
��� Variational Principles and Partial

Di�erential Equations

Dirichlet�s principle consists in constructing harmonic functions by minimizing the
Dirichlet integral in an appropriate class of functions� This idea is generalized� and
minimizers of variational integrals are weak solutions of the associated di�erential
equations of Euler and Lagrange� Several examples are discussed�

We shall �rst consider a special example� in order to make prominent
the basic idea of the following considerations� The generalization of these
re�ections will then later present no great di�culty�

The equation to be treated in this example is perhaps the most important
partial di
erential equation for mathematics and physics� namely the Laplace
equation�

In the following� � will be an open� bounded subset of Rd � A function
f � � � R is said to be harmonic if it satis�es in � the Laplace equation
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Harmonic functions occur� for example� in complex analysis� If � � C and
z � x ! iy � �� and if f�z� � u�z� ! iv�z� is holomorphic on �� then the
so�called Cauchy�Riemann di
erential equations
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hold� and as a holomorphic function is in the class C�� we can di
erentiate
��� and obtain
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and similarly
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Thus the real and imaginary parts of a holomorphic function are harmonic�
Conversely� two harmonic functions which satisfy ��� are called conjugate

and a pair of conjugate harmonic functions gives precisely the holomorphic
function f � u! iv�
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In case ��� holds� one can interpret �u�x� y���v�x� y�� as the velocity �eld
of a two dimensional rotation�free incompressible �uid� For d � � the har�
monic functions describe likewise the velocity �eld of a rotation�free incom�
pressible �uid� as well as electrostatic and gravitational �elds �outside at�
tracting or repelling charges or attracting masses�� temperature distribution
in thermal equilibrium� equilibrium states of elastic membranes� etc�

The most important problem in harmonic functions is the Dirichlet prob�
lem� Here� a function g � �� � R is given and one seeks f � � � R with

"f�x� � � for x � � ���

f�x� � g�x� for x � ���

For example� this models the state of equilibrium of a membrane which is
�xed at the boundary of ��

There exist various methods to solve the Dirichlet problem for harmonic
functions� Perhaps the most important and general is the so�called Dirichlet
principle� which we want to introduce now�

In order to pose ��� sensibly� one must make certain assumptions on �
and g� For the moment we only assume that g � W ������� As already said�
� is an open and bounded subset of Rd � Further restrictions will follow in
due course in our study of the boundary condition f � g on ���

The Dirichlet principle consists in �nding a solution of

"f � � in �

f � g on �� �in the sense that f � g � H���
� ����

by minimizing the Dirichlet integral

�

�

Z
�

jDvj� �here Dv � �D�v� � � � Ddv��

over all v � H������ for which v � g � H���
� ����

We shall now verify that this method really works�
Let

m �� inf
��
�

Z
�

jDvj� � v � H������� v � g � H���
� ���


�

Wemust show thatm is assumed and that the function for which it is assumed
is harmonic� �Notation� By corollary ������ W ��� � H��� and in the sequel
we shall mostly write H��� for this space��

Let �fn�n�N be a minimizing sequence� so fn � g � H���
� ��� andZ

�

jDfnj� � �m�

By corollary ����� we have
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kfnkL���� � kgkL���� ! kfn � gkL����

� kgkL���� ! const� kDfn �DgkL����

� kgkL���� ! c�kDgkL���� ! c�kDfnkL����

� const� ! c�kDfnkL�����

as g has been chosen to be �xed�
Without loss of generality let

kDfnk�L���� � m! ��

It follows that

kfnkH������ � const� �independent of n��

By theorem ���� fn converges weakly� after a choice of a subsequence� to an
f � H������ with f � g � H���

� ��� �this follows from corollary ������ and
corollary ��� gives Z

�

jDf j� � lim inf
n��

Z
�

jDfnj� � �m�

By the theorem of Rellich �theorem ������ the remaining term of kfnk�H��� �
namely

R jfnj� is even continuous� so
R
�

jf j� � lim
n��

R
�

jfnj�� after choosing a

subsequence of �fn��
Because of f � g � H���

� ���� it follows from the de�nition of m thatZ
�

jDf j� � �m�

Furthermore� for every v � H���
� � t � R we have

m �
Z
�

jD�f ! tv�j� �

Z
�

jDf j� ! �t

Z
�

Df �Dv ! t�
Z
�

jDvj�

�where Df �Dv ��
dP
i��

Dif �Div� and di
erentiation by t at t � � gives

� �
d

dt

Z
�

jD�f ! tv�j�jt�� � �

Z
�

Df �Dv

for all v � H���
� ����

By the way� this calculation also shows that the map

E � H������� R

f ��
Z
�

jDf j�
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is di
erentiable� with

DE�f��v� � �

Z
�

Df �Dv�

De�nition ���� A function f � H������ is called weakly harmonic or a
weak solution of the Laplace equation ifZ

�

Df �Dv � � for all v � H���
� ���� ���

Obviously� every harmonic function satis�es ���� In order to obtain a har�
monic function by applying the Dirichlet principle� one has now to show con�
versely that a solution of ��� is twice continuously di
erentiable and therefore�
in particular� harmonic� This will be achieved in x���

However� we shall presently treat a more general situation�

De�nition ���� Let � � L����� A function f � H������ is called a weak
solution of the Poisson equation �"f � �� if for all v � H���

� ���Z
�

Df �Dv !

Z
�

� � v � � ���

holds�

Remark� For a preassigned boundary value g �in the sense of f�g � H���
� ����

a solution of ��� can be obtained by minimizing

�

�

Z
�

jDwj� !
Z
�

� � w

in the class of all w � H������ for which w � g � H���
� ���� One notices that

this expression is bounded from below by the Poincar�e inequality �corollary
������� as we have �xed the boundary value g�

Another possibility of �nding a solution of ��� for a preassigned f � g �
H���

� is the following�
If one sets w �� f � g � H���

� � then w has to solveZ
�

Dw �Dv � �
Z
�

� � v �
Z
�

Dg �Dv ���

for all v � H���
� �

The Poincar�e inequality �corollary ������ implies that a scalar product on
H���

� ��� is already given by
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��f� v�� �� �Df�Dv�L���� �

Z
�

Df �Dv�

With this scalar product� H���
� ��� becomes a Hilbert space� Furthermore�Z

�

� � v � k�kL� � kvkL� � const� k�kL� � kDvkL� �

again by corollary ������ It follows that

Lv �� �
Z
�

� � v �
Z
�

Dg �Dv

de�nes a bounded linear functional on H���
� ���� By theorem ���� there exists

a uniquely determined w � H���
� ��� with

��w� v�� � Lv for all v � H���
� �

and w then solves ����

This argument also shows that a solution of ��� is unique� This also follows
from the following general result�

Lemma ���� Let fi� i � �� �� be weak solutions of "fi � �i with f� � f� �
H���

� ���� Then

kf� � f�kW ������ � const� k�� � ��kL�����

In particular� a weak solution of "f � �� f � g � H���
� ��� is uniquely deter	

mined by g and ��

Proof� We have Z
�

D�f� � f��Dv � �
Z
�

��� � ���v

for all v � H���
� ��� and therefore in particularZ

�

D�f� � f��D�f� � f�� � �
Z
�

��� � ����f� � f��

� k�� � ��kL����kf� � f�kL����

� const� k�� � ��kL����kDf� �Df�kL����

by corollary ������ and consequently

kDf� �Df�kL���� � const� k�� � ��kL�����
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The assertion follows by another application of corollary ������ �

We have thus obtained the existence and uniqueness of weak solutions of
the Poisson equation in a very simple manner�

The aim of the regularity theory consists in showing that �for su�ciently
well behaved �� a weak solution is already of class C�� and thus also a classical
solution of "f � �� In particular we shall show that a solution of "f � � is
even of class C�����

Besides� we must investigate in which sense� if for example �� is of class
C�  in a sense yet to be made precise  and g � C����� the boundary
condition f�g � H���

� ��� is realized� It turns out that in this case� a solution
of "f � � is of class C� and for all x � �� f�x� � g�x� holds�

We shall now endeavour to make a generalization of the above ideas� For
this we shall �rst summarize the central idea of these considerations�

In order to minimize the Dirichlet integral� we had �rst observed that
there exists a bounded minimizing sequence in H���� From this we could
then choose a weakly convergent subsequence� As the Dirichlet integral is
lower semicontinuous with respect to weak convergence the limit of this se�
quence then yields a minimum� Thus� with this initial step� the existence of a
minimum is established� The second important observation then was that a
minimum must satisfy� at least in a weak form� a partial di
erential equation�

We shall now consider a variational problem of the form

I�f� ��

Z
�

H�x� f�x�� D�f�x���dx � min �

under yet to be speci�ed conditions on the real valued function H % here � is
always an open� bounded subset of Rd and f is allowed to vary in the space
H�������

Similar considerations could be made in the spaces H��p���� but we have
introduced the concept of weak convergence only in Hilbert and not in general
Banach spaces�

Theorem ���� Let H � ��Rd � R be non	negative� measurable in the �rst
and convex in the second argument� so H�x� tp! ��� t�q� � tH�x� p� ! ���
t�H�x� q� holds for all x � �� p� q � Rd and � � t � ��

For f � H������ we de�ne

I�f� ��

Z
�

H�x�Df�x��dx � ��

Then
I � H������� R � f�g

is convex and lower semicontinuous �relative to strong convergence� i�e� if
�fn�n�N converges in H��� to f then
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I�f� � lim inf
n��

I�fn���

�As H is continuous in the second argument �see below� and Df is mea�
surable� H�x�Df�x�� is again measurable �by corollary ������� so I�f� is
well�de�ned��

Proof� The convexity of I follows from that of H� as the integral is a linear
function� Let f� g � H������� � � t � �� Then

I�tf ! ��� t�g� �

Z
�

H�x� tDf�x� ! ��� t�Dg�x��dx

�
Z
�

ftH�x�Df�x�� ! ��� t�H�x�Dg�x��gdx

� tI�f� ! ��� t�I�g��

It remains to show the lower semicontinuity� Let �fn�n�N converge to f
in H���� By choosing a subsequence� we may assume that lim inf

n��
I�fn� �

lim
n�� I�fn�� By a further choice of a subsequence� Dfn then converges point�

wise to Df almost everywhere� By theorem ���� this follows from the fact
that Dfn converges in L� to Df� As H is continuous in the second variable
�see lemma ���� infra�� H�x�Dfn�x�� converges pointwise to H�x�Df�x��
almost everywhere on �� By the assumption H � � we can apply Fatou	s
lemma and obtain

I�f� �

Z
�

H�x�Df�x��dx �

Z
�

lim
n��

H�x�Dfn�x��dx

� lim inf
n��

Z
�

H�x�Dfn�x��dx

� lim inf
n��

I�fn��

�As lim I�fn� � lim inf I�fn�� by choice of the �rst subsequence� lim inf I�fn�
does not change anymore in choosing the second subsequence�� Thereby� the
lower semicontinuity has been shown� �

We append further the following result�

Lemma ���� Let � � Rd � R be convex� Then � is continuous�

Proof� We must control the di
erence j��y ! h� � ��y�j for h � �� We set
� �� h

jhj �we may assume h 
� �� and choose t � ��� �� with

h � ��� t���
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By convexity� we have

��ty ! ��� t��y ! ��� � t��y� ! ��� t���y ! ��

so
��y ! h� � t��y� ! ��� t���y ! ���

and therefore

��y ! h�� ��y� � �� t

t
����y ! h� ! ��y ! ���� ���

The convexity of � also gives

��y� � t��y ! h� ! ��� t���y � t���

so

��y ! h�� ��y� � �� t

t
���y� � ��y � t���� ���

We now let h approach �� so t� �� and obtain the continuity of � at y from
��� and ���� �

We now prove

Lemma ���
 Let A be a convex subset of a Hilbert space� I � A� R�f��g
be convex and lower semicontinuous� Then I is also lower semicontinuous
relative to weak convergence�

Proof� Let �fn�n�N � A be weakly convergent to f � A� We then have to
show that

I�f� � lim inf
n��

I�fn�� ���

By choosing a subsequence� we may assume that I�fn� is convergent� say

lim inf
n��

I�fn� � lim
n��

I�fn� �� �� ��

By choosing a further subsequence and using the Banach�Saks lemma �corol�
lary ������ the convex combination

gk ��
�

k

kX
���

fN��

converges strongly to f as k ��� and indeed for every N � N�
The convexity of I gives

I�gk� � �

k

kX
���

I�fN���� ����

Now we choose� for � � �� N so large that for all 
 � N
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I�fN��� � � ! �

holds �compare ���� By ���� it then follows that

lim sup
k��

I�gk� � ��

The lower semicontinuity of I relative to strong convergence now gives

I�f� � lim inf
k��

I�gk� � lim sup
k��

I�gk� � � � lim inf
n��

I�fn��

Thereby ��� has been veri�ed� �

We obtain now the important

Corollary ���� Let H � ��Rd � R be non	negative� measurable in the �rst
and convex in the second argument� For f � H������� let

I�f� ��

Z
�

H�x�Df�x��dx�

Then I is lower semicontinuous relative to weak convergence in H����
Let A be a closed convex subset of H�������
If there exists a bounded minimizing sequence �fn�n�N � A� that is�

I�fn�� inf
g�A

I�g� with kfkH��� � K�

then I assumes its minimum on A� i�e� there is an f � A with

I�f� � inf
g�A

I�g��

Proof� The lower semicontinuity follows from theorem ���� and lemma �����
Now let �fn�n�N be a bounded minimizing sequence� By theorem ����� after
choosing a subsequence� the sequence fn converges weakly to an f� which by
corollary ����� is in A� Due to weak lower semicontinuity it follows that

I�f� � lim inf
n��

I�fn� � inf
g�A

I�g��

and� as trivially inf
g�A

I�g� � I�f� holds� the assertion follows� �

Remarks�
�� In corollary ����� H depends only on x and Df�x�� but not on f�x��

In fact� in the general case

I�f� �

Z
�

H�x� f�x�� Df�x��dx
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there are lower semicontinuity results under suitable assumptions on
H� but these are considerably more di�cult to prove� The only ex�
ception is the following statement�
Let H � ��R�Rd � R be measurable in the �rst and jointly convex
in the second and third argument� i�e� for x � �� f� g � R� p� q �
Rd � � � t � � one has

H�x� tf ! ��� t�g� tp! ��� t�q� � tH�x� f� p� ! ��� t�H�x� g� q��

Then the results of corollary ���� also hold for

I�f� ��

Z
�

H�x� f�x�� Df�x��dx�

The proof of this result is the same as that of corollary �����

�� Weak convergence was a suitable concept for the above considerations
due to the following reasons� One needs a convergence concept which�
on the one hand� should allow lower semicontinuity statements and
so should be as strong as possible� and on the other hand� it should
admit a selection principle� so that every bounded sequence contains
a convergent subsequence and therefore should be as weak as possible�
The concept of weak convergence unites these two requirements�

Example� We now want to consider an important example�
For i� j � �� � � � � d� let aij � � � R be measurable functions with

dX
i�j��

aij�x�	
i	j � �j	j� ����

for all x � �� 	 � �	�� � � � � 	d� � Rd � with a � � ��
The condition ���� is called an ellipticity condition�

We consider

I�f� ��

Z
�

dX
i�j��

aij�x�Dif�x�Djf�x�dx

for f � H�������
We shall also assume that

ess sup
x��

i�j���			d

jaij�x�j � m� ����

Then I�f� �� for all f � H�������
By ���� and �����
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�

Z
�

jDf�x�j�dx � I�f� � md

Z
�

jDf�x�j�dx ����

holds�
We now observe that

hf� gi �� �

�

Z
�

dX
i�j��

aij�x��Dif�x�Djg�x� !Djf�x�Dig�x��dx

is bilinear� symmetric and positive semi�de�nite �so hf� fi � � for all f� on
H������� Therefore the Schwarz inequality holds�

hf� gi � I�f�
�
� � I�g� �� � ����

It now follows easily that I is convex�

I�tf ! ��� t�g� �

Z
�

dX
i�j��

aij�x��t
�Dif�x�Djf�x�

! t��� t��Dif�x�Djg�x� !Djf�x�Dig�x��

! ��� t��Dig�x�Djg�x��dx�

thus

I�tf ! ��� t�g� � t�I�f� ! �t��� t�hf� gi! ��� t��I�g�

� t�I�f� ! �t��� t�I�f�
�
� I�g�

�
� ! ��� t��I�g� by ����

� t�I�f� ! t��� t��I�f� ! I�g�� ! ��� t��I�g�

� tI�f� ! ��� t�I�g��

Finally� we also observe that if we restrict ourselves to the space H���
� ����

then every minimizing sequence for I is bounded� Namely� for f � H���
� ����

the Poincar�e inequality �corollary ������ holds�

kfk�H������ � c

Z
�

jDf�x�j�dx where c is a constant ����

� c

�
I�f� by �����

and thereby a minimizing sequence is bounded in H�������
In general� for a �xed g � H������� we can also consider the space

Ag �� ff � H������ � f � g � H���
� ���g

The space Ag is closed and convex and for f � Ag we have
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kfkH������ � kf � gkH������ ! kgkH������

� �
c

�
I�f � g��

�
� ! kgkH������ since f � g � H���

� ���

� �
c

�
�I�f� ! I�g����

�
� ! kgkH������

�using the triangle inequality implied by the Schwarz inequality for I�f�
�
� �

hf� fi �� �
� �

c

�
�
�
� I�f� ! �

c

�
�
�
� I�g� ! kgkH�������

As g is �xed� the H����norm for a minimizing sequence for I in Ag is again
bounded�

We deduce from corollary ���� that I assumes its minimum on Ag � i�e� for

any g � H������ there exists an f � H������ with f � g � H���
� ��� and

I�f� � inffI�h� � h � H������� h� g � H���
� ���g�

This generalizes the corresponding statements for the Dirichlet integral� In
the same manner we can treat� for a given � � L����

J�f� �

Z
�

� dX
i�j��

aij�x�Dif�x�Djf�x� ! ��x�f�x�
�
dx

and verify the existence of a minimum with given boundary conditions�
However� not every variational problem admits a minimum�

Examples�
�� We consider� for f � ���� ��� R

I�f� ��

�Z
��

�f ��x���x�dx

with boundary conditions f���� � ��� f��� � �� Consider

fn�x� �

�	

�� for �� � x � � �

n
nx for � �

n � x � �
n

� for �
n � x � �

Then lim
n��

I�fn� � �� but for every f we have I�f� � �� Thus the

in�mum of I�f�� with the given boundary conditions� is not assumed�

�� We shall now consider an example related to the question of realiza�
tion of boundary values�
Let � �� U��� ��nf�g � fx � Rd � � � kxk � �g� d � ��
We choose g � C���� with
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g�x� � � for kxk � �

g��� � �

We want to minimize the Dirichlet integral over
Ag � ff � H������ � f � g � H���

� ���g� Consider� for � � � � ��
�r � kxk��

f��r� ��

�
� for � � r � �
log�r�
log��� for � � r � � �

By the computation rules given in x��� f��r� is in H���
� ��� andZ

�

jDf��r�j�dx �
�

�log ���

Z
��r��

�

r�
dx

�
d�d

�log ���

�Z
�

rd��

r�
dr �theorem ������

�

�
��

log �
�

for d � �

�
�log ���

d�d
d�� ��� �d��� for d � �

It follows that

lim
���

Z
�

jDf�j� � ��

and thereby

inff
Z
�

jDf j�� f � Agg � ��

Now� it follows from the Poincar�e inequality �corollary ������ as usual
that for a minimizing sequence �fn�n�N � Ag

kfnkH��� � � for n���

Thus fn converges inH��� to zero� So the limit f � � does not ful�l the
prescribed boundary condition f��� � �� The reason for this is that
an isolated point is really too small to play a role in the minimizing
of Dirichlet integrals� We shall later even see that there exists no
function h at all such that

h � B��� ��� R� "h�x� � � for � � kxk � ��

h�x� � � for kxk � � and h��� � �

�see example after theorem ������
The phenomenon which has just appeared can be easily formulated
abstractly�

De�nition ���� Let � be open in Rd � K � � compact� We de�ne the
capacity of K with respect to � by
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cap��K� �� inff
Z
�

jDf j� � f � H���
� ���� f � � on Kg�

So the capacity of an isolated point in Rd vanishes for d � ��

In general we have

Theorem ���� Let � � Rd be open� K � � compact with cap��K� � ��
Then the Dirichlet principle cannot give a solution of the problem

f � �nK � R

"f�x� � � for x � �nK
f�x� � � for x � ��

f�x� � � for x � �K�

�

For an arbitrary A � � one can also de�ne

cap��A� �� sup
K�A

K compact

cap �K�

�as for an A with e�g� vol �A� � � there is no f � H���
� ��� with f � � on

A� we cannot de�ne the capacity directly as in de�nition ������
We shall now derive the so�called Euler�Lagrange di
erential equations as

necessary conditions for the existence of a minimum of a variational problem�

Theorem ����� Consider H � � � R � Rd � R� with H measurable in the
�rst and di�erentiable in the other two arguments� We set

I�f� ��

Z
�

H�x� f�x�� Df�x��dx

for f � H������� Assume that

jH�x� f� p�j � c�jpj� ! c�jf j� ! c� ����

with constants c�� c�� c� for almost all x � � and all f � R� p � Rd � �I�f� is
therefore �nite for all f � H��������

�i� Let A � H������ and let f � A satisfy

I�f� � inffI�g� � g � Ag�
Let A be such that for every � � C�� ��� there is a t� � � with

f ! t� � A for all t with jtj � t�� ����
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Assume that H satis�es for almost all x and all f� p

jHf �x� f� p�j!
dX
i��

jHpi�x� f� p�j � c�jpj� ! c	jf j� ! c� ����

with constants c�� c	� c�% here� the subscripts denote partial derivatives
and
p � �p�� � � � pd�� Then for all � � C�� ��� we haveZ
�

fHf �x� f�x�� Df�x����x� !
dX
i��

Hpi�x� f�x�� Df�x��Di��x�gdx � �

���

�ii� Under the same assumptions as in �i� assume that even for any
� � H���

� ��� there is a t� such that ���� holds� Furthermore� assume
instead of ���� the inequality

jHf �x� f� p�j!
dX
i��

jHpi�x� f� p�j � c�jpj! c�jf j! c�� ����

with constants c�� c�� c�� Then the condition ���� holds for all � �
H���

� ����

�iii� Under the same assumptions as in �i�� let now H be continuously
di�erentiable in all the variables� Then� if f is also twice continuously
di�erentiable� we have

dX
i�j��

Hpipj �x� f�x�� Df�x�� � �
�f�x�

�xi�xj

!
dX
i��

Hpif �x� f�x�� Df�x��
�f�x�

�xi
! ����

!
dX
i��

Hpixi�x� f�x�� Df�x�� �Hf �x� f�x�� Df�x�� � �

or� abbreviated�

dX
i��

d

dxi
�Hpi�x� f�x�� Df�x�� �Hf �x� f�x�� Df�x�� � � ����

�here d
dxi is to be distinguished from �

�xi #��

De�nition ����� The equations ���� are called the Euler�Lagrange equa�
tions of the variational problem I�f�� min �
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The equation ���� was �rst established by Euler for the case d � � by
means of approximation by di
erence equations and then by Lagrange in the
general case by a method essentially similar to the one used here�

Proof of theorem �����
�i� We have

I�f� � I�f ! t�� for jtj � t�� ����

Now

I�f ! t�� �

Z
�

H�x� f�x� ! t��x�� Df�x� ! tD��x��dx�

As for � � C�� ���� � and D� are bounded we can apply theorem
����� on account of ���� and ���� and conclude that I�f ! t�� is
di
erentiable in t for jtj � t� with derivative

d

dt
I�f ! t�� �

Z
�

fHf �x� f�x� ! t��x�� Df�x� ! tD��x����x�

!

dX
i��

Hpi�x� f�x� ! t��x�� Df�x�

! tD��x�� �Di��x�gdx�
From ���� it follows that

� �
d

dt
I�f ! t��jt��

�

Z
�

fHf �x� f�x�� Df�x����x� !

dX
i��

Hpi�x� f�x�� Df�x��

�Di��x�gdx�
This proves �i��

If ���� holds� we can di
erentiate under the integral with respect to t in
case � � H���

� ���� for then the integrand of the derivative is bounded by

�c�jDf�x� ! tD��x�j ! c�jf�x� ! t��x�j! c���j��x�j ! jD��x�j�
the integral of which� by the Schwarz inequality� is bounded by

const� kf ! t�kH��� � k�kH��� �

Therefore theorem ����� can indeed again be applied to justify di
erentiation
under the integral sign� Thus �ii� follows�

For the proof of ���� we notice that� due to the assumptions of continuous
di
erentiability� there exists for every x � � a neighborhood U�x� in which

Hpipj
��f

�xi�xj � Hpif
�f
�xi and Hpixi are bounded�
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For � � C�� �U�x�� we can then integrate ��� by parts and obtain

� �

Z
�

fHf �x� f�x�� Df�x�� �
dX

i�j��

Hpipj �x� f�x�� Df�x��
�

�xi
�
�f�x�

�xj
�

�
dX
i��

Hpif �x� f�x�� Df�x��
�f

�xi
�x��

dX
i��

Hpixi�x� f�x�� Df�x��g��x�dx�

As this holds for all � � C�� �U�x�� it follows from corollary ��� that the
expression in the curly brackets vanishes in U�x�� and as this holds for every
x � �� the validy of ���� in � follows� �

Remark� By the Sobolev embedding theorem� one can substitute the term

c�jf j� in ���� by c�jf j �d
d�� for d � � and by c�jf jq with arbitrary q � �

for d � �� and similarly c	jf j� in ���� etc�� without harming the validity of
the conclusions� �Note� however that the version of the Sobolev embedding
theorem proved in the present book is formulated only for H���

� and not for
H���� and so is not directly applicable here��

One can also consider more general variational problems for vector�valued
functions� Let

H � � � Rc � Rdc � R

be given� and for f � � � Rc consider the problem

I�f� ��

Z
�

H�x� f�x�� Df�x��dx � min �

In this case� the Euler�Lagrange di
erential equations are

dX
i��

d

dxi
�Hp�

i
�x� f�x�� Df�x��� �Hf��x� f�x�� Df�x�� � � for � � �� � � � c

or� written out�

dX
i�j��

cX
���

Hp�
i
p�
j

�x� f�x�� Df�x��
��

�xi�xj
f�

!

cX
���

dX
i��

Hp�
i
f� �x� f�x�� Df�x��

�f�

�xi

!

dX
i��

Hp�
i
xi�x� f�x�� Df�x�� �Hf��x� f�x�� Df�x�� � � for � � �� � � � � c�

So this time� we obtain a system of partial di
erential equations�
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For the rest of this paragraph� H will always be of class C��

Examples� We shall now consider a series of examples�

�� For a� b � R� f � �a� b� � R� we want to minimize the arc length of
the graph of f� thus of the curve �x� f�x�� � R� � hence

bZ
a

p
� ! f ��x�� dx� min �

The Euler�Lagrange equations are

� �
d

dx

f ��x�p
� ! f ��x��

�
f ���x�p
� ! f ��x��

� f ��x��f ���x�

�� ! f ��x���
�
�

�
f ���x�

�� ! f ��x���
�
�

�

so
f ���x� � �� ����

Of course� the solutions of ���� are precisely the straight lines� and we
shall see below that these indeed give the minimum for given boundary
conditions f�a� � �� f�b� � ��

�� The so�called Fermat principle says that a light ray traverses its ac�
tual path between two points in less time than any other path joining
those two points� Thus the path of light in an inhomogeneous two di�
mensional medium with speed ��x� f� is determined by the variational
problem

I�f� �

bZ
a

p
� ! f ��x��

��x� f�x��
dx� min �

The Euler�Lagrange equations are

� �
d

dx

f ��x�

��x� f�x��
p

� ! f ��x��
!
�f
��

p
� ! f ��x��

�
f ���x�

�
p
� ! f ��x��

� �f ��x���f ���x�

��� ! f ��x���
�
�

� �x
��

f ��x�p
� ! f ��x��

� �f
��

f ��x��p
� ! f ��x��

!
�f
��

p
� ! f ��x���

so
� � f ���x� � �x

�
f ��x��� ! f ��x��� !

�f
�
�� ! f ��x���� ����
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Obviously� example � is a generalization of example ��

�� The brachistochrone problem is formally a special case of the pre�
ceding example� Here� two points �x�� �� and �x�� y�� are joined by a
curve on which a particle moves� without friction� under the in�uence
of a gravitational �eld directed along the y�axis� and it is required
that the particle moves from one point to the other in the shortest
possible time�
Denoting acceleration due to gravity by g� the particle attains the
speed ��gy�

�
� after falling the height y and the time required to fall

by the amount y � f�x� is therefore

I�f� �

x�Z
x�

s
� ! f ��x��

�gf�x�
dx�

We consider this as the problem I�f�� min� subject to the boundary
conditions f�x�� � �� f�x�� � y�� Setting � �

p
�gf�x�� equation ����

becomes

� � f ���x� ! �� ! f ��x���
�

�f�x�
� ����

We shall solve ���� explicitly� Consider the integrand

H�f�x�� f ��x�� �

s
� ! f ��x��

�gf�x�
�

From the Euler�Lagrange equations

d

dx
Hp �Hf � �

it follows� as H does not depend explicitly on x� that

d

dx
�f � �Hp �H� � f �� �Hp ! f �

d

dx
Hp �Hp � f �� �Hf � f �

� f ��
d

dx
Hp �Hf � � ��

so f � �Hp �H � const� � c�
From this� f � can be expressed as a function of f and c� and in case f � 
� ��

the inverse function theorem gives� with f � � ��f� c��

x �

Z
df

��f� c�
�

In our case

c � f � �Hp �H � � �p
�gf�� ! f ���

�

so
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f � � �
r

�

�gc�f
� ��

We set �gc�f � �
� ��� cos t�� so that f � �

q
��cos t
��cos t �

sin t
��cos t � and then

x �

Z
df

f �
�

Z
�� cos t

sin t

df

dt
dt

�
�

�gc�

Z
��� cos t�dt �

�

�gc�
�t� sin t� ! c�� ����

Thereby f and x have been determined as functions of t� If one solves ����
for t � t�x� and puts this in the equation for f� then one also obtains f�x��

In the preceding example� we have learnt an important method for solving
ordinary di
erential equations� namely� that of �nding an expression which
by the di
erential equation� must be constant as a function of the indepen�
dent variable� From the constancy of this expression x and f�x� can then be
obtained as a function of a parameter� One can proceed similarly in the case
where h does not contain the dependent variable f % then the Euler�Lagrange
equation is simply

d

dx
Hp � �

and therefore Hp � const�� and from this one can again obtain f � and then
x and f�x� by integration�

All the above examples were concerned with the simplest possible sit�
uation� namely the case where only one independent and one dependent
variable occured� If one considers� for example� in �� an arbitrary curve
g�x� � �g��x�� � � � � gc�x�� in R

c � then we have to minimize

I�g� �

bZ
a

kg��x�kdx �

bZ
a

�
cX
i��

�
d

dx
gi�x��

�

� �
�

dx�

and we obtain as the Euler�Lagrange equations

� �
d

dx

g�i�x�

�
c
�
j��

g�j�x���
�
�

�

g
��

i

c
�
j��

�g�j�
� � g�i �

c
�
j��

g�jg
��

j

�
c
�
j��

�g�j���
�
�

for i � �� � � � � c� ����

From this� one can at �rst not see too much� and this is not surprising as we
had already seen earlier that the length I�g� of the curve g�x� is invariant
under reparametrizations� Thus� if x �� g�x� is a solution of ���� then so is
��t� �� g�x�t�� for every bijective map t �� x�t�� In other words� there are
just too many solutions� On the other hand� we know that for a smooth curve
g we can always arrange k d

dtg�x�t��k � � by a reparametrization x � x�t��
The equations ���� then become
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d

dt
�
d

dt
gi�x�t�� � � for i � �� � � � � c�

and it follows that g�x�t�� is a straight line� Then g�x� is also a straight line�
only here g�x� does not necessarily describe the arc length�

In physics� stable equilibria are characterized by the principle of minimal
potential energy� whereas dynamical processes are described by Hamilton	s
principle� In both� it is a question of variational principles� Let a physical
system with d degrees of freedom be given% let the parameters be q�� � � � � qd�
We want to determine the state of the system by expressing the parameters
as functions of the time t� The mechanical properties of the system may be
described by�

( the kinetic energy T �
dP

i�j��
Aij�q

�� � � � qd� t� 'qi 'qj

�thus T is a function of the velocities 'q�� � � � � 'qd  a point � � � always
denotes derivative with respect to time  � the coordinates q�� � � � � qd� and
time t% often� T does not depend anymore explicitly on t �see below�� Here�
T is a quadratic form in the generalized velocities q�� � � � � qd�

( and the potential energy U � U�q�� � � � qd� t��

Both U and T are assumed to be of class C��
Hamilton	s principle now postulates that motion between two points in

time t� and t� occurs in such a way that the integral

I�q� ��

t�Z
t�

�T � U�dt ���

is stationary in the class of all functions q�t� � �q��t�� � � � � qd�t�� with �xed
initial and �nal states q�t�� and q�t�� respectively �

Thus one does not necessarily look for a minimum under all motions
which carry the system from an initial state to a �nal state� rather only for
a stationary value of the integral� For a stationary value� the Euler�Lagrange
equations must hold exactly as for a minimum� thus

d

dt

�T

� 'qi
� �

�qi
�T � U� � � for i � �� � � � � d� ����

If U and T do not depend explicitly on time t� then equilibrium states are
characterized by all the quantities being moreover constant in time� so in
particular 'qi � � for i � �� � � � � d� and thereby T � �� therefore by ����

�U

�qi
� � for i � �� � � � � d� ����

Thus in a state of equilibrium� U must have a critical point and in order for
this equilibrium to be stable U must even have a minimum there�
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We shall now derive the theorem of conservation of energy in the case
where T and U do not depend explicitly on time �though they depend im�
plicitly as they depend on qi� 'qi which in turn depend on t��

By observing that

dX
i�j��

Aij 'q
i 'qj �

�

�

dX
i�j��

�Aij !Aji� 'q
i 'qj

and� if necessary� replacing Aij by �
� �Aij !Aji�� we may assume that

Aij � Aji�

Now

T �

dX
i�j��

Aij�q
�� � � � � qd� 'qi 'qj

U � U�q�� � � � � qd��

Introducing the Lagrangian
L � T � U�

the Euler�Lagrange equations become

� �
d

dt
L �qi � Lqi �i � �� � � � � d��

As above� one calculates that

d

dt

�
dX
i��

'qiL �qi � L

�
�

dX
i��

�
�qiL �qi ! 'qi

d

dt
L �qi � L �qi �q

i � Lqi 'q
i

�
� ��

so
dX
i��

'qiL �qi � L � const� �independent of t��

On the other hand

dX
i��

'qiL �qi �

dX
i��

� 'qi
dX

k��

Aik 'q
k � �T�

and it follows that
�T � L � T ! U

is constant in t� T ! U is called the total energy of the system and we have
therefore shown the time conservation of energy� in case T and U do not
depend explicitly on t�

A special case is the motion of a point of mass m in three dimensional
space% let its path be q�t� � �q��t�� q��t�� q��t��� In this case
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T �
m

�

�X
i��

'qi�t��

and U is determined by Newton	s law of gravitation� for example�

U � �m g

kqk
in case an attracting mass is situated at the origin of coordinates �g � const��

We shall now consider motion in the neighborhood of a stable equilibrium�
Here we will again assume that T and U do not depend explicitly on time t�
Without loss of generality� assume that the equilibrium point is at t � � and
also that U��� � � holds� As motion occurs in a neighborhood of a stationary
state� we ignore terms of order higher than two in the 'qi and qi% thus� we set

T �

dX
i�j��

aij 'q
i 'qj

U �

dX
i�j��

bijq
iqj

����

with constant coe�cients aij � bij � We have therefore substituted U by the
second order terms of its Taylor series �the �rst order terms vanish because
of ������ In particular� we can assume bij � bji� By writing

T �

dX
i�j��

�

�
�aij ! aji� 'q

i 'qj �

we can likewise assume that the coe�cients of T are symmetric� As U is to
have a minimum at �� we shall also assume that the matrix

B � �bij�i�j�������d

is positive de�nite�
Finally� we also assume that

A � �aij�i�j�������d

is positive de�nite�
Equation ���� transforms to

dX
j��

aij �q
j !

dX
j��

bijq
j � � for i � �� � � � � d� ����

so in vector notation to
�q ! Cq � � ����
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with the positive de�nite symmetric matrix C � A��B� As C is symmetric�
it can be transformed to a diagonal matrix by an orthogonal matrix� hence

S��CS �� D �

���� �
� � �

� �d

�A
for an orthogonal matrix S� As C is positive de�nite� all the eigenvalues
��� � � � �d are positive� We set y � S��q� and ���� then becomes

�y !Dy � ��

thus
�yi ! �iy

i � � for i � �� �� � � � � d� ����

The general solution of ���� is

yi�t� � �i cos�
p
�it� ! �i sin�

p
�it�

with arbitrary real constants �i� �i�i � �� � � � � d��
We now come to the simplest problems of continuum mechanics� States of

equilibrium and motion can be characterized formally as before� however the
state of a system can no longer be determined by �nitely many coordinates�
Instead of q��t�� � � � � qd�t� we now must determine a �real or vector�valued�
function f�x� t� or f�x� describing states of motion or rest� respectively�

First we consider the simplest example of a homogeneous vibrating string�
The string is under a constant tension  and executes small vibrations about
a stable state of equilibrium� This state corresponds to the segment � � x �
� of the x�axis and the stretching perpendicular to the x�axis is described
by the function f�x� t�� The string is �xed at the end points and therefore
f��� t� � � � f��� t� for all t�

Now the kinetic energy is

T �
�

�

�Z
�

f�t dx �� means density of the string�� ����

and the potential energy is

U � f
�Z
�

p
� ! f�xdx� �g�

thus proportional to the increase in length relative to the state of rest� We
shall consider a small stretching from the equilibrium position and therefore
ignore terms of higher order and set� as before�
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U �


�

�Z
�

f�xdx� ����

By Hamilton	s principle� the motion is characterized by

I�f� �

t�Z
t�

�T � U�dt �
�

�

t�Z
t�

�Z
�

��f�t � f�x�dxdt ����

being stationary in the class of all functions with f��� t� � f��� t� � � for all
t�

The Euler�Lagrange equation is now

�ftt � fxx � �� ���

This is the so�called wave equation� For simplicity we shall take � �  � ��
The weak form of the Euler�Lagrange equation is then

t�Z
t�

�Z
�

�ft�t � fx�x�dxdt � � for all � � C�� ���� ��� �t�� t��� ����

�we have not required any boundary conditions for t � t� and t � t� and
therefore this holds even for functions � which do not necessarily vanish at
t � t� and t � t�� but this we do not want to investigate here in detail��

Now let � � C��R�� Then the function g de�ned by

g�x� t� �� ��x� t�

is in C����� ��� �t�� t��� and satis�es

gx � �gt�
Therefore� for all � � C�� ���� ��� �t�� t��� we have

t�Z
t�

�Z
�

�gt�t � gx�x�dxdt �

t�Z
t�

�Z
�

��gx�t ! gt�x�dxdt

�

t�Z
t�

�Z
�

g��tx � �xt�dxdt � ��

Thus g is a solution of ���� although g is not necessarily twice di
erentiable
and therefore not necessarily a classical solution of the Euler�Lagrange equa�
tion

ftt � fxx � �� ����
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Hence a weak solution of the Euler�Lagrange equation need not necessarily
be a classical solution�

In this example� the integrand

H�p� � p�� � p�� �p� stands for
�f

�x
� p� for

�f

�t
�

is analytic indeed� but has an inde�nite Hessian �Hpipj �� namely��� �
� �

�
�

Moreover� the fact behind this example is that

g�x� t� � ��x� t� ! ��x ! t�

is the general solution of the wave equation

gtt � gxx � ��

If the string is subjected to an additional external force k�x� t� then the
potential energy becomes

U �


�

�Z
�

f�xdx!

�Z
�

k�x� t�f�x� t�dx�

and the equation of motion becomes

�ftt � fxx ! k � �� ����

Correspondingly� an equilibrium state �assuming that k depends no longer
on t� is given by

fxx�x�� k�x� � �� ����

The situation looks similar for a plane membrane  i�e� an elastic surface
that at rest covers a portion � of the xy�plane and can move vertically�
The potential energy is proportional to the di
erence of the surface area to
the surface area at rest� We set the factor of proportionality as well as the
subsequent physical constants equal to �� If f�x� y� t� denotes the vertical
stretching of the surface then

U �

Z
�

q
� ! f�x ! f�ydxdy � Vol ���� ����

We shall again restrict ourselves to small pertubations and therefore substi�
tute U as before by

U �
�

�

Z
�

�f�x ! f�y �dxdy� ����
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The kinetic energy is

T �
�

�

Z
�

f�t dxdy� ����

The equation of motion is then

ftt �"f � � �"f � fxx ! fyy� ����

and its state of rest is characterized by

"f � �� ����

We had already derived this earlier� Under the in�uence of an external force
k�x�� its state of rest is correspondingly given by

"f�x� y� � k�x� y�� ���

Thus� if the membrane is �xed at the boundary� we have to solve the Dirichlet
problem

"f�x� y� � k�x� y� for �x� y� � �

f�x� y� � � for �x� y� � ���

We shall now derive the Euler�Lagrange equations for the area functional

I�f� �

Z
�

q
� ! f�x ! f�ydxdy�

Setting H�p�� p�� �
p
� ! p�� ! p�� we have

Hpi �
pip

� ! p�� ! p��

and

Hpipj �
�ijp

� ! p�� ! p��
� pipj

�� ! p�� ! p���
�
�

�
�ij �

�
� for i � j
� for i 
� j

�
�

Thereby� the Euler�Lagrange equations become

� �

�X
i�j��

Hpipjfxixj �
�

�� ! f�x ! f�y �
�
�

f�� ! f�y �fxx

� �fxfyfxy ! �� ! f�x�fyyg�
so

�� ! f�y �fxx � �fxfyfxy ! �� ! f�x�fyy � ��

This is the so�called minimal surface equation� It describes surfaces with
stationary area that can be represented as graphs over a domain � in the
�x� y��plane�

Finally� we consider quadratic integrals of the form
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Q�f� �

Z
�

n dX
i�j��

aij�x�fxifxj !
dX
i��

�bi�x�f � fxi ! c�x�f�x��
o
dx% ����

again� without loss of generality� let aij � aji� The Euler�Lagrange equations
are now

�
dX
i��

�

�xi
�

dX
j��

aij�x�
�f

�xj
! bi�x�f� !

dX
i��

bi�x�
�f

�xi
! c�x�f � �� ����

The Euler�Lagrange equations for a quadratic variational problem are there�
fore linear in f and its derivatives�

We shall now study the behaviour of the Euler�Lagrange equations under
transformations of the independent variables�

So let 	 �� x�	� be a di
eomorphism of �� onto �% we set Dxf �

� �f�x� � � � � �
�f
�xd

�� D
x � ��x
i

�
j �i�j�������d etc�

H�x� f�Dxf� � H�x�	�� f�D
f � �D
x�
��� �� %�	� f�D
f��

By the change of variables in integrals we haveZ
�

H�x� f�Dxf�dx �

Z
��

%�	� f�D
f�j det�D
x�jd	� ����

We now write for the sake of abbreviation

�H �f � ��
dX
i��

d

dxi
Hpi �Hf �� ����

We then have for � � C�� ���� on account of the derivation of Euler�Lagrange
equations�Z

�

�H �f�dx �
d

dt

Z
�

H�x� f ! t��Dxf ! tDx��dxjt��

�
d

dt

Z
��

%�	� f ! t��D
f ! tD
��j det�D
x�jd	jt��

�

Z
��

�%j det�D
x�j�f�d	

�

Z
�

�%j det�D
x�j�f�j det�Dx	�jdx�

As this holds for all � � C�� ���� it follows� as usual� from corollary ����
that

�H �f � �%j det�D
x�j�f j det�Dx	�j� ����
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�Under the assumption H � C�� we consider

I�f� �

Z
�

H�x� f�x�� Df�x��dx

as a function
I � C����� R

and �H �f is then the gradient of I� as the derivative of I is given by

� �� DI��� �

Z
�

�H �f�dx�

Thus equation ���� expresses that the behaviour under transformations of
this gradient is quite analogous to that of a gradient in the �nite dimensional
case��

We shall use this to study the transformation of the Laplace operator% the
advantage of ���� lies precisely in this that one does not have to transform
derivatives of second order� Now the Laplace equation� as we have already
seen at the beginning� is precisely the Euler�Lagrange equation for the Dirich�
let integral�

So let 	 �� x�	� be again a di
eomorphism of �� onto �% we set

gij ��

dX
k��

�xk

�	i
�xk

�	j

and

gij ��
dX

k��

�	i

�xk
�	j

�xk
�

Thus
dX
i��

gikg
i� � �k�

�
�

�
� for k � �
� for k 
� �

�
�

Furthermore� let
g �� det�gij��

Now

dX
i��

�
�f

�xi

��

�

dX
i��

dX
j�k��

�f

�	j
�	j

�xi
�f

�	k
�	k

�xi
�

dX
j�k��

gjk
�f

�	j
�f

�	k
�

Formula ���� now gives directly� together with ���� and �����

"f�x� �
�p
g

dX
j��

�

�	j

�
p
g

dX
k��

gjk
�f

�	k

�
� ����
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This is the desired transformation formula for the Laplace operator�
For plane polar coordinates

x � r cos�� y � r sin�

one calculates from this

"f�x� y� �
�

r
�
�

�r
�r
�f

�r
� !

�

��
�
�

r

�f

��
��� ����

and for spatial polar coordinates

x � r cos� sin �� y � r sin� sin �� z � r cos �

"f�x� y� z� �
�

r� sin �
�
�

�r
�r� sin �

�f

�r
� !

�

��
�

�

sin �

�f

��
� !

�

��
�sin �

�f

��
������

�cf� x�� for the discussion of polar coordinates��

Exercises for x ��

�� Let � � Rd be open and bounded� For f � H������� put

E�f� ��

Z
�

jD�f�x�j�dx�

�Here� D�f is the matrix of weak second derivatives DiDjf� i� j �
�� � � � � d� and

jD�f�x�j� �

dX
i�j��

jDiDjf�x�j���

Discuss the following variational problem� For given g � H�������
minimize E�f� in the class

Ag ��ff � H������ � f � g � H���
� ����

Dif �Dig � H���
� ���� i � �� � � � � dg�

�� Let H � � � R � Rd � R be nonnegative� measurable w�r�t� the �rst
variable� and convex w�r�t� the second and third variables jointly� i�e�
for all f� g � R� p� q � Rd � � � t � �� x � �� we have

H�x� tf ! ��� t�g� tp! ��� t�q� � tH�x� f� p� ! ��� t�H�x� g� q��

For f � H������� we put

I�f� ��

Z
�

H�x� f�x�� Df�x��dx�



Exercises for x �� ��

Show that I is lower semicontinuous w�r�t� weak H��� convergence�

��
a� Let A be a �d� d� matrix with det�A� 
� �� Consider the coor�

dinate transformation

	 �� x � A	�

How does the Laplacian " �
dP
i��

��

��xi�� transform under this

coordinate transformation�
b� Discuss the coordinate transformation �	� �� �� �x� y� with

x � sin 	 cosh �

y � cos 	 sinh �

�planar elliptic coordinates� and express the Laplacian in these
coordinates�

�� Determine all rotationally symmetric harmonic functions f � R�nf�g �
R�

�� For m � N� de�ne the Legendre polynomial as

Pm�t� ��
�

�mm#

� d
dt

�m
�t� � ��m�

Show that
f�r� �� �� rmPm�cos ��

satis�es "f � � �in spatial polar coordinates��

�� Let a� b � R� g� � g� � �� For functions f � �a� b� � R with f�a� �
g�� f�b� � g�� we consider

K�f� �� ��

bZ
a

f�x�
p
� ! f ��x��dx� min �

�I�f� yields the area of the surface obtained by revolving the graph
of f about the x�axis� Thus� we are seeking a surface of revolution
with smallest area with two circles given as boundary�� Solve the cor�
responding Euler�Lagrange equations#

�� We de�ne a plate to be a thin elastic body with a planar rest position�
We wish to study small transversal vibrations of such a body� induced
by an exterior force K� Let us �rst consider the equilibrium position�
Let f�x� y� be the vertical displacement� The potential energy of a
deformation is

U � U� ! U��
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where

U� �

Z
�

���
�
"f�x� y

���
! 

�
fxxfyy � f�xy

��
dxdy

�here� � � R� is the rest position�  � const���

U� �

Z
�

K�x� y�f�x� y�dxdy�

Derive the Euler�Lagrange equations

"�"f� !K � ��

For the motion� f�x� y� t� is the vertical displacement� and the kinetic
energy is

T �
�

�

Z
�

f�t dxdy�

Derive the di
erential equation that describes the motion of the plate�


