
Curvature Measures, Isoperimetric Type
Inequalities and Fully Nonlinear PDEs

Pengfei Guan

Abstract The notes consider two special fully nonlinear partial differential equa-
tions arising from geometric problems, one is of elliptic type and another is of
parabolic type. The elliptic equation is associated to the problem of prescribing
curvature measures, while an inverse mean curvature type of parabolic equation is
introduced to prove the isoperimetric type inequalities for quermassintegrals of k-
convex starshaped domains.

The material in the notes is compiled from the lectures given in the CIME
Summer School in Cetraro, 2012. It treats some nonlinear elliptic and parabolic
partial differential equations arising from geometric problems of hypersurfaces
in R

nC1. A curvature type of elliptic equation is used to solve the problem of
prescribing curvature measures, which is a Minkowski type problem. An inverse
mean curvature type of parabolic equation is employed for the proof of isoperimetric
type inequalities for quermassintegrals of k-convex starshaped domains. Both types
of equations are fully nonlinear, they belong to the category of general geometric
fully nonlinear PDE.

The emphasis of the notes is the a priori estimates, which is the key in the
theory of fully nonlinear PDE. These estimates are intend to be self-contained
here, with minimal assumptions on basic knowledge in PDE and geometry, namely
the standard maximum principles for linear elliptic and parabolic equations, the
elementary formulas of Gauss, Codazzi and Weingarten for hypersurfaces in R

nC1,
and the curvature commutator identities. Two theorems we would use without proof
for higher regularity are: the Evans-Krylov Theorem [11, 31] for uniformly fully
nonlinear elliptic equations and the Krylov Theorem [31] for uniformly parabolic
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fully nonlinear PDE, since the proofs of these deep results would take considerable
space.

The topics dealt in this notes are special samples of geometric nonlinear PDE.
It is our hope they can serve as an introduction to the general theory of geometric
analysis.

The notes are organized as follows. The curvature measures are introduced
through the Steiner formula in differential geometric setting in Sect. 1, where the
Steiner formula and the Minkowski identity are proved. As the geometric objects
and the associated differential equations are involved the elementary symmetric
functions, some important properties of these functions are collected in Sect. 2 with
proofs, except the theory of hyperbolic polynomials of Garding which is put in the
Appendix. Section 3 deals with the problem of prescribing curvature measures. A
k-curvature fully nonlinear elliptic equation is set up there together with the a priori
estimates of the solutions of the equation. Section 4 is devoted to the proof of the
isoperimetric inequalities for quermassintegrals of k-convex star shaped domains,
via parabolic approach. Again, the main part is the a priori estimates for the solutions
of the corresponding parabolic equation. The literature comments appear at the end
of the notes.

1 The Steiner Formula and Curvature Measures

Suppose � is a domain in R
nC1, for each x 2 R

nC1, denote p.�; x/ to be the set of
the nearest points in � to x. Given any Borel set ˇ 2 B.RnC1/, 8s > 0, consider

As.�; ˇ/ WD fx 2 R
nC1j0 < d.�; x/ � s and p.�; x/ 2 ˇg

which is the set of all points x 2 R
nC1 for which the distance d.�; x/ � s and for

which the nearest point p.�; x/ belongs to ˇ. If @� is smooth and ˇ is open, for
s > 0 small, one may write

As.�; ˇ/ D fX C t�.X/ jX 2 ˇ \ M; 0 � t � s; g

where �.X/ is the outer normal of M at X .
We assume the boundary of �, M D @�, is C 2 (or smoother). Let

�.X/ D .�1.X/; � � � ; �n.X//

be the principal curvatures of X 2 M . To calculate the volume of As.�; ˇ/, pick
any local orthonormal frame of M , so that the second fundamental form .Wij.X//

of M at X is diagonal. As .X C t�.X//i D .1 C tWii/Xi , and �.X/ is orthogonal
to Xi , the volume element at X C t�.X/ is simply

dV D .

nY

iD1

.1 C tWii//d�M dt D
nX

iD0

�i .�.X//t i d�M dt;
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where �i .�/ is the i -th elementary symmetric function of � (see Definition (6)), and
where d�g is the volume element with respect to the induced metric g of M in
R

nC1. Therefore,

V.As.�; ˇ// D
Z s

0

Z

ˇ\M

nX

iD0

�i .�.X//t i d�M dt D
nX

iD0

.

Z

ˇ\M

�i .�.X//d�M /
siC1

i C 1
:

Set

Cm.�/ D �n�m.�/d�M ; m D 0; 1; � � � ; n: (1)

We have proved the Steiner formula,

V.As.�; ˇ// D
nX

mD0

snC1�m

n C 1 � m
Cm.�; ˇ/; (2)

for ˇ 2 B.RnC1/ and s > 0.
In the context of classical convex geometry, the coefficients C0.�; �/; � � � ; Cn.�; �/

in (2) are called curvature measures of the convex body �. Formula (1) indicates
that Cm.�; �/ is well defined if @� is C 2 without convexity assumption. In general,
Cm.�/ is a signed measure. The positivity of Cm.�/ for 0 � m � k is related to the
notion of k-convexity (Definition 3.1).

The global quantities

Vn�m.�/ D Cn;k

Z

M

�m.�/d�M ; m D 0; 1; � � � ; n; (3)

where Cn;k D �k.1;��� ;1/

�k�1.1;��� ;1/
, are called the quermassintegrals of � in convex geometry,

if � is convex. Again, we note that these quantities are well defined for general C 2

domain � without convexity condition.
It is clear that the curvature measures capture the geometry of M .

1. What are the relations between quermassintegrals?
2. How much information can we extract from the curvature measures?

These are the main questions we want to deal with in this notes. The first question
has satisfactory answer when � is convex, which corresponds to the classical
Alexandrov-Fenchel inequalities. Generalization of these inequalities to non-convex
domains has gained much interest recently, but remains largely unsettled. We will
focus on a class of non-convex star-shaped domains, where a clean result can be
established. The second question can be answered in terms of the Minkowski type
problem, the problem of prescribing curvature measures. It turns out there is an
affirmative answer if we restrict ourselves to the class of non-convex star-shaped
domains.
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There is a different expression for Vn�m.�/ involving the support function
u.X/ D hX; �.X/i. The Minkowski identity states that 8k � 1,

Z

M

u�k.�/d�M D Cn;k

Z

M

�k�1.�/d�M ; (4)

By the Divergent theorem,

VnC1.�/ D 1

n C 1

Z

M

ud�M :

From (4), we may define

V.nC1/�k.�/ D
Z

M

u�k.�/d�M ; (5)

for k D 0; � � � ; n. VnC1.�/ is multiple of the volume of � by a dimensional
constant, Vn.�/ is a multiple of the surface area of @� by another dimensional
constant. In convex geometry, u is called the support function of �.

The Minkowski identity (4) can be verified using the fact that �k has divergent
free structure (Lemma 2.1). Again, pick a local orthonormal frame on M , let
h D .Wij/ be the second fundamental from and let g�1h D .hi

j / be the Weingarten
tensor. We compute

.
jX j2

2
/ij D XiXj C Xij D ıij � hX; �.X/iWij D ıij � uWij:

Contracting with �
ij
k D @�k

@hi
j

.g�1h/ and integrating over M

Z

M

�
ij
k .

jX j2
2

/ij D
Z

M

.
X

i

�
ij
k ıij � u�

ij
k Wij/:

As

�
ij
k ıij D .n � k C 1/�k�1; �

ij
k Wij D k�k;

and by (8), we get

0 D .n � k C 1/

Z

M

�k�1.g�1h/ � k

Z

M

u�k.g�1h/:

This is exactly the identity (4).
The Minkowski addition of two sets �1; �2 � R

nC1 is defined as

�1 C �2 D fz D x C yjx 2 �1; y 2 �2g:
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The Minkowski addition is one of the basic operation in convex geometry. For
general domain �, when 0 � s small, one may define

�s D fz D x C yjx 2 �; y 2 Bsg;

where Bs is the ball centered at the origin with radius s.

�s D fX C t�.X/ jX 2 �; 0 � t � s:g

If M D @� is smooth, the boundary @�s D Ms is also smooth and can be written as

Ms D fX C s�.X/ jX 2 M:g

Moreover, the normal of Ms at Xs D X C s�.X/ is the same as �.X/ for each
X 2 M . The support function of �s is us.X

s/ D u.X/ C s. For any local
orthonormal frame e1; � � � ; en on M such that h D .Wij / is diagonal at the point,
one may calculate the induced metric gs on M s

gs D
nX

iD1

.1 C hi
i /

2ei ˝ ei ;

and the area element of M s

d�Ms D det.I C sg�1h/d�M :

By the Minkowski identity, the volume of �s can be computed as

V.�s/ D 1

n C 1

Z

M

us det.I C sg�1h/d�M

D 1

n C 1

Z

M

nX

iD0

.u C s/si �i .g
�1h/d�M

D 1

n C 1

Z

M

nX

iD0

.usi �i .g
�1h/ C siC1/�i .g

�1h/d�M

D 1

n C 1

nX

iD0

n C 1

i C 1
siC1

Z

M

�i .g
�1h/d�M C 1

n C 1

Z

M

ud�M

D
nC1X

iD0

ci
nC1t

nC1�i Vi .�/;
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2 Some Properties of Elementary Symmetric Functions

The elementary symmetric functions appear naturally in the geometric quantities in
the previous section. In order to carry on analysis, we need to understand properties
of the elementary symmetric functions.

For 1 � k � n, and � D .�1; : : : ; �n/ 2 R
n, the k-th elementary symmetric

function is defined as

�k.�/ D
X

�i1 : : : �ik ; (6)

where the sum is taken over all strictly increasing sequences i1; : : : ; ik of the indices
from the set f1; : : : ; ng. The definition can be extended to symmetric matrices.
Denote �.W / D .�1.W /; : : : ; �n.W // to be the eigenvalues of the symmetric
matrix W , set

�k.W / D �k.�.W //:

It is convenient to set

�0.W / D 1; �k.W / D 0; for k > n.

It follows directly from the definition that, for any n � n symmetric matrix W ,
and 8t 2 R,

�n.I C tW / D det.I C tW / D
nX

iD0

�i .W /t i : (7)

Conversely, (7) can also be used to define �k.W /, 8k D 0; � � � ; n.
An important property of �k is the divergent free structure. Suppose M is a

general Riemannian manifold of dimension n, W is a symmetric tensor on M . We
call W is Codazzi if DW D 0. This property is equivalent to say that, for any local
orthonormal frame .e1; � � � ; en/ on M , write W D .wij/, then wij;l D rel

wij is
symmetric with respect to i; j; l . Some classical examples are

1. Second fundamental form h of any hypersurface in space form N.c/ with
constant sectional curvature c, this follows from the Codazzi equation;

2. W D r2
v C cv, 8v 2 C 3.N.c//.

Throughout the rest of the notes, we will use Einstein summation convention,
unless it is otherwise indicated.

Below is the statement of divergent free structure of �k .

Lemma 2.1. Suppose e1; � � � ; en is a local orthonormal frame on M , W D .wij/ is
a Codazzi tensor on M , then for each i ,

nX

j D1

.
@�k

@wij

/j .W / D 0: (8)
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Proof. We first verify (8) for k D n. Denote C il to be the cofactor of W , i.e.,

@�n

@wil
D C il; C ilwlj D det.W /ıi

j :

Differentiate above identity in em direction and contract with C jm,

C jmC il
mwlj C C ilwlj;mC jm D ıi

j .det.W //mC jm:

If det.W / ¤ 0 at the point, we get

C im
m D C pqC imwpq;m � C ilC jmwlj;m D C pqC imwpq;m � C ilC jmwjm;l D 0:

If det.W / D 0 at the point, we may approximate W by Codazzi tensor QW D W Ctg
where g is the metric tensor on M such that det. QW / ¤ 0 for t small. Equation (8)
is verified for the case k D n.

Observe that, for t 2 R,

�n. QW / D
nX

mD0

tm�n�m.W /:

Apply (8) for the case k D n,

nX

mD0

tm
X

j

.
@�n�m

@wij
.W //j D 0:

Since it is true for all t 2 R, we must have 8m,

X

j

.
@�n�m

@wij
.W //j D 0:

ut
The following gives explicit algebraic formulas for �k.W /.

Proposition 2.2. If W D .Wij/ is an n � n symmetric matrix, let F.W / D �k.W /

for 1 � k � n. Then the following relations hold.

�k.W / D 1

kŠ

nX

i1;:::;ikD1
j1;:::;jkD1

ı.i1; : : : ; ikI j1; : : : ; jk/Wi1j1 � � � Wikjk
;

F ˛ˇ WD @F

@W˛ˇ

.W /
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D 1

.k � 1/Š

nX

i1;:::;ik�1D1
j1;:::;jk�1D1

ı.˛; i1; : : : ; ik�1I ˇ; j1; : : : ; jk�1/Wi1j1 � � � Wik�1jk�1

F ij;rs WD @2F

@Wij@Wrs
.W /

D 1

.k�2/Š

nX

i1;:::;ik�2D1
j1;:::;jk�2D1

ı.i; r; i1; : : : ; ik�2I j; s; j1; : : : ; jk�2/Wi1j1 � � �Wik�2jk�2
;

where the Kronecker symbol ı.I I J / for indices I D .i1; : : : ; im/ and J D
.j1; : : : ; jm/ is defined as

ı.I I J / D

8
ˆ̂<

ˆ̂:

1; if I is an even permutation of J ;

�1; if I is an odd permutation of J ;

0; otherwise.

X

i;j;m

�
ij

k .W /WimWmj D �1.W /�k.W / � .k C 1/�kC1.W /:

Proof. The first identity follows from (7) by equalized the coefficient in front of
tk . The second and third identities follow from the first identity. Notice that all
the identity are invariant under orthornormal transformation. In particular, we may
assume W is diagonal in the last identity. For � 2 R

n, for any fixed i 2 f1; � � � ; ng,
denote .�ji/ 2 R

n with i -th component of � replaced by 0. Differentiation of (6)
yields

@�k.�/

@�i

D �k�1.�ji/: (9)

Again it can read off from (6),

�k.�/ D �k.�ji/ C �i �k�1.�ji/: (10)

Thus,

�i �k.�ji/ D �i .�k.�/ � �i �k�1.�ji/ D �i�k.�/ � �2
i �k�1.�ji/:

Using homogeneity of �kC1, the last identity in the proposition follows from the
above by summing up over i . ut



Curvature Measures, Isoperimetric Type Inequalities and Fully Nonlinear PDEs 55

Definition 2.3. For 1 � k � n, let �k is a cone in R
n determined by

�k D f� 2 R
n W �1.�/ > 0; : : : ; �k.�/ > 0g:

A n � n symmetric matrix W is called belong to �k is �.W / 2 �k .

Let W 1; � � � ; W n be n � n symmetric matrices, define �n.W 1; : : : ; W n/ to be the
coefficient in front of the factor t1 � � � tn of the polynomial det.t1W 1 C � � � C tnW n/.
It is called the mixed determinant of W 1; � � � ; W n. In general, for 1 � k � n, we
define �k.W 1; : : : ; W k/ D �

n
k

�
�n.W 1; : : : ; W k; I; � � � ; I /, where the identity matrix

I appears .n � k/ times. �k.W 1; : : : ; W k/ is called the complete polarization of the
symmetric function �k .

The following Garding inequality plays important role in geometric PDE.

Lemma 2.4. �k is a convex cone. 8W i 2 �k; i D 1; : : : ; k,

�2
k.W 1; W 2; W 3; � � � ; W k/ � �k.W 1; W 1; W 3; � � � ; W k/�k.W 2; W 2; W 3; � � � ; W k/;

(11)

equality hold if and only if W 1 and W 2 are proportional. And

�k.W 1; � � � ; W k/ � �
1
k

k
.W 1; � � � ; W 1/ � � � �

1
k

k
.W k; � � � ; W k/; (12)

the equality holds if and only if W i ; W j are pairwise proportional.

Lemma 2.4 is a special case of Garding’s theory of hyperbolic polynomials,
which can be found in Appendix. The convexity of �k follows from Proposition 5.2,
(11) and (12) follow from Corollary 5.4 and Proposition 5.6 in Appendix.

Inequality (11) yields the Newton-MacLaurin inequality.

Lemma 2.5. For W 2 �k ,

.n � k C 1/.k C 1/�k�1.W /�kC1.W / � k.n � k/�2
k .W /; (13)

and

�kC1.W / � cn;k�
kC1

k

k .W /; (14)

where cn;k D �kC1.I /

�

kC1
k

k
.I /. The equality holds if and only if W D cI for some

c > 0.

Proof. If �kC1.W / � 0, as W 2 �k , (13) is trivial. We may assume �kC1.W / > 0,
so W 2 �kC1. Replace k by k C 1 in (11), and set W 1 D I , W 2 D � � � D W kC1 D
W 2 �k , (13) follows from (11). The similar argument yields (14) using (12). ut

We remark that the Newton-MacLaurin inequality is valid for general symmetric
matrix W (e.g., [28]).

The following lemma establish connection of �k with the ellipticity of Hessian
and curvature equations.
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Lemma 2.6. Let F D �k , then the matrix . @F
@Wij

/ is positive definite for W 2 �k .

where Wij are the entries of W . If W 2 �k , then .W ji/ 2 �k�1; 8k D 0; 1; � � � ; n,
i D 1; 2; � � � ; n, where .W ji/ is the matrix with i -th column and i -th row deleted.

Furthermore, if W 2 �k and kW k D
qP

i;j w2
ij � R for some R > 0, then there is

cn;k > 0 depending only on n; k, such that

�k.W /

R.1 C cn;k�
1

k�1

k�1 .I //

I � .
@F

@Wij

/ � Rk�1�k�1.I /I: (15)

Proof. Fix W 2 �k , for any positive definite matrix A D .aij/, by Lemma 2.4,

0 < �k.W; � � � ; W; A/ D
X

ij

@F

@wij
.W /aij:

This implies the positivity of . @F
@Wij

/. By Proposition 2.2 and the positivity of . @F
@Wij

/,

for each l � k, W 2 �k , and for any i 2 f1; � � � ; ng,

0 <
@�l

@Wii
D �l�1.W ji/:

This yields .W ji/ 2 �k�1.
To show (15), we only need to control @�l

@�i
D �k�1.�ji/, where �i ; i D 1; � � � ; n

are the eigenvalues of W . By the assumption, and (14)

s � �k.W / D �k.�ji/ C �i �k�1.�ji/
� �k�1.�ji/.�i C cn;k�

1
k�1

k�1 .�ji//

� R.1 C cn;k�
1

k�1

k�1 .I //�k�1.�ji/:
this gives the lower bound in (15). The upper bound for �k�1.�ji/ is trivial. ut

We now switch to the quotient of elementary symmetric functions. Some of the
concave properties of them will be used in crucial way in the a priori estimates in
the rest of the sections.

Lemma 2.7. For 0 � l < k � n, let F D . �k

�l
/

1
k�l , then . @F

@wij
/ is positive definite

for W D .wij/ 2 �k . If l D k � 1, if W 2 �k and kW k D
qP

i;j w2
ij � R for some

R > 0, then there is cn;k > 0 depending only on n; k, such that

F.W /

R.1 C cn;k�
1

k�1

k�1 .I //

I � .
@F

@wij
/ � .n � k C 1/I: (16)

Moreover, the function F is concave in �k�1.
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Proof. To simplify notation, define

Qm D �m

�m�1

:

For any l < k,

�k

�l

D
k�lY

j D1

QlCj : (17)

As QlCj > 0 for j D 1; � � � ; k � l , for the first statement in lemma, we only need

to check the positivity of .
@QmC1.W /

@wij
/ for W D .wij/ 2 �k and for m D l; � � � ; k � 1.

By product rule,

@QmC1.W /

@wij
D

�m.W /
@�mC1.W /

@wij
� �mC1.W /

@�m.W /

@wij

�2
m.W /

:

By Proposition 2.2, the positivity of .
@�j .W /

@wij
/ is invariant under orthonormal

transformations, we only need to check the positivity of @QmC1.�/

@�i
for � 2 �k ,

i 2 f1; � � � ; ng and m D l; � � � ; k � 1. Again,

@QmC1.�/

@�i

D �m.�/
@�mC1.�/

@�i
� �mC1.�/

@�m.�/

@�i

�2
m.�/

(18)

D �m.�/�m.�ji/ � �mC1.�/�m�1.�ji/
�2

m.�/

D �m.�ji/�m.�ji/ � �mC1.�ji/�m�1.�ji/
�2

m.�/

� n

.n � m/.m C 1/

�2
m.�ji/
�2

m.�/

> 0;

the Newton-MacLaurine inequality (13) is used in the last step as .�ji/ 2 �k�1 for
each i . In particular, if m D k � 1 and W 2 �k , for each i ,

0 <
@Qk.�/

@�i

�
X

i

@Qk.�/

@�i

�
X

i

�k�1.�ji/
�k�1.�/

D n � k C 1:
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This provides the upper bound in (16). By (14)

�k.W /

�k�1.W /
� cn;k�1�

1
k

k .W /:

For each i D 1; � � � ; n,

�k�1.�ji/
�k�1.�/

D �k.�/

�k�1.�/

�k�1.�ji/
�k.�/

:

Now the lower bound in (16) follows from (18) and (15).
Notice that if f1 > 0 and f2 > 0 are two concave function, for any 1 � ˛ � 0,

f D f ˛
1 f 1�˛

2 is also concave. Hence, we only need to check the concavity of �mC1

�m

in �mC1. In fact, we show �mC1

�m
in �m.

m D 0 is trivial. For m D 1, there is a useful explicit formula. 8�; � ˙ 	 2 �1,
we have algebraic identity

2Q2.�/ � Q2.� C 	/ � Q2.� � 	/ D .
P

i .	i �1.�/ � �i �1.	///2

�1.�/�1.� C 	/�1.� � 	/
:

This yields,

@2Q2

@2	
D � .

P
i .	i �1.�/ � �i �1.	///2

�3
1 .�/

This gives the concavity of �2

�1
on �1.

For m > 1, we use induction. For � 2 �m, for each i 2 f1; � � � ; ng fixed, by (10)
and Corollary 2.6,

�i C Qm.�ji/ D �mC1.�/

�m.�ji/ > 0:

Apply the last identity in Proposition 2.2,

.m C 1/Qm.�/ D
X

i

.�i � �2
i

�m�1.�ji/
�m.�/

/

D
X

i

.�i � �2
i

�m�1.�ji/
�m.�ji/ C �i �m�1.�ji///

D
X

i

.�i � �2
i

�i C Qm.�ji/ /:

For any 	 2 R
n with j	j D 1, set �
˙

D � ˙ 
	. Take 
 > 0 small enough such that
�
˙

2 �m, using the above identity for �; �
˙

, one compute
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.m C 1/.2QmC1.�/ � QmC1.�
C

/ � QmC1.�
�//

D
X

i

� .�i C 
	i /
2

Qm.�
C
ji/ C �i C 
	i

C .�i � 
	i /
2

Qm.�
� ji/ C �i � 
	i

� .2�i/
2

Qm.�
C
ji/ C Qm.�
� ji/ C 2�i

�

C
X

i

� .2�i/
2

Qm.�
C
ji/ C Qm.�
� ji/ C 2�i

� 2�2
i

�i C Qm.�ji/
�

D
X

i

..�i C 
	i /Qm.�
�/ � .�i � 
	i /Qm.�
C

//2

.Qm.�
C

/ C �i C 
	i /.Qm.�
�/ C �i � 
	i /.Qm.�
C

/CQm.�
�/C
�i /

�2
X

i

�2
i

Qm.�
C

ji/ C Qm.�
� ji/ � 2Qm.�/

.Qm.�
C
ji/ C Qm.�
� ji/ C 2�i /.�i C Qm.�ji//

Thus,

�@2QmC1

@2	
D lim


!0

2QmC1.�/ � QmC1.�
C
/ � QmC1.�
�/


2

� lim

!0

�2
X

i

�2
i

Qm.�
C
ji/ C Qm.�
� ji/ � 2Qm.�/


2.Qm.�
C
ji/ C Qm.�
� ji/ C 2�i/.�i C Qm.�ji/

D �
X

i

�2
i .

@2Qm

@	2 /.�ji/
.m C 1/.Qm.�ji/ C �i /2

:

As .�ji/ 2 �m�1, by induction hypothesis, @2Qm

@	2 .�ji/ � 0. ut
The following lemma will play key role for the problem of prescribing curvature

measures.

Lemma 2.8. Let ˛ D 1
k�1

, if W 2 �k is a symmetric tensor on a Riemannian
manifold M . For any local orthornormal frame fe1; � � � ; eng, denote Wij;s D res Wij.
Then

.�k/ij;lmWij;sWlm;s � ��k

�
.�k/s

�k

� .�1/s

�1

��
.˛ � 1/

.�k/s

�k

� .˛ C 1/
.�1/s

�1

�
: (19)

Proof. By the concavity of

�
�k

�1

� 1
k�1

.W /, we have

0 � @2

@Wij@Wlm

���k

�1

� 1
k�1 �

Wij;sWlm;s : (20)
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Denote ˛ D 1
k�1

. Direct computations yield,

0 � @2

@Wij@Wlm

�
�k

�1

�˛

� Wij;sWlm;s

D ˛

�
�k

�1

�˛�
.�k/ij;lm

�k
C .˛�1/.�k/ij .�k/lm

�2
k

� 2˛.�k/ij.�1/lm

�k�1
C .˛C1/.�1/ij.�1/lm

�2
1

�
Wij;sWlm;s

(21)

Equivalently,

.�k/ij;lmWij;sWlm;s

�k
� �

�
.˛�1/.�k/ij.�k/lm

�2
k

� 2˛.�k/ij.�1/lm

�k�1

C .˛C1/.�1/ij .�1/lm

�2
1

�
Wij;sWlm;s

� �
�

.�k/s

�k
� .�1/s

�1

��
.˛ � 1/

.�k/s

�k
� .˛ C 1/

.�1/s

�1

�
(22)

ut
Note in Lemma 2.8, one may replace �k by any positive function F with the

property that . F
�1

/˛ is concave for some ˛ > 0. The following is a corollary of
Lemma 2.8.

Corollary 2.9. If .�1/s

�1
D .�k/s

�k
� r for some r ,

.�k/ij;lmWijIsWijIs � max

�
2r.�k/s � k

k � 1
r2�k; 0

	
: (23)

3 Prescribing Curvature Measures

Assume � � R
nC1 is a bounded star-shaped domain with respect to the origin.

We may parametrize M D @� over S
n by positive radial function � Due to

the parametrization, the prescribe curvature measure problem for this class of
domains can be reduced to a curvature type nonlinear partial differential equation
of � on S

n. We want to establish the existence theorems of prescribing general
.n � k/-th curvature measure problem with k > 0 on bounded C 2 star-shaped
domains. When k D n, the prescribing curvature measure C0 is the Alexandrov
problem corresponding to a Monge-Ampère type equation on S

n, which won’t be
treated here.
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In order to make the problem in proper PDE setting, we need to impose some
geometric condition on @�.

Definition 3.1. A domain � is called k-convex if its principal curvature vector
�.x/ D .�1; � � � ; �n/ 2 �k at every point x 2 @�.

For each star-shaped domain � with M D @�, express M as a radial graph
of Sn,

RM W Sn �! M

z 7�! �.z/z:

From (1) the .n � k/-th curvature measure on each Borel set ˇ in S
n can be

defined as

Ck.M; ˇ/ WD
Z

RM .ˇ/

�k.�/d�g:

The precise statement of the problem for prescribing .n�k/-th curvature measure
is: given a positive function f 2 C 2.Sn/, find a closed hypersurface M as a radial
graph over Sn, such that Cn�k.M; ˇ/ D R

ˇ
fd� for every Borel set ˇ in S

n, where
d� is the standard volume element on S

n.
For the C 2 graph M on S

n, denote the induced metric to be g and the density
function is

p
det g. Then

Cn�k.M; ˇ/ D
Z

RM .ˇ/

�kd�g D
Z

ˇ

�k

p
det gdSn: (24)

We now write down the local expressions of the induced metric, support function
u, second fundamental form and Weingarten curvatures in terms of positive function
� and its derivatives r�; r2�. Let fe1; � � � ; eng be a local orthonormal frame on S

n,
and denote eij the standard spherical metric with respect to this frame (which is the
identity matrix). We use r as the gradient operator with respect to standard metric
on S

n. To simplify notation, for any function v on S
n, we will write rei v D vi

as covariant derivative with respect to ei on S
n in this subsection, if there is no

confusion. From the radial parametrization X.x/ D �.x/x,

Xi D �i x C �ei ;

Xij D �ijx C �i ej C �j ei C �.ei /j D �ijx C �i ej C �j ei � �eijx:

The following identities can be read off from the above.
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� D �x�r�p
�2Cj�j2

u D �2p
�2Cjr�j2

gij D �2ıij C �i �j

gij D 1
�2 .ıij � �i �j

�2Cjr�j2 /

hij D .

q
�2 C jr�j2/�1.��r i rj � C 2�i�j C �2eij/

hi
j D 1

�2
p

�2Cjr�j2 .eik � �i �k

�2Cjr�j2 /.��rkrj � C 2�k�j C �2ekj/:

(25)

From (25),

p
det g D �n�1

q
�2 C jr�j2:

The prescribing .n � k/-th curvature measure problem can be deduced to the
following curvature equation on S

n:

�k.�1; � � � ; �n/ D �k.hi
j / D f

�n�1

q
�2 C jr�j2

; (26)

where f > 0 is the given function on S
n. A solution of (26) is called admissible

if �.X/ 2 �k at each point X 2 M . We note that any positive C 2 function �

on S
n satisfying (26) is automatically an admissible solution. Since the principal

curvatures at a maximum point of � are positive, solution is admissible at this point.
As �k and Sn are connected, and �.X/ varies continuously, the fact of �k.�.X// > 0

implies solution is admissible at each point of M .
The following is the statement of solvability of the problem of the prescribing

curvature measures.

Theorem 3.2. Let n � 2 and 1 � k � n � 1. Suppose f 2 C 2.Sn/ and f > 0.
Then there exists a unique k-convex star-shaped hypersurface M 2 C 3;˛, 8˛ 2
.0; 1/ such that it satisfies (26). Moreover, there is a constant C depending only on
k; n; kf kC 1;1 ; k1=f kC 0; and ˛ such that,

k�kC 3;˛ � C: (27)

The rest of the section is devoted to the proof of Theorem 3.2. The main task will
be the a priori estimates for solutions of (26). We will use the radial parametrization
on S

n for the estimates up to C 1. Then we will work directly on M for the curvature
estimates, which is equivalent to C 2 estimates.

It will be convenient to introduce a new variable � D log �. Set

! WD
q

1 C jr� j2:
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The unit outward normal and support function can be expressed as � D
1
!

.1; ��1; � � � ; ��n/ and u D e�

!
respectively. Moreover,

gij D e2� .ıij C �i�j /;

gij D e�2� .eij � �i �j

!2 /

hij D e�

!
.��ij C �i �j C eij/

hi
j D e��

!
.eik � �i �k

!2 /.��kj C �k�j C ekj/:

(28)

Notice that the Weingarten tensor in (28) is in general not symmetric with respect
local lo orthonormal frames .e1; � � � ; en/ on S

n, even though it is symmetric with
respect to local orthonormal frames on M . We observe that the symmetric matrix
.eij � �i �j

!2 / has an obvious square root S . That is,

S D .Sij/ D .eij � �i �j

!.! C 1/
/; .eij � �i�j

!2
/ D S2: (29)

S can be used to symmetrize the Weingarten tensor. The eigenvalues of .hi
j / is the

same as eigenvalues of e��

!
B , with B defined as

B D W .bij/ D S.��lm C �l�m C elm/S

D .��ij C ıij C
P

l .�i �lj C �j �il/�l

!.! C 1/
� �i �j

P
l;m �l�lm�m

!2.1 C !/2
/: (30)

Curvature equation (26) can be rewritten as

e.n�k/�

!k�1
�k.B/ D f: (31)

As B is a function in r2
�; r� only, it is independent of � . Set

QF .r2
�; r�/ D ��k.B/: (32)

Denote �
ij
k .B/ D @�k

@bij
, we compute

. QF ij/ D .
@ QF
@�ij

/ D S.�
ij
k .B//S: (33)

Since S in (29) is positive definite, we have . @ QF
@�ij

/ > 0.



64 P. Guan

3.1 Uniqueness and C 1-Estimates

Lemma 3.3. Let 1 � k < n. Let L denote the linearized operator at a solution �

of (26), if v satisfies L.v/ D 0 on S
n, then v � 0 on S

n. Moreover, suppose �, Q� are
two solutions of (26) and �.�i / 2 �k , for i D 1; 2. Then �1 � �2.

Proof. (31) can be put in the form of

e.n�k/�

!k�1
QF .r2

�; r�/ D �f: (34)

The linearized operator at � is

L.v/ D e.n�k/�

!k�1
QF ijvij C

X

l

blvl � .n � k/fv;

for some function bl ; l D 1; � � � ; n. The first statement in lemma follows immedi-
ately from the maximum principle.

Suppose � D log � and Q� D log Q� are two solutions of (31), denote Q! Dq
1 C jr Q� j2 and QB to be the corresponding tensor B in (30) with � replaced by Q� .

For t 2 Œ0; 1
, set

�t D t� C .1 � t/ Q�; !t D
q

1 C jr�t j2; Bt D tB C .1 � t/ QB:

Set v D � � Q� , as Bt 2 �k ,

0 D e.n�k/�

!k�1
F .B/ � e.n�k/Q�

Q!k�1
F . QB/

D
Z 1

0

d

dt
.
e.n�k/�t

!k�1
t

F .Bt //dt

D
Z 1

0
.n � k/.

e.n�k/�t

!k�1
t

F .Bt //dt C
Z 1

0
.
e.n�k/�t

!k�1
t

F ij .Bt //dt.bij � Qbij / C mod.rv/:

Write S D .Si
j /, and observe that S only involves r�; r2

� (and so is QS ), by the
Mean Value Theorem,

B � QB D �S.r2
v/S C mod.rv/;

and

0 D .

Z 1

0
.n � k/.

e.n�k/�t

!k�1
t

QF .Bt //dt/v �
Z 1

0
.
e.n�k/�t

!k�1
t

F ij .Bt //dt/S˛
i S

ˇ
j v˛ˇ C mod.rv/:
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Since .
R 1

0
. e.n�k/�t

!k�1
t

F ij.Bt //dt/Si˛S ǰ / > 0,
R 1

0
.n � k/. e.n�k/�t

!k�1
t

QF .Bt//dt > 0, v

satisfies the following elliptic equation,

aij.x/vij.x/ C bk.x/vk.x/ C c.x/v.x/ D 0; 8x 2 S
n;

with c.x/ < 0 for all x 2 S
n. The maximum principle yields v � 0. That is � D Q�.

ut

It is useful to write down some differential identities for general C 1 symmetric
function F . F.W / is symmetric if it is invariant under orthonormal transformation.

With B is defined in (30), set QF .r2
�; r�/ D �F.B/. Define F ij D @F

@bij
, QF ij D @ QF

@�ij
.

It follows from (30) that

. QF ij/ D S.F ij/S: (35)

Lemma 3.4. For any C 1 symmetric function F.B/, set � D jr� j2
2

, then there exist

cm depending on .r2
�; r�; F /, such that

QF ij�ij D
X

m

cm�m �
X

l

�l .F .B//l C F ij.ıijjr� j2 � �j �i C ıij�
2
ii /: (36)

Proof. By (30),

�ij D
X

l

.�l�lij C �li�lj/

D
X

l

�
�l.�lij C ıli�j � �j ıil/ C �li�lj

�

D
X

l

�
�l.�ijl C ıij�l � �j ıil/ C �li�lj

�

D
X

l

�l .�bijl C .
�i �j C �j �i

!.! C 1/
� �i �j

P
m �m�m

!2.1 C !/2
/l /

Cıijjr� j2 � �j �i C ıij�
2
ii

D
X

l

�l .�bijl C .
�i �lj C �j �li

!.! C 1/
� �i�j

P
m �m�ml

!2.1 C !/2
//

Cıijjr� j2 � �j �i C ıij�
2
ii C cm

ij �m;

where we used the fact that tensor Aij WD �ij C �eij is Codazzi for any function
� 2 C 3.Sn/. We rewrite above identity as
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�ij D
X

l

.
�i �l�lj C �l�j �li

!.! C 1/
� �i �j

P
m;l �l�m�ml

!2.1 C !/2
/cm

ij �m

Cıijjr� j2 � �j �i C ıij�
2
ii �

X

l

�lbijl;

or equivalently

Sr2
�S � .cm

ij �m/ D jr� j2I � .�i �j / C .r2
�/2 � .

X

l

�lbijl/:

Set cm D P
ij F ijcm

ij , contracting above identity with F ij, it follows from (35),

QF ij�ij �
X

m

cm�m D �
X

l

F ij.B/�lbijl C F ij.ıijjr� j2 � �j �i C ıij�
2
ii/

D �
X

l

�l .F .B//l C F ij.ıijjr� j2 � �j �i C ıij�
2
ii/:

ut
Proposition 3.5. If M satisfies (26), then


minSn f

C k
n

� 1
n�k � min

Sn
jX j � max

Sn
jX j �


maxSn f

C k
n

� 1
n�k

:

Moreover, there exits a constant C depending only on n, k, minSn f , jf jC 1 such
that

max
Sn

jr�j � C:

Proof. .�ij / is semi-negative definite at maximum point of � and r� D 0. By (31),

f D e.n�k/�

!k�1
�k.B/ D e.n�k/��k.B/ � e.n�k/� :

This yields an upper bound of � . A lower bound of � follows similarly, as .�ij/ is
semi-positive definite at any minimum point of �.

To obtain an upper bound for jr�j is now equivalent to obtain an upper bound of

� D jr� j2
2

. Suppose p 2 S
n is a maximum point of �. At p,

rjr� j2 D 0; r! D 0; B D .��ij C ıij/: (37)
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It follows from (36) with F.B/ D �k.B/, at p,

0 �
X

ij

F ij�ij

D �
X

l

�l .�k.B//l C
X

ij

�
ij
k .ıijjr� j2 � �i�j C ıij�

2
i i /

� �
X

l

�l .e
�.n�k/�!k�1f /l

D �
.n � k/jr� j2f � r� � rf

�
e.k�n/�!k�1

� c.jr� j2 � C jr� j/e.k�n/�!k�1; (38)

where c � ı; C � 1
ı

are two positive constants with ı depending only on
n; k; inf f; jrf j. The gradient estimate follows from (38). ut

3.2 C 2-Estimates and the Existence

We precede to prove C 2 a priori estimates, this is equivalent to obtain curvature
estimate for M due to C 1 estimates we have already obtained. For this purpose, it
is convenient to work directly on induced metric g on M � R

nC1. For X 2 M ,
choose local orthonormal frame fe1; � � � ; eng on M , and � D enC1 is the unit outer
normal of the hypersurface, such that fe1; � � � ; enC1g of RnC1 is a local orthonormal
frame in R

nC1. We use lower indices to denote covariant derivatives with respect to
the induced metric.

The second fundamental form is the symmetric .2; 0/-tensor given by the matrix
fhijg, and we denote the Weingarten tensor fhj

i g D fgjlhlig,

hij D h@i X; @j �i: (39)

We have the following identities,

Xij D �hij� .Gauss formula/

.�/i D h
j
i Xj .Weigarten equation/

hijk D hikj .Codazzi formula/

Rijkl D hikhjl � hilhjk .Gauss equation/;

(40)

where Rijkl is the .4; 0/-Riemannian curvature tensor. We also have

hijkl D hijlk C hmjRimlk C himRjmlk

D hklij C .hmjhil � hmlhij/hmk C .hmjhkl � hmlhkj/hmi:
(41)
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Since fe1; � � � ; eng is an orthonormal frame on M , gij D ıij, hij D hi
j . The

principal curvatures .�1; � � � ; �n/ are the eigenvalues of the second fundamental
form with respect to the metric which satisfy

det.hij � �gij/ D 0:

The curvature equation (26) on S
n can also be equivalently expressed as a curvature

equation on M ,

�k.�1; � � � ; �n/.X/ D u.X/

jX jnC1
f

� X

jX j
�
; 8X 2 M: (42)

Proposition 3.6. For 1 < k < n, let F � �k D ˆu and denote H � �1, then at a
maximum point of H

u ,

F ij
�

H
u

�
ij D 1

u Œˆssu C 2ˆsus
 � �
H
u

�
ˆl hX; Xli � .k � 1/

�
H
u

�
ˆ

C.k � 1/�jAj2 � 1
u F ijImlhijIshmlIs ;

(43)

where A denotes the second fundamental form.

Proof. By definition, u D hX; �i. Compute the first and second order covariant
derivatives, we have

us D hslhX; Xli
uij D hijIlhX; Xli C hij � .h2/iju

(44)

Also since .hij/ is Codazzi, by Ricci identity and Gauss equation,

hijIkl D hklIij C .hlkhim � hlmhik/hmj C .hljhim � hlmhij/hmk

F ijhijIst D Fst � F ijImlhmlIshijIt :
(45)

At any maximum point P 2 M n of H
u ,

�
H
u

�
i
.P / D 0. At P ,

F ij
�

H
u

�
ij D F ij

�
Hij

u � uj

u

�
H
u

�
i
� ui

u

�
H
u

�
j

� �
H
u

� uij

u

�

D 1
u F ij Hij � 1

u

�
H
u

�
F ijuij:

(46)
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Apply formulas (44) and (45),

1
u F ijHij D 1

u F ijhssIij
D 1

u F ij
�
hijIss C .hijhsm � hjmhsi/hms C .hjshsm � hjmhss/hmi




D 1
u F ijhijIss C kˆjAj2 � 1

u F ij.h2/ijH

D 1
u Fss � 1

u F ijImlhijIshmlIs C kˆjAj2 � �
H
u

�
F ij.h2/ij

D 1
u Œˆssu C 2ˆsus C ˆuss
 � 1

u F ijImlhijIshmlIs C kˆjAj2
��

H
u

�
F ij.h2/ij

D 1
u Œˆssu C 2ˆsus
 C ˆ

u

�
HlhX; Xli C H � jAj2u




� 1
u F ijImlhijIshmlIs C kˆjAj2 � �

H
u

�
F ij.h2/ij

D 1
u Œˆssu C 2ˆsus
 C ˆ

u Hl hX; Xli C �
H
u

�
ˆ

� 1
u F ijImlhijIshmlIs C .k � 1/�jAj2 � �

H
u

�
F ij.h2/ij:

(47)

We also compute

� 1
u

�
H
u

�
F ijuij D � 1

u

�
H
u

�
F ij

�
hijIlhX; Xli C hij � .h2/iju

�

D � 1
u

�
H
u

�
Fl hX; Xli � k�

�
H
u

� C �
H
u

�
F ij.h2/ij

D � ˆ
u

�
H
u

�
ulhX; Xli � �

H
u

�
ˆl hX; Xli � kˆ

�
H
u

� C �
H
u

�
F ij.h2/ij;

(48)
where .h2/ij D hikhkj.

Adding up (47) and (48), and using the critical point condition, we obtain

F ij
�

H
u

�
ij D 1

u Œˆssu C 2ˆsus
 C �
�

H
u

�
l
hX; Xli � �

H
u

�
ˆl hX; Xli

�.k � 1/
�

H
u

�
ˆ � 1

u F ijImlhijIshmlIs C .k � 1/ˆjAj2

D 1
u Œˆssu C 2ˆsus
 � �

H
u

�
ˆlhX; Xli � .k � 1/

�
H
u

�
ˆ

� 1
u F ijImlhijIshmlIs C .k � 1/ˆjAj2;

(49)

(43) is verified. ut
C 2 estimates can be established with the help of Proposition 3.6 and Corol-

lary 2.9.

Lemma 3.7. If M satisfies (42) for some 1 � k � n, then there exists a constant
C depending only on n, k, minSn f , jf jC 1 , and jf jC 2 , such that

max
M

�1 � C; jr2�j � C: (50)
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Proof. We have already obtained the C 0 and C 1 estimates for �. For the case
of k D 1, (42) is a mean curvature type equation which is of divergent form of
quasilinear PDE. C 2 estimates follows from the classical quasilinear elliptic PDE
theory. We work on 2 � k � n � 1 cases. When k > 1, the estimation of the
curvature bound is equivalent to the estimation of mean curvature H (which yields
C 2 bound on �). To see this, suppose mean curvature H � C is bounded from
above. Since � 2 �k � �2, .�ji/ 2 �1. Hence, for each i ,

C � H D �1.�/ D �i C �1.�ji/ � �i :

This give an upper bound of curvature. A lower bound follows from the fact �1.�/ >

0 and �i � C for each i .
As u is bounded from below and above, we only need to get an upper bound of H

u .
Suppose P 2 M where H

u achieves its maximum, it follows from (43)

0 � F ij
�

H
u

�
ij

D 1
u Œˆssu C 2�sus
 � �

H
u

�
ˆl hX; Xli � .k � 1/

�
H
u

�
ˆ

� 1
u F ijImlhijIshmlIs C .k � 1/ˆjAj2:

(51)

Recall ˆ.X/ D jX j�.nC1/f . X
jX j / and with C 0, C 1 estimates of � D jX j , we

have the following estimates.

jˆi j.P / � C.n; k; minSn f; jf jC 1/

jˆii j.P / � C.n; k; minSn f; jf jC 1; jf jC 2/
�
1 C jAj.P /

�

On the other hand, jui j D jhi
j ��j j � c3jAj. By (42),

�1

u
D �1�

�k

:

At a maximum point P of the test function �1

u , one has

.�1/s

�1

D .�k/s

�k

� �s

�
:

In Corollary 2.9, set r D �s

�
.P /, then

F ijImlhijIshmlIs � 2r.u�/s � k
k�1

r2u�

� C1.n; k; minSn f; jf jC 1/jAj C C2.n; k; minSn f; jf jC 1/:

With the above estimates, (51) can be simplified as

jAj2.P / C c4jAj.P / C c5 � 0; (52)
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where c4 and c5 are constants depending only on n, k, minSn �, jf jC 1 , and jf jC 2 .
Hence at P , jAj.P / � C . In turn

�1.X/ � u.X/
�1.P /

u.P /
� C; for any X 2 M .

This implies (50). ut

We prove Theorem 3.2 using the method of continuity.

Proof. For any positive function f 2 C 2.Sn/, for 0 � t � 1 and 1 � k < n � 1, set

ft .x/ D Œ1 � t C tf � 1
k .x/
�k :

Consider the following family of equations for 0 � t � 1:

�
1
k

k .�1; � � � ; �n/.x/ D .ft .x/�1�n.�2 C jr�j2/�1=2/
1
k ; on S

n; (53)

where n � 2. We want to find admissible solutions in the class of star-shaped
hypersurfaces. Set

I D ft 2 Œ0; 1
 W such that .53/ is solvable:g

I is nonempty because � D ŒC k
n 
� 1

n�2 is a solution for t D 0. By Lemmas 3.5, 3.7,
2.6 and 2.7, equation (53) is unform elliptic and concave, apply the Evans-Krylov
theorem and the Schauder theorem, we have

k�kC 3;˛.Sn/ � C;

where C depends only on only on n, k, minSn f , maxSn f , jf jC 1 , jf jC 2 and ˛. The
a priori estimates guarantee that I is closed. The openness comes from Lemma 3.3
and the inverse function theorem. This proves the existence part of the theorem. The
uniqueness part of the theorem follows from Lemma 3.3. ut

4 Isoperimetric Inequality for Quermassintegrals
on Starshaped Domains

In this section, we use a geometric flow to establish isoperimetric inequalities for
quermassintegrals of k-convex starshaped domains in R

nC1.

Theorem 4.1. Suppose 1 � n�1, and suppose � is a k-convex starshaped domain
in R

nC1, then the following inequality holds,

.V.nC1/�k.�//
1

nC1�k � Cn;k.Vn�k.�//
1

n�k ; (54)
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where

Cn;k D .V.nC1/�k.B//
1

nC1�k

.Vn�k.B//
1

n�k

;

B is the standard ball in R
nC1. The equality holds if and only if � is a ball.

We consider the following normalized evolution equation on hypersurface M n

in R
nC1.

@t X D .
1

F.�/
� ru/�; (55)

where F.�; t/ and r.t/ are to be determined, u D< X; � > is the supporting function
of the hypersurface.

We derive the evolution equations of various geometric quantities for the
following general flow.

@t X D f �: (56)

Proposition 4.2. Under flow (56), the following evolution equations hold.

@t gij D 2f hij

@t � D �rf

@t hij D �ri rj f C f .h2/ij

@t h
i
j D �r i rj f � f .h2/i

j

@t �k D � P
ij �

ij

k .g�1h/fij � f
�
�1.g

�1h/�k.g�1h/ � .k C 1/�kC1.g
�1h/

�

(57)

Proof. Pick any local coordinate chart .x1; � � � ; xn/ of M , denote Xi D @X
@xi

, i D
1; � � � ; n, as hXi; �i D 0; 8i , by Weingarten equation (40),

.gij /t D hXi; Xj it

D hXi;t ; Xj i C hXi; Xj;ti
D hXt;i ; Xj i C hXi; Xt;j i
D h.f �/i ; Xj i C hXi; .f �/j i
D f h.�/i ; Xj i C f hXi; .�/j i
D f h

X

l

hl
i Xl ; Xj i C f hXi;

X

l

hl
j Xli

D f
X

l

hl
i glj C f

X

l

hl
j gli

D 2f hij
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Since � is a unit vector field, �t has only tangential component. We only need to
compute h�t ; Xii. As h�; Xi i � 0,

h�t ; Xi i D �h�; Xi;ti D �h�; .f �/ii D �h�; .f /i �i D �fi :

This verifies the second identity in the proposition.
For the third identity, again using the fact � is a unit vector field, by the second

identity we just proved and the Gauss formula in (40),

hij;t D �hXij; �it

D �hXij;t ; �i � hXij; �t i
D �h.f �/ij ; �i C hhij�; rf i
D �fij � f h�ij; �i
D �fij � f h.hl

iXl/j ; �i
D �fij � f h.hl

i /j Xl�i � f hhl
iXlj; �i

D �fij C f hhl
i hlj�; �i

D �fij C f hl
i hlj:

The fourth identity follows from the first and third, and the fact g
ij
t D

�gilgmjglm;t . The final identity in the proposition follows from the fourth identity
and Proposition 2.2. ut
Corollary 4.3. Under flow (55), where F is homogeneous of degree 1, then we have
the following evolution equations.

@t gij D 2.
1

F
� ru/hij

@t � D �r.
1

F
� ru/

@t hij D �ri rj .
1

F
� ru/ C .

1

F
� ru/.h2/ij

@t h
i
j D �r i rj .

1

F
� ru/ � .

1

F
� ru/.h2/i

j

@t �k D � P
ij � ijrj ri .

1

F
� ru/ � .

1

F
� ru/�k�1Ii �2

i

@t F D � PF ijr i rj .
1

F
� ru/ � .

1

F
� ru/ PF ij.h2/i

j

(58)

Furthermore, the following heat type evolution equation for Weingarten map hi
j

is valid.
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Proposition 4.4.

@t h
i
j D 1

F 2
PF klrkrl h

i
j C 1

F 2
PF .h2/hi

j C 1

F 2
RF .rh; rh/

� 2
F 3 r i F rj F � 2

F
.h2/i

j C rr i hl
j < rlX; X > Crhi

j :
(59)

Proof. It follows from previous corollary, (41) and (44). ut

4.1 Monotonicity Properties

We want to choose F and r in flow (55) such that the corresponding global
geometric quantities are monotone along the flow. The Minkowski identity (4) plays
key role here.

From identities in Corollary 4.3, for 1 � l � n � 1,

@t

Z

M

�ld�g D
Z

M

@t �l C �l

1

2
gij @t gij d�g

D �
Z

M

.
1

F
� ru/

� X

i

�l�1Ii �2
i � �l �1

�
d�g

D .l C 1/

Z

M

.
1

F
� ru/�lC1d�g

D .l C 1/

� Z

M

1

F
�lC1d�g � r

Z

M

u�lC1d�g

�

D .l C 1/

� Z

M

1

F
�lC1d�g � rCn;l

Z

M

�l d�g

�
;

(60)

where Cn;l D �lC1.I /

�l .I /
is the constant in the Minkowski equality.

For the special case l D n and for any f , by Proposition 4.2, along flow (56),

@t

Z

M

�nd�g D
Z

M

@t �n C �n

1

2
gij @t gij d�g

D �
Z

M

f
� X

i

�n�1Ii �2
i � �n�1

�
d�g

D .l C 1/

Z

M

f
�
�n�1 � �n�1

�
d�g

D 0

(61)

That is, V0.�/ is a topological invariant. This gives topological obstruction for the
problem of prescribing curvature measure C0.
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From (60), if one wants to fix
R

M �kd�g, one may choose F D �k

�k�1
in (55) and

define r as

r.t/ D
R

Mt

�kC1�k�1

�k
d�g

Cn;k

R
M �kd�g

: (62)

To be precise, we consider the normalized flow

@t X D
�

�k�1

�k

� ru

�
�; (63)

The first step is to get an estimate on r.t/.

Lemma 4.5. r.t/ is invariant under rescaling, and

r.t/ � .
�k�1

�k

/.I / D Cn;k�1; (64)

equality holds if and only if Mt is the standard sphere.

Proof. The inequality follows directly from the Newton-MacLaurin inequality. If
the equality holds, this means the Newton-MacLaurin inequality holds at every point
of Mt . So Mt is umbilical at every point, it is a sphere. ut

The following monotonicity property is crucial.

Proposition 4.6. For any k-convex domain �, under flow equation (63), we have

1.
Z

M

�kd�g is a constant;

2.
Z

M

�k�1d�g is monotonically non-decreasing.

Proof. By the choice of r and (60),

@t

Z

M

�kd�g D 0: (65)

This proves the first part of the statement.
From (60),

@t

Z

M

�k�1d�g D k

� Z

M

1

F
�kd�g � rCn;k�1

Z

M

�k�1d�g

�

D k

Z

M

�
1

F

�k

�k�1

� rCn;k�1

�
�k�1d�g

D k

Z

M

�
1 �

R
M

�kC1�k�1

�k
d�g

Cn;k

R
M �kd�g

Cn;k�1

�
�k�1d�g

� k

Z

M

�
1 � �kC1.I /�k�1.I /

�2
k .I /

Cn;k�1

Cn;k

�
�k�1d�g D 0;

(66)

where we used the Newton-MacLaurine inequality in the last step. ut
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We want to establish the following longtime existence and convergence of
flow (63).

Theorem 4.7. If �0 is k-convex starshaped domain with smooth boundary M0,
flow (63) exists all time t > 0, it converges to a standard sphere centered at the
origin.

By a proper rescaling, we will assume Vk.�0/ D Vk.B/ where B is the standard
ball in R

nC1.
The rest of the section is devoted to the proof of Theorem 4.7.

4.2 The Harnack Estimate

If M n is starshaped, it can be parametrized as X D �.x/x, where x 2 Sn. All the
geometric information of the hypersurface except the parametrization are encoded
in the function �.x/.

Write � D jX.t/j D �.x.t/; t/, where X evolves according to

Xt D f �:

� satisfies

d�

dt
D �t C �x � xt :

By (25),

� D �x � r�q
�2 C jr�j2

:

We have,

f
�x � r�q
�2 C jr�j2

D �f D Xt D .�x/t D .�t C �x � xt /x C �xt : (67)

Note that xt ? x, equalize the tangential components of Sn in (67),

xt D � f r�

�

q
�2 C jr�j2

:

Therefore,

�x � xt D r� � xt D � f jr�j2

�

q
�2 C jr�j2

:
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Put the above identity to (67), equalize the normal component of Sn in (67),

�t D ��x � xt C f�q
�2 C jr�j2

D
f

q
�2 C jr�j2

�
:

In particular, if X satisfies (55), � satisfies

@t � D
q

�2 C jr�j2
�

1

F
� r�: (68)

Equation (68) is equivalent to (55) up to diffeomorphism, if we can prove that the
starshapedness is preserved along the flow.

For the gradient estimate, we prefer to work on (68). As in the previous section
dealing to the problem of prescribing curvature measure, let � � ln �, and we
choose a local orthonormal frame feign

iD1 on Sn.
By the homogeneity of F ,

@t � D !2

F.B/
� r; (69)

where

! D
q

1 C jr� j2; B D .��ij C ıij C
P

l .�i�lj C �j �il/�l

!.! C 1/
� �i�j

P
l;m �l�lm�m

!2.1 C !/2
/;

as defined in (30).

Proposition 4.8. Let � D jr� j2
2

, assume (69) preserves �.t/ 2 �k ,

@t � D Lljr lrj � C Wk � rk� � !2

F 2.B/

X

ij

@F

@bij
.ıijjr� j2 � �j �i C ıij�

2
ii/: (70)

where Wk is a one-parameter family of vector fields depending on time, and Lij is
an elliptic operator defined as follows,

Lij � !2

F 2.B/
QF ij; (71)

where QF ij defined as in (35). In consequence, r� is bounded from above indepen-
dent of time t .

Proof. � 2 �k is equivalent to B 2 �k , hence F.B/ > 0. Rewrite the last equation
in (69) as

F.B/ D !2

�t C r
:
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Proposition follows from Lemma 3.4 with a straightforward computation using
identity (36). ut

The following Harnack type gradient estimate is a directly consequence.

Corollary 4.9. Let � be a positive solution to (68) on Sn � Œ0; T /. Then there exists
a constant C which depends on �.�; 0/ but independent of t , such that at each time
t 2 Œ0; T /,

max
Sn

�.�; t/ � C � min
Sn

�.�; t/ (72)

Proof. We prove the corollary for each fixed time t0 2 Œ0; T /. Assume �.�; t0/

achieves maximum at xC and minimum at x�, and let � W Œs1; s2
 �! M n be a
path joining x� and xC. We have

log
�.xC; t0/

�.x�; t0/
D

Z s2

s1

d

ds
Œlog �.�.s/; t0/
ds

D
Z s2

s1

r�

�
� d�

ds
ds

�
Z s2

s1

r� �
ˇ̌
ˇ̌d�

ds

ˇ̌
ˇ̌ds

� QC
Z s2

s1

ˇ̌
ˇ̌d�

ds

ˇ̌
ˇ̌ds:

(73)

By taking � to be the shortest geodesic with constant speed 1 which joins x� and

xC, we obtain
Z s2

s1

ˇ̌
ˇ̌d�

ds

ˇ̌
ˇ̌ds D d.x�; xC/ � � . ut

Lemma 4.10. Suppose that � > 0 satisfies (68), then at any time t0 � 0, if x0 2 S
n

is a minimum point of �.x; t0/, then �.x0; t0/t � 0, strict inequality holds unless
M.t0/ is a round unit sphere at the origin.

Proof. The minimum point of �.x; t0/ is the same as minimum point of �.x; t0/. By
(69),

�t .x0; t0/ D !2.x0; t0/

F.B.x0; t0//
� r.t0/:

As x0 is a minimum point, r�.x0; t0/ D 0, so at .x0; t0/, ! D 1 and

B D .�r2
� C I / � I: (74)

Hence,

F.B.x0; t0// � F.I /: (75)
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That is,

!2.x0; t0/

F.B.x0; t0//
� 1

F.I /
: (76)

By Lemma 4.5, r.t0/ <
1

F.I /
unless M.t0/ is a round sphere (by normalization, it

is a sphere of radius 1). We have

�t .x0; t0/ D !2.x0; t0/

F.B.x0; t0//
� r.t0/ � 1

F.I /
� r.t0/ > 0;

unless M.t0/ is a round sphere of radius 1. We claim if �t .x0; t0/ D 0, this round
sphere must centered at the origin. Suppose its center z is not the origin, we may
assume z D .0; � � � ; 0; s/ for some �1 < s < 0. Now

�.x; t0/ D 1

2
log.1 C s2 C 2sxnC1/:

The minimum point is x0 D .0; � � � ; 0; 1/, it is easy to compute that

�r2
�.x0; t0/ D s

.1 C s/2
I:

The strictly inequalities will occur in (74)–(76). Thus,

�t .x0; t0/ D !2.x0; t0/

F.B.x0; t0//
� r.t0/ >

1

F.I /
� r.t0/ D 0:

contradiction. ut
The following C 0 estimate is a direct consequence of Corollary 4.9 and

Lemma 4.10.

Corollary 4.11. Let � be a positive solution to (68) on Sn � Œ0; T /. Then there
exists a uniform positive constant C which does not depend on time t , such that for
8t 2 Œ0; T /,

0 < 1
C

� �.x; t/ � C; (77)

for any point .x; t/ 2 Sn � Œ0; T /. Moreover, u.x; t/ � c > 0 for some constant c

independent of t .

Proof. By Lemma 4.10, �.x0; t0/t > 0 at any minimum point x0 of �.x; t0/,
unless M.t0/ is a round unit sphere centered at 0. That is, minx2Sn �.x; t/ is strictly
increasing at t0 unless M.t0/ is a round sphere centered at 0. In any case,

min
x2Sn

�.x; t/ � min
x2Sn

�.x; 0/: (78)

An upper bound of � follows from the Harnack inequality (72).
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The last statement in lemma follow from the identity

u D �2

q
�2 C jr�j2

:

ut
Since u is bound from below by a positive constant independent of t , flow (68)

preserves the starshapedness. We want to show that �k is also preserved along the
flow. From the property of �k , we only need to show �k > 0 is preserved. This is
equivalent to show F > 0 is preserved.

Proposition 4.12. There is C > 0, such that 1
F

� C .

Proof. We consider function G D �t C r . We may rewrite (69) as

G D !2

F.B/
DW F .r�; r2

�/; (79)

where .F
ij
/ D . @F

@�ij
/ > 0. Differentiate (79) in t variable, and notice that r is

independent of x,

Gt D
X

ij

F
ij
.�t /ij C

X

l

@F

@�l

.�t /l

D
X

ij

F
ij
Gij C

X

l

@F

@�l

Gl :

G is bounded from above by the maximum principle. Since r is bounded, 1
F.B/

is

bounded. The boundedness of 1
F

follows from C 0 and C 1 estimates. ut

4.3 C 2 Estimates

Denote ' � 1

u
, ' satisfies the following evolution equation.

Proposition 4.13. Let � be a positive solution to (68) on Sn � Œ0; T /. We have

@t ' D 1

F 2
PF ijri rj ' � '

F 2
PF .h2/ � 2

F 2'
PF .r'; r'/ C r' C r'�1rl ' < X; rl X > :

(80)

Proof. We first write down the evolution equation of u using (55), (58) and (44). We
work on local orthonormal frames on M.t/.
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ut D hXt; �i C hX; �ti

D 1

F
� ru �

X

l

hX; Xli. 1

F
� ru/l

D 1

F
� ru C

X

l

hX; Xli.F ijhij;l

F 2
C rul /

D 1

F
� ru C F ij.uij � hij C .h2/iju/

F 2
C r

X

l

hX; Xliul

D 1

F
� ru C F ijuij

F 2
� 1

F
C F ij.h2/iju

F 2
C r

X

l

hX; Xliul

Proposition follows from above identity by inserting u D 1
'

. ut
Proposition 4.14. Let � be a positive solution to (68) on Sn � Œ0; T /. We have

@t .'hi
j / D 1

F 2
PF klrkrl .'hi

j // � 2'

F 3
r i F rj F C '

F 2
RF kl;mnr ihk

l rj hm
n

� 2
F 2'

PF klrk'rl .'hi
j / C rrl .'hi

j / < rl X; X >

�2'

�
.h2/i

j

F
� rhi

j

�
:

(81)

Proof. Proof follows from (59) and Proposition 4.13. ut
Proposition 4.15. Let � be a positive solution to (68) on Sn � Œ0; T / and let Q�.t/ D
max
x2M n

t

.�1.x/; � � � ; �n.x//. Then for t > 0,

max
M n

t

' Q�.t/ � max
M n

0

' Q�.0/; (82)

with the equality holds if and only if M0 is a sphere centered at the origin. Since
�1.�/ > 0, we have uniform curvature bounds.

Proof. Let x0 be a point such that h1
1.x0; t0/ D �.t0/ for some direction e1. By (81),

and concavity of F ,

.'h1
1.x0; t0//t � �2'

�
.h1

1/
2

F.�/
� rh1

1

�
:

At x0, h1
1 D Q�.t/ � �i for all i . By the monotonicity, homogeneity of F and by

Lemma 4.5,

h1
1

F.�/
� 1

F.I /
� r: (83)

We obtained at x0, .'h1
1.x0; t0//t � 0.
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We claim for any t0, .'h1
1.x0; t//t > 0 unless M.t0/ is the unit sphere centered

at 0. Now suppose .'h1
1.x0; t//t D 0, all inequalities in (83) must be equalities. In

particular,

r.t/ D 1

F.I /
:

By Lemma 4.5 and normalization, M.t0/ must be a sphere of radius 1. So
�1.x; t0/ D � � � ; �n.x; t0/ D 1; 8x 2 S

n and we may use the standard spherical
paramerization for M.t0/. Suppose its center is z ¤ 0, we may assume z D
.0; � � � ; 0; s/ for some �1 < s < 0. Now

u.x; t0/ D 1 C sxnC1; '.x; t0/ D 1

1 C sxnC1

:

The minimum point is x0 D .0; � � � ; 0; 1/, it follows from (81),

@t .'hi
j / D 1

F 2
PF klrkrl .'hi

j / � 2'

�
.h2/i

j

F
� rhi

j

�
D 1

F 2
PF klrkrl ' < 0;

contradiction. ut
We now prove Theorem 4.7.

Proof. By C 2 estimates and Proposition 4.12, � 2 �k is preserved along flow
(68). By Lemma 2.7, the equation is uniform parabolic. We may apply the Krylov
Theorem [31] and the standard parabolic theory to conclude the longtime existence
and regularity for the flow. To get exponential convergence, we use the uniform
ellipticity of F . There is c0 > 0 independent of t ,

.
@F.B/

@bij
/.x; t/ � c0I; 8.x; t/:

Thus, as n � 2,

X

i

@F.B/

@bii
� c0 C �M .

@F.B/

@bij
/;

where �M .W / denoting the largest eigenvalue of W . By C 2 estimates, there is
ˇ > 0 independent of t such that

!2

F 2

X

ij

@F.B/

@bij
.ıijjr� j2 � �i �j / � ˇjr� j2:
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By Proposition 4.8,

@t

� jr� j2
2

� � Llj r l rj

� jr� j2
2

� C Wk � rk

� jr� j2
2

� � ˇjr� j2: (84)

Set Q D eˇt
jr� j2

2
, Q satisfies differential inequality

@t Q � Llj r l rj Q C Wk � rkQ: (85)

Therefore, Q is bounded from above independent of t . From there, we conclude
jr� j2 ! 0 exponentially as t ! 1. By our normalization, � ! 1 and r� ! 0

exponentially as t ! 1.
For the exponential convergence of rm

�, apply integration by parts,

Z

Sn

jrm
�j2d�Sn � C.

Z

Sn

jrmC1
�j2d�Sn/

1
2 .

Z

Sn

jrm�1
�j2d�Sn/

1
2 :

By the a priori estimates, krmC1
�kL1.Sn/ � cm for some cm independent of t . An

induction argument yields that, for each m 2 N
C, there is Cm > 0; ˇm > 0, such

that

krm
�kL2.Sn/ � Cme�ˇmt :

The Sobolev Lemma implies rm
� ! 0 exponentially and t ! 1, for each

m 2 N
C. ut

We prove Theorem 4.1. In fact, the following is true.

Theorem 4.16. Suppose � is a C 2 starshaped domain in R
nC1. Assume 1 � k �

n � 1, that

�.x/ 2 �k D f� 2 R
nj�l .�/ � 0; 8l D 1; � � � ; k:g;

then the following inequality holds,

.V.nC1/�k.�//
1

nC1�k � Cn;k.Vn�k.�//
1

n�k ; (86)

where

Cn;k D .V.nC1/�k.B//
1

nC1�k

.Vn�k.B//
1

n�k

;

B is the standard ball in R
nC1. The equality holds if and only if � is a ball.
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Proof. Case 1. � is k-convex.
Inequality (86) follows directly from the above Proposition 4.6 and Theorem 4.7.

We examine the equality case. Recall (66),

@t

Z

M

�k�1.�/d�g D k

Z

M

�
1 �

R
M

�kC1.�/�k�1.�/

�k.�/
d�g

Cn;k

R
M

�k.�/d�g

Cn;k�1

�
�k�1d�g

� k

Z

M

�
1 � �kC1.I /�k�1.I /

�2
k .I /

Cn;k�1

Cn;k

�
�k�1d�g D 0:

(87)

At any time t0 � 0, inequality is strict in (87) unless

�kC1.�/�k�1.�/

�kC1.I /�k�1.I /�k.�/
D �k.�/

�2
k .I /

; a.e. in M.t0/.

That is the equality is the case in (13), this implies M.t0/ is umbilical almost
everywhere. As M.t0/ is C 2, it is umbilical everywhere. M.t0/ is a round sphere
for each t � t0. In particular, if equality is held in (86), then M is a sphere.
Case 2. General case.

We may approximate � by k-convex starshaped domains. The inequality follows
from the approximation. We now treat the equality case. We first note that bothR

M
�kd�g and

R
M

�k�1d�g are positive, since there exists at least one elliptic point
on an embedded compact hypersurface in Euclidean space and also the k-convexity
condition. Suppose � is a weakly k-convex starshaped domain with equality in (86)
attained. Let MC D fx 2 M j�k.�.x// > 0g. MC is open and nonempty since M

is compact and embedded in R
nC1. We claim that MC is closed. This would imply

M D MC, so � is k-convex, by Case 1, we may conclude � is a standard ball.
We now prove that MC is closed. Pick any � 2 C 2

0 .MC/ compactly supported in
MC. Let Ms be the hypersurface determined by position function Xs D X C s��,
where X is the support function of M and � is the unit outernormal of M at X . Let
�s be the domain enclosed by Ms . It is easy to show Ms is k-convex starshaped
when s is small enough. Define

Ik.�/ D V
1

nC1�k

.nC1/�k.�/

V
1

n�k

n�k .�/

: (88)

Therefore Ik.�s/ � Ik.�/ � 0 for s small, i.e.

d

ds
Ik.�s/jsD0 D 0:

Simple calculation yields

d

ds

Z

Ms

�l .�s/d�gs jsD0 D .l C 1/

Z

M

�lC1.�/�d�g:
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Therefore,

d

ds
Ik.�s/jsD0 D A

Z

M

.�kC1.�/ � c1�k.�//�d�g D 0;

for some constant A > 0 with c1 D k.n�k/

.kC1/.n�kC1/
1

I.B/n�kC1.
R

M �k/
1

n�k

> 0 and for all

� 2 C 2
0 .MC/. Thus,

�kC1.�.x// D c1�k.�.x//; 8x 2 MC: (89)

It follows from the Newton-MacLaurine inequality, there is a dimensional constant
QCk;n such that

�kC1.�.x// � QCk;n�
1C1=k

k .�.x//; 8x 2 MC:

In view of (89), there is a positive constant c2, such that

�k.�.x// � c2 > 0; 8x 2 MC; (90)

where c2 D . c1QCk;n
/k is a positive constant depending only on n, k, and �. (90)

implies MC is closed. ut

5 Appendix

We present Garding’s theory of hyperbolic polynomials here.

Definition 5.1. Let P be a homogeneous polynomial of degree m in a finite vector
space V . For � 2 V , P is called hyperbolic at � if P.�/ ¤ 0 and the equation P.xC
t�/ D 0 (as a polynomial of t 2 C) has only real roots for every x 2 V . We say P

is complete if P.x C ty/ D P.x/ for all x; t implies y D 0.

Proposition 5.2. Suppose P is hyperbolic at � , then the component � of � in fx 2
V I P.x/ ¤ 0g is a convex cone, the zeros of P.x C ty/ as a polynomial in t are real
8x; y 2 V . The polynomial P.x/

P.�/
is real, and it is positive when x 2 � . Furthermore,

.
P.x/

P.�/
/

1
m is concave and homogeneous of degree 1 in � , equal to 0 on the boundary

of � .

Proof. We normalize P.�/ D 1, then there exist tj 2 R; j D 1; � � � ; m, such that

P.x C t�/ D .t � t1/ � : : : � .t � tm/:
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In particular, P.x/ D .�t1/ � : : : � .�tm/ 2 R. Set

�� D fx 2 V I P.x C t�/ ¤ 0; t � 0g:

�� is open and � 2 �� as P.� C t�/ D .1 C t/mP.�/ only has the zero t D �1.
Notice that �� is also closed in fx 2 V I P.x/ ¤ 0g. If x 2 N�� , then P.x C t�/ ¤ 0,
when t > 0. Hence,

�� D fx 2 N�� ; P.x/ ¤ 0g:

If x 2 �� , then x C t� 2 �� when t > 0. This implies that �� is connected,
Therefore �x C �� 2 �� for all � > 0; � > 0. That is, �� is star-shaped with
respect to � and �� D � .

For y 2 � and ı > 0 fixed,

Ey;ı D fx 2 V I P.x C iı� C isy/ ¤ 0; Re.s/ � 0g

is open. If s ¤ 0, P.iı C isy/ D .is/mP. ı�
s

C y/ D 0, the hyperbolicity implies
s < 0. That is, 0 2 Ey;ı . If x 2 NEy;ı and Res > 0, then Hurwitz’ theorem implies
P.x C iı� C isy/ ¤ 0. This is still true when Re.s/ D 0 since x C isy is real.
Therefore, Ey;ı is both open and closed, and Ey;ı D V . Thus,

P.x C i.ı� C y// ¤ 0; 8x 2 R
n; y 2 �; ı > 0:

For � is open, the above remains true for ı D 0. Equation P.x C ty/ D 0 has only
real roots, for if t D t1 C i t2 is a root with t2 ¤ 0 we would get P.

xCt1y

t2
C iy/ D 0.

This means that y can play the role of � , � is star-shaped with respect to every point
in � . The convexity of � follows. We also have P.y/ > 0 for all y 2 � .

We now prove the concavity statement in the proposition. As P.x C ty/ has only
real roots for y 2 � , there are tj 2 R, j D 1; : : : ; m,

P.x C ty/ D P.y/.t � t1/ � : : : � .t � tm/:

In turn,

P.sx C y/ D P.y/.1 � st1/ � : : : .1 � stm/:

If sx C y 2 � , we must have 1 � stj > 0 for every j . If f .s/ D logP.sx C y/,
then

f
0

.s/ D �
X tj

1 � stj
; f ”.s/ D �

X t2
j

.1 � stj /2
:
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Therefore, by Cauchy-Schwarz inequality,

m2e� f .s/
m

d 2.e
f .s/
m /

ds2
D f

0

.s/2 C mf ”.s/

D .
X tj

1 � stj
/2 � m

X t2
j

.1 � stj /2
� 0:

ut
If P is a homogeneous polynomial of degree m. For xl D .xl

1; : : : ; xl
n/ 2 V ,

l D 1; : : : ; m, we denote < xl ; @
@x

>D Pn
1 xl

j
@

@xj
as a vector field. We define the

complete polarization of P as

QP .x1; : : : ; xm/ D 1

mŠ
< x1;

@

@x
> : : : < xm;

@

@x
> P.x/:

It is a multilinear and symmetric in x1; : : : ; xm 2 V , independent of x, and that

QP .x; : : : ; x/ D 1

mŠ

d m

dtm
P.tx/ D P.x/; 8x 2 V:

And

P.t1x1 C : : : C tmxm/ D mŠt1 : : : tm QP .x1; : : : ; xm/ C : : :

where the dots denote terms not containing all the factors tj .

Lemma 5.3. If P is hyperbolic at � and m > 1, then for any y D .y1; : : : ; yn/ 2 � ,

Q.x/ D
nX

1

yj

@

@xj

P.x/

is also hyperbolic at � . In general, if x1; : : : ; xl 2 � for some l < m, then

QQl.x/ D QP .x1; : : : ; xl ; x; : : : ; x/

is hyperbolic at � .

The proof is immediate by Rolle’s theorem. Using polarization and Lemma 5.3,
we list some of important examples of hyperbolic polynomials.

Corollary 5.4. The following polynomials are hyperbolic.

1. The polynomial P D .x1/2 � .x2/2 � : : : � .xn/2 is hyperbolic at .1; 0; : : : ; 0/.
2. The polynomial P D x1 : : : xn is complete hyperbolic at any � with P.�/ ¤ 0.

The positive cone � of P at .1; : : : ; 1/ is

� D fx D .x1; : : : ; xn/I xj > 0; 8j g:
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3. In general the elementary symmetric function �k.x/ is complete hyperbolic at
.1; : : : ; 1/, the corresponding positive cone �k is

�k D f�l.x/ > 0; 8l � kg:

4. Let S denote set of all real n � n symmetric matrices. Then �k.W /; W 2 S is
complete hyperbolic at the identity matrix, the corresponding positive cone is

�k D f�l.W / > 0; 8l � kg:

5. For W 1; : : : ; W l 2 �k , l < k, then Ql.W / D QP .W 1; : : : ; W l ; W; : : : ; W / is
complete hyperbolic in �k .

Lemma 5.5. Suppose P is a second order complete hyperbolic polynomial. Sup-
pose both roots of f .s/ D P.sy C w/ vanishing for some y 2 � and w 2 V . Then,
all the roots of g.s/ D P.sz C w/ are vanishing for any z 2 � .

Proof. Since P.y C tw/ D P.y/ ¤ 0 for all t , we must have y C tw 2 � . By the
convexity of � , we have z C tw 2 � for all t . So, P.z C tw/ ¤ 0. For any z 2 �

and all t ,

P.z/.1 C t�1/.1 C t�2/ D P.z C tw/ ¤ 0;

�1; �2 are the roots of P.sz C w/. Since t is arbitrary, this gives �1 D �2 D 0. ut
Lemma 2.4 is a special case of the following proposition.

Proposition 5.6. Suppose P a homogenous polynomial of degree m, suppose it is
hyperbolic at � and P.�/ > 0, then 8x1; : : : ; xm 2 � ,

P 2.x1; x2; x3; � � � ; xm/ � P.x1; x1; x3; � � � ; xm/P.x2; x2; x3; � � � ; xm/

P.x1; : : : ; xm/ � P.x1/
1
m : : : P.xm/

1
m : (91)

If P is complete, the equality holds if and only if all xj are pairwise proportional.
This is also equivalent that for x; y 2 � not proportional, the function h.t/ D
P.x C ty/

1
m is strictly concave in t > 0. If P is complete, then QQl.X/ D

QP .x1; : : : ; xl ; x; : : : ; x/ is complete if m � l � 2 and x1; : : : ; xl 2 � . In particular,
QP .x1; : : : ; xm/ > 0 if x1 2 N� and xj 2 � when m � 2.

Proof. Since P
1
m .X/ is concave in � , it follows that for any x; y 2 � , h.t/ D

P.x C ty/
1
m is concave in t > 0. So, h”.t/ � 0. A direct computation yields

h”.0/ D .m � 1/. QP .y; y; x; : : : ; x/P.X/ � QP .y; x; : : : ; x/2/P.x/
1
m �2:



Curvature Measures, Isoperimetric Type Inequalities and Fully Nonlinear PDEs 89

We get the inequality

QP .y; y; x; : : : ; x/P.X/ � QP .y; x; : : : ; x/2:

In turn, it implies

QP .y; x; : : : ; x/m � P.y/P.x/m�1:

We now apply induction argument. Take y D x1 and assuming that (91) is already
proved for hyperbolic polynomials of degree m � 1. Let Q.x/ D QP .y; x; : : : ; x/,
we get

QP .x1; : : : ; xm/ � .Q.x2/ : : : Q.xm//
1

.m�1/

� .P.x1/P.x2/m�1 : : : P.x1/P.xm/m�1/
1

m.m�1/ ;

which proves (91).
To prove the last statement in the proposition, it suffices to show that if m � 3, Q

(defined above) is complete. suppose Q.x/ D Q.x C tz/ for all x; t . In particular,
Q.y Ctz/ D Q.y/. That means that Q.ty Cz/ D Q.ty/, so P.ty Cz/�P.ty/ D a

is independent of t . Since the zeros of P.ty/ C a D tmP.y/ C a must all be real,
it follows that a D 0. This P.y C sz/ D P.y/ ¤ 0 for all s, so it follows that
y C sz 2 � . Hence,

.sx C y C sz/

.s C 1/
2 �; 8x 2 �; s > 0:

Letting s ! 1, we conclude that x C z 2 N� for all x 2 � . This implies x C z 2 � .
We can replace z by tz for any t , so x C tz 2 � for all t and x 2 � . Thus P.z C sx/

can not have any zeros ¤ 0, so P.z C sx/ D smP.x/. That is P.x C tz/ D P.x/

for all t and all x 2 � . Since P is analytic, that means P.x C tz/ D P.x/ for all t

and all x 2 V . By the completeness assumption on P , z D 0.
Finally, we discuss the equality case in (91). By the above, we may assume

m D 2. If the equality holds, we have P.y/P.x/ D QP .y; x/2. This implies the roots
of the second order polynomial p.t/ D P.xCty/ are equal, i.e., t1 D t2 D �� ¤ 0.
In turn, for all t ,

P.y C .t C �/�1.x � �y// D .t C �/�2P.ty C x/ D P.y/:

That is both roots of the polynomial f .s/ D P.sy C .x � �y// are vanishing.
From Lemma 5.5, we have P.z C t.x � �y// D P.z/ for all z 2 � and all t .

Since � is open and P is analytic, P.z C t.x � �y// D P.z/ for all z and all t . By
the completeness of P , x � �y D 0. That is, x and y are proportional. ut
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6 Notes

1. The definition of curvature measures in this notes follows from Federer [12],
where he used Steiner’s formula to define them for sets of positive reach.
Alexandrov [3] initiated the problem of prescribing curvature measure C0, which
he called the integral curvature. The problem of prescribing 0-th curvature
measure is often referred as the Alexandrov problem in literature. It was
Alexandrov who formulated the problem through radial parametrization. The
existence and uniqueness of solutions were obtained by A.D. Alexandrov [3].
It can be deduced to a Monge-Ampére type equation on S

n. For n D 2 the
regularity of solutions of the Alexandrov problem in the elliptic case was proved
by Pogorelov [37] and for higher dimensional cases, it was solved by Oliker [35].
The general regularity results (degenerate case) of the problem were obtained in
[20]. The problem of prescribing general k-th curvature measures was settled
for starshaped hypersurfaces recently in [27], though C 0 and C 1 estimates were
obtained in [19] some time ago. The proof of Lemma 3.4 presented here is due to
Junfang Li (Li, private notes (2012)), which can apply to more general curvature
equations. Another proof of gradient estimate for (26) appeared in [25], there the
question of when solution to (26) is discussed.

2. The presentation of theory of hyperbolic polynomials in Appendix basically
follows the original paper of Garding [14]. Caffarelli-Nirenberg-Spruck [5]
developed the study of k-Hessian equation in the category of �k , followed by
[6] for k-curvature equation. The proof of Lemma 2.7 is from [30], which in turn
is inspired by Marcus and Lopes [32]. Lemma 2.8 was proved in [27]. Using
�
u in C 2 estimates for k-curvature equation on star-shaped hypersurfaces was
introduced in [6]. The complication for (26) is that the right hand side depends

on r�, the standard concavity of �
1
k

k is not sufficient in this case. C 2 estimate is
still open for k-curvature equation on star-shaped k-convex hypersurfaces with
general right hand side

�k.�/ D f .r�.x/; �.x/; x/; x 2 S
n:

In a recent work [26] established C 2 estimates for admissible solutions of above
equation in the case k D 2 and for convex solutions for general k.

3. The classical isoperimetric inequalities for quermassintegrals of convex bodies
are the consequence of the Alexandrov-Fenchel inequality [1, 2] in convex
geometry. Trudinger was the first to consider such inequalities for k-convex
domains in [40]. Theorem 4.1 was proved in [17]. The proof in [17] used
un-normalized inverse mean curvature type flow for starshaped hypersurfaces
studied by Gerhardt [15] and Urbas [41], where they established longtime
existence and exponential convergence for a class of more general type of inverse
mean curvature flow. In Sect. 3, we use normalized flow (63), which was initially
devised in (Guan and Li, private notes) when they did not realize that the work of
[15,41] would imply the monotonicity of the isoperimetric ratio Ik in (88). Flow
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(63) considered here has an advantage that one can see how to design a flow to
fit the monotonicity. Similar design was used previously in conformal geometry
in [22,23]. Junfang Li pointed out that, one may also pick r.t/ � 1

F.I /
in (63), as

in a recent paper [18]. With this choice of r , the proof of C 0 estimates for flow
(63) can be simplified. The monotonicity in Proposition 4.6 is reversed as

Z

M

�kd�g is monotonically non-increasing;
Z

M

�k�1d�g is a constant.

It is an open question if (54) is valid without the starshapedness condition. In the
case k D 1, Huisken [29] verified the inequality replacing the star shapedness
by the assumption that @� is outward-minimizing. Again, in the case k D 1,
(54) was proved for general 1-convex domains in [7] for some constant c which
is a not sharp. Under additional condition that � is k C 1-convex (without
starshapedness assumption), inequality (54) is proved in [8] with some no-sharp
constant c.

4. The normalized inverse mean curvature flow

Xt D .
1

H
� u

n
/� (92)

preserves the surface area and increases the enclosed volume. This implies the
isoperimetric inequality for mean convex star-shaped domain. The statement can
be checked as below.

d
dt

Z

M

d�g D
Z

M

.
1

H
� u

n
/Hd�

D 1
n

Z

M

.n � uH/d�

D 0:

(93)

The evolution of the volume V.t/ is

d
dt V D

Z

M

.
1

H
� u

n
/d�

D
Z

M

1

H
d� � n C 1

n
V

� 0:

(94)

where the last inequality comes from an inequality proved by Ros in [39], see
formula (5) on page 449.

5. The prescribing measure problem is a counter part of the Christoffel-Minkowski
problem, which is the problem of prescribing area measures for convex bodies.
The Minkowski problem was considered by Minkowski in [33] in 1897. The
differential geometric setting of the problem was solved in early 1950s by
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Nirenberg [34] and Pogorelov [36] for n D 2. The solution of the Minkowski
problem in higher dimension came much later in 1970s by Cheng-Yau [9] and
Pogorelov [38]. The Minkowski problem is a special case (k D n) of the problem
of prescribing general k-th (1 � k � n) area measures in convex geometry.
At the other end (k D 1), it is the Christoffel problem. This case has been
settled completely by Firey [13]. In general, the problem of prescribing k-th is
termed the Christoffel-Minkowski problem. It is equivalent to solve the following
equation

�k.uij C uıij/ D ' on S
n; (95)

with convexity requirement .uij C uıij/ > 0.
The intermediate Christoffel-Minkowski problem (1 < k < n) is still open,
except for some special cases. There are also some sufficient conditions, we
refer to [38] and [21]. The necessary and sufficient condition for the existence
of admissible solutions of (95) is known (e.g., [24]). The main difficulty lies in
the question of convexity for the admissible solutions (which in general are not
convex) of (95).

6. The Minkowski problem can also be considered as a problem of prescribing the
Gauss curvature on outernormals of convex hypersurfaces. The similar question
was raised for other Weingarten curvature functions �k.�1; � � � ; �n/ for fixed 1 �
k � n in [4] and [10]. The corresponding equation is

�n

�n�k

.uij C uıij/ D f on S
n: (96)

When 1 � k < n, very little is known for this problem. No uniqueness result is
known except the case n D 2 (e.g., see [4]). If the prescribed curvature function
is invariant under an automorphic group G without fixed points, the problem is
solvable [16].
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