

(|a1〉
)
. . .φp

(|ap〉), |ai〉 ∈ V.

Clearly θ is p-linear.
Let σ denote a permutation of 1,2, . . . , p. Define the p-linear map σω

by

σω
(|a1〉, . . . , |ap〉)= ω

(|aσ(1)〉, . . . , |aσ(p)〉
)

Definition 2.6.2 A p-linear map ω from V to U is skew-symmetric if σω = skew-symmetric p-linear
mapεσ · ω, i.e., if

ω
(|aσ(1)〉, . . . , |aσ(p)〉

)= εσ ω
(|a1〉, . . . , |ap〉)

where εσ is the sign of σ , which is +1 if σ is even and −1 if it is odd. The
set of p-linear skew-symmetric maps from V to U is denoted by Λp(V,U).
The set of p-linear skew-symmetric functions in V is denoted by Λp(V).

The permutation sign εσ is sometimes written as

εσ = εσ(1)σ (2)...σ (p) ≡ εi1i2...ip , (2.29)

where ik ≡ σ(k).
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Any p-linear map can be turned into a skew-symmetric p-linear map. In
fact, if θ is a p-linear map, then

ω ≡
∑

π

επ · πθ (2.30)

is skew-symmetric:

σω = σ
∑

π

επ · πθ =
∑

π

επ · (σπ)θ = (εσ )2
∑

π

επ · (σπ)θ

= εσ

∑

π

(εσ επ ) · (σπ)θ = εσ

∑

σπ

εσπ · (σπ)θ = εσ · ω,

where we have used the fact that the sign of the product is the product of the
signs of two permutations, and if

∑
π sums over all permutations, then so

does
∑

σπ .
The following theorem can be proved using properties of permutations:

Theorem 2.6.3 Let ω ∈ Λp(V,U). Then the following statements are equiv-
alent:

1. ω(|a1〉, . . . , |ap〉) = 0 whenever |ai〉 = |aj 〉 for some pair i �= j .
2. ω(|aσ(1)〉, . . . , |aσ(p)〉) = εσ ω(|a1〉, . . . , |ap〉), for any permutation σ

of 1,2, . . . , p, and any |a1〉, . . . , |ap〉 in V.
3. ω(|a1〉, . . . , |ap〉) = 0 whenever {|ak〉}pk=1 are linearly dependent.

Proposition 2.6.4 Let N = dimV and ω ∈ ΛN(V,U). Then ω is deter-
mined uniquely by its value on a basis of V. In particular, if ω vanishes
on a basis, then ω = 0.

Proof Let {|ek〉}Nk=1 be a basis of V. Let {|aj 〉}Nj=1 be any set of vectors in V

and write |aj 〉 =∑N
k=1 αjk|ek〉 for j = 1, . . . ,N . Then

ω
(|a1〉, . . . , |aN 〉)=

N∑

k1...kN=1

α1k1 . . . αNkN
ω
(|ek1〉, . . . , |ekN

〉)

≡
∑

π

α1π(1) . . . αNπ(N)ω
(|eπ(1)〉, . . . , |eπ(N)〉

)

=
(∑

π

επα1π(1) . . . αNπ(N)

)

ω
(|e1〉, . . . , |eN 〉).

Since the term in parentheses is a constant, we are done. �

Definition 2.6.5 A skew symmetric N -linear function in V, i.e., a member
Determinant function of ΛN(V) is called a determinant function in V.

Let B = {|ek〉}Nk=1 be a basis of V and B∗ = {εj }Nj=1 a basis of V∗, dual

to B . For any set of N vectors {|ak〉}Nk=1 in V, define the N -linear function
θ by

θ
(|a1〉, . . . , |aN 〉)= ε1

(|a1〉
)
. . . εN

(|aN 〉),
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and note that

πθ
(|e1〉, . . . , |eN 〉)≡ θ

(|eπ(1)〉, . . . , |eπ(N)〉
)= διπ ,

where ι is the identity permutation and διπ = 1 if π = ι and διπ = 0 if π �= ι.
Now let � be defined by � ≡∑π επ ·πθ . Then, by Eq. (2.30), � ∈ ΛN(V),
i.e., � is a determinant function. Furthermore,

�
(|e1〉, . . . , |eN 〉)=

∑

π

επ · πθ
(|e1〉, . . . , |eN 〉)=

∑

π

επδιπ = ει = 1

Therefore, we have the following:

Box 2.6.6 In every finite-dimensional vector space, there are deter-
minant functions which are not identically zero.

Proposition 2.6.7 Let ω ∈ ΛN(V,U). Let � be a fixed nonzero determinant
function in V. Then ω determines a unique |u�〉 ∈ U such that

ω
(|v1〉, . . . , |vN 〉)= �

(|v1〉, . . . , |vN 〉) · |u�〉.

Proof Let {|vk〉}Nk=1 be a basis of V such that �(|v1〉, . . . , |vN 〉) �= 0. By
dividing one of the vectors (or �) by a constant, we can assume that
�(|v1〉, . . . , |vN 〉) = 1. Denote ω(|v1〉, . . . , |vN 〉) by |u�〉. Now note that
ω − � · |u�〉 yields zero on the basis {|vk〉}Nk=1. By Proposition 2.6.4, it
must be identically zero. �

Corollary 2.6.8 Let � be a fixed nonzero determinant function in V. Then
every determinant function is a scalar multiple of �.

Proof Let U be C or R in Proposition 2.6.7. �

Proposition 2.6.9 Let � be a determinant function in the N -dimensional
vector space V. Let |v〉 and {|vk〉}Nk=1 be vectors in V. Then

N∑

j=1

(−1)j−1�
(|v〉, |v1〉, . . . , |̂vj 〉, . . . , |vN 〉) · |vj 〉 = �

(|v1〉, . . . , |vN 〉) · |v〉

where a hat on a vector means that particular vector is missing.

Proof See Problem 2.37. �

2.6.1 Determinant of a Linear Operator

Let A be a linear operator on an N -dimensional vector space V. Choose a
nonzero determinant function �. For a basis {|vi〉}Ni=1 define the function
�A by

�A

(|v1〉, . . . , |vN 〉)≡ �
(
A|v1〉, . . . , A|vN 〉). (2.31)
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Clearly, �A is also a determinant function. By Corollary 2.6.8, it is a mul-
tiple of �. So, �A = α�. Furthermore, it is independent of the nonzero
determinant function chosen, because if �′ is another nonzero determinant
function, then again by Corollary 2.6.8, �′ = λ�, and

�′
A = λ�A = λα� = α�′.

This means that α is determined only by A, independent of the nonzero
determinant function and the basis chosen.

determinant of an
operator defined

Definition 2.6.10 Let A ∈ End(V). Let � be a nonzero determinant
function in V, and let �A be as in Eq. (2.31). Then

�A = det A · � (2.32)

defines the determinant of A.

Using Eq. (2.32), we have the following theorem whose proof is left as
Problem 2.38:

Theorem 2.6.11 The determinant of a linear operator A has the following
properties:

1. If A = λ1, then det A = λN .
2. A is invertible iff det A �= 0.
3. det(A ◦ B) = det A det B.

2.6.2 Classical Adjoint

Let V be an N -dimensional vector space, � a determinant function in V,
and A ∈ End(V). For |v〉, |vi〉 ∈ V, define Φ : VN → End(V) by

Φ
(|v1〉, . . . , |vN 〉)|v〉

=
N∑

j=1

(−1)j−1�
(|v〉, A|v1〉, . . . , Â|vj 〉, . . . , A|vN 〉) · |vj 〉.

Clearly Φ is skew-symmetric. Therefore, by Proposition 2.6.7, there is a
unique linear operator—call it ad(A)—such that

Φ
(|v1〉, . . . , |vN 〉)= �

(|v1〉, . . . , |vN 〉) · ad(A),

i.e.,

N∑

j=1

(−1)j−1�
(|v〉, A|v1〉, . . . , Â|vj 〉, . . . , A|vN 〉) · |vj 〉

= �
(|v1〉, . . . , |vN 〉) · ad(A)|v〉. (2.33)
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This equation shows that ad(A) is independent of the determinant function
chosen, and is called the classical adjoint of A.

classical adjoint of an
operator

Proposition 2.6.12 The classical adjoint satisfies the following relations:

ad(A) ◦ A = det A · 1 = A ◦ ad(A) (2.34)

where 1 is the unit operator.

Proof Replace |v〉 with A|v〉 in Eq. (2.33) to obtain

N∑

j=1

(−1)j−1�
(
A|v〉, A|v1〉, . . . , Â|vj 〉, . . . , A|vN 〉) · |vj 〉

= �
(|v1〉, . . . , |vN 〉) ad(A) ◦ A|v〉.

Then, the left-hand side can be written as

LHS = det A ·
N∑

j=1

(−1)j−1�
(|v〉, |v1〉, . . . , |̂vj 〉, . . . , |vN 〉) · |vj 〉

= det A · �(|v1〉, . . . , |vN 〉) · |v〉,
where the last equality follows from Proposition 2.6.9. Noting that |v〉 is
arbitrary, the first equality of the proposition follows.

To obtain the second equality, apply A to (2.33). Then by Proposi-
tion 2.6.9, the left-hand side becomes

LHS =
N∑

j=1

(−1)j−1�
(|v〉, A|v1〉, . . . , Â|vj 〉, . . . , A|vN 〉) · A|vj 〉

= �
(
A|v1〉, . . . , A|vN 〉) · |v〉 = det A · �(|v1〉, . . . , |vN 〉) · |v〉,

and the right-hand side becomes

RHS = �
(|v1〉, . . . , |vN 〉) · A ◦ ad(A)|v〉.

Since the two sides hold for arbitrary |v〉, the second equality of the propo-
sition follows. �

Corollary 2.6.13 If det A �= 0, then A is invertible and

A−1 = 1

det A
· ad(A).

2.7 Problems

2.1 Let R+ denote the set of positive real numbers. Define the “sum” of two
elements of R+ to be their usual product, and define scalar multiplication by
elements of R as being given by r · p = pr where r ∈ R and p ∈ R

+. With
these operations, show that R+ is a vector space over R.
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2.2 Show that the intersection of two subspaces is also a subspace.

2.3 For each of the following subsets of R
3 determine whether it is a

subspace of R3:

(a) {(x, y, z) ∈ R
3|x + y − 2z = 0};

(b) {(x, y, z) ∈ R
3|x + y − 2z = 3};

(c) {(x, y, z) ∈ R
3|xyz = 0}.

2.4 Prove that the components of a vector in a given basis are unique.

2.5 Show that the following vectors form a basis for Cn (or Rn).

|a1〉 =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1
1
...

1
1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, |a2〉 =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1
1
...

1
0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, . . . , |an〉 =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1
0
...

0
0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

2.6 Prove Theorem 2.1.6.

2.7 Let W be a subspace of R5 defined by

W = {(x1, . . . , x5) ∈R
5 | x1 = 3x2 + x3, x2 = x5, and x4 = 2x3

}
.

Find a basis for W.

2.8 Let U1 and U2 be subspaces of V. Show that

(a) dim(U1 +U2) = dimU1 +dimU2 −dim(U1 ∩U2). Hint: Let {|ai〉}mi=1
be a basis of U1 ∩ U2. Extend this to {{|ai〉}mi=1, {|bi〉}ki=1}, a basis
for U1, and to {{|ai〉}mi=1, {|ci〉}li=1}, a basis for U2. Now show that
{{|ai〉}mi=1, {|bi〉}ki=1, {|ci〉}li=1} is a basis for U1 +U2.

(b) If U1 +U2 = V and dimU1 + dimU2 = dimV, then V = U1 ⊕U2.
(c) If dimU1 + dimU2 > dimV, then U1 ∩U2 �= {0}.

2.9 Show that the vectors defined in Eq. (2.5) span W = U⊕V.

2.10 Show that the inner product of any vector with |0〉 is zero.

2.11 Find a0, b0, b1, c0, c1, and c2 such that the polynomials a0, b0 + b1t ,
and c0 +c1t +c2t

2 are mutually orthonormal in the interval [0,1]. The inner
product is as defined for polynomials in Example 2.2.3 with w(t) = 1.

2.12 Given the linearly independent vectors x(t) = tn, for n = 0,1,2, . . . in
Pc[t], use the Gram–Schmidt process to find the orthonormal polynomials
e0(t), e1(t), and e2(t)

(a) when the inner product is defined as 〈x|y〉 = ∫ 1
−1 x∗(t)y(t) dt .
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(b) when the inner product is defined with a nontrivial weight function:

〈x|y〉 =
∫ ∞

−∞
e−t2

x∗(t)y(t) dt.

Hint: Use the following result:

∫ ∞

−∞
e−t2

tn dt =

⎧
⎪⎨

⎪⎩

√
π if n = 0,

0 if n is odd,√
π

1·3·5···(n−1)

2n/2 if n is even.

2.13 (a) Use the Gram–Schmidt process to find an orthonormal set of vec-
tors out of (1,−1,1), (−1,0,1), and (2,−1,2).

(b) Are these three vectors linearly independent? If not, find a zero linear
combination of them by using part (a).

2.14 (a) Use the Gram–Schmidt process to find an orthonormal set of vec-
tors out of (1,−1,2), (−2,1,−1), and (−1,−1,4).

(b) Are these three vectors linearly independent? If not, find a zero linear
combination of them by using part (a).

2.15 Show that
∫ ∞

−∞
(
t10 − t6 + 5t4 − 5

)
e−t4

dt

≤
√∫ ∞

−∞
(
t4 − 1

)2
e−t4

dt

√∫ ∞

−∞
(
t6 + 5

)2
e−t4

dt.

Hint: Define an appropriate inner product and use the Schwarz inequality.

2.16 Show that
∫ ∞

−∞
dx

∫ ∞

−∞
dy
(
x5 − x3 + 2x2 − 2

)(
y5 − y3 + 2y2 − 2

)
e−(x4+y4)

≤
∫ ∞

−∞
dx

∫ ∞

−∞
dy
(
x4 − 2x2 + 1

)(
y6 + 4y3 + 4

)
e−(x4+y4).

Hint: Define an appropriate inner product and use the Schwarz inequality.

2.17 Show that for any set of n complex numbers α1, α2, . . . , αn, we have

|α1 + α2 + · · · + αn|2 ≤ n
(|α1|2 + |α2|2 + · · · + |αn|2

)
.

Hint: Apply the Schwarz inequality to (1,1, . . . ,1) and (α1, α2, . . . , αn).

2.18 Using the Schwarz inequality show that if {αi}∞i=1 and {βi}∞i=1 are in
C

∞, then
∑∞

i=1 α∗
i βi is convergent.

2.19 Show that T : R2 →R
3 given by T(x, y) = (x2 + y2, x + y,2x − y) is

not a linear mapping.
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2.20 Verify that all the transformations of Example 2.3.5 are linear.

2.21 Let π be the permutation that takes (1,2,3) to (3,1,2). Find

Aπ |ei〉, i = 1,2,3,

where {|ei〉}3
i=1 is the standard basis of R3 (or C3), and Aπ is as defined in

Example 2.3.5.

2.22 Show that if T ∈ L(C,C), then there exists α ∈ C such that T|a〉 =
α|a〉 for all |a〉 ∈ C.

2.23 Show that if {|ai〉}ni=1 spans V and T ∈L(V,W), then {T|ai〉}ni=1 spans
T(V). In particular, if T is surjective, then {T|ai〉}ni=1 spans W.

2.24 Give an example of a function f : R2 →R such that

f
(
α|a〉)= αf

(|a〉) ∀α ∈R and |a〉 ∈R
2

but f is not linear. Hint: Consider a homogeneous function of degree 1.

2.25 Show that the following transformations are linear:

(a) V is C over the reals and C|z〉 = |z∗〉. Is C linear if instead of real
numbers, complex numbers are used as scalars?

(b) V is Pc[t] and T|x(t)〉 = |x(t + 1)〉 − |x(t)〉.

2.26 Verify that the kernel of a transformation T : V → W is a subspace of
V, and that T(V) is a subspace of W.

2.27 Let V and W be finite dimensional vector spaces. Show that if T ∈
L(V,W) is surjective, then dimW ≤ dimV .

2.28 Suppose that V is finite dimensional and T ∈ L(V,W) is not zero.
Prove that there exists a subspace U of V such that ker T ∩ U = {0} and
T(V) = T(U).

2.29 Using Theorem 2.3.11, prove Theorem 2.3.18.

2.30 Using Theorem 2.3.11, prove Theorem 2.3.19.

2.31 Let BV = {|ai〉}Ni=1 be a basis for V and BW = {|bi〉}Ni=1 a basis for W.
Define the linear transformation T|ai〉 = |bi〉, i = 1,2, . . . ,N . Now prove
Theorem 2.3.20 by showing that T is an isomorphism.

2.32 Show that (AT)T = A for the adjoint given in Definition 2.4.3.

2.33 Show that W0 is a subspace of V∗ and

dimV = dimW+ dimW0.



2.7 Problems 61

2.34 Show that every vector in the N -dimensional vector space V∗ has
N − 1 linearly independent annihilators. Stated differently, show that a lin-
ear functional maps N − 1 linearly independent vectors to zero.

2.35 Show that T and T∗ have the same rank. In particular, show that if T is
injective, then T∗ is surjective. Hint: Use the dimension theorem for T and
T∗ and Eq. (2.25).

2.36 Prove Theorem 2.6.3.

2.37 Prove Proposition 2.6.9. Hint: First show that you get zero on both
sides if {|vk〉}Nk=1 are linearly dependent. Next assume their linear indepen-
dence and choose them as a basis, write |v〉 in terms of them, and note that

�
(|v〉, |v1〉, . . . , |̂vj 〉, . . . , |vN 〉)= 0

unless i = j .

2.38 Prove Theorem 2.6.11. Hint: For the second part of the theorem, use
the fact that an invertible A maps linearly independent sets of vectors onto
linearly independent sets.
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