
Lectures on Gaussian Approximations
with Malliavin Calculus

Ivan Nourdin

Overview. In a seminal paper of 2005, Nualart and Peccati [40] discovered a
surprising central limit theorem (called the “Fourth Moment Theorem” in the
sequel) for sequences of multiple stochastic integrals of a fixed order: in this context,
convergence in distribution to the standard normal law is equivalent to convergence
of just the fourth moment. Shortly afterwards, Peccati and Tudor [46] gave a
multidimensional version of this characterization.

Since the publication of these two beautiful papers, many improvements and
developments on this theme have been considered. Among them is the work by
Nualart and Ortiz-Latorre [39], giving a new proof only based on Malliavin calculus
and the use of integration by parts on Wiener space. A second step is my joint paper
[27] (written in collaboration with Peccati) in which, by bringing together Stein’s
method with Malliavin calculus, we were able (among other things) to associate
quantitative bounds to the Fourth Moment Theorem. It turns out that Stein’s method
and Malliavin calculus fit together admirably well. Their interaction has led to
some remarkable new results involving central and non-central limit theorems for
functionals of infinite-dimensional Gaussian fields.

The current survey aims to introduce the main features of this recent theory. It
originates from a series of lectures I delivered1 at the Collège de France between
January and March 2012, within the framework of the annual prize of the Fondation
des Sciences Mathématiques de Paris. It may be seen as a teaser for the book [32],
in which the interested reader will find much more than in this short survey.

1You may watch the videos of the lectures at http://www.sciencesmaths-paris.fr/index.php?page=
175.
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1 Breuer–Major Theorem

The aim of this first section is to illustrate, through a guiding example, the power of
the approach we will develop in this survey.

Let fXkgk>1 be a centered stationary Gaussian family. In this context, stationary
just means that there exists � W Z ! R such that EŒXkXl� D �.k � l/, k; l > 1.
Assume further that �.0/ D 1, that is, each Xk is N .0; 1/ distributed.

Let ' W R ! R be a measurable function satisfying

EŒ'2.X1/� D 1p
2�

Z
R

'2.x/e�x2=2dx < 1: (1)

Let H0;H1; : : : denote the sequence of Hermite polynomials. The first few Hermite
polynomials are H0 D 1, H1 D X , H2 D X2 � 1 and H3 D X3 � 3X . More
generally, the qth Hermite polynomial Hq is defined through the relation XHq D
HqC1 CqHq�1. It is a well-known fact that, when it verifies (1), the function ' may

be expanded in L2.R; e�x2=2dx/ (in a unique way) in terms of Hermite polynomials
as follows:

'.x/ D
1X
qD0

aqHq.x/: (2)

Let d > 0 be the first integer q > 0 such that aq ¤ 0 in (2). It is called the Hermite
rank of '; it will play a key role in our study. Also, let us mention the following
crucial property of Hermite polynomials with respect to Gaussian elements. For any
integer p; q > 0 and any jointly Gaussian random variables U; V � N .0; 1/, we
have

EŒHp.U /Hq.V /� D
�

0 if p ¤ q

qŠEŒUV�q if p D q:
(3)

In particular (choosing p D 0) we have that EŒHq.X1/� D 0 for all q > 1, meaning
that a0 D EŒ'.X1/� in (2). Also, combining the decomposition (2) with (3), it is
straightforward to check that

EŒ'2.X1/� D
1X
qD0

qŠa2q: (4)

We are now in position to state the celebrated Breuer–Major theorem.

Theorem 1 (Breuer and Major (1983); see [7]). Let fXkgk>1 and ' W R ! R be
as above. Assume further that a0 D EŒ'.X1/� D 0 and that

P
k2Z j�.k/jd < 1,
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where � is the covariance function of fXkgk>1 and d is the Hermite rank of '
(observe that d > 1). Then, as n ! 1,

Vn D 1p
n

nX
kD1

'.Xk/
law! N .0; �2/; (5)

with �2 given by

�2 D
1X
qDd

qŠa2q

X
k2Z

�.k/q 2 Œ0;1/: (6)

(The fact that �2 2 Œ0;1/ is part of the conclusion.)

The proof of Theorem 1 is far from being obvious. The original proof consisted
to show that all the moments of Vn converge to those of the Gaussian law N .0; �2/.
As anyone might guess, this required a high ability and a lot of combinatorics. In
the proof we will offer, the complexity is the same as checking that the variance and
the fourth moment of Vn converges to �2 and 3�4 respectively, which is a drastic
simplification with respect to the original proof. Before doing so, let us make some
other comments.

Remark 1. 1. First, it is worthwhile noticing that Theorem 1 (strictly) contains
the classical central limit theorem (CLT), which is not an evident claim at first
glance. Indeed, let fYkgk>1 be a sequence of i.i.d. centered random variables with
common variance �2 > 0, and let FY denote the common cumulative distribution
function. Consider the pseudo-inverse F �1

Y of FY , defined as

F�1
Y .u/ D inffy 2 R W u 6 FY .y/g; u 2 .0; 1/:

When U � UŒ0;1� is uniformly distributed, it is well-known that F �1
Y .U /

lawD Y1.

Observe also that 1p
2�

R X1
�1 e�t 2=2dt is UŒ0;1� distributed. By combining these two

facts, we get that '.X1/
lawD Y1 with

'.x/ D F �1
Y

�
1p
2�

Z x

�1
e�t 2=2dt

�
; x 2 R:

Assume now that �.0/ D 1 and �.k/ D 0 for k ¤ 0, that is, assume that the
sequence fXkgk>1 is composed of i.i.d. N .0; 1/ random variables. Theorem 1
yields that

1p
n

nX
kD1

Yk
lawD 1p

n

nX
kD1

'.Xk/
law! N

0
@0;

1X
qDd

qŠa2q

1
A ;
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thereby concluding the proof of the CLT since �2 D EŒ'2.X1/� D P1
qDd qŠa2q ,

see (4). Of course, such a proof of the CLT is like to crack a walnut with
a sledgehammer. This approach has nevertheless its merits: it shows that the
independence assumption in the CLT is not crucial to allow a Gaussian limit.
Indeed, this is rather the summability of a series which is responsible of this fact,
see also the second point of this remark.

2. Assume that d > 2 and that �.k/ � jkj�D as jkj ! 1 for some D 2 .0; 1
d
/. In

this case, it may be shown that ndD=2�1Pn
kD1 '.Xk/ converges in law to a non-

Gaussian (non degenerated) random variable. This shows in particular that, in the
case where

P
k2Z j�.k/jd D 1, we can get a non-Gaussian limit. In other words,

the summability assumption in Theorem 1 is, roughly speaking, equivalent (when
d > 2) to the asymptotic normality.

3. There exists a functional version of Theorem 1, in which the sum
Pn

kD1 is

replaced by
PŒnt�

kD1 for t > 0. It is actually not that much harder to prove
and, unsurprisingly, the limiting process is then the standard Brownian motion
multiplied by � .

Let us now prove Theorem 1. We first compute the limiting variance, which will
justify the formula (6) we claim for �2. Thanks to (2) and (3), we can write

EŒV 2
n � D 1

n
E

2
64
0
@ 1X
qDd

aq

nX
kD1

Hq.Xk/

1
A
2
3
75 D 1

n

1X
p;qDd

apaq

nX
k;lD1

EŒHp.Xk/Hq.Xl/�

D 1

n

1X
qDd

qŠa2q

nX
k;lD1

�.k � l/q D
1X
qDd

qŠa2q

X
r2Z

�.r/q
�
1 � jr j

n

�
1fjr j<ng:

When q > d and r 2 Z are fixed, we have that

qŠa2q�.r/
q
�
1� jr j

n

�
1fjr j<ng ! qŠa2q�.r/

q as n ! 1:

On the other hand, using that j�.k/j D jEŒX1XkC1�j 6
q
EŒX2

1 �EŒX
2
1Ck� D 1,

we have

qŠa2q j�.r/jq
�
1 � jr j

n

�
1fjr j<ng 6 qŠa2q j�.r/jq 6 qŠa2q j�.r/jd ;

with
P1

qDd
P

r2Z qŠa2q j�.r/jd D EŒ'2.X1/� � P
r2Z j�.r/jd < 1, see (4). By

applying the dominated convergence theorem, we deduce that EŒV 2
n � ! �2 as

n ! 1, with �2 2 Œ0;1/ given by (6).
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Let us next concentrate on the proof of (5). We shall do it in three steps of
increasing generality (but of decreasing complexity!):

(i) When ' D Hq has the form of a Hermite polynomial (for some q > 1).
(ii) When ' D P 2 RŒX� is a real polynomial.

(iii) In the general case when ' 2 L2.R; e�x2=2dx/.

We first show that (ii) implies (iii). That is, let us assume that Theorem 1 is
shown for polynomial functions ', and let us show that it holds true for any function
' 2 L2.R; e�x2=2dx/. We proceed by approximation. LetN > 1 be a (large) integer
(to be chosen later) and write

Vn D 1p
n

NX
qDd

aq

nX
kD1

Hq.Xk/C 1p
n

1X
qDNC1

aq

nX
kD1

Hq.Xk/ DW Vn;N CRn;N :

Similar computations as above lead to

sup
n>1

EŒR2n;N � 6
1X

qDNC1
qŠa2q �

X
r2Z

j�.r/jd ! 0 as N ! 1: (7)

(Recall from (4) that EŒ'2.X1/� D P1
qDd qŠa2q < 1.) On the other hand, using (ii)

we have that, for fixed N and as n ! 1,

Vn;N
law! N

0
@0;

NX
qDd

qŠa2q

X
k2Z

�.k/q

1
A : (8)

It is then a routine exercise (details are left to the reader) to deduce from (7)–(8) that

Vn D Vn;N CRn;N
law! N .0; �2/ as n ! 1, that is, that (iii) holds true.

Next, let us prove (i), that is, (5) when ' D Hq is the qth Hermite polynomial.
We actually need to work with a specific realization of the sequence fXkgk>1. The
space

H WD spanfX1;X2; : : :gL
2.˝/

being a real separable Hilbert space, it is isometrically isomorphic to either RN (with
N > 1) or L2.RC/. Let us assume that H ' L2.RC/, the case where H ' R

N

being easier to handle. Let ˚ W H ! L2.RC/ be an isometry. Set ek D ˚.Xk/ for
each k > 1. We have

�.k � l/ D EŒXkXl � D
Z 1

0

ek.x/el .x/dx; k; l > 1 (9)
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If B D .Bt /t>0 denotes a standard Brownian motion, we deduce that

fXkgk>1
lawD
�Z 1

0

ek.t/dBt

�
k>1

;

these two families being indeed centered, Gaussian and having the same covariance
structure (by construction of the ek’s). On the other hand, it is a well-known result
of stochastic analysis (which follows from an induction argument through the Itô
formula) that, for any function e 2 L2.RC/ such that kekL2.RC/

D 1, we have

Hq

�Z 1

0

e.t/dBt

�
D qŠ

Z 1

0

dBt1e.t1/
Z t1

0

dBt2 e.t2/ : : :
Z tq�1

0

dBtq e.tq/: (10)

(For instance, by Itô’s formula we can write

�Z 1

0

e.t/dBt

�2
D 2

Z 1

0

dBt1e.t1/
Z t1

0

dBt2e.t2/C
Z 1

0

e.t/2dt

D 2

Z 1

0

dBt1e.t1/
Z t1

0

dBt2e.t2/C 1;

which is nothing but (10) for q D 2, since H2 D X2 � 1.) At this stage, let us adopt
the two following notational conventions:

(a) If ' (resp.  ) is a function of r (resp. s) arguments, then the tensor product
' ˝  is the function of r C s arguments given by ' ˝  .x1; : : : ; xrCs/ D
'.x1; : : : ; xr / .xrC1; : : : ; xrCs/. Also, if q > 1 is an integer and e is a function,
the tensor product function e˝q is the function e ˝ : : : ˝ e where e appears q
times.

(b) If f 2 L2.RqC/ is symmetric (meaning that f .x1; : : : ; xq/ D f .x�.1/; : : : ; x�.q//

for all permutation � 2 Sq and almost all x1; : : : ; xq 2 RC) then

IBq .f / D
Z
R
q

C

f .t1; : : : ; tq/dBt1 : : : dBtq

WD qŠ

Z 1

0

dBt1

Z t1

0

dBt2 : : :
Z tq�1

0

dBtqf .t1; : : : ; tq/:

With these new notations at hand, observe that we can rephrase (10) in a simple
way as

Hq

�Z 1

0

e.t/dBt

�
D IBq .e

˝q/: (11)
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It is now time to introduce a very powerful tool, the so-called Fourth Moment
Theorem of Nualart and Peccati. This wonderful result lies at the heart of the
approach we shall develop in these lecture notes. We will prove it in Sect. 5.

Theorem 2 (Nualart and Peccati (2005); see [40]). Fix an integer q > 2,
and let ffngn>1 be a sequence of symmetric functions of L2.RqC/. Assume that
EŒIBq .fn/

2� D qŠkfnk2L2.Rq
C
/

! �2 as n ! 1 for some � > 0. Then, the following

three assertions are equivalent as n ! 1:

(1) IBq .fn/
law! N .0; �2/;

(2) EŒIBq .fn/
4�

law! 3�4;
(3) kfn ˝r fnkL2.R2q�2r

C
/

! 0 for each r D 1; : : : ; q � 1, where fn ˝r fn is the

function of L2.R2q�2r
C / defined by

fn ˝r fn.x1; : : : ; x2q�2r /

D
Z
R
r
C

fn.x1; : : : ; xq�r ; y1; : : : ; yr /fn.xq�rC1; : : : ; x2q�2r ; y1; : : : ; yr /dy1 : : : dyr :

Remark 2. In other words, Theorem 2 states that the convergence in law of a
normalized sequence of multiple Wiener–Itô integrals IBq .fn/ towards the Gaussian
law N .0; �2/ is equivalent to convergence of just the fourth moment to 3�4. This
surprising result has been the starting point of a new line of research, and has
quickly led to several applications, extensions and improvements. One of these
improvements is the following quantitative bound associated to Theorem 2 that we
shall prove in Sect. 5 by combining Stein’s method with the Malliavin calculus.

Theorem 3 (Nourdin and Peccati (2009); see [27]). If q > 2 is an integer and f
is a symmetric element of L2.RqC/ satisfying EŒIBq .f /

2� D qŠkf k2
L2.R

q

C
/

D 1, then

sup
A2B.R/

ˇ̌
ˇ̌P ŒIBq .f / 2 A� � 1p

2�

Z
A

e�x2=2dx

ˇ̌
ˇ̌ 6 2

s
q � 1
3q

qˇ̌
EŒIBq .f /

4� � 3
ˇ̌
:

Let us go back to the proof of (i), that is, to the proof of (5) for ' D Hq . Recall
that the sequence fekg has be chosen for (9) to hold. Using (10) (see also (11)), we
can write Vn D IBq .fn/, with

fn D 1p
n

nX
kD1

e
˝q
k :

We already showed that EŒV 2
n � ! �2 as n ! 1. So, according to Theorem 2, to

get (i) it remains to check that kfn ˝r fnkL2.R2q�2r

C
/

! 0 for any r D 1; : : : ; q � 1.

We have
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fn ˝r fn D 1

n

nX
k;lD1

e
˝q
k ˝r e

˝q
l D 1

n

nX
k;lD1

hek; elirL2.RC/
e

˝q�r
k ˝ e

˝q�r
l

D 1

n

nX
k;lD1

�.k � l/r e
˝q�r
k ˝ e

˝q�r
l ;

implying in turn

kfn ˝r fnk2
L2.R

2q�2r

C
/

D 1

n2

nX
i;j;k;lD1

�.i � j /r�.k � l/rhe˝q�r
i ˝ e

˝q�r
j ; e

˝q�r
k ˝ e

˝q�r
l i

L2.R
2q�2r

C
/

D 1

n2

nX
i;j;k;lD1

�.i � j /r�.k � l/r�.i � k/q�r �.j � l/q�r :

Observe that j�.k � l/jr j�.i � k/jq�r 6 j�.k � l/jq C j�.i � k/jq . This, together
with other obvious manipulations, leads to the bound

kfn ˝r fnk2
L2.R

2q�2r

C
/

6 2

n

X
k2Z

j�.k/jq
X
ji j<n

j�.i/jr
X
jj j<n

j�.j /jq�r

6 2

n

X
k2Z

j�.k/jd
X
ji j<n

j�.i/jr
X
jj j<n

j�.j /jq�r

D 2
X
k2Z

j�.k/jd � n� q�r
q

X
ji j<n

j�.i/jr � n� r
q

X
jj j<n

j�.j /jq�r :

Thus, to get that kfn ˝r fnkL2.R2q�2r

C
/

! 0 for any r D 1; : : : ; q � 1, it suffices to

show that

sn.r/ WD n
� q�r

q

X
ji j<n

j�.i/jr ! 0 for any r D 1; : : : ; q � 1:

Let r D 1; : : : ; q � 1. Fix ı 2 .0; 1/ (to be chosen later) and let us decompose sn.r/
into

sn.r/ D n
� q�r

q

X
ji j<Œnı�

j�.i/jr C n
� q�r

q

X
Œnı�6ji j<n

j�.i/jr DW s1;n.ı; r/C s2;n.ı; r/:

Using Hölder inequality, we get that

s1;n.ı; r/ 6 n� q�r
r

0
@ X

ji j<Œnı�
j�.i/jq

1
A
r=q

.1C 2Œnı�/
q�r
q 6 cst � ı1�r=q;
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as well as

s2;n.ı; r/ 6 n� q�r
r

0
@ X
Œnı�6ji j<n

j�.i/jq
1
A
r=q

.2n/
q�r
q 6 cst �

0
@ X

ji j>Œnı�
j�.i/jq

1
A
r=q

:

Since 1 � r=q > 0, it is a routine exercise (details are left to the reader) to deduce
that sn.r/ ! 0 as n ! 1. Since this is true for any r D 1; : : : ; q�1, this concludes
the proof of (i).

It remains to show (ii), that is, convergence in law (5) whenever ' is a real
polynomial. We shall use the multivariate counterpart of Theorem 2, which was
obtained shortly afterwards by Peccati and Tudor. Since only a weak version (where
all the involved multiple Wiener–Itô integrals have different orders) is needed here,
we state the result of Peccati and Tudor only in this situation. We refer to Sect. 6 for
a more general version and its proof.

Theorem 4 (Peccati and Tudor (2005); see [46]). Consider l integers q1; : : : ; ql >
1, with l > 2. Assume that all the qi ’s are pairwise different. For each
i D 1; : : : ; l , let ff i

n gn>1 be a sequence of symmetric functions ofL2.RqiC/ satisfying
EŒIBqi .f

i
n /
2� D qi Škf i

n k2
L2.R

qi
C
/

! �2i as n ! 1 for some �i > 0. Then, the

following two assertions are equivalent as n ! 1:

(1) IBqi .f
i
n /

law! N .0; �2i / for all i D 1; : : : ; l;

(2)
�
IBq1 .f

1
n /; : : : ; I

B
ql
.f l
n /
� law! N

�
0; diag.�21 ; : : : ; �

2
l /
�
.

In other words, Theorem 4 proves the surprising fact that, for such a sequence of
vectors of multiple Wiener–Itô integrals, componentwise convergence to Gaussian
always implies joint convergence. We shall combine Theorem 4 with (i) to prove (ii).
Let ' have the form of a real polynomial. In particular, it admits a decomposition
of the type ' D PN

qDd aqHq for some finite integer N > d . Together with (i),
Theorem 4 yields that

 
1p
n

nX
kD1

Hd .Xk/; : : : ;
1p
n

nX
kD1

HN .Xk/

!
law! N

�
0; diag.�2d ; : : : ; �

2
N /
�
;

where �2q D qŠ
P

k2Z �.k/q , q D d; : : : ; N . We deduce that

Vn D 1p
n

NX
qDd

aq

nX
kD1

Hq.Xk/
law! N

0
@0;

NX
qDd

a2qqŠ
X
k2Z

�.k/q

1
A ;

which is the desired conclusion in (ii) and conclude the proof of Theorem 1. ut
To Go Further. In [33], one associates quantitative bounds to Theorem 1 by using
a similar approach.
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2 Universality of Wiener Chaos

Before developing the material which will be necessary for the proof of the Fourth
Moment Theorem 2 (as well as other related results), to motivate the reader let us
study yet another consequence of this beautiful result.

For any sequenceX1;X2; : : : of i.i.d. random variables with mean 0 and variance

1, the central limit theorem asserts that Vn D .X1 C : : :C Xn/=
p
n

law! N .0; 1/ as
n ! 1. It is a particular instance of what is commonly referred to as a “universality
phenomenon” in probability. Indeed, we observe that the limit of the sequence Vn
does not rely on the specific law of the Xi ’s, but only of the fact that its first two
moments are 0 and 1 respectively.

Another example that exhibits a universality phenomenon is given by Wigner’s
theorem in the random matrix theory. More precisely, let fXij gj>i>1 and
fXii=

p
2gi>1 be two independent families composed of i.i.d. random variables

with mean 0, variance 1, and all the moments. Set Xji D Xij and consider the n�n
random matrixMn D .

Xijp
n
/16i;j6n. The matrixMn being symmetric, its eigenvalues

�1;n; : : : ; �n;n (possibly repeated with multiplicity) belong to R. Wigner’s theorem
then asserts that the spectral measure of Mn, that is, the random probability
measure defined as 1

n

Pn
kD1 ı�k;n , converges almost surely to the semicircular law

1
2�

p
4 � x21Œ�2;2�.x/dx, whatever the exact distribution of the entries of Mn are.

In this section, our aim is to prove yet another universality phenomenon, which
is in the spirit of the two afore-mentioned results. To do so, we need to introduce
the following two blocks of basic ingredients:

(i) Three sequences X D .X1;X2; : : :/, G D .G1;G2; : : :/ and E D ."1; "2; : : :/ of
i.i.d. random variables, all with mean 0, variance 1 and finite fourth moment.
We are more specific with G and E, by assuming further that G1 � N .0; 1/

and P."1 D 1/ D P."1 D �1/ D 1=2. (As we will see, E will actually play no
role in the statement of Theorem 5; we will however use it to build a interesting
counterexample, see Remark 3(1).)

(ii) A fixed integer d > 1 as well as a sequence gn W f1; : : : ; ngd ! R, n > 1 of real
functions, each gn satisfying in addition that, for all i1; : : : ; id D 1; : : : ; n,

(a) gn.i1; : : : ; id / D gn.i�.1/; : : : ; i�.d// for all permutation � 2 Sd .
(b) gn.i1; : : : ; id / D 0 whenever ik D il for some k ¤ l .
(c) dŠ

Pn
i1;:::;idD1 gn.i1; : : : ; id /2 D 1.

(Of course, conditions .a/ and .b/ are becoming immaterial when d D 1.) If
x D .x1; x2; : : :/ is a given real sequence, we also set

Qd.gn; x/ D
nX

i1;:::;idD1
gn.i1; : : : ; id /xi1 : : : xid :
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Using (b) and (c), it is straightforward to check that, for any n > 1, we have
EŒQd.gn;X/� D 0 and EŒQd.gn;X/2� D 1.

We are now in position to state our new universality phenomenon.

Theorem 5 (Nourdin, Peccati and Reinert (2010); see [34]). Assume that d > 2.
Then, as n ! 1, the following two assertions are equivalent:

(˛) Qd.gn;G/
law! N .0; 1/;

(ˇ) Qd.gn;X/
law! N .0; 1/ for any sequence X as given in (i).

Before proving Theorem 5, let us address some comments.

Remark 3. 1. In reality, the universality phenomenon in Theorem 5 is a bit more
subtle than in the CLT or in Wigner’s theorem. To illustrate what we have
in mind, let us consider an explicit situation (in the case d D 2). Let gn W
f1; : : : ; ng2 ! R be the function given by

gn.i; j / D 1

2
p
n � 1

1fiD1;j>2 or jD1;i>2g:

It is easy to check that gn satisfies the three assumptions .a/-.b/-.c/ and also that

Q2.gn; x/ D x1 � 1p
n � 1

nX
kD2

xk:

The classical CLT then implies thatQ2.gn;G/
law! G1G2 andQ2.gn;E/

law! "1G2.
Moreover, it is a classical and easy exercise to check that "1G2 is N .0; 1/

distributed. Thus, what we just showed is that, although Q2.gn;E/
law! N .0; 1/

as n ! 1, the assertion (ˇ) in Theorem 5 fails when choosing X D G (indeed,
the product of two independent N .0; 1/ random variables is not gaussian). This
means that, in Theorem 5, we cannot replace the sequence G in (˛) by any other
sequence (at least, not by E !).

2. Theorem 5 is completely false when d D 1. For an explicit counterexample,
consider for instance gn.i/ D 1fiD1g, i D 1; : : : ; n. We then have Q1.gn; x/ D
x1. Consequently, the assertion (˛) is trivially verified (it is even an equality in
law!) but the assertion (ˇ) is never true unless X1 � N .0; 1/.

Proof of Theorem 5. Of course, only the implication (˛)!(ˇ) must be shown. Let
us divide its proof into three steps.

Step 1. Set ei D 1Œi�1;i �, i > 1, and let fn 2 L2.RdC/ be the symmetric function
defined as

fn D
nX

i1;:::;idD1
gn.i1; : : : ; id /ei1 ˝ : : :˝ eid :
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By the very definition of IBd .fn/, we have

IBd .fn/ D dŠ

nX
i1;:::;idD1

gn.i1; : : : ; id /

Z 1

0
dBt1 ei1.t1/

Z t1

0
dBt2 ei2 .t2/ : : :

Z td�1

0
dBtd eid .td /:

Observe that
Z 1

0

dBt1ei1 .t1/
Z t1

0

dBt2ei2 .t2/ : : :
Z td�1

0

dBtd eid .td /

is not almost surely zero (if and) only if id 6 id�1 6 : : : 6 i1. By combining this
fact with assumption (b), we deduce that

IBd .fn/ D dŠ
X

16id <:::<i16n
gn.i1; : : : ; id /

�
Z 1

0

dBt1ei1.t1/
Z t1

0

dBt2ei2.t2/ : : :
Z td�1

0

dBtd eid .td /

D dŠ
X

16id <:::<i16n
gn.i1; : : : ; id /.Bi1 � Bi1�1/ : : : .Bid � Bid�1/

D
nX

i1;:::;idD1
gn.i1; : : : ; id /.Bi1 � Bi1�1/ : : : .Bid � Bid�1/

lawD Qd.gn;G/:

That is, the sequence Qd.gn;G/ in (˛) has actually the form of a multiple
Wiener–Itô integral. On the other hand, going back to the definition of fn ˝d�1 fn
and using that hei ; ej iL2.RC/

D ıij (Kronecker symbol), we get

fn ˝d�1 fn D
nX

i;jD1

0
@ nX
k2;:::;kdD1

gn.i; k2; : : : ; kd /gn.j; k2; : : : ; kd /

1
A ei ˝ ej ;

so that

kfn ˝d�1 fnk2L2.R2
C
/

D
nX

i;jD1

0
@ nX
k2;:::;kdD1

gn.i; k2; : : : ; kd /gn.j; k2; : : : ; kd /

1
A
2

>
nX
iD1

0
@ nX
k2;:::;kdD1

gn.i; k2; : : : ; kd /
2

1
A
2

(by summing only over i D j )

> max
16i6n

0
@ nX
k2;:::;kdD1

gn.i; k2; : : : ; kd /
2

1
A
2

D �2n ; (12)
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where

�n WD max
16i6n

nX
k2;:::;kdD1

gn.i; k2; : : : ; kd /
2: (13)

Now, assume that (˛) holds. By Theorem 2 and because Qd.gn;G/
lawD IBd .fn/, we

have in particular that kfn ˝d�1 fnkL2.R2
C
/ ! 0 as n ! 1. Using the inequality

(12), we deduce that �n ! 0 as n ! 1.
Step 2. We claim that the following result (whose proof is given in Step 3) allows

to conclude the proof of .˛/ ! .ˇ/.

Theorem 6 (Mossel, O’Donnel and Oleszkiewicz (2010); see [20]). Let X and G
be given as in (i) and let gn W f1; : : : ; ngd ! R be a function satisfying the three
conditions (a)-(b)-(c). Set � D maxf3;EŒX4

1 �g > 1 and let �n be the quantity given
by (13). Then, for all function ' W R ! R of class C 3 with k' 000k1 < 1, we have

ˇ̌
EŒ'.Qd.gn;X//��EŒ'.Qd.gn;G//�

ˇ̌
6 �

3
.3C 2�/

3
2 .d�1/d 3=2

p
dŠ k' 000k1

p
�n:

Indeed, assume that (˛) holds. By Step 1, we have that �n ! 0 as n ! 1.
Next, Theorem 6 together with (˛), lead to (ˇ) and therefore conclude the proof of
Theorem 5.

Step 3: Proof of Theorem 6. During the proof, we will need the following
auxiliary lemma, which is of independent interest.

Lemma 1 (Hypercontractivity). Let n > d > 1, and consider a multilinear
polynomial P 2 RŒx1; : : : ; xn� of degree d , that is, P is of the form

P.x1; : : : ; xn/ D
X

S�f1;:::;ng
jS jDd

aS
Y
i2S

xi :

Let X be as in (i). Then,

E
�
P.X1; : : : ; Xn/

4
	

6
�
3C 2EŒX4

1 �
�2d

E
�
P.X1; : : : ; Xn/

2
	2
: (14)

Proof. The proof follows ideas from [20] and is by induction on n. The case
n D 1 is trivial. Indeed, in this case we have d D 1 so that P.x1/ D ax1;
the conclusion therefore asserts that (recall that EŒX2

1 � D 1, implying in turn that
EŒX4

1 � > EŒX2
1 �
2 D 1)

a4EŒX4
1 � 6 a4

�
3C 2EŒX4

1 �
�2
;

which is evident. Assume now that n > 2. We can write

P.x1; : : : ; xn/ D R.x1; : : : ; xn�1/C xnS.x1; : : : ; xn�1/;
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where R;S 2 RŒx1; : : : ; xn�1� are multilinear polynomials of n � 1 variables.
Observe that R has degree d , while S has degree d � 1. Now write P D
P.X1; : : : ; Xn/, R D R.X1; : : : ; Xn�1/, S D S.X1; : : : ; Xn�1/ and ˛ D EŒX4

1 �.
Clearly, R and S are independent ofXn. We have, usingEŒXn� D 0 andEŒX2

n� D 1:

EŒP2� D EŒ.R C SXn/2� D EŒR2�C EŒS2�

EŒP4� D EŒ.R C SXn/4� D EŒR4�C 6EŒR2S2�C 4EŒX3
n�EŒRS3�C EŒX4

n�EŒS
4�:

Observe that EŒR2S2� 6
p
EŒR4�

p
EŒS4� and

EŒX3
n �EŒRS3� 6 ˛

3
4
�
EŒR4�

� 1
4
�
EŒS4�

� 3
4 6 ˛

p
EŒR4�

p
EŒS4�C ˛EŒS4�;

where the last inequality used both x
1
4 y

3
4 6 p

xy C y (by considering x < y and

x > y) and ˛
3
4 6 ˛ (because ˛ > EŒX4

n� > EŒX2
n�
2 D 1). Hence

EŒP4� 6 EŒR4�C 2.3C 2˛/
p
EŒR4�

p
EŒS4�C 5˛EŒS4�

6 EŒR4�C 2.3C 2˛/
p
EŒR4�

p
EŒS4�C .3C 2˛/2EŒS4�

D

p

EŒR4�C .3C 2˛/
p
EŒS4�

�2
:

By induction, we have
p
EŒR4� 6 .3 C 2˛/dEŒR2� and

p
EŒS4� 6 .3 C

2˛/d�1EŒS2�. Therefore

EŒP4� 6 .3C 2˛/2d
�
EŒR2�CEŒS2�

�2 D .3C 2˛/2dEŒP2�2;

and the proof of the lemma is concluded. ut
We are now in position to prove Theorem 6. Following [20], we use the Lindeberg

replacement trick. Without loss of generality, we assume that X and G are stochas-
tically independent. For i D 0; : : : ; n, let W.i/ D .G1; : : : ; Gi ; XiC1; : : : ; Xn/. Fix
a particular i D 1; : : : ; n and write

Ui D
X

16i1;:::;id6n

i1¤i;:::;id¤i

gn.i1; : : : ; id /W
.i/
i1
: : : W

.i/
id
;

Vi D
X

16i1;:::;id6n

9j W ijDi

gn.i1; : : : ; id /W
.i/
i1
: : :

b

W
.i/
i : : : W

.i/
id

D d

nX
i2;:::;idD1

gn.i; i2; : : : ; id /W
.i/
i2
: : : W

.i/
id
;
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where b

W
.i/
i means that this particular term is dropped (observe that this notation

bears no ambiguity: indeed, since gn vanishes on diagonals, each string i1; : : : ; id
contributing to the definition of Vi contains the symbol i exactly once). For each i ,
note that Ui and Vi are independent of the variablesXi and Gi , and that

Qd.gn;W.i�1// D Ui CXiVi and Qd.gn;W.i// D Ui CGiVi :

By Taylor’s theorem, using the independence of Xi from Ui and Vi , we have

ˇ̌
ˇ̌E�'.Ui CXiVi /

	 � E
�
'.Ui /

	 �E�' 0.Ui/Vi
	
EŒXi � � 1

2
E
�
' 00.Ui/V 2

i

	
EŒX2

i �

ˇ̌
ˇ̌

6 1

6
k' 000k1EŒjXi j3�EŒjVi j3�:

Similarly,

ˇ̌
ˇ̌E�'.Ui CGiVi /

	 �E�'.Ui/	 � E
�
' 0.Ui /Vi

	
EŒGi � � 1

2
E
�
' 00.Ui/V 2

i

	
EŒG2

i �

ˇ̌
ˇ̌

6 1

6
k' 000k1EŒjGi j3�EŒjVi j3�:

Due to the matching moments up to second order on one hand, and using that
EŒjXi j3� 6 � and EŒjGi j3� 6 � on the other hand, we obtain that

ˇ̌
E
�
'.Qd.gn;W.i�1///

	 � E
�
'.Qd.gn;W.i///

	ˇ̌
D ˇ̌

E
�
'.Ui CGiVi /

	 � E
�
'.Ui CXiVi /

	ˇ̌

6 �

3
k' 000k1EŒjVi j3�:

By Lemma 1, we have

EŒjVi j3� 6 EŒV 4
i �

3
4 6 .3C 2�/

3
2 .d�1/EŒV 2

i �
3
2 :

Using the independence between X and G, the properties of gn (which is symmetric
and vanishes on diagonals) as well as EŒXi � D EŒGi � D 0 and EŒX2

i � D
EŒG2

i �D 1, we get

EŒV 2
i �
3=2 D

�
ddŠ

nX
i2;:::;idD1

gn.i; i2; : : : ; id /
2

�3=2

6 .ddŠ/3=2

vuut max
16j6n

nX
j2;:::;jdD1

gn.j; j2; : : : ; jd /2 �
nX

i2;:::;idD1

gn.i; i2; : : : ; id /
2;
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implying in turn that

nX
iD1

EŒV 2
i �
3=2 6 .ddŠ/3=2

vuut max
16j6n

nX
j2;:::;jdD1

gn.j; j2; : : : ; jdk /
2

�
nX

i1;:::;idD1
gn.i1; i2; : : : ; id /

2;

D d3=2
p
dŠ

p
�n:

By collecting the previous bounds, we get

jEŒ'.Qd.gn;X//� � EŒ'.Qd.gn;G//�j

6
nX
iD1

ˇ̌
E
�
'.Qd.gn;W.i�1///

	 �E�'.Qd.gn;W.i///
	ˇ̌

6 �

3
k' 000k1

nX
iD1

EŒjVi j3� 6 �

3
.3C 2�/

3
2 .d�1/k' 000k1

nX
iD1

EŒV 2
i �

3
2

6 �

3
.3C 2�/

3
2 .d�1/d 3=2

p
dŠ k' 000k1

p
�n; ut

which is exactly what was claimed in Theorem 6.

As a final remark, let us observe that Theorem 6 contains the CLT as a special
case. Indeed, fix d D 1 and let gn W f1; : : : ; ng ! R be the function given by
gn.i/ D 1p

n
. We then have �n D 1=n. It is moreover clear that Q1.gn;G/ �

N .0; 1/. Then, for any function ' W R ! R of class C 3 with k' 000k1 < 1 and any
sequence X as in (i), Theorem 6 implies that

ˇ̌
ˇ̌E
�
'

�
X1 C : : :CXnp

n

�

� 1p

2�

Z
R

'.y/e�y2=2dy

ˇ̌
ˇ̌

6 maxfEŒX4
1 �=3; 1gk' 000k1 � 1p

n
;

from which it is straightforward to deduce the CLT.

To Go Further. In [34], Theorem 5 is extended to the case where the target law
is the centered Gamma law. In [48], there is a version of Theorem 5 in which the
sequence G is replaced by P, a sequence of i.i.d. Poisson random variables. Finally,
let us mention that both Theorems 5 and 6 have been extended to the free probability
framework (see Sect. 11) in [13].
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3 Stein’s Method

In this section, we shall introduce some basic features of the so-called Stein method,
which is the first step toward the proof of the Fourth Moment Theorem 2. Actually,
we will not need the full force of this method, only a basic estimate.

A random variableX is N .0; 1/ distributed if and only ifEŒeitX � D e�t 2=2 for all
t 2 R. This simple fact leads to the idea that a random variable X has a law which
is close to N .0; 1/ if and only if EŒeitX � is approximately e�t 2=2 for all t 2 R. This
last claim is nothing but the usual criterion for the convergence in law through the
use of characteristic functions.

Stein’s seminal idea is somehow similar. He noticed in [52] that X is N .0; 1/

distributed if and only if EŒf 0.X/ � Xf .X/� D 0 for all function f belonging to
a sufficiently rich class of functions (for instance, the functions which are C 1 and
whose derivative grows at most polynomially). He then wondered whether a suitable
quantitative version of this identity may have fruitful consequences. This is actually
the case and, even for specialists (at least for me!), the reason why it works so well
remains a bit mysterious. Surprisingly, the simple following statement (due to Stein
[52]) happens to contain all the elements of Stein’s method that are needed for our
discussion. (For more details or extensions of the method, one can consult the recent
books [9, 32] and the references therein.)

Lemma 2 (Stein (1972); see [52]). Let N � N .0; 1/ be a standard Gaussian
random variable. Let h W R ! Œ0; 1� be any continuous function. Define f W
R!R by

f .x/ D e
x2

2

Z x

�1
�
h.a/ � EŒh.N /�

�
e� a2

2 da (15)

D �e x22
Z 1

x

�
h.a/ � EŒh.N /�

�
e� a2

2 da: (16)

Then f is of class C 1, satisfies jf .x/j 6
p
�=2, jf 0.x/j 6 2 and

f 0.x/ D xf .x/C h.x/ �EŒh.N /� (17)

for all x 2 R.

Proof. The equality between (15) and (16) comes from

0 D E
�
h.N / � EŒh.N /�

	 D 1p
2�

Z C1

�1
�
h.a/ � EŒh.N /�

�
e� a2

2 da:
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Using (16) we have, for x > 0:

ˇ̌
xf .x/

ˇ̌ D
ˇ̌
ˇ̌xe

x2

2

Z C1

x

�
h.a/ �EŒh.N /��e� a2

2 da

ˇ̌
ˇ̌

6 xe
x2

2

Z C1

x

e� a2

2 da 6 e
x2

2

Z C1

x

ae� a2

2 da D 1:

Using (15) we have, for x 6 0:

ˇ̌
xf .x/

ˇ̌ D
ˇ̌
ˇ̌xe

x2

2

Z x

�1
�
h.a/ �EŒh.N /��e� a2

2 da

ˇ̌
ˇ̌

6 jxje x22
Z C1

jxj
e� a2

2 da 6 e
x2

2

Z C1

jxj
ae� a2

2 da D 1:

The identity (17) is readily checked. We deduce, in particular, that

jf 0.x/j 6 jxf .x/j C jh.x/ �EŒh.N /�j 6 2

for all x 2 R. On the other hand, by (15)–(16), we have, for every x 2 R,

jf .x/j 6 ex
2=2 min

�Z x

�1
e�y2=2dy;

Z 1

x

e�y2=2dy

�
D ex

2=2

Z 1

jxj
e�y2=2dy 6

r
�

2
;

where the last inequality is obtained by observing that the function s W RC ! R

given by s.x/ D ex
2=2
R1
x
e�y2=2dy attains its maximum at x D 0 (indeed,

we have

s0.x/ D xex
2=2

Z 1

x

e�y2=2dy � 1 6 ex
2=2

Z 1

x

ye�y2=2dy � 1 D 0

so that s is decreasing on RC) and that s.0/ D p
�=2.

The proof of the lemma is complete. ut
To illustrate how Stein’s method is a powerful approach, we shall use it to prove

the celebrated Berry–Esseen theorem. (Our proof is based on an idea introduced by
Ho and Chen in [16], see also Bolthausen [5].)

Theorem 7 (Berry and Esseen (1956); see [15]). Let X D .X1;X2; : : :/ be a
sequence of i.i.d. random variables withEŒX1� D 0,EŒX2

1 � D 1 andEŒjX1j3� < 1,
and define

Vn D 1p
n

nX
kD1

Xk; n > 1;
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to be the associated sequence of normalized partial sums. Then, for any n > 1,
one has

sup
x2R

ˇ̌
ˇ̌P .Vn 6 x/� 1p

2�

Z x

�1
e�u2=2du

ˇ̌
ˇ̌ 6 33EŒjX1j3�p

n
: (18)

Remark 4. One may actually show that (18) holds with the constant 0:4784 instead
of 33. This has been proved by Korolev and Shevtsova [18] in 2010. (They do
not use Stein’s method.) On the other hand, according to Esseen [15] himself, it
is impossible to expect a universal constant smaller than 0:4097.

Proof of (18). For each n > 2, let Cn > 0 be the best possible constant satisfying,
for all i.i.d. random variables X1; : : : ; Xn with EŒjX1j3� < 1, EŒX2

1 � D 1 and
EŒX1� D 0, that

sup
x2R

ˇ̌
ˇ̌P.Vn 6 x/ � 1p

2�

Z x

�1
e�u2=2du

ˇ̌
ˇ̌ 6 Cn EŒjX1j3�p

n
: (19)

As a first (rough) estimation, we first observe that, since X1 is centered with
EŒX2

1 � D 1, one has EŒjX1j3� > EŒX2
1 �

3
2 D 1, so that Cn 6

p
n. This is of course

not enough to conclude, since we need to show that Cn 6 33.
For any x 2 R and " > 0, introduce the function

hx;".u/ D
8<
:
1 if u 6 x � "

linear if x � " < u < x C "

0 if u > x C "

:

It is immediately checked that, for all n > 2, " > 0 and x 2 R, we have

EŒhx�";".Vn/� 6 P.Vn 6 x/ 6 EŒhxC";".Vn/�:

Moreover, for N � N .0; 1/, " > 0 and x 2 R, we have, using that the density of
N is bounded by 1p

2�
,

EŒhxC";".N /� � 4"p
2�

6 EŒhx�";".N /� 6 P.N 6 x/

6 EŒhxC";".N /� 6 EŒhx�";".N /�C 4"p
2�
:

Therefore, for all n > 2 and " > 0, we have

sup
x2R

ˇ̌
ˇ̌P.Vn 6 x/ � 1p

2�

Z x

�1
e�u2=2du

ˇ̌
ˇ̌ 6 sup

x2R
ˇ̌
EŒhx;".Vn/��EŒhx;".N /�

ˇ̌C 4"p
2�
:
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Assume for the time being that, for all " > 0,

sup
x2R

jEŒhx;".Vn/�� EŒhx;".N /�j 6 6EŒjX1j3�p
n

C 3Cn�1 EŒjX1j3�2
" n

: (20)

We deduce that, for all " > 0,

sup
x2R

ˇ̌
ˇ̌P.Vn 6x/� 1p

2�

Z x

�1
e�u2=2du

ˇ̌
ˇ̌ 6 6EŒjX1j3�p

n
C 3Cn�1 EŒjX1j3�2

" n
C 4"p

2�
:

By choosing " D
q

Cn�1

n
EŒjX1j3�, we get that

sup
x2R

ˇ̌
ˇ̌P.Vn 6 x/ � 1p

2�

Z x

�1
e�u2=2du

ˇ̌
ˇ̌ 6 EŒjX1j3�p

n

�
6C

�
3C 4p

2�

�p
Cn�1



;

so that Cn 6 6 C


3C 4p

2�

�p
Cn�1. It follows by induction that Cn 6 33 (recall

that Cn 6
p
n so that C2 6 33 in particular), which is the desired conclusion.

We shall now use Stein’s Lemma 2 to prove that (20) holds. Fix x 2 R and " > 0,
and let f denote the Stein solution associated with h D hx;", that is, f satisfies
(15). Observe that h is continuous, and therefore f is C 1. Recall from Lemma 2
that kf k1 6

p
�
2

and kf 0k1 6 2. Set also Qf .x/ D xf .x/, x 2 R. We then have

ˇ̌ Qf .x/� Qf .y/ˇ̌ D ˇ̌
f .x/.x�y/C.f .x/�f .y//y ˇ̌ 6

�r
�

2
C 2jyj

�
jx�yj: (21)

On the other hand, set

V i
n D Vn � Xip

n
; i D 1; : : : ; n:

Observe that V i
n and Xi are independent by construction. One can thus write

EŒh.Vn/�� EŒh.N /� D EŒf 0.Vn/� Vnf .Vn/�

D
nX

iD1

E

�
f 0.Vn/

1

n
� f .Vn/

Xip
n




D
nX

iD1

E

�
f 0.Vn/

1

n
� �

f .Vn/� f .V i
n /
� Xip

n



because EŒf .V i

n /Xi � D EŒf .V i
n /�EŒXi � D 0

D
nX

iD1

E

�
f 0.Vn/

1

n
� f 0

�
V i
n C 	

Xip
n

�
X2
i

n



with 	 � UŒ0;1� independent of X1; : : : ; Xn:
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We have f 0.x/ D Qf .x/C h.x/ � EŒh.N /�, so that

EŒh.Vn/� �EŒh.N /� D
nX
iD1

�
ai . Qf /� bi. Qf /C ai .h/ � bi .h/

�
; (22)

where

ai .g/DEŒg.Vn/ � g.V i
n /�
1

n
and bi .g/DE

��
g

�
V i
n C 	

Xip
n

�
�g.V i

n /

�
X2
i



1

n
:

(Here again, we have used that V i
n and Xi are independent.) Hence, to prove that

(20) holds true, we must bound four terms.

1st term. One has, using (21) as well as EŒjX1j� 6 EŒX2
1 �

1
2 D 1 and EŒjV i

n j� 6
EŒ.V i

n /
2�

1
2 6 1,

ˇ̌
ai . Qf /ˇ̌ 6 1

n
p
n

�
EŒjX1j�

r
�

2
C 2EŒjX1j�EŒjV i

n j�
�

6
�r

�

2
C 2

�
1

n
p
n
:

2nd term. Similarly and because EŒ	� D 1
2
, one has

ˇ̌
bi. Qf /ˇ̌ 6 1

n
p
n

�
EŒ	�EŒjX1j3�

r
�

2
C 2EŒ	�EŒjX1j3�EŒjV i

n j�
�

6
�
1

2

r
�

2
C 1

�
EŒjX1j3�
n
p
n

:

3rd term. By definition of h, we have

h.v/�h.u/ D .v�u/
Z 1

0

h0.uC s.v�u//ds D �v � u

2"
E
h
1Œx�";xC"�.u C O	.v � u//

i
;

with O	 � UŒ0;1� independent of 	 and X1; : : : ; Xn, so that

ˇ̌
ai .h/

ˇ̌
6 1

2" n
p
n
E

�
jXi j1Œx�";xC"�

�
V i
n C O	 Xip

n

�


D 1

2" n
p
n
E

"
jXi jP

�
x � yp

n
� " 6 V i

n 6 x � yp
n

C "

� ˇ̌
ˇ̌
yD O	Xi

#

6 1

2" n
p
n

sup
y2R

P

�
x � yp

n
� " 6 V i

n 6 x � yp
n

C "

�
:
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We are thus left to bound P.a 6 V i
n 6 b/ for all a; b 2 R with a 6 b. For that, set

QV i
n D 1p

n�1
P

j¤i Xj , so that V i
n D

q
1� 1

n
QV i
n . We then have, using in particular

(19) (with n � 1 instead of n) and the fact that the standard Gaussian density is
bounded by 1p

2�
,

P.a 6 V i
n 6 b/ D P

0
B@ aq

1 � 1
n

6 QV i
n 6 bq

1 � 1
n

1
CA

D P

0
B@ aq

1 � 1
n

6 N 6 bq
1 � 1

n

1
CA

CP

0
B@ aq

1 � 1
n

6 QV i
n 6 bq

1 � 1
n

1
CA

�P

0
B@ aq

1 � 1
n

6 N 6 bq
1 � 1

n

1
CA

6 b � a
p
2�

q
1 � 1

n

C 2Cn�1 EŒjX1j3�p
n � 1 :

We deduce that

ˇ̌
ai .h/

ˇ̌
6 1p

2�n
p
n � 1 C Cn�1 EŒjX1j3�

n
p
n
p
n � 1 "

:

4th term. Similarly, we have

ˇ̌
bi .h/

ˇ̌ D 1

2n
p
n"

ˇ̌
ˇ̌E
�
X3
i 	 1Œx�";xC"�

�
V i
n C O	 	 Xip

n

�
ˇ̌
ˇ̌

6 EŒjX1j3�
4n

p
n"

sup
y2R

P

�
x � yp

n
� " 6 V i

n 6 x � yp
n

C "

�

6 EŒjX1j3�
2
p
2�n

p
n � 1

C Cn�1 EŒjX1j3�2
2n

p
n

p
n � 1 " :

Plugging these four estimates into (22) and by using the fact that n > 2 (and
therefore n � 1 > n

2
) and EŒjX1j3� > 1, we deduce the desired conclusion. ut

To Go Further. Stein’s method has developed considerably since its first appear-
ance in 1972. A comprehensive and very nice reference to go further is the book [9]
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by Chen, Goldstein and Shao, in which several applications of Stein’s method are
carefully developed.

4 Malliavin Calculus in a Nutshell

The second ingredient for the proof of the Fourth Moment Theorem 2 is the
Malliavin calculus (the first one being Stein’s method, as developed in the previous
section). So, let us introduce the reader to the basic operators of Malliavin calculus.
For the sake of simplicity and to avoid technicalities that would be useless in this
survey, we will only consider the case where the underlying Gaussian process (fixed
once for all throughout the sequel) is a classical Brownian motion B D .Bt /t>0
defined on some probability space .˝;F ; P /; we further assume that the �-field
F is generated by B .

For a detailed exposition of Malliavin calculus (in a more general context) and
for missing proofs, we refer the reader to the textbooks [32, 38].

Dimension One. In this first section, we would like to introduce the basic operators
of Malliavin calculus in the simplest situation (where only one Gaussian random
variable is involved). While easy, it is a sufficiently rich context to encapsulate all
the essence of this theory. We first need to recall some useful properties of Hermite
polynomials.

Proposition 1. The family .Hq/q2N � RŒX� of Hermite polynomials has the
following properties.

(a) H 0
q D qHq�1 andHqC1 D XHq � qHq�1 for all q 2 N.

(b) The family



1p
qŠ
Hq

�
q2N is an orthonormal basis of L2.R; 1p

2�
e�x2=2dx/.

(c) Let .U; V / be a Gaussian vector with U; V � N .0; 1/. Then, for all p; q 2 N,

EŒHp.U /Hq.V /� D
�
qŠEŒUV�q if p D q

0 otherwise:

Proof. This is well-known. For a proof, see, e.g., [32, Proposition 1.4.2]. ut
Let ' W R ! R be an element of L2.R; 1p

2�
e�x2=2dx/. Proposition 1(b) implies

that ' may be expanded (in a unique way) in terms of Hermite polynomials as
follows:

' D
1X
qD0

aqHq: (23)

When ' is such that
P
qqŠa2q < 1, let us define

D' D
1X
qD0

qaqHq�1: (24)
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Since the Hermite polynomials satisfyH 0
q D qHq�1 (Proposition 1(a)), observe that

D' D ' 0

(in the sense of distributions). Let us now define the Ornstein–Uhlenbeck semigroup
.Pt /t>0 by

Pt' D
1X
qD0

e�qt aqHq: (25)

Plainly, P0 D Id, PtPs D PtCs (s; t > 0) and

DPt D e�tPtD: (26)

Since .Pt /t>0 is a semigroup, it admits a generator L defined as

L D d

dt
jtD0Pt :

Of course, for any t > 0 one has that

d

dt
Pt D lim

h!0

PtCh � Pt
h

D lim
h!0

Pt
Ph � Id

h
D Pt lim

h!0

Ph � Id

h
D Pt

d

dh

ˇ̌
ˇ̌
hD0

Ph D PtL;

and, similarly, ddtPt D LPt . Moreover, going back to the definition of .Pt /t>0, it is

clear that the domain of L is the set of functions ' 2 L2.R; 1p
2�
e�x2=2dx/ such thatP

q2qŠa2q < 1 and that, in this case,

L' D �
1X
qD0

qaqHq:

We have the following integration by parts formula, whose proof is straightforward
(start with the case ' D Hp and  D Hq , and then use bilinearity and
approximation to conclude in the general case) and left to the reader.

Proposition 2. Let ' be in the domain of L and  be in the domain of D. Then

Z
R

L'.x/ .x/
e�x2=2
p
2�

dx D �
Z
R

D'.x/D .x/
e�x2=2
p
2�

dx: (27)

We shall now extend all the previous operators in a situation where, instead of
dealing with a random variable of the form F D '.N / (that involves only one
Gaussian random variable N ), we deal more generally with a random variable F
that is measurable with respect to the Brownian motion .Bt /t>0.
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Wiener Integral. For any adapted2 and square integrable stochastic process u D
.ut /t>0, let us denote by

R1
0

utdBt its Itô integral. Recall from any standard
textbook of stochastic analysis that the Itô integral is a linear functional that takes
its values on L2.˝/ and has the following basic features, coming mainly from the
independence property of the increments of B:

E

�Z 1

0

usdBs



D 0 (28)

E

�Z 1

0

usdBs �
Z 1

0

vsdBs



D E

�Z 1

0

usvsds



: (29)

In the particular case where u D f 2 L2.RC/ is deterministic, we say thatR1
0
f .s/dBs is the Wiener integral of f ; it is then easy to show that

Z 1

0

f .s/dBs � N

�
0;

Z 1

0

f 2.s/ds

�
: (30)

Multiple Wiener–Itô Integrals and Wiener Chaoses. Let f 2 L2.R
q
C/. Let us

see how one could give a “natural” meaning to the q-fold multiple integral

IBq .f / D
Z
R
q

C

f .s1; : : : ; sq/dBs1 : : : dBsq :

To achieve this goal, we shall use an iterated Itô integral; the following heuristic
“calculations” are thus natural within this framework:Z

R
q

C

f .s1; : : : ; sq/dBs1 : : : dBsq

D
X
�2Sq

Z
R
q

C

f .s1; : : : ; sq/1fs�.1/>:::>s�.q/gdBs1 : : : dBsq

D
X
�2Sq

Z 1

0

dBs�.1/

Z s�.1/

0

dBs�.2/ : : :
Z s�.q�1/

0

dBs�.q/f .s1; : : : ; sq/

D
X
�2Sq

Z 1

0

dBt1

Z t1

0

dBt2 : : :
Z tq�1

0

dBtq f .t��1.1/; : : : ; t��1.q//

D
X
�2Sq

Z 1

0

dBt1

Z t1

0

dBt2 : : :
Z tq�1

0

dBtq f .t�.1/; : : : ; t�.q//: (31)

Now, we can use (31) as a natural candidate for being IBq .f /.

2Any adapted process u that is either càdlàg or càglàd admits a progressively measurable version.
We will always assume that we are dealing with it.
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Definition 1. Let q > 1 be an integer.

1. When f 2 L2.RqC/, we set

IBq .f / D
X
�2Sq

Z 1

0

dBt1

Z t1

0

dBt2 : : :
Z tq�1

0

dBtq f .t�.1/; : : : ; t�.q//: (32)

The random variable IBq .f / is called the qth multiple Wiener–Itô integral of f .
2. The set H B

q of random variables of the form IBq .f /, f 2 L2.RqC/, is called the
qth Wiener chaos of B . We also use the convention H B

0 D R.

The following properties are readily checked.

Proposition 3. Let q > 1 be an integer and let f 2 L2.RqC/.
1. If f is symmetric (meaning that f .t1; : : : ; tq/ D f .t�.1/; : : : ; t�.q// for any t 2

R
q
C and any permutation � 2 Sq), then

IBq .f / D qŠ

Z 1

0

dBt1

Z t1

0

dBt2 : : :
Z tq�1

0

dBtq f .t1; : : : ; tq/: (33)

2. We have

IBq .f / D IBq .
Qf /; (34)

where Qf stands for the symmetrization of f given by

Qf .t1; : : : ; tq/ D 1

qŠ

X
�2Sq

f .t�.1/; : : : ; t�.q//: (35)

3. For any p; q > 1, f 2 L2.RpC/ and g 2 L2.RqC/,
EŒIBq .f /� D 0 (36)

EŒIBp .f /I
B
q .g/� D pŠh Qf ; QgiL2.Rp

C
/ if p D q (37)

EŒIBp .f /I
B
q .g/� D 0 if p ¤ q: (38)

The space L2.˝/ can be decomposed into the infinite orthogonal sum of the
spaces H B

q . (It is a statement which is analogous to the content of Proposition 1(b),
and it is precisely here that we need to assume that the �-field F is generated by
B .) It follows that any square-integrable random variable F 2 L2.˝/ admits the
following chaotic expansion:

F D EŒF �C
1X
qD1

IBq .fq/; (39)



Lectures on Gaussian Approximations with Malliavin Calculus 29

where the functions fq 2 L2.RqC/ are symmetric and uniquely determined by F . In
practice and when F is “smooth” enough, one may rely on Stroock’s formula (see
[53] or [38, Exercise 1.2.6]) to compute the functions fq explicitly.

The following result contains a very useful property of multiple Wiener–Itô
integrals. It is in the same spirit as Lemma 1.

Theorem 8 (Nelson (1973); see [21]). Let f 2 L2.R
q
C/ with q > 1. Then, for all

r > 2,

E
�jIBq .f /jr	 6 Œ.r � 1/qqŠ�r=2kf kr

L2.R
q

C
/
< 1: (40)

Proof. See, e.g., [32, Corollary 2.8.14]. (The proof uses the hypercontractivity
property of .Pt /t>0 defined as (48).) ut

Multiple Wiener–Itô integrals are linear by construction. Let us see how they
behave with respect to multiplication. To this aim, we need to introduce the concept
of contractions.

Definition 2. When r 2 f1; : : : ; p ^ qg, f 2 L2.R
p
C/ and g 2 L2.R

q
C/, we write

f ˝r g to indicate the r th contraction of f and g, defined as being the element of
L2.R

pCq�2r
C / given by

.f ˝r g/.t1; : : : ; tpCq�2r / (41)

D
Z
R
r
C

f .t1; : : : ; tp�r ; x1; : : : ; xr /g.tp�rC1; : : : ; tpCq�2r ; x1; : : : ; xr /dx1 : : : dxr :

By convention, we set f ˝0 g D f ˝ g as being the tensor product of f and g,
that is,

.f ˝0 g/.t1; : : : ; tpCq/ D f .t1; : : : ; tp/g.tpC1; : : : ; tpCq/:

Observe that

kf ˝r gk
L2.R

pCq�2r

C
/

6 kf kL2.Rp
C
/kgkL2.Rq

C
/; r D 0; : : : ; p ^ q (42)

by Cauchy–Schwarz, and that f ˝p g D hf; giL2.Rp
C
/ when p D q. The next result

is the fundamental product formula between two multiple Wiener–Itô integrals.

Theorem 9. Let p; q > 1 and let f 2 L2.RpC/ and g 2 L2.RqC/ be two symmetric
functions. Then

IBp .f /I
B
q .g/ D

p^qX
rD0

rŠ

 
p

r

! 
q

r

!
IBpCq�2r .f Q̋ rg/; (43)

where f ˝r g stands for the contraction (41).
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Proof. Theorem 9 can be established by at least two routes, namely by induction
(see, e.g., [38, page 12]) or by using the concept of diagonal measure in the context
of the Engel–Rota–Wallstrom theory (see [45]). Let us proceed with a heuristic
proof following this latter strategy. Going back to the very definition of IBp .f /,
we see that the diagonals are avoided. That is, IBp .f / can be seen as

IBp .f / D
Z
R
p

C

f .s1; : : : ; sp/1fsi¤sj ; i¤j gdBs1 : : : dBsp

The same holds for IBq .g/. Then we have (just as through Fubini)

IBp .f /I
B
q .g/

D
Z
R
pCq

C

f .s1; : : : ; sp/1fsi¤sj ; i¤jgg.t1; : : : ; tq/1fti¤tj ; i¤jgdBs1 : : : dBspdBt1 : : : dBtq :

While there is no diagonals in the first and second blocks, there are all possible
mixed diagonals in the joint writing. Hence we need to take into account all these
diagonals (whence the combinatorial coefficients in the statement, which count all
possible diagonal sets of size r) and then integrate out (using the rule .dBt /2 D dt).
We thus obtain

IBp .f /I
B
q .g/ D

p^qX
rD0

rŠ

 
p

r

! 
q

r

!Z
R
pCq�2r

C

.f ˝r g/.x1; : : : ; xpCq�2r /dBx1 : : : dBxpCq�2r

which is exactly the claim (43). ut
Malliavin Derivatives. We shall extend the operator D introduced in (24). Let
F 2 L2.˝/ and consider its chaotic expansion (39).

Definition 3. 1. When m > 1 is an integer, we say that F belongs to the Sobolev–
Watanabe space D

m;2 if

1X
qD1

qmqŠkfqk2L2.Rq
C
/
< 1: (44)

2. When (44) holds with m D 1, the Malliavin derivative DF D .DtF /t>0 of F is
the element of L2.˝ � RC/ given by

DtF D
1X
qD1

qIBq�1
�
fq.�; t/

�
: (45)

3. More generally, when (44) holds with an m bigger than or equal to 2 we define
themth Malliavin derivativeDmF D .Dt1;:::;tmF /t1;:::;tm>0 of F as the element of
L2.˝ � R

mC/ given by
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Dt1;:::;tmF D
1X
qDm

q.q � 1/ : : : .q �mC 1/IBq�m
�
fq.�; t1; : : : ; tm/

�
: (46)

The exponent 2 in the notation D
m;2 is because it is related to the space L2.˝/.

(There exists a space D
m;p related to Lp.˝/ but we will not use it in this survey.)

On the other hand, it is clear by construction that D is a linear operator. Also,
using (37)–(38) it is easy to compute the L2-norm of DF in terms of the kernels
fq appearing in the chaotic expansion (39) of F :

Proposition 4. Let F 2 D
1;2. We have

E
h
kDFk2

L2.RC/

i
D

1X
qD1

qqŠkfqk2L2.Rq
C
/
:

Proof. By (45), we can write

E
h
kDFk2

L2.RC/

i
D
Z
RC

E

2
64
0
@ 1X
qD1

qIBq�1
�
fq.�; t/

�
1
A
2
3
75 dt

D
1X

p;qD1
pq

Z
RC

E
h
IBp�1

�
fp.�; t/

�
IBq�1

�
fq.�; t/

�i
dt:

Using (38), we deduce that

E
h
kDFk2

L2.RC/

i
D

1X
qD1

q2
Z
RC

E
h
IBq�1

�
fq.�; t/

�2i
dt:

Finally, using (37), we get that

E
h
kDFk2

L2.RC/

i
D

1X
qD1

q2.q � 1/Š

Z
RC

��fq.�; t/��2L2.Rq�1

C
/
dt D

1X
qD1

qqŠ
��fq��2L2.Rq

C
/
:

ut
Let Hq be the qth Hermite polynomial (for some q > 1) and let e 2 L2.RC/

have norm 1. Recall (10) and Proposition 1(a). We deduce that, for any t > 0,

Dt

�
Hq

�Z 1

0

e.s/dWs

��
D Dt.I

B
q .e

˝q// D qIBq�1.e˝q�1/e.t/

D qHq�1
�Z 1

0

e.s/dBs

�
e.t/ D H 0

q

�Z 1

0

e.s/dBs

�
Dt

�Z 1

0

e.s/dBs

�
:
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More generally, the Malliavin derivativeD verifies the chain rule:

Theorem 10. Let ' W R ! R be both of class C 1 and Lipschitz, and let F 2 D
1;2.

Then, '.F / 2 D
1;2 and

Dt'.F / D ' 0.F /DtF; t > 0: (47)

Proof. See, e.g., [38, Proposition 1.2.3]. ut
Ornstein–Uhlenbeck Semigroup. We now introduce the extension of (25) in our
infinite-dimensional setting.

Definition 4. The Ornstein–Uhlenbeck semigroup is the family of linear operators
.Pt /t>0 defined on L2.˝/ by

PtF D
1X
qD0

e�qt I Bq .fq/; (48)

where the symmetric kernels fq are given by (39).

A crucial property of .Pt /t>0 is the Mehler formula, that gives an alternative
and often useful representation formula for Pt . To be able to state it, we need to
introduce a further notation. Let .B;B 0/ be a two-dimensional Brownian motion
defined on the product probability space .˝ ;FFF ;P/ D .˝ �˝ 0;F ˝ F 0; P �P 0/.
Let F 2 L2.˝/. Since F is measurable with respect to the Brownian motion B , we
can write F D 
F .B/ with 
F a measurable mapping determined P ı B�1 a.s..
As a consequence, for any t > 0 the random variable 
F .e�tB C p

1 � e�2tB 0/ is
well-definedP �P 0 a.s. (note indeed that e�tBCp

1 � e�2tB 0 is again a Brownian
motion for any t > 0). We then have the following formula.

Theorem 11 (Mehler’s formula). For every F D F.B/ 2 L2.˝/ and every t > 0,
we have

Pt.F / D E 0�
F .e�tB C
p
1 � e�2tB 0/

	
; (49)

where E 0 denotes the expectation with respect to P 0.

Proof. By using standard arguments, one may show that the linear span of random
variables F having the form F D exp

˚R1
0
h.s/dBs

�
with h 2 L2.RC/ is

dense in L2.˝/. Therefore, it suffices to consider the case where F has this
particular form. On the other hand, we have the following identity, see, e.g., [32,
Proposition 1.4.2.vi/]: for all c; x 2 R,

ecx�c2=2 D
1X
qD0

cq

qŠ
Hq.x/;
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with Hq the qth Hermite polynomial. By setting c D khkL2.RC/
D khk and x DR1

0
h.s/

khk dBs , we deduce that

exp

� Z 1

0

h.s/dBs

�
D e

1
2khk2

1X
qD0

khkq
qŠ

Hq

�Z 1

0

h.s/

khk dBs

�
;

implying in turn, using (10), that

exp

� Z 1

0

h.s/dBs

�
D e

1
2 khk2

1X
qD0

1

qŠ
IBq
�
h˝q� : (50)

Thus, for F D exp
˚R1
0 h.s/dBs

�
,

PtF D e
1
2khk2

1X
qD0

e�qt

qŠ
IBq
�
h˝q� :

On the other hand,

E 0�
F .e�tBC
p
1 � e�2tB 0/

	DE 0
�

exp
Z 1

0

h.s/.e�tdBs C
p
1 � e�2tdB0

s/




D exp

�
e�t

Z 1

0

h.s/dBs

�
exp

�
1 � e�2t

2
khk2

�

D exp

�
1� e�2t

2
khk2

�
e
e�2t

2 khk2
1X
qD0

e�qt

qŠ
IBq
�
h˝q� by (50)

D PtF:

The desired conclusion follows. ut
Generator of the Ornstein–Uhlenbeck Semigroup. Recall the definition (44) of
the Sobolev–Watanabe spaces D

m;2, m > 1, and that the symmetric kernels fq 2
L2.R

q
C/ are uniquely defined through (39).

Definition 5. 1. The generator of the Ornstein–Uhlenbeck semigroup is the linear
operator L defined on D

2;2 by

LF D �
1X
qD0

qIBq .fq/:

2. The pseudo-inverse of L is the linear operator L�1 defined on L2.˝/ by

L�1F D �
1X
qD1

1

q
IBq .fq/:



34 I. Nourdin

It is obvious that, for any F 2 L2.˝/, we have that L�1F 2 D
2;2 and

LL�1F D F � EŒF �: (51)

Our terminology for L�1 is explained by the identity (51). Another crucial property
of L is contained in the following result, which is the exact generalization of
Proposition 2.

Proposition 5. Let F 2 D
2;2 and G 2 D

1;2. Then

EŒLF �G� D �EŒhDF;DGiL2.RC/
�: (52)

Proof. By bilinearity and approximation, it is enough to show (52) for F D IBp .f /

and G D IBq .g/ with p; q > 1 and f 2 L2.R
p
C/, g 2 L2.R

q
C/ symmetric. When

p ¤ q, we have

EŒLF �G� D �pEŒIBp .f /IBq .g/� D 0

and

EŒhDF;DGiL2.RC/
� D pq

Z 1

0

EŒIBp�1.f .�; t//IBq�1.g.�; t//�dt D 0

by (38), so the desired conclusion holds true in this case. When p D q, we have

EŒLF �G� D �pEŒIBp .f /IBp .g/� D �ppŠhf; giL2.Rp
C
/

and

EŒhDF;DGiL2.RC/
�Dp2

Z 1

0

EŒIBp�1.f .�; t//IBp�1.g.�; t//�dt

Dp2.p � 1/Š
Z 1

0

hf .�; t/; g.�; t/i
L2.R

p�1

C
/
dt DppŠhf; giL2.Rp

C
/

by (37), so the desired conclusion holds true as well in this case. ut
We are now in position to state and prove an integration by parts formula which

will play a crucial role in the sequel.

Theorem 12. Let ' W R ! R be both of class C 1 and Lipschitz, and let F 2 D
1;2

and G 2 L2.˝/. Then

Cov
�
G; '.F /

� D E
�
' 0.F /hDF;�DL�1GiL2.RC/

	
: (53)
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Proof. Using the assumptions made on F and ', we can write:

Cov
�
G; '.F /

� D E
�
L.L�1G/ � '.F /	 (by (51))

D E
�hD'.F /;�DL�1GiL2.RC/

	
(by (52))

D E
�
' 0.F /hD'.F /;�DL�1GiL2.RC/

	
(by (47));

which is the announced formula. ut
Theorem 12 admits a useful extension to indicator functions. Before stating and

proving it, we recall the following classical result from measure theory.

Proposition 6. Let C be a Borel set in R, assume that C � Œ�A;A� for some A >
0, and let � be a finite measure on Œ�A;A�. Then, there exists a sequence .hn/ of
continuous functions with support included in Œ�A;A� and such that hn.x/ 2 Œ0; 1�
and 1C .x/ D limn!1 hn.x/ �-a.e.

Proof. This is an immediate corollary of Lusin’s theorem, see, e.g., [50, page 56].
ut

Corollary 1. Let C be a Borel set in R, assume that C � Œ�A;A� for some A > 0,
and let F 2 D

1;2 be such that EŒF � D 0. Then

E

�
F

Z F

�1
1C .x/dx



D E

�
1C .F /hDF;�DL�1F iL2.RC/

	
:

Proof. Let � denote the Lebesgue measure and let PF denote the law of F . By
Proposition 6 with � D .� C PF /jŒ�A;A� (that is, � is the restriction of � C PF
to Œ�A;A�), there is a sequence .hn/ of continuous functions with support included
in Œ�A;A� and such that hn.x/ 2 Œ0; 1� and 1C .x/ D limn!1 hn.x/ �-a.e. In
particular, 1C .x/ D limn!1 hn.x/ �-a.e. and PF -a.e. By Theorem 12, we have
moreover that

E

�
F

Z F

�1
hn.x/dx



D E

�
hn.F /hDF;�DL�1F iL2.RC/

	
:

The dominated convergence applies and yields the desired conclusion. ut
As a corollary of both Theorem 12 and Corollary 1, we shall prove that the law

of any multiple Wiener–Itô integral is always absolutely continuous with respect to
the Lebesgue measure except, of course, when its kernel is identically zero.

Corollary 2 (Shigekawa; see [51]). Let q > 1 be an integer and let f be a non
zero element of L2.RqC/. Then the law of F D IBq .f / is absolutely continuous with
respect to the Lebesgue measure.
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Proof. Without loss of generality, we further assume that f is symmetric. The
proof is by induction on q. When q D 1, the desired property is readily checked
because IB1 .f / � N .0; kf k2

L2.RC/
/, see (30). Now, let q > 2 and assume that

the statement of Corollary 2 holds true for q � 1, that is, assume that the law of
IBq�1.g/ is absolutely continuous for any symmetric element g ofL2.Rq�1

C / such that
kgk

L2.R
q�1

C
/
> 0. Let f be a symmetric element of L2.RqC/ with kf kL2.Rq

C
/ > 0.

Let h 2 L2.R/ be such that
��R1

0 f .�; s/h.s/ds
��
L2.R

q�1

C
/

¤ 0. (Such an h necessarily

exists because, otherwise, we would have that f .�; s/ D 0 for almost all s > 0

which, by symmetry, would imply that f � 0; this would be in contradiction with
our assumption.) Using the induction assumption, we have that the law of

hDF; hiL2.RC/
D
Z 1

0

DsF h.s/ds D qIBq�1
�Z 1

0

f .�; s/h.s/ds

�

is absolutely continuous with respect to the Lebesgue measure. In particular,

P.hDF; hiL2.RC/
D 0/ D 0;

implying in turn, because fkDFkL2.RC/
D 0g � fhDF; hiL2.RC/

D 0g, that

P.kDFkL2.RC/
> 0/ D 1: (54)

Now, let C be a Borel set in R. Using Corollary 1, we can write, for every n > 1,

E

�
1C\Œ�n;n�.F /

1

q
kDFk2

L2.RC/



D E

�
1C\Œ�n;n�.F /hDF;�DL�1F iL2.RC/

	

D E

�
F

Z F

�1
1C\Œ�n;n�.y/dy



:

Assume that the Lebesgue measure of C is zero. The previous equality implies that

E

�
1C\Œ�n;n�.F /

1

q
kDFk2

L2.RC/



D 0; n > 1:

But (54) holds as well, so P.F 2 C \ Œ�n; n�/ D 0 for all n > 1. By monotone
convergence, we actually get P.F 2 C/ D 0. This shows that the law of
F is absolutely continuous with respect to the Lebesgue measure. The proof of
Corollary 2 is concluded. ut
To Go Further. In the literature, the most quoted reference on Malliavin calculus is
the excellent book [38] by Nualart. It contains many applications of this theory (such
as the study of the smoothness of probability laws or the anticipating stochastic
calculus) and constitutes, as such, an unavoidable reference to go further.
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5 Stein Meets Malliavin

We are now in a position to prove the Fourth Moment Theorem 2. As we will
see, to do so we will combine the results of Sect. 3 (Stein’s method) with those
of Sect. 4 (Malliavin calculus), thus explaining the title of the current section! It is a
different strategy with respect to the original proof, which was based on the use of
the Dambis–Dubins–Schwarz theorem.

We start by introducing the distance we shall use to measure the closeness of the
laws of random variables.

Definition 6. The total variation distance between the laws of two real-valued
random variables Y and Z is defined by

dTV.Y;Z/ D sup
C2B.R/

ˇ̌
P.Y 2 C/� P.Z 2 C/ˇ̌; (55)

where B.R/ stands for the set of Borel sets in R.

When C 2 B.R/, we have that P.Y 2 C \ Œ�n; n�/ ! P.Y 2 C/ and
P.Z 2 C \ Œ�n; n�/ ! P.Z 2 C/ as n ! 1 by the monotone convergence
theorem. So, without loss we may restrict the supremum in (55) to be taken over
bounded Borel sets, that is,

dTV .Y;Z/ D sup
C2B.R/
C bounded

ˇ̌
P.Y 2 C/� P.Z 2 C/ˇ̌: (56)

We are now ready to derive a bound for the Gaussian approximation of any
centered element F belonging to D

1;2.

Theorem 13 (Nourdin and Peccati (2009); see [27]). Consider F 2 D
1;2 with

EŒF � D 0. Then, with N � N .0; 1/,

dTV.F;N / 6 2E
�ˇ̌
1 � hDF;�DL�1F iL2.RC/

ˇ̌	
: (57)

Proof. LetC be a bounded Borel set in R. LetA > 0 be such thatC � Œ�A;A�. Let
� denote the Lebesgue measure and let PF denote the law of F . By Proposition 6
with� D .�CPF /jŒ�A�;A� (the restriction of �CPF to Œ�A;A�), there is a sequence
.hn/ of continuous functions such that hn.x/ 2 Œ0; 1� and 1C .x/ D limn!1 hn.x/

�-a.e. By the dominated convergence theorem, EŒhn.F /� ! P.F 2 C/ and
EŒhn.N /� ! P.N 2 C/ as n ! 1. On the other hand, using Lemma 2 (and
denoting by fn the function associated with hn) as well as (53) we can write, for
each n,

ˇ̌
EŒhn.F /� �EŒhn.N /�

ˇ̌ D ˇ̌
EŒf 0

n.F /� �EŒFfn.F /�
ˇ̌

D ˇ̌
EŒf 0

n.F /.1 � hDF;�DL�1F iL2.RC/
�

6 2E
�j1� hDF;�DL�1F iL2.RC/

j	:
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Letting n go to infinity yields

ˇ̌
P.F 2 C/� P.N 2 C/ˇ̌ 6 2E

�j1 � hDF;�DL�1F iL2.RC/
j	;

which, together with (56), implies the desired conclusion. ut
Wiener Chaos and the Fourth Moment Theorem. In this section, we apply
Theorem 13 to a chaotic random variable F , that is, to a random variable having the
specific form of a multiple Wiener–Itô integral. We begin with a technical lemma
which, among other, shows that the fourth moment of F is necessarily greater than
3EŒF 2�2. We recall from Definition 2 the meaning of f Q̋ rf .

Lemma 3. Let q > 1 be an integer and consider a symmetric function f 2
L2.R

q
C/. Set F D IBq .f / and �2 D EŒF 2� D qŠkf k2

L2.R
q

C
/
. The following two

identities hold:

E

"�
�2 � 1

q
kDFk2

L2.RC/

�2#
D

q�1X
rD1

r2

q2
rŠ2

 
q

r

!4
.2q � 2r/Škf Q̋ rf k2

L2.R
2q�2r

C
/

(58)

and

EŒF 4� � 3�4 D 3

q

q�1X
rD1

rrŠ2

 
q

r

!4
.2q � 2r/Škf Q̋ rf k2

L2.R
2q�2r

C
/

(59)

D
q�1X
rD1

qŠ2

 
q

r

!2 (
kf ˝r f k2

L2.R
2q�2r

C
/
C
 
2q � 2r

q � r

!
kf Q̋ rf k2

L2.R
2q�2r

C
/

)
:

(60)

In particular,

E

"�
�2 � 1

q
kDFk2

L2.RC/

�2#
6 q � 1

3q

�
EŒF 4� � 3�4�: (61)

Proof. We follow [28] for (58)–(59) and [40] for (60). For any t > 0, we have
DtF D qIBq�1

�
f .�; t/� so that, using (43),

1

q
kDFk2

L2.RC/
D q

Z 1

0

IBq�1
�
f .�; t/�2dt

D q

Z 1

0

q�1X
rD0

rŠ

 
q � 1

r

!2
IB2q�2�2r

�
f .�; t/ Q̋ rf .�; t/

�
dt
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D q

Z 1

0

q�1X
rD0

rŠ

 
q � 1

r

!2
IB2q�2�2r

�
f .�; t/˝r f .�; t/

�
dt

D q

q�1X
rD0

rŠ

 
q � 1

r

!2
IB2q�2�2r

�Z 1

0

f .�; t/˝r f .�; t/dt

�

D q

q�1X
rD0

rŠ

 
q � 1

r

!2
IB2q�2�2r .f ˝rC1 f /

D q

qX
rD1
.r � 1/Š

 
q � 1
r � 1

!2
IB2q�2r .f ˝r f /

D qŠkf k2
L2.R

q

C
/
C q

q�1X
rD1
.r � 1/Š

 
q � 1

r � 1

!2
IB2q�2r .f ˝r f /: (62)

Since EŒF 2� D qŠkf k2
L2.R

q

C
/

D �2, the identity (58) follows now from (62)

and the orthogonality properties of multiple Wiener–Itô integrals. Recall the
hypercontractivity property (40) of multiple Wiener–Itô integrals, and observe the
relations �L�1F D 1

q
F and D.F 3/ D 3F 2DF. By combining formula (53) with

an approximation argument (the derivative of '.x/ D x3 being not bounded), we
infer that

EŒF 4� D E
�
F � F 3

	 D 3

q
E
�
F 2kDFk2

L2.RC/

	
: (63)

Moreover, the multiplication formula (43) yields

F 2 D IBq .f /
2 D

qX
sD0

sŠ

 
q

s

!2
IB2q�2s .f Q̋ sf /: (64)

By combining this last identity with (62) and (63), we obtain (59) and finally
(61). It remains to prove (60). Let � be a permutation of f1; : : : ; 2qg (this fact
is written in symbols as � 2 S2q). If r 2 f0; : : : ; qg denotes the cardinality of
f�.1/; : : : ; �.q/g \ f1; : : : ; qg then it is readily checked that r is also the cardinality
of f�.q C 1/; : : : ; �.2q/g \ fq C 1; : : : ; 2qg and that

Z
R
2q

C

f .t1; : : : ; tq/f .t�.1/; : : : ; t�.q//f .tqC1; : : : ; t2q/

�f .t�.qC1/; : : : ; t�.2q//dt1 : : : dt2q

D
Z
R
2q�2r

C

.f ˝r f /.x1; : : : ; x2q�2r /2dx1 : : : dx2q�2r

D kf ˝r f k2
L2.R

2q�2r

C
/
: (65)
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Moreover, for any fixed r 2 f0; : : : ; qg, there are
�
q
r

�2
.qŠ/2 permutations � 2 S2q

such that #f�.1/; : : : ; �.q/g \ f1; : : : ; qg D r . (Indeed, such a permutation is
completely determined by the choice of: .a/ r distinct elements y1; : : : ; yr of
f1; : : : ; qg; .b/ q�r distinct elements yrC1; : : : ; yq of fqC1; : : : ; 2qg; .c/ a bijection
between f1; : : : ; qg and fy1; : : : ; yqg; .d/ a bijection between fq C 1; : : : ; 2qg and
f1; : : : ; 2qg n fy1; : : : ; yqg.) Now, observe that the symmetrization of f ˝ f is
given by

f Q̋ f .t1; : : : ; t2q/ D 1

.2q/Š

X
�2S2q

f .t�.1/; : : : ; t�.q//f .t�.qC1/; : : : ; t�.2q//:

Therefore,

kf Q̋ f k2
L2.R

2q

C
/

D 1

.2q/Š2

X
�;� 02S2q

Z
R
2q

C

f .t�.1/; : : : ; t�.q//f .t�.qC1/; : : : ; t�.2q//

�f .t� 0.1/; : : : ; t� 0.q//f .t� 0.qC1/; : : : ; t� 0.2q//dt1 : : : dt2q

D 1

.2q/Š

X
�2S2q

Z
R
2q

C

f .t1; : : : ; tq/f .tqC1; : : : ; t2q/

�f .t�.1/; : : : ; t�.q//f .t�.qC1/; : : : ; t�.2q//dt1 : : : dt2q

D 1

.2q/Š

qX
rD0

X
�2S2q

f�.1/;:::;�.q/g\f1;:::;qgDr

Z
R
2q

C

f .t1; : : : ; tq/f .tqC1; : : : ; t2q/

�f .t�.1/; : : : ; t�.q//f .t�.qC1/; : : : ; t�.2q//dt1 : : : dt2q:

Using (65), we deduce that

.2q/Škf Q̋ f k2
L2.R

2q

C
/

D 2.qŠ/2kf k4
L2.R

q

C
/
C .qŠ/2

q�1X
rD1

 
q

r

!2
kf ˝r f k2

L2.R
2q�2r

C
/
:

(66)

Using the orthogonality and isometry properties of multiple Wiener–Itô integrals,
the identity (64) yields
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EŒF 4� D
qX
rD0
.rŠ/2

 
q

r

!4
.2q � 2r/Škf Q̋ rf k2

L2.R
2q�2r

C
/

D .2q/Škf Q̋ f k2
L2.R

2q

C
/
C .qŠ/2kf k4

L2.R
q

C
/

C
q�1X
rD1
.rŠ/2

 
q

r

!4
.2q � 2r/Škf Q̋ rf k2

L2.R
2q�2r

C
/
:

By inserting (66) in the previous identity (and because .qŠ/2kf k4
L2.R

q

C
/

D
EŒF 2�2 D �4), we get (60). ut

As a consequence of Lemma 3, we deduce the following bound on the total
variation distance for the Gaussian approximation of a normalized multiple Wiener–
Itô integral. This is nothing but Theorem 3 but we restate it for convenience.

Theorem 14 (Nourdin and Peccati (2009); see [27]). Let q > 1 be an integer
and consider a symmetric function f 2 L2.R

q
C/. Set F D IBq .f /, assume that

EŒF 2� D 1, and let N � N .0; 1/. Then

dTV.F;N / 6 2

s
q � 1

3q

ˇ̌
EŒF 4� � 3

ˇ̌
: (67)

Proof. Since L�1F D � 1
q
F , we have hDF;�DL�1F iL2.RC/

D 1
q
kDFk2

L2.RC/
. So,

we only need to apply Theorem 13 and then formula (61) to conclude. ut
The estimate (67) allows to deduce an easy proof of the following characteriza-

tion of CLTs on Wiener chaos. (This is the Fourth Moment Theorem 2 of Nualart
and Peccati!). We note that our proof differs from the original one, which is based
on the use of the Dambis–Dubins–Schwarz theorem.

Corollary 3 (Nualart and Peccati (2005); see [40]). Let q > 1 be an integer and
consider a sequence .fn/ of symmetric functions of L2.RqC/. Set Fn D IBq .fn/ and
assume that EŒF 2

n � ! �2 > 0 as n ! 1. Then, as n ! 1, the following three
assertions are equivalent:

(i) Fn
Law! N � N .0; �2/;

(ii) EŒF 4
n � ! EŒN 4� D 3�4;

(iii) kfn Q̋ rfnkL2.R2q�2r

C
/

! 0 for all r D 1; : : : ; q � 1.

(iv) kfn ˝r fnkL2.R2q�2r

C
/

! 0 for all r D 1; : : : ; q � 1.

Proof. Without loss of generality, we may and do assume that �2 D 1 and
EŒF 2

n � D 1 for all n. The implication (ii) ! (i) is a direct application of
Theorem 14. The implication (i) ! (ii) comes from the Continuous Mapping
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Theorem together with an approximation argument (observe that supn>1 EŒF
4
n � <

1 by the hypercontractivity relation (40)). The equivalence between (ii) and (iii)
is an immediate consequence of (59). The implication (iv) ! (iii) is obvious (as
kfn Q̋ rfnk 6 kfn ˝r fnk) whereas the implication (ii) ! (iv) follows from (60).

ut
Quadratic Variation of the Fractional Brownian Motion. In this section, we
aim to illustrate Theorem 13 in a concrete situation. More precisely, we shall use
Theorem 13 in order to derive an explicit bound for the second-order approximation
of the quadratic variation of a fractional Brownian motion on Œ0; 1�.

Let BH D .BH
t /t>0 be a fractional Brownian motion with Hurst index H 2

.0; 1/. This means that BH is a centered Gaussian process with covariance function
given by

EŒBH
t B

H
s � D 1

2

�
t2H C s2H � jt � sj2H �; s; t > 0:

It is easily checked that BH is selfsimilar of indexH and has stationary increments.
Fractional Brownian motion has been successfully used in order to model a

variety of natural phenomena coming from different fields, including hydrology,
biology, medicine, economics or traffic networks. A natural question is thus the
identification of the Hurst parameter from real data. To do so, it is popular and
classical to use the quadratic variation (on, say, Œ0; 1�), which is observable and
given by

Sn D
n�1X
kD0

.BH
.kC1/=n � BH

k=n/
2; n > 1:

One may prove (see, e.g., [25, (2.12)]) that

n2H�1Sn
proba! 1 as n ! 1: (68)

We deduce that the estimator OHn, defined as

OHn D 1

2
� logSn
2 logn

;

satisfies OHn

proba! 1 as n ! 1. To study the asymptotic normality, consider

Fn D n2H

�n

n�1X
kD0

�
.BH

.kC1/=n � BH
k=n/

2 � n�2H 	 .law/D 1

�n

n�1X
kD0

�
.BH

kC1 � BH
k /

2 � 1	;

where �n > 0 is so that EŒF 2
n � D 1. We then have the following result.
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Theorem 15. LetN � N .0; 1/ and assume thatH 6 3=4. Then, limn!1 �2n=n D
2
P

r2Z �2.r/ if H 2 .0; 3
4
/, with � W Z ! R given by

�.r/ D 1

2

�jr C 1j2H C jr � 1j2H � 2jr j2H �; (69)

and limn!1 �2n=.n logn/ D 9
16

ifH D 3
4
. Moreover, there exists a constant cH > 0

(depending only on H ) such that, for every n > 1,

dTV.Fn;N / 6 cH �

8̂
ˆ̂̂̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂:

1p
n

if H 2 .0; 5
8
/

.logn/3=2p
n

if H D 5
8

n4H�3 if H 2 . 5
8
; 3
4
/

1
log n if H D 3

4

: (70)

As an immediate consequence of Theorem 15, providedH < 3=4 we obtain that

p
n
�
n2H�1Sn � 1

� law! N
�
0; 2

X
r2Z

�2.r/
�

as n ! 1; (71)

implying in turn

p
n logn

� OHn �H
� law! N

�
0;
1

2

X
r2Z

�2.r/
�

as n ! 1: (72)

Indeed, we can write

logx D x � 1 �
Z x

1

du
Z u

1

dv

v2
for all x > 0;

so that (by considering x > 1 and 0 < x < 1)

ˇ̌
logx C 1 � xˇ̌ 6 .x � 1/2

2

�
1C 1

x2

�
for all x > 0:

As a result,

p
n logn

� OHn �H
� D �

p
n

2
log.n2H�1Sn/ D �

p
n

2
.n2H�1Sn � 1/CRn

with

jRnj 6
�p
n.n2H�1Sn � 1/

�2
4
p
n

�
1C 1

.n2H�1Sn/2

�
:
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Using (68) and (71), it is clear that Rn
proba! 0 as n ! 1 and then that (72) holds

true.
Now we have motivated it, let us go back to the proof of Theorem 15. To perform

our calculations, we will mainly follow ideas taken from [3]. We first need the
following ancillary result.

Lemma 4. 1. For any r 2 Z, let �.r/ be defined by (69). If H ¤ 1
2
, one has

�.r/ � H.2H � 1/jr j2H�2 as jr j ! 1. If H D 1
2

and jr j > 1, one has
�.r/ D 0. Consequently,

P
r2Z �2.r/ < 1 if and only if H < 3=4.

2. For all ˛ > �1, we have
Pn�1

rD1 r˛ � n˛C1

˛C1 as n ! 1.

Proof. 1. The sequence � is symmetric, that is, one has �.n/ D �.�n/. When
r ! 1,

�.r/ D H.2H � 1/r2H�2 C o.r2H�2/:

Using the usual criterion for convergence of Riemann sums, we deduce thatP
r2Z �2.r/ < 1 if and only if 4H � 4 < �1 if and only if H < 3

4
.

2. For ˛ > �1, we have:

1

n

nX
rD1


 r
n

�˛ !
Z 1

0

x˛dx D 1

˛ C 1
as n ! 1.

We deduce that
Pn

rD1 r˛ � n˛C1

˛C1 as n ! 1. ut
We are now in position to prove Theorem 15.

Proof of Theorem 15. Without loss of generality, we will rather use the second
expression of Fn:

Fn D 1

�n

n�1X
kD0

�
.BH

kC1 � BH
k /

2 � 1
	
:

Consider the linear span H of .BH
k /k2N, that is, H is the closed linear subspace of

L2.˝/ generated by .BH
k /k2N. It is a real separable Hilbert space and, consequently,

there exists an isometry ˚ W H ! L2.RC/. For any k 2 N, set ek D ˚.BH
kC1 �

BH
k /; we then have, for all k; l 2 N,

Z 1

0

ek.s/el .s/ds D EŒ.BH
kC1 � BH

k /.B
H
lC1 � BH

l /� D �.k � l/ (73)

with � given by (69). Therefore,

fBH
kC1 � BH

k W k 2 Ng lawD
�Z 1

0

ek.s/dBs W k 2 N

�
D ˚

IB1 .ek/ W k 2 N
�
;
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where B is a Brownian motion and IBp .�/, p > 1, stands for the pth multiple
Wiener–Itô integral associated to B . As a consequence we can, without loss of
generality, replace Fn by

Fn D 1

�n

n�1X
kD0

h�
IB1 .ek/

�2 � 1
i
:

Now, using the multiplication formula (43), we deduce that

Fn D IB2 .fn/; with fn D 1

�n

n�1X
kD0

ek ˝ ek:

By using the same arguments as in the proof of Theorem 1, we obtain the exact
value of �n:

�2n D 2

n�1X
k;lD0

�2.k � l/ D 2
X
jr j<n

.n � jr j/�2.r/:

Assume that H < 3
4

and write

�2n
n

D 2
X
r2Z

�2.r/

�
1 � jr j

n

�
1fjr j<ng:

Since
P

r2Z �2.r/ < 1 by Lemma 4, we obtain by dominated convergence that,
whenH < 3

4
,

lim
n!1

�2n
n

D 2
X
r2Z

�2.r/: (74)

Assume now thatH D 3
4
. We then have �2.r/ � 9

64jr j as jr j ! 1, implying in turn

n
X
jr j<n

�2.r/ � 9n

64

X
0<jr j<n

1

jr j � 9n logn

32

and

X
jr j<n

jr j�2.r/ � 9

64

X
jr j<n

1 � 9n

32

as n ! 1. Hence, whenH D 3
4
,

lim
n!1

�2n
n logn

D 9

16
: (75)
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On the other hand, recall that the convolution of two sequences fu.n/gn2Z and
fv.n/gn2Z is the sequence u � v defined as .u � v/.j / D P

n2Z u.n/v.j � n/,
and observe that .u � v/.l � i/ D P

k2Z u.k � l/v.k � i/ whenever u.n/ D u.�n/
and v.n/ D v.�n/ for all n 2 Z. Set

�n.k/ D j�.k/j1fjkj6n�1g; k 2 Z; n > 1:

We then have (using (58) for the first equality, and noticing that fn ˝1 fn D
fn Q̋ 1fn),

E

"�
1� 1

2
kDŒIB2 .fn/�k2L2.RC/

�2#

D 8 kfn ˝1 fnk2L2.R2
C
/

D 8

�4n

n�1X
i;j;k;lD0

�.k � l/�.i � j /�.k � i/�.l � j /

6 8

�4n

n�1X
i;lD0

X
j;k2Z

�n.k � l/�n.i � j /�n.k � i/�n.l � j /

D 8

�4n

n�1X
i;lD0

.�n � �n/.l � i/2 6 8n

�4n

X
k2Z
.�n � �n/.k/2 D 8n

�4n
k�n � �nk2`2.Z/:

Recall Young’s inequality: if s; p; q > 1 are such that 1
p

C 1
q

D 1C 1
s
, then

ku � vk`s .Z/ 6 kuk`p.Z/kvk`q.Z/: (76)

Let us apply (76) with u D v D �n, s D 2 and p D 4
3
. We get k�n � �nk2`2.Z/ 6

k�nk4
`
4
3 .Z/

, so that

E

"�
1 � 1

2
kDŒIB2 .fn/�k2L2.RC/

�2#
6 8n

�4n

0
@X

jkj<n
j�.k/j 43

1
A
3

: (77)

Recall the asymptotic behavior of �.k/ as jkj ! 1 from Lemma 4(1). Hence

X
jkj<n

j�.k/j 43 D
8<
:
O.1/ if H 2 .0; 5

8
/

O.logn/ if H D 5
8

O.n.8H�5/=3/ if H 2 . 5
8
; 1/:

(78)

Assume first that H < 3
4

and recall (74). This, together with (77) and (78), imply
that
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E

�ˇ̌
ˇ̌1 � 1

2
kDŒIB2 .fn/�k2L2.RC/

ˇ̌
ˇ̌



6

vuutE

"�
1 � 1

2
kDŒIB2 .fn/�k2L2.RC/

�2#

6 cH �

8̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂:

1p
n

if H 2 .0; 5
8
/

.log n/3=2p
n

if H D 5
8

n4H�3 if H 2 . 5
8
; 3
4
/

:

Therefore, the desired conclusion holds for H 2 .0; 3
4
/ by applying Theorem 13.

Assume now that H D 3
4

and recall (75). This, together with (77) and (78), imply
that

E

�ˇ̌
ˇ̌1 � 1

2
kDŒIB2 .fn/�k2L2.RC/

ˇ̌
ˇ̌



6

vuutE

"�
1 � 1

2
kDŒIB2 .fn/�k2L2.RC/

�2#

D O.1= logn/;

and leads to the desired conclusion for H D 3
4

as well. ut
To Go Further. In [27], one may find a version of Theorem 13 whereN is replaced
by a centered Gamma law (see also [56]). In [1], one associate to Corollary 3 an
almost sure central limit theorem. In [6], the case where H is bigger than 3=4 in
Theorem 15 is analyzed.

6 The Smart Path Method

The aim of this section is to prove Theorem 4 (that is, the multidimensional
counterpart of the Fourth Moment Theorem), and even a more general version of it.
Following the approach developed in the previous section for the one-dimensional
case, a possible way for achieving this goal would have consisted in extending
Stein’s method to the multivariate setting, so to combine them with the tools of
Malliavin calculus. This is indeed the approach developed in [35] and it works well.
In this survey, we will actually proceed differently (we follow [28]), by using the
so-called “smart path method” (which is a popular method in spin glasses theory,
see, e.g., Talagrand [54]).

Let us first illustrate this approach in dimension one. Let F 2 D
1;2 with EŒF � D

0, let N � N .0; 1/ and let h W R ! R be a C 2 function satisfying k' 00k1 < 1.
Imagine we want to estimate EŒh.F /� � EŒh.N /�. Without loss of generality, we
may assume that N and F are stochastically independent. We further have:
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EŒh.F /� � EŒh.N /� D
Z 1

0

d

dt
EŒh.

p
tF C p

1 � tN /�dt

D
Z 1

0

�
1

2
p
t
EŒh0.

p
tF C p

1� tN /F � � 1

2
p
1 � t EŒh

0.
p
tF C p

1 � tN /N �

�
dt:

For any x 2 R and t 2 Œ0; 1�, Theorem 12 implies that

EŒh0.
p
tF C p

1 � tx/F � D p
t EŒh00.

p
tF C p

1 � tx/hDF;�DL�1F iL2.RC/
�;

whereas a classical integration by parts yields

EŒh0.
p
tx C p

1 � tN /N � D p
1 � t EŒh00.

p
tx C p

1 � tN /�:

We deduce, since N and F are independent, that

EŒh.F /��EŒh.N /� D 1

2

Z 1

0

EŒh00.
p
txCp

1 � tN /.hDF;�DL�1F iL2.RC/
�1/�dt;

(79)

implying in turn

ˇ̌
EŒh.F /� � EŒh.N /�

ˇ̌
6 1

2
kh00k1E

�ˇ̌
1 � hDF;�DL�1F iL2.RC/

ˇ̌	
; (80)

compare with (57).
It happens that this approach extends easily to the multivariate setting. To see

why, we will adopt the following short-hand notation: for every h W R
d ! R of

class C 2, we set

kh00k1 D max
i;jD1;:::;d

sup
x2Rd

ˇ̌
ˇ̌ @2h

@xi @xj
.x/

ˇ̌
ˇ̌ :

Theorem 16 below is a first step towards Theorem 4, and is nothing but the
multivariate counterpart of (79)–(80).

Theorem 16. Fix d > 2 and let F D .F1; : : : ; Fd / be such that Fi 2 D
1;2 with

EŒFi � D 0 for any i . Let C 2 Md .R/ be a symmetric and positive matrix, and let
N be a centered Gaussian vector with covariance C . Then, for any h W Rd ! R

belonging to C 2 and such that kh00k1 < 1, we have

ˇ̌
EŒh.F /� � EŒh.N /�

ˇ̌
6 1

2
kh00k1

dX
i;jD1

E
�ˇ̌
C.i; j / � hDFj ;�DL�1Fi iL2.RC/

ˇ̌	
:

(81)

Proof. Without loss of generality, we assume that N is independent of the under-
lying Brownian motion B . Let h be as in the statement of the theorem. For any
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t 2 Œ0; 1�, set 
.t/ D E
�
h
�p
1 � tF C p

tN
�	
; so that

EŒh.N /� � EŒh.F /� D 
.1/ � 
.0/ D
Z 1

0


 0.t/dt:

We easily see that 
 is differentiable on .0; 1/ with


 0.t/ D
dX
iD1

E

�
@h

@xi

�p
1 � tF C p

tN
� � 1

2
p
t
Ni � 1

2
p
1 � t

Fi

�

:

By integrating by parts, we can write

E

�
@h

@xi

�p
1 � tF C p

tN
�
Ni



D E

(
E

�
@h

@xi

�p
1 � tx C p

tN
�
Ni



jxDF

)

D p
t

dX
jD1

C.i; j /E

(
E

�
@2h

@xi @xj

�p
1 � tx C p

tN
�


jxDF

)

D p
t

dX
jD1

C.i; j /E

�
@2h

@xi @xj

�p
1 � tF C p

tN
�

:

By using Theorem 12 in order to perform the integration by parts, we can also write

E

�
@h

@xi

�p
1 � tF C p

tN
�
Fi



D E

(
E

�
@h

@xi

�p
1 � tF C p

tx
�
Fi



jxDN

)

D p
1� t

dX
jD1

E

(
E

�
@2h

@xi@xj

�p
1 � tF C p

tx
�hDFj ;�DL�1Fi iL2.RC/



jxDN

)

D p
1� t

dX
jD1

E

�
@2h

@xi @xj

�p
1 � tF C p

tN
�hDFj ;�DL�1Fi iL2.RC/



:

Hence


 0.t/D 1

2

dX
i;jD1

E

"
@2h

@xi @xj

�p
1 � tF C p

tN
� 

C.i; j / � hDFj ;�DL�1Fj iL2.RC/

�#
;

and the desired conclusion follows. ut
We are now in position to prove Theorem 2 (using a different approach compared

to the original proof; here, we rather follow [39]). We will actually even show the
following more general version.
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Theorem 17 (Peccati and Tudor (2005); see [46]). Let d > 2 and qd ; : : : ; q1 > 1

be some fixed integers. Consider vectors

Fn D .F1;n; : : : ; Fd;n/ D .IBq1 .f1;n/; : : : ; I
B
qd
.fd;n//; n > 1;

with fi;n 2 L2.RqiC/ symmetric. LetC 2 Md .R/ be a symmetric and positive matrix,
and let N be a centered Gaussian vector with covariance C . Assume that

lim
n!1EŒFi;nFj;n� D C.i; j /; 1 6 i; j 6 d: (82)

Then, as n ! 1, the following two conditions are equivalent:

(a) Fn converges in law to N ;
(b) for every 1 6 i 6 d , Fi;n converges in law to N .0; C.i; i//.

Proof. By symmetry, we assume without loss of generality that q1 6 : : : 6 qd . The
implication .a/ ) .b/ being trivial, we only concentrate on .b/ ) .a/. So, assume
.b/ and let us show that .a/ holds true. Thanks to (81), we are left to show that, for
each i; j D 1; : : : ; d ,

hDFj;n;�DL�1Fi;niL2.RC/
D 1

qi
hDFj;n;DFi;niL2.RC/

L2.˝/! C.i; j / as n ! 1:

(83)

Observe first that, using the product formula (43),

1

qi
hDFj;n;DFi;niL2.RC/

D qj

Z 1

0

IBqi�1.fi;n.�; t//IBqj�1.fj;n.�; t//dt

D qj

qi^qj�1X
rD0

rŠ

 
qi � 1

r

! 
qj � 1

r

!
IBqiCqj�2�2r

�Z 1

0

fi;n.�; t/˝r fj;n.�; t/dt

�

D qj

qi^qj�1X
rD0

rŠ

 
qi � 1
r

! 
qj � 1
r

!
IBqiCqj�2�2r

�
fi;n ˝rC1 fj;n

�

D qj

qi^qjX
rD1

.r � 1/Š

 
qi � 1

r � 1

! 
qj � 1

r � 1

!
IBqiCqj�2r .fi;n ˝r fj;n/: (84)

Now, let us consider all the possible cases for qi and qj with j > i .
First case: qi D qj D 1. We have hDFj;n;DFi;niL2.RC/

D hfi;n; fj;niL2.RC/
D

EŒFi;nFj;n�: But it is our assumption that EŒFi;nFj;n� ! C.i; j / so (83) holds true
in this case.

Second case: qi D 1 and qj > 2. We have hDFj;n;DFi;niL2.RC/
D

hfi;n;DFj;niL2.RC/
D IBqj�1.fi;n ˝1 fj;n/: We deduce that
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EŒhDFj;n;DFi;ni2L2.RC/
� D .qj � 1/Škfi;n Q̋ 1fj;nk2

L2.R
qj�1

C
/

6 .qj � 1/Škfi;n ˝1 fj;nk2
L2.R

qj�1

C
/

D .qj � 1/Šhfi;n ˝ fi;n; fj;n ˝qj �1 fj;niL2.R2
C
/

6 .qj � 1/Škfi;nk2L2.RC/
kfj;n ˝qj�1 fj;nkL2.R2

C
/

D .qj � 1/ŠEŒF 2
i;n�kfj;n ˝qj�1 fj;nkL2.R2

C
/:

At this stage, observe the following two facts. First, because qi ¤ qj , we

have C.i; j / D 0 necessarily. Second, since EŒF 2
j;n� ! C.j; j / and Fj;n

Law!
N .0; C.j; j //, we have by Theorem 3 that kfj;n ˝qj �1 fj;nkL2.R2

C
/ ! 0. Hence,

(83) holds true in this case as well.
Third case: qi D qj > 2. By (84), we can write

1

qi
hDFj;n;DFi;niL2.RC/ DEŒFi;nFj;n�C qi

qi�1X
rD1

.r � 1/Š
 
qi � 1

r � 1

!2
I B2qi�2r .fi;n ˝r fj;n/:

We deduce that

E

"�
1

qi
hDFj;n;DFi;niL2.RC/

� C.i; j /

�2#

D �
EŒFi;nFj;n� � C.i; j /

�2

Cq2i
qi�1X
rD1

.r � 1/Š2
 
qi � 1
r � 1

!4
.2qi � 2r/Škfi;n Q̋ rfj;nk2

L2.R
2qi�2r

C
/
:

The first term of the right-hand side tends to zero by assumption. For the second
term, we can write, whenever r 2 f1; : : : ; qi � 1g,

kfi;n Q̋ rfj;nk2
L2.R

2qi�2r

C
/

6 kfi;n ˝r fj;nk2
L2.R

2qi�2r

C
/

D hfi;n ˝qi�r fi;n; fj;n ˝qi�r fj;niL2.R2r
C
/

6 kfi;n ˝qi�r fi;nkL2.R2r
C
/kfj;n ˝qi�r fj;nkL2.R2r

C
/:

Since Fi;n
Law! N .0; C.i; i// and Fj;n

Law! N .0; C.j; j //, by Theorem 3 we have
that kfi;n ˝qi�r fi;nkL2.R2r

C
/kfj;n ˝qi�r fj;nkL2.R2r

C
/ ! 0, thereby showing that (83)

holds true in our third case.
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Fourth case: qj > qi > 2. By (84), we have

1

qi
hDFj;n;DFi;niL2.RC/ D qj

qiX
rD1

.r � 1/Š

 
qi � 1

r � 1

! 
qj � 1
r � 1

!
IBqiCqj�2r .fi;n ˝r fj;n/:

We deduce that

E

�
1

qi
hDFj;n;DFi;ni2L2.RC/




D q2j

qiX
rD1
.r � 1/Š2

 
qi � 1

r � 1

!2 
qj � 1

r � 1

!2
.qi C qj � 2r/Škfi;n Q̋ rfj;nk2

L2.R
qiCqj �2r

C
/
:

For any r 2 f1; : : : ; qi g, we have

kfi;n Q̋ rfj;nk2
L2.R

qiCqj �2r

C
/

6 kfi;n ˝r fj;nk2
L2.R

qiCqj �2r

C
/

D hfi;n ˝qi�r fi;n; fj;n ˝qj�r fj;niL2.R2r
C
/

6 kfi;n ˝qi�r fi;nkL2.R2r
C
/kfj;n ˝qj �r fj;nkL2.R2r

C
/

6 kfi;nk2L2.Rqi
C
/
kfj;n ˝qj�r fj;nkL2.R2r

C
/:

Since Fj;n
Law! N .0; C.j; j // and qj � r 2 f1; : : : ; qj � 1g, by Theorem 3 we have

that kfj;n˝qj�r fj;nkL2.R2r
C
/ ! 0. We deduce that (83) holds true in our fourth case.

Summarizing, we have that (83) is true for any i and j , and the proof of the
theorem is done. ut

When the integers qd ; : : : ; q1 are pairwise disjoint in Theorem 17, notice that
(82) is automatically verified with C.i; j / D 0 for all i ¤ j , see indeed (38). As
such, we recover the version of Theorem 17 (that is, Theorem 4) which was stated
and used in Lecture 1 to prove Breuer–Major theorem.

To Go Further. In [35], Stein’s method is combined with Malliavin calculus in a
multivariate setting to provide bounds for the Wasserstein distance between the laws
ofN � Nd .0; C / and F D .F1; : : : ; Fd / where each Fi 2 D

1;2 verifiesEŒFi � D 0.
Compare with Theorem 16.

7 Cumulants on the Wiener Space

In this section, following [29] our aim is to analyze the cumulants of a given element
F of D1;2 and to show how the formula we shall obtain allows one to give yet another
proof of the Fourth Moment Theorem 2.
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Let F be a random variable with, say, all the moments (to simplify the
exposition). Let �F denote its characteristic function, that is, �F .t/ D EŒeitF�,
t 2 R. Then, it is well-known that we may recover the moments of F from �F
through the identity

EŒF j � D .�i/j d
j

dtj
jtD0 �F .t/:

The cumulants of F , denoted by f
j .F /gj>1, are defined in a similar way, just by
replacing �F by log�F in the previous expression:


j .F / D .�i/j d
j

dtj
jtD0 log�F .t/:

The first few cumulants are


1.F / D EŒF �;


2.F / D EŒF 2� �EŒF �2 D Var.F /;


3.F / D EŒF 3� � 3EŒF 2�EŒF �C 2EŒF �3:

It is immediate that


j .F CG/ D 
j .F /C 
j .G/ and 
j .�F / D �j 
j .F / (85)

for all j > 1, when � 2 R and F and G are independent random variables (with
all the moments). Also, it is easy to express moments in terms of cumulants and
vice-versa. Finally, let us observe that the cumulants of F � N .0; �2/ are all zero,
except for the second one which is �2. This fact, together with the two properties
(85), gives a quick proof of the classical CLT and illustrates that cumulants are often
relevant when wanting to decide whether a given random variable is approximately
normally distributed.

The following simple lemma is a useful link between moments and cumulants.

Lemma 5. Let F be a random variable (in a given probability space .˝;F ; P /)
having all the moments. Then, for all m 2 N,

EŒFmC1� D
mX
sD0

 
m

s

!

sC1.F /EŒF m�s�:

Proof. We can write

EŒFmC1�

D .�i/mC1 dmC1

dtmC1 jtD0 �F .t/ D .�i/mC1 dm

dtm
jtD0

�
�F .t/

d

dt
log�F .t/

�



54 I. Nourdin

D .�i/mC1
mX
sD0

 
m

s

!�
dsC1

dt sC1
jtD0 log�F .t/

��
dm�s

dtm�s jtD0 �F .t/
�

by Leibniz rule

D
mX
sD0

 
m

s

!

sC1.F /EŒF m�s�: ut

From now on, we will deal with a random variable F with all moments that
is further measurable with respect to the Brownian motion .Bt /t>0. We let the
notation of Sect. 4 prevail and we consider the chaotic expansion (39) of F . We
further assume (only to avoid technical issues) that F belongs to D

1, meaning
that F 2 D

m;2 for all m > 1 and that EŒkDmF kp
Lp.Rm

C
/
� < 1 for all m > 1 and

all p > 2. This assumption allows us to introduce recursively the following (well-
defined) sequence of random variables related to F . Namely, set �0.F / D F and

�jC1.F / D hDF;�DL�1�j .F /iL2.RC/
:

The following result contains a neat expression of the cumulants of F in terms of
the family f�s.F /gs2N.

Theorem 18 (Nourdin and Peccati (2010); see [29]). Let F 2 D
1. Then, for any

s 2 N,


sC1.F / D sŠEŒ�s.F /�:

Proof. The proof is by induction. It consists in computing 
sC1.F / using the
induction hypothesis, together with Lemma 5 and (53). First, the result holds true
for s D 0, as it only says that 
1.F / D EŒ�0.F /� D EŒF �. Assume now thatm > 1

is given and that 
sC1.F / D sŠEŒ�s.F /� for all s 6 m � 1. We can then write


mC1.F / D EŒFmC1� �
m�1X
sD0

 
m

s

!

sC1.F /EŒF

m�s � by Lemma 5

D EŒFmC1��
m�1X
sD0

sŠ

 
m

s

!
EŒ�s.F /�EŒF

m�s � by the induction hypothesis:

On the other hand, by applying (53) repeatedly, we get

EŒFmC1� D EŒFm�EŒ�0.F /�C Cov.F m; �0.F // D EŒFm�EŒ�0.F /�CmEŒFm�1�1.F /�

D EŒFm�EŒ�0.F /�CmEŒFm�1�EŒ�1.F /�CmCov.F m�1; �1.F //

D EŒFm�EŒ�0.F /�CmEŒFm�1�EŒ�1.F /�Cm.m� 1/EŒF m�2�2.F /�

D : : :

D
mX
sD0

sŠ

 
m

s

!
EŒFm�s �EŒ�s.F /�:
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Thus


mC1.F / D EŒF mC1� �
m�1X
sD0

sŠ

 
m

s

!
EŒ�s.F /�EŒF

m�s� D mŠEŒ�m.F /�;

and the desired conclusion follows. ut
Let us now focus on the computation of cumulants associated to random variables

having the form of a multiple Wiener–Itô integral. The following statement provides
a compact representation for the cumulants of such random variables.

Theorem 19. Let q > 2 and assume that F D IBq .f /, where f 2 L2.R
q
C/. We

have 
1.F / D 0, 
2.F / D qŠkf k2
L2.R

q

C
/

and, for every s > 3,


s.F /D qŠ.s�1/Š
X

cq.r1; : : : ; rs�2/
˝
.: : : ..f Q̋ r1f / Q̋ r2f / : : : Q̋ rs�3f / Q̋ rs�2f; f

˛
L2.R

q

C
/
;

(86)

where the sum
P

runs over all collections of integers r1; : : : ; rs�2 such that:

(i) 1 6 r1; : : : ; rs�2 6 q;
(ii) r1 C : : :C rs�2 D .s�2/q

2
;

(iii) r1 < q, r1 C r2 <
3q

2
, : : :, r1 C : : :C rs�3 < .s�2/q

2
;

(iv) r2 6 2q � 2r1, : : :, rs�2 6 .s � 2/q � 2r1 � : : : � 2rs�3;
and where the combinatorial constants cq.r1; : : : ; rs�2/ are recursively defined by
the relations

cq.r/ D q.r � 1/Š
 
q � 1

r � 1

!2
;

and, for a > 2,

cq.r1; : : : ; ra/D q.ra�1/Š
 
aq � 2r1 � : : : � 2ra�1 � 1

ra � 1

! 
q � 1

ra � 1

!
cq.r1; : : : ; ra�1/:

Remark 5. 1. If sq is odd, then 
s.F / D 0, see indeed condition .i i/. This fact is
easy to see in any case: use that 
s.�F / D .�1/s
s.F / and observe that, when

q is odd, then F
.law/D �F (since B

.law/D �B).
2. If q D 2 and F D IB2 .f / with f 2 L2.R2C/, then the only possible integers
r1; : : : ; rs�2 verifying .i/–.iv/ in the previous statement are r1 D : : : D rs�2 D 1.
On the other hand, we immediately compute that c2.1/ D 2, c2.1; 1/ D 4,
c2.1; 1; 1/ D 8, and so on. Therefore,


s.I
B
2 .f // D 2s�1.s � 1/Š˝.: : : .f ˝1 f / : : : f /˝1 f; f

˛
L2.R2

C
/
; (87)

and we recover the classical expression of the cumulants of a double integral.
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3. If q > 2 and F D IBq .f /, f 2 L2.RqC/, then (86) for s D 4 reads


4.I
B
q .f // D 6qŠ

q�1X
rD1

cq.r; q � r/˝.f Q̋ rf / Q̋ q�rf; f
˛
L2.R

q

C
/

D 3

q

q�1X
rD1

rrŠ2

 
q

r

!4
.2q � 2r/Š

˝
.f Q̋ rf /˝q�r f; f

˛
L2.R

q

C
/

D 3

q

q�1X
rD1

rrŠ2

 
q

r

!4
.2q � 2r/Š

˝
f Q̋ rf; f ˝r f

˛
L2.R

2q�2r

C
/

D 3

q

q�1X
rD1

rrŠ2

 
q

r

!4
.2q � 2r/Škf Q̋ rf k2

L2.R
2q�2r

C
/
; (88)

and we recover the expression for 
4.F / given in (59) by a different route.

Proof of Theorem 19. Let us first show the following formula: for any s > 2, we
claim that

�s�1.F /

D
qX

r1D1
: : :

Œ.s�1/q�2r1�:::�2rs�2�^qX
rs�1D1

cq.r1; : : : ; rs�1/1fr1<qg : : : 1fr1C:::Crs�2< .s�1/q
2 g

� IBsq�2r1�:::�2rs�1
�
.: : : .f Q̋ r1f / Q̋ r2f / : : : f / Q̋ rs�1f

�
: (89)

We shall prove (89) by induction. When s D 2, identity (89) simply reads �1.F / DPq
rD1 cq.r/IB2q�2r .f Q̋ rf / and is nothing but (62). Assume now that (89) holds

for �s�1.F /, and let us prove that it continues to hold for �s.F /. We have, using
the product formula (43) and following the same line of reasoning as in the proof
of (62),

�s.F / D hDF;�DL�1�s�1F iL2.RC/

D
qX

r1D1
: : :

Œ.s�1/q�2r1�:::�2rs�2�^qX
rs�1D1

qcq.r1; : : : ; rs�1/1fr1<qg : : : 1fr1C:::Crs�2< .s�1/q
2 g

�1fr1C:::Crs�1< sq
2 g

�˝IBq�1.f /; IBsq�2r1�:::�2rs�1�1
�
.: : : .f Q̋ r1f / Q̋ r2f / : : : f / Q̋ rs�1f

�˛
L2.RC/

D
qX

r1D1
: : :

Œ.s�1/q�2r1�:::�2rs�2�^qX
rs�1D1

Œsq�2r1�:::�2rs�1�^qX
rsD1

cq.r1; : : : ; rs�1/ � q.rs � 1/Š



Lectures on Gaussian Approximations with Malliavin Calculus 57

�
 
sq � 2r1 � : : :� 2rs�1 � 1

rs � 1

! 
q � 1

rs � 1

!
1fr1<qg : : : 1fr1C:::Crs�2< .s�1/q

2 g

�1fr1C:::Crs�1< sq
2 gIB.sC1/q�2r1�:::�2rs

�
.: : : .f Q̋ r1f / Q̋ r2f / : : : f / Q̋ rs f

�
;

which is the desired formula for �s.F /. The proof of (89) for all s > 1 is thus
finished. Now, let us take the expectation on both sides of (89). We get


s.F / D .s � 1/ŠEŒ�s�1.F /�
D .s � 1/Š

�
qX

r1D1

: : :

Œ.s�1/q�2r1�:::�2rs�2�^qX
rs�1D1

cq.r1; : : : ; rs�1/1fr1<qg : : : 1fr1C:::Crs�2<
.s�1/q
2 g

�1fr1C:::Crs�1D
sq
2 g � .: : : .f Q̋ r1f / Q̋ r2f / : : : f / Q̋ rs�1f:

Observe that, if 2r1C : : :C2rs�1 D sq and rs�1 6 .s�1/q�2r1� : : :�2rs�2 then
2rs�1 D q C .s � 1/q � 2r1 � : : : � 2rs�2 > q C rs�1, so that rs�1 > q. Therefore,


s.F / D .s � 1/Š

�
qX

r1D1

: : :

Œ.s�2/q�2r1�:::�2rs�3�^qX
rs�2D1

cq.r1; : : : ; rs�2; q/1fr1<qg : : : 1fr1C:::Crs�3<
.s�2/q
2 g

�1
fr1C:::Crs�2D

.s�2/q
2 g

˝
.: : : .f Q̋ r1f / Q̋ r2f / : : : f / Q̋ rs�2f; f

˛
L2.R

q

C
/
;

which is the announced result, since cq.r1; : : : ; rs�2; q/ D qŠcq.r1; : : : ; rs�2/. ut
We conclude this section by providing yet another proof (based on our new

formula (86)) of the Fourth Moment Theorem 2. More precisely, let us show by
another route that, if q > 2 is fixed and if .Fn/n>1 is a sequence of the form
Fn D IBq .fn/ with fn 2 L2.R

q
C/ such that EŒF 2

n � D qŠkfnk2L2.Rq
C
/

D 1 for all

n > 1 and EŒF 4
n � ! 3 as n ! 1, then Fn ! N .0; 1/ in law as n ! 1.

To this end, observe that 
1.Fn/ D 0 and 
2.Fn/ D 1. To estimate 
s.Fn/, s > 3,
we consider the expression (86). Let r1; : : : ; rs�2 be some integers such that .i/–.iv/
in Theorem 19 are satisfied. Using Cauchy–Schwarz and then successively

kg Q̋ rhk
L2.R

pCq�2r

C
/

6 kg ˝r hk
L2.R

pCq�2r

C
/

6 kgkL2.Rp
C
/khkL2.Rq

C
/
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whenever g 2 L2.RpC/, h 2 L2.RqC/ and r D 1; : : : ; p ^ q, we get that
ˇ̌h.: : : .fn Q̋ r1fn/ Q̋ r2fn/ : : : fn/ Q̋ rs�2fn; fniL2.Rq

C
/

ˇ̌

6 k.: : : .fn Q̋ r1fn/ Q̋ r2fn/ : : : fn/ Q̋ rs�2fnkL2.Rq
C
/kfnkL2.Rq

C
/

6 kfn Q̋ r1fnkL2.R2q�2r1
C

/
kfnks�2L2.R

q

C
/

D .qŠ/1� s
2 kfn Q̋ r1fnkL2.R2q�2r1

C
/
: (90)

SinceEŒF 4
n ��3 D 
4.Fn/ ! 0, we deduce from (88) that kfn Q̋ rfnkL2.R2q�2r

C
/

! 0

for all r D 1; : : : ; q � 1. Consequently, by combining (86) with (90), we get that

s.Fn/ ! 0 as n ! 1 for all s > 3, implying in turn that Fn ! N .0; 1/ in law.

ut
To Go Further. The multivariate version of Theorem 18 may be found in [23].

8 A New Density Formula

In this section, following [37] we shall explain how the quantity hDF;
�DL�1F iL2.RC/

is related to the density of F 2 D
1;2 (provided it exists). More

specifically, when F 2 D
1;2 is such that EŒF � D 0, let us introduce the function

gF W R ! R, defined by means of the following identity:

gF .F / D EŒhDF;�DL�1F iL2.RC/
jF �: (91)

A key property of the random variable gF .F / is as follows.

Proposition 7. If F 2 D
1;2 satisfies EŒF � D 0, then P.gF .F / > 0/ D 1.

Proof. Let C be a Borel set of R and set �n.x/ D R x
0

1C\Œ�n;n�.t/dt, n > 1 (with

the usual convention
R x
0

D � R 0
x

for x < 0). Since �n is increasing and vanishing at
zero, we have x�n.x/ > 0 for all x 2 R. In particular,

0 6 EŒF�n.F /� D E

�
F

Z F

0

1C\Œ�n;n�.t/dt



D E

�
F

Z F

�1
1C\Œ�n;n�.t/dt



:

Therefore, we deduce from Corollary 1 that E
�
gF .F /1C\Œ�n;n�.F /

	
> 0. By

dominated convergence, this yields E ŒgF .F /1C .F /� > 0, implying in turn that
P.gF .F / > 0/ D 1. ut

The following theorem gives a new density formula forF in terms of the function
gF . We will then study some of its consequences.
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Theorem 20 (Nourdin and Viens (2009); see [37]). Let F 2 D
1;2 with EŒF � D 0.

Then, the law of F admits a density with respect to Lebesgue measure (say, � W
R ! R) if and only if P.gF .F / > 0/ D 1. In this case, the support of �, denoted
by supp �, is a closed interval of R containing zero and we have, for (almost) all
x 2 supp�:

�.x/ D EŒjF j�
2gF .x/

exp

�
�
Z x

0

y dy

gF .y/

�
: (92)

Proof. Assume that P.gF .F / > 0/ D 1 and let C be a Borel set. Let n > 1.
Corollary 1 yields

E

�
F

Z F

�1
1C\Œ�n;n�.t/dt



D E

�
1C\Œ�n;n�.F /gF .F /

	
: (93)

Suppose that the Lebesgue measure of C is zero. Then
R F

�1 1C\Œ�n;n�.t/dt D 0,
so that E

�
1C\Œ�n;n�.F /gF .F /

	 D 0 by (93). But, since P.gF .F / > 0/ D 1, we
get that P.F 2 C \ Œ�n; n�/ D 0 and, by letting n ! 1, that P.F 2 C/ D 0.
Therefore, the Radon–Nikodym criterion is verified, hence implying that the law of
F has a density.

Conversely, assume that the law of F has a density, say �. Let � W R ! R be a
continuous function with compact support, and let ˚ denote any antiderivative of �.
Note that ˚ is necessarily bounded. We can write:

E
�
�.F /gF .F /

	 D E
�
˚.F /F

	
by (53)

D
Z
R

˚.x/ x �.x/dx D
.�/

Z
R

�.x/

�Z 1

x

y�.y/dy

�
dx D E

"
�.F /

R1
F
y�.y/dy

�.F /

#
:

Equation .�/ was obtained by integrating by parts, after observing that

Z 1

x

y�.y/dy ! 0 as jxj ! 1

(for x ! C1, this is because F 2 L1.˝/; for x ! �1, this is because F has
mean zero). Therefore, we have shown that, P -a.s.,

gF .F / D
R1
F
y�.y/dy

�.F /
: (94)

(Notice that P.�.F / > 0/ D R
R

1f�.x/>0g�.x/dx D R
R
�.x/dx D 1, so that

identity (94) always makes sense.) Since F 2 D
1;2, one has (see, e.g., [38,

Proposition 2.1.7]) that supp � D Œ˛; ˇ� with �1 6 ˛ < ˇ 6 C1. Since F
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has zero mean, note that ˛ < 0 and ˇ > 0 necessarily. For every x 2 .˛; ˇ/,
define

' .x/ D
Z 1

x

y� .y/ dy: (95)

The function ' is differentiable almost everywhere on .˛; ˇ/, and its derivative is
�x� .x/. In particular, since '.˛/ D '.ˇ/ D 0 and ' is strictly increasing before
0 and strictly decreasing afterwards, we have '.x/ > 0 for all x 2 .˛; ˇ/. Hence,
(94) implies that P.gF .F / > 0/ D 1.

Finally, let us prove (92). Let ' still be defined by (95). On the one hand, we have
' 0.x/ D �x�.x/ for almost all x 2 supp �. On the other hand, by (94), we have, for
almost all x 2 supp�,

'.x/ D �.x/gF .x/: (96)

By putting these two facts together, we get the following ordinary differential
equation satisfied by ':

' 0.x/
'.x/

D � x

gF .x/
for almost all x 2 supp�.

Integrating this relation over the interval Œ0; x� yields

log'.x/ D log'.0/�
Z x

0

y dy

gF .y/
:

Taking the exponential and using 0 D E.F / D E.FC/ � E.F�/ so that EjF j D
E.FC/C E.F�/ D 2E.FC/ D 2'.0/, we get

'.x/ D 1

2
EŒjF j� exp

�
�
Z x

0

y dy

gF .y/

�
:

Finally, the desired conclusion comes from (96). ut
As a consequence of Theorem 20, we have the following statement, yielding

sufficient conditions in order for the law of F to have a support equal to the real
line.

Corollary 4. Let F 2 D
1;2 with EŒF � D 0. Assume that there exists �min > 0 such

that

gF .F / > �2min; P -a.s. (97)

Then the law of F , which has a density � by Theorem 20, has R for support and
(92) holds almost everywhere in R.

Proof. It is an immediate consequence of Theorem 20, except for the fact that
supp� D R. For the moment, we just know that supp � D Œ˛; ˇ� with �1 6
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˛ < 0 < ˇ 6 C1. Identity (94) yields
Z 1

x

y� .y/ dy > �2min � .x/ for almost all x 2 .˛; ˇ/: (98)

Let ' be defined by (95), and recall that '.x/ > 0 for all x 2 .˛; ˇ/. When
multiplied by x 2 Œ0; ˇ/, the inequality (98) gives '0.x/

'.x/
> � x

�2min
. Integrating this

relation over the interval Œ0; x� yields log' .x/ � log' .0/ > � x2

2 �2min
, i.e., since

'.0/ D 1
2
EjF j,

' .x/ D
Z 1

x

y� .y/ dy > 1

2
EjF je� x2

2 �2min : (99)

Similarly, when multiplied by x 2 .˛; 0�, inequality (98) gives '0.x/

'.x/
6 � x

�2min
:

Integrating this relation over the interval Œx; 0� yields log' .0/ � log' .x/ 6 x2

2 �2min
,

i.e. (99) still holds for x 2 .˛; 0�. Now, let us prove that ˇ D C1. If this were
not the case, by definition, we would have ' .ˇ/ D 0; on the other hand, by
letting x tend to ˇ in the above inequality, because ' is continuous, we would have

' .ˇ/ > 1
2
EjF je� ˇ2

2�2min > 0, which contradicts ˇ < C1. The proof of ˛ D �1 is
similar. In conclusion, we have shown that supp � D R. ut

Using Corollary 4, we deduce a neat criterion for normality.

Corollary 5. Let F 2 D
1;2 with EŒF � D 0 and assume that F is not identically

zero. Then F is Gaussian if and only if Var.gF .F // D 0:

Proof. By (53) (choose '.x/ D x, G D F and recall that EŒF � D 0), we have

EŒhDF;�DL�1F iH� D EŒF 2� D VarF: (100)

Therefore, the condition Var.gF .F // D 0 is equivalent to P.gF .F / D VarF / D 1.
Let F � N .0; �2/ with � > 0. Using (94), we immediately check that
gF .F /D �2, P -a.s. Conversely, if gF .F / D �2 > 0 P -a.s., then Corollary 4

implies that the law of F has a density �, given by �.x/ D EjF j
2�2

e
� x2

2 �2 for almost all
x 2 R, from which we immediately deduce that F � N .0; �2/. ut

Observe that if F � N .0; �2/ with � > 0, then EjF j D p
2=� � , so that the

formula (92) for � agrees, of course, with the usual one in this case.
As a “concrete” application of (92), let us consider the following situation. Let

K W Œ0; 1�2 ! R be a square-integrable kernel such that K.t; s/ D 0 for s > t , and
consider the centered Gaussian process X D .Xt /t2Œ0;1� defined as

Xt D
Z 1

0

K.t; s/dBs D
Z t

0

K.t; s/dBs; t 2 Œ0; 1�: (101)
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Fractional Brownian motion is an instance of such a process, see, e.g., [25,
Sect. 2.3]. Consider the maximum

Z D sup
t2Œ0;1�

Xt : (102)

Assume further that the kernel K satisfies

9c; ˛ > 0; 8s; t 2 Œ0; 1�2; s ¤ t; 0 <

Z 1

0

.K.t; u/�K.s; u//2du 6 cjt � sj˛:
(103)

This latter assumption ensures (see, e.g., [11]) that: .i/ Z 2 D
1;2; .ii/ the law of

Z has a density with respect to Lebesgue measure; .iii/ there exists a (a.s.) unique
random point � 2 Œ0; 1� where the supremum is attained, that is, such that Z D
X� D R 1

0
K.�; s/dBs; and .iv/ DtZ D K.�; t/, t 2 Œ0; 1�. We claim the following

formula.

Proposition 8. LetZ be given by (102),X be defined as (101) andK 2 L2.Œ0; 1�2/
be satisfying (103). Then, the law ofZ has a density � whose support is RC, given by

�.x/ D EjZ � EŒZ�j
2hZ.x/

exp

�
�
Z x

EŒZ�

.y �EŒZ�/dy

hZ.y/

�
; x > 0:

Here,

hZ.x/ D
Z 1

0

e�uE ŒR.�0; �u/jZ D x� du;

where R.s; t/ D EŒXsXt �, s; t 2 Œ0; 1�, and �u is the (almost surely) unique random
point where

X
.u/
t D

Z 1

0

K.t; s/.e�udBs C
p
1 � e�2udB0

s/

attains its maximum on Œ0; 1�, with .B;B 0/ a two-dimensional Brownian motion
defined on the product probability space .˝ ;FFF ;P/ D .˝ �˝ 0;F ˝F 0; P �P 0/.

Proof. Set F D Z�EŒZ�. We have �DtL
�1F D P1

qD1 IBq�1.fq.�; t// andDtF DP1
qD1 qIBq�1.fq.�; t//. Thus

Z 1

0

e�uPu.DtF /du D
1X
qD1

I Bq�1.fq.�; t //
Z 1

0

e�uqe�.q�1/udu D
1X
qD1

I Bq�1.fq.�; t //:
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Consequently,

�DtL
�1F D

Z 1

0

e�uPu.DtF /du; t 2 Œ0; 1�:

By Mehler’s formula (49), and since DF D DZ D K.�; �/ with � D
argmaxt2Œ0;1�

R 1
0 K.t; s/dBs , we deduce that

�DtL
�1F D

Z 1

0

e�uE 0ŒK.�u; t/�du;

implying in turn

gF .F / D EŒhDF; � DL�1F iL2.Œ0;1�/jF � D
Z 1

0
dt
Z 1

0
du e�uK.�0; t/EŒE

0ŒK.�u; t/jF ��

D
Z 1

0
e�uE

"
E 0
"Z 1

0
K.�0; t/K.�u; t/dtjF

##
du

D
Z 1

0
e�uE

�
E 0 ŒR.�0; �u/jF �

	
du

D
Z 1

0
e�uE ŒR.�0; �u/jF � du:

The desired conclusion follows now from Theorem 20 and the fact that F D Z �
EŒZ�. ut
To Go Further. Reference [37] contains concentration inequalities for centered
random variables F 2 D

1;2 satisfying gF .F / 6 ˛F Cˇ. The paper [41] shows how
Theorem 20 can lead to optimal Gaussian density estimates for a class of stochastic
equations with additive noise.

9 Exact Rates of Convergence

In this section, we follow [30]. Let fFngn>1 be a sequence of random variables in

D
1;2 such that EŒFn� D 0, Var.Fn/ D 1 and Fn

law! N � N .0; 1/ as n ! 1.
Our aim is to develop tools for computing the exact asymptotic expression of the
(suitably normalized) sequence

P.Fn 6 x/ � P.N 6 x/; n > 1;

when x 2 R is fixed. This will complement the content of Theorem 13.
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A Technical Computation. For every fixed x, we denote by fx W R ! R the
function

fx.u/ D eu2=2
Z u

�1
�
1.�1;x�.a/ �˚.x/�e�a2=2da

D p
2�eu2=2 �

�
˚.u/.1� ˚.x// if u 6 x

˚.x/.1 � ˚.u// if u > x
; (104)

where ˚.x/ D 1p
2�

R x
�1 e�a2=2da. We have the following result.

Proposition 9. Let N � N .0; 1/. We have, for every x 2 R,

EŒf 0
x .N /N � D 1

3
.x2 � 1/

e�x2=2
p
2�

: (105)

Proof. Integrating by parts (the bracket term is easily shown to vanish), we first
obtain that

EŒf 0
x .N /N � D

Z C1

�1
f 0
x .u/u

e�u2=2

p
2�

du D
Z C1

�1
fx.u/.u

2 � 1/
e�u2=2

p
2�

du

D 1p
2�

Z C1

�1
.u2 � 1/

�Z u

�1
�
1.�1;x�.a/� ˚.x/

	
e�a2=2da

�
du:

Integrating by parts once again, this time using the relation u2 � 1 D 1
3
.u3 � 3u/0,

we deduce that

Z C1

�1
.u2 � 1/

�Z u

�1
�
1.�1;x�.a/ � ˚.x/

	
e�a2=2da

�
du

D �1
3

Z C1

�1
.u3 � 3u/

�
1.�1;x�.u/�˚.x/	e�u2=2du

D �1
3

�Z x

�1
.u3 � 3u/e�u2=2du �˚.x/

Z C1

�1
.u3 � 3u/e�u2=2du

�

D 1

3
.x2 � 1/e�x2=2; since Œ.u2 � 1/e�u2=2�0 D �.u3 � 3u/e�u2=2: ut

A General Result. Assume that fFngn>1 is a sequence of (sufficiently regular)
centered random variables with unitary variance such that the sequence

'.n/ WD
q
EŒ.1 � hDFn;�DL�1FniL2.RC/

/2�; n > 1; (106)
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converges to zero as n ! 1. According to Theorem 13 one has that, for any x 2 R

and as n ! 1,

P.Fn 6 x/ � P.N 6 x/ 6 dTV.Fn;N / 6 2'.n/ ! 0; (107)

where N � N .0; 1/. The forthcoming result provides a useful criterion in order to
compute an exact asymptotic expression (as n ! 1) for the quantity

P.Fn 6 x/ � P.N 6 x/

'.n/
; n > 1:

Theorem 21 (Nourdin and Peccati (2010); see [30]). Let fFngn>1 be a sequence
of random variables belonging to D

1;2, and such that EŒFn� D 0, VarŒFn� D 1.
Suppose moreover that the following three conditions hold:

(i) we have 0 < '.n/ < 1 for every n and '.n/ ! 0 as n ! 1.
(ii) the law of Fn has a density with respect to Lebesgue measure for every n.

(iii) as n ! 1, the two-dimensional vector

�
Fn;

hDFn;�DL�1FniL2.RC/�1
'.n/

�
con-

verges in distribution to a centered two-dimensional Gaussian vector .N1;N2/,
such that EŒN 2

1 � D EŒN 2
2 � D 1 and EŒN1N2� D �.

Then, as n ! 1, one has for every x 2 R,

P.Fn 6 x/ � P.N 6 x/

'.n/
! �

3
.1 � x2/e

�x2=2
p
2�

: (108)

Proof. For any integer n and any C 1-function f with a bounded derivative, we
know by Theorem 12 that

EŒFnf .Fn/� D EŒf 0.Fn/hDFn;�DL�1FniL2.RC/
�:

Fix x 2 R and observe that the function fx defined by (104) is not C 1 due to the
singularity in x. However, by using a regularization argument given assumption .ii/,
one can show that the identity

EŒFnfx.Fn/� D EŒf 0
x .Fn/hDFn;�DL�1FniL2.RC/

�

is true for any n. Therefore, since P.Fn 6 x/ � P.N 6 x/ D EŒf 0
x .Fn/� �

EŒFnfx.Fn/�, we get

P.Fn 6 x/ � P.N 6 x/

'.n/
D E

"
f 0
x .Fn/ � 1 � hDFn;�DL�1FniL2.RC/

'.n/

#
:
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Reasoning as in Lemma 2, one may show that fx is Lipschitz with constant 2. Since
'.n/�1.1�hDFn;�DL�1FniL2.RC/

/ has variance 1 by definition of '.n/, we deduce
that the sequence

f 0
x.Fn/ � 1 � hDFn;�DL�1FniL2.RC/

'.n/
; n > 1;

is uniformly integrable. Definition (104) shows that u ! f 0
x .u/ is continuous at

every u ¤ x. This yields that, as n ! 1 and due to assumption .iii/,

E

"
f 0
x .Fn/ � 1 � hDFn;�DL�1FniL2.RC/

'.n/

#
! �EŒf 0

x .N1/N2� D ��EŒf 0
x .N1/N1�:

Consequently, relation (108) now follows from formula (105). ut

The Double Integrals Case and a Concrete Application. When applying The-
orem 21 in concrete situations, the main issue is often to check that condition
.ii/ therein holds true. In the particular case of sequences belonging to the second
Wiener chaos, we can go further in the analysis, leading to the following result.

Proposition 10. LetN � N .0; 1/ and letFn D IB2 .fn/ be such that fn 2 L2.R2C/
is symmetric for all n > 1. Write 
p.Fn/, p > 1, to indicate the sequence of the
cumulants of Fn. Assume that 
2.Fn/ D EŒF 2

n � D 1 for all n > 1 and that 
4.Fn/ D
EŒF 4

n � � 3 ! 0 as n ! 1. If we have in addition that


3.Fn/p

4.Fn/

! ˛ and

8.Fn/�

4.Fn/

�2 ! 0; (109)

then, for all x 2 R,

P.Fn 6 x/ � P.N 6 x/p

4.Fn/

! ˛

6
p
2�

�
1 � x2

�
e� x2

2 as n ! 1: (110)

Remark 6. Due to (109), we see that (110) is equivalent to

P.Fn 6 x/ � P.N 6 x/


3.Fn/
! 1

6
p
2�

�
1 � x2

�
e� x2

2 as n ! 1:

Since each Fn is centered, one also has that 
3.Fn/ D EŒF 3
n �.

Proof. We shall apply Theorem 21. Thanks to (60), we get that


4.Fn/

6
D EŒF 4

n �� 3

6
D 8 kfn ˝1 fnk2L2.R2

C
/
:

By combining this identity with (58) (here, it is worth observing that fn ˝1 fn
is symmetric, so that the symmetrization fn Q̋ 1fn is immaterial), we see that the
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quantity '.n/ appearing in (106) is given by
p

4.Fn/=6. In particular, condition

.i/ in Theorem 21 is met (here, let us stress that one may show that 
4.Fn/ > 0 for
all n by means of (60)). On the other hand, since Fn is a non-zero double integral,
its law has a density with respect to Lebesgue measure, according to Theorem 2.
This means that condition .ii/ in Theorem 21 is also in order. Hence, it remains to
check condition .iii/. Assume that (109) holds. Using (87) in the cases p D 3 and
p D 8, we deduce that


3.Fn/p

4.Fn/

D
8 hfn; fn ˝1 fniL2.R2

C
/p

6 '.n/

and


8.Fn/

.
4.Fn//
2

D
17920k.fn ˝1 fn/˝1 .fn ˝1 fn/k2L2.R2

C
/

'.n/4
:

On the other hand, set

Yn D
1
2
kDFnk2L2.RC/

� 1
'.n/

:

By (62), we have 1
2
kDYnk2L2.RC/

� 1 D 2 IB2 .fn ˝1 fn/. Therefore, by (58), we get
that

E

"�
1

2
kDYnk2L2.RC/

� 1
�2#

D 128

'.n/4
k.fn ˝1 fn/˝1 .fn ˝1 fn/kL2.R2

C
/

D 
8.Fn/

140 .
4.Fn//
2

! 0 as n ! 1:

Hence, by Theorem 3, we deduce that Yn
Law! N .0; 1/. We also have

EŒYnFn� D 4

'.n/
hfn ˝1 fn; fniL2.R2

C
/ D

p
6 
3.Fn/

2
p

4.Fn/

! ˛
p
6

2
DW � as n ! 1:

Therefore, to conclude that condition .iii/ in Theorem 21 holds true, it suffices to
apply Theorem 17. ut

To give a concrete application of Proposition 10, let us go back to the quadratic
variation of fractional Brownian motion. Let BH D .BH

t /t>0 be a fractional
Brownian motion with Hurst indexH 2 .0; 1

2
/ and let

Fn D 1

�n

n�1X
kD0

�
.BH

kC1 � BH
k /

2 � 1	;
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where �n > 0 is so that EŒF 2
n � D 1. Recall from Theorem 15 that limn!1 �2n=n D

2
P

r2Z �2.r/ < 1, with � W Z ! RC given by (69); moreover, there exists a
constant cH > 0 (depending only on H ) such that, with N � N .0; 1/,

dTV .Fn;N / 6 cHp
n
; n > 1: (111)

The next two results aim to show that one can associate a lower bound to (111).
We start by the following auxiliary result.

Proposition 11. Fix an integer s > 2, let Fn be as above and let � be given by
(69). Recall that H < 1

2
, so that � 2 `1.Z/. Then, the sth cumulant of Fn behaves

asymptotically as


s.Fn/ � n1�s=2 2s=2�1.s � 1/Š
h��.s�1/; �i`2.Z/

k�ks
`2.Z/

as n ! 1: (112)

Proof. As in the proof of Theorem 15, we have that Fn
lawD IB2 .fn/ with fn D

1
�n

Pn�1
kD0 e

˝2
k : Now, let us proceed with the proof. It is divided into several steps.

First step. Using the formula (87) giving the cumulants of Fn D IB2 .fn/ as well as
the very definition of the contraction ˝1, we immediately check that


s.Fn/ D 2s�1.s � 1/Š

�sn

n�1X
k1;:::;ksD0

�.ks � ks�1/ : : : �.k2 � k1/�.k1 � ks/:

Second step. Since H < 1
2
, we have that � 2 `1.Z/. Therefore, by applying Young

inequality repeatedly, we have

k j�j�.s�1/k`1.Z/ 6 k�k`1.Z/k j�j�.s�2/k`1.Z/ 6 : : : 6 k�ks�1
`1.Z/

< 1:

In particular, we have that hj�j�.s�1/; j�ji`2.Z/ 6 k�ks
`1.Z/

< 1.

Third step. Thanks to the result shown in the previous step, observe first that
X

k2;:::;ks2Z
j�.k2/�.k2 � k3/�.k3 � k4/ : : : �.ks�1 � ks/�.ks/j D hj�j�.s�1/; j�ji`2.Z/

< 1:

Hence, one can apply dominated convergence to get, as n ! 1, that

�sn
2s�1.s � 1/Š n


s.Fn/

D 1

n

n�1X
k1D0

n�1�k1X
k2;:::;ksD�k1

�.k2/�.k2 � k3/�.k3 � k4/ : : : �.ks�1 � ks/�.ks/
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D
X

k2;:::;ks2Z
�.k2/�.k2 � k3/�.k3 � k4/ : : : �.ks�1 � ks/�.ks/

�
�
1 ^

�
1 � maxfk2; : : : ; ksg

n

�
� 0 _

�
minfk2; : : : ; ksg

n

�

1fjk2j<n;:::;jks j<ng

!
X

k2;:::;ks2Z
�.k2/�.k2 � k3/�.k3 � k4/ : : : �.ks�1 � ks/�.ks/ D h��.s�1/; �i`2.Z/:

(113)

Since �n � p
2n k�k`2.Z/ as n ! 1, the desired conclusion follows. ut

Corollary 6. Let Fn be as above (with H < 1
2
), let N � N .0; 1/, and let � be

given by (69). Then, for all x 2 R, we have

p
n
�
P.Fn 6 x/ � P.N 6 x/

� ! h��2; �i`2.Z/
3k�k2

`2.Z/

.1 � x2/ e� x2

2 as n ! 1:

In particular, we deduce that there exists dH > 0 such that

dHp
n

6
ˇ̌
P.Fn 6 0/� P.N 6 0/

ˇ̌
6 dTV .Fn;N /; n > 1: (114)

Proof. The desired conclusion follows immediately by combining Propositions 10
and 11. ut

By paying closer attention to the used estimates, one may actually show that
(114) holds true for any H < 5

8
(not only H < 1

2
). See [32, Theorem 9.5.1] for the

details.

To Go Further. The paper [30] contains several other examples of application of
Theorem 21 and Proposition 10. In [4], one shows that the deterministic sequence

maxfEŒF 3
n �; EŒF

4
n � � 3g; n > 1;

completely characterizes the rate of convergence (with respect to smooth distances)
in CLTs involving chaotic random variables.

10 An Extension to the Poisson Space (Following the Invited
Talk by Giovanni Peccati)

Let B D .Bt /t>0 be a Brownian motion, let F be any centered element of D1;2 and
let N � N .0; 1/. We know from Theorem 13 that

dTV .F;N / 6 2EŒj1� hDF;�DL�1F iL2.RC/
j�: (115)
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The aim of this section, which follows [43, 44], is to explain how to deduce
inequalities of the type (115), when F is a regular functional of a Poisson measure
� and when the target law N is either Gaussian or Poisson.

We first need to introduce the basic concepts in this framework.

Poisson Measure. In what follows, we shall use the symbol Po.�/ to indicate
the Poisson distribution of parameter � > 0 (that is, P� � Po.�/ if and only if
P.P� D k/ D e�� �k

kŠ
for all k 2 N), with the convention that Po.0/ D ı0 (Dirac

mass at 0). Set A D R
d with d > 1, let A be the Borel �-field on A, and let �

be a positive, �-finite and atomless measure over .A;A /. We set A� D fB 2 A W
�.B/ < 1g.

Definition 7. A Poisson measure � with control � is an object of the form
f�.B/gB2A� with the following features:

(1) for all B 2 A�, we have �.B/ � Po.�.B//.
(2) for all B;C 2 A� with B \ C ¤ ;, the random variables �.B/ and �.C / are

independent.

Also, we note O�.B/ D �.B/� �.B/.

Remark 7. 1. As a simple example, note that for d D 1 and � D � � Leb (with
‘Leb’ the Lebesgue measure) the process f�.Œ0; t �/gt>0 is nothing but a Poisson
process with intensity �.

2. Let � be a �-finite atomless measure over .A;A /, and observe that this implies
that there exists a sequence of disjoint sets fAj W j > 1g � A� such that
[j Aj D A. For every j D 1; 2; : : : belonging to the set J0 of those indices

such that �.Aj / > 0 consider the following objects: X.j / D fX.j /

k W k > 1g
is a sequence of i.i.d. random variables with values in Aj and with common

distribution
�jAj

�.Aj /
; Pj is a Poisson random variable with parameter �.Aj /.

Assume moreover that: (i) X.j / is independent of X.k/ for every k ¤ j , (ii) Pj
is independent of Pk for every k ¤ j , and (iii) the classes fX.j /g and fPj g are
independent. Then, it is a straightforward computation to verify that the random
point measure

�.�/ D
X
j2J0

PjX
kD1

ı
X
.j /
k

.�/;

where ıx indicates the Dirac mass at x and
P0

kD1 D 0 by convention, is a Poisson
random measure with control �. See e.g. [49, Sect. 1.7].

Multiple Integrals and Chaotic Expansion. As a preliminary remark, let us
observe that EŒ O�.B/� D 0 and EŒ O�.B/2� D �.B/ for all B 2 A�. For any q > 1,
set L2.�q/ D L2.Aq;A q; �q/. We want to appropriately define
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I O�
q .f / D

Z
Aq
f .x1; : : : ; xq/ O�.dx1/ : : : O�.dxq/

when f 2 L2.�q/. To reach our goal, we proceed in a classical way. We first
consider the subset E .�q/ of simple functions, which is defined as

E .�q/

D span
˚
1B1 ˝ : : :˝ 1Bq ; withB1; : : : ; Bq 2 A� such thatBi \ Bj D ; for all i ¤ j

�
:

When f D 1B1 ˝ : : : ˝ 1Bq with B1; : : : ; Bq 2 A� such that Bi \ Bj D ; for all
i ¤ j , we naturally set

I O�
q .f / WD O�.B1/ : : : O�.Bq/ D

Z
Aq
f .x1; : : : ; xq/ O�.dx1/ : : : O�.dxq/:

(For such a simple function f , note that the right-hand side in the previous formula
makes perfectly sense by considering O� as a signed measure.) We can extend by
linearity the definition of I O�

q .f / to any f 2 E .�q/. It is then a simple computation
to check that

EŒI O�
p .f /I

O�
q .g/� D pŠıp;q h Qf ; QgiL2.�p/

for all f 2 E .�p/ and g 2 E .�q/, with Qf (resp. Qg) the symmetrization of f
(resp. g) and ıp;q the Kronecker symbol. Since E .�q/ is dense in L2.�q/ (it is

precisely here that the fact that � has no atom is crucial!), we can define I O�
q .f / by

isometry to any f 2 L2.�q/. Relevant properties of I O�
q .f / include EŒI O�

q .f /� D 0,

I
O�
q .f / D I

O�
q . Qf / and (importantly!) the fact that I O�

q .f / is a true multiple integral
when f 2 E .�q/.

Definition 8. Fix q > 1. The set of random variables of the form I
O�
q .f / is called

the qth Poisson–Wiener chaos.

In this framework, we have an analogue of the chaotic decomposition (39)—see
e.g. [45, Corollary 10.0.5] for a proof.

Theorem 22. For all F 2 L2.�f�g/ (that is, for all random variable F which is
square integrable and measurable with respect to �), we have

F D EŒF �C
1X
qD1

I O�
q .fq/; (116)

where the kernels fq are (�q-a.e.) symmetric elements of L2.�q/ and are uniquely
determined by F .

Multiplication Formula and Contractions. When f 2 E .�p/ and g 2 E .�q/
are symmetric, we define, for all r D 0; : : : ; p ^ q and l D 0; : : : ; r :
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f ?lr g.x1; : : : ; xpCq�r�l / D
Z
Al
f .y1; : : : ; yl ; x1; : : : ; xr�l ; xr�lC1; : : : ; xp�l /

�g.y1; : : : ; yl ; x1; : : : ; xr�l ; xp�lC1; : : : ; xpCq�r�l /

��.dy1/ : : : �.dyl /:

We then have the following product formula, compare with (43).

Theorem 23 (Product formula). Let p; q > 1 and let f 2 E .�p/ and g 2 E .�q/
be symmetric. Then

I O�
p .f /I

O�
q .g/ D

p^qX
rD0

rŠ

 
p

r

! 
q

r

!
rX
lD0

 
r

l

!
I

O�
pCq�r�l

�
Bf ?lr g

�
:

Proof. Recall that, when dealing with functions in E .�p/, I O�
p.f / is a true multiple

integral (by seeing O� as a signed measure). We deduce

I O�
p .f /I

O�
q .g/ D

Z
ApCq

f .x1; : : : ; xp/g.y1; : : : ; yq/ O�.dx1/ : : : O�.dxp/ O�.dy1/ : : : O�.dyq/:

By definition of f (the same applies for g), we have that f .x1; : : : ; xp/ D 0 when
xi D xj for some i ¤ j . Consider r D 0; : : : ; p ^ q, as well as pairwise disjoint
indices i1; : : : ; ir 2 f1; : : : ; pg and pairwise disjoint indices j1; : : : ; jr 2 f1; : : : ; qg.
Set fk1; : : : ; kp�r g D f1; : : : ; pg n fi1; : : : ; irg and fl1; : : : ; lq�rg D f1; : : : ; qg n
fj1; : : : ; jr g. We have, since � is atomless and using O�.dx/ D �.dx/ � �.dx/,

Z
ApCq

f .x1; : : : ; xp/g.y1; : : : ; yq/1fxi1Dyj1 ;:::;xir Dyjr g

�O�.dx1/ : : : O�.dxp/ O�.dy1/ : : : O�.dyq/

D
Z
ApCq�2r

f .xk1 ; : : : ; xkp�r ; xi1 ; : : : ; xir /g.yl1 ; : : : ; ylq�r ; xi1 ; : : : ; xir /

�O�.dxk1/ : : : O�.dxkp�r / O�.dyl1 / : : : O�.dylq�r
/�.dxi1 / : : : �.dxir /

D
Z
ApCq�2r

f .x1; : : : ; xp�r ; a1; : : : ; ar /g.y1; : : : ; yq�r ; a1; : : : ; ar /

�O�.dx1/ : : : O�.dxp�r / O�.dy1/ : : : O�.dyq�r /�.da1/ : : : �.dar /:

By decomposing over the hyperdiagonals fxi D yj g, we deduce that

I O�
p.f /I

O�
q .g/ D

p^qX
rD0

rŠ

 
p

r

! 
q

r

!Z
ApCq�2r

f .x1; : : : ; xp�r ; a1; : : : ; ar /

�g.y1; : : : ; yq�r ; a1; : : : ; ar /

�O�.dx1/ : : : O�.dxp�r / O�.dy1/ : : : O�.dyq�r /�.da1/ : : : �.dar /;
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and we get the desired conclusion by using the relationship

�.da1/ : : : �.dar / D � O�.da1/C �.da1/
�
: : :
� O�.dar /C �.dar /

�
: ut

Malliavin Operators. Each time we deal with a random element F of L2.f�.�/g/,
in what follows we always consider its chaotic expansion (116).

Definition 9. 1. Set DomD D fF 2 L2.�f�g/ W P
qqŠkfqk2L2.�q/ < 1g. If

F 2 DomD, we set

DtF D
1X
qD1

qI
O�
q�1.fq.�; t//; t 2 A:

The operatorD is called the Malliavin derivative.
2. Set DomL D fF 2 L2.�f�g/ W P q2qŠkfqk2L2.�q/ < 1g. If F 2 DomL, we set

LF D �
1X
qD1

qI O�
q .fq/:

The operator L is called the generator of the Ornstein–Uhlenbeck semigroup.
3. If F 2 L2.�f�g/, we set

L�1F D �
1X
qD1

1

q
I O�
q .fq/:

The operator L�1 is called the pseudo-inverse of L.

It is readily checked that LL�1F D F � EŒF � for F 2 L2.�f�g/. Moreover,
proceeding mutatis mutandis as in the proof of Theorem 12, we get the following
result.

Proposition 12. Let F 2 L2.�f�g/ and let G 2 DomD. Then

Cov.F;G/ D EŒhDG;�DL�1F iL2.�/�: (117)

The operatorD does not satisfy the chain rule. Instead, it admits an “add-one cost”
representation which plays an identical role.

Theorem 24 (Nualart and Vives (1990); see [42]). Let F 2 DomD. Since F is
measurable with respect to �, we can view it as F D F.�/ with a slight abuse of
notation. Then

DtF D F.�C ıt / � F.�/; t 2 A; (118)

where ıt stands for the Dirac mass at t .
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Proof. By linearity and approximation, it suffices to prove the claim for F D
I

O�
q .f /, with q > 1 and f 2 E .�q/ symmetric. In this case, we have

F.�C ıt / D
Z
Aq
f .x1; : : : ; xq/

� O�.dx1/C ıt .dx1/
�
: : :
� O�.dxq/C ıt .dxq/

�
:

Let us expand the integrator. Each member of such an expansion such that there is
strictly more than one Dirac mass in the resulting expression gives a contribution
equal to zero, since f vanishes on diagonals. We therefore deduce that

F.�C ıt / D F.�/

C
qX
lD1

Z
Aq
f .x1; : : : ; xl�1; t; xlC1; : : : ; xq/

� O�.dx1/ : : : O�.dxl�1/ O�.dxlC1/ : : : O�.dxq/

D F.�/C qI
O�
q�1.f .t; �// by symmetry of f

D F.�/CDtF: ut

As an immediate corollary of the previous theorem, we get the formula

Dt.F
2/ D .F CDtF /

2 � F 2 D 2F DtF C .DtF /
2; t 2 A;

which shows howD is far from satisfying the chain rule (47).

Gaussian Approximation. It happens that it is the following distance which is
appropriate in our framework.

Definition 10. The Wasserstein distance between the laws of two real-valued
random variables Y and Z is defined by

dW .Y;Z/ D sup
h2Lip.1/

ˇ̌
EŒh.Y /�� EŒh.Z/�

ˇ̌
; (119)

where Lip.1/ stands for the set of Lipschitz functions h W R ! R with constant 1.

Since we are here dealing with Lipschitz functions h, we need a suitable version
of Stein’s lemma. Compare with Lemma 2.

Lemma 6 (Stein (1972); see [52]). Suppose h W R ! R is a Lipschitz constant
with constant 1. Let N � N .0; 1/. Then, there exists a solution to the equation

f 0.x/ � xf .x/ D h.x/ �EŒh.N /�; x 2 R;

that satisfies kf 0k1 6
q

2
�

and kf 00k1 6 2.

Proof. Let us recall that, according to Rademacher’s theorem, a function which is
Lipschitz continuous on R is almost everywhere differentiable. Let f W R ! R be
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the (well-defined!) function given by

f .x/ D �
Z 1

0

e�t
p
1 � e�2t EŒh.e

�t x C
p
1 � e�2tN /N �dt: (120)

By dominated convergence we have that fh 2 C 1 with

f 0.x/ D �
Z 1

0

e�2t
p
1 � e�2t EŒh

0.e�t x C
p
1 � e�2tN /N �dt:

We deduce, for any x 2 R,

jf 0.x/j 6 EjN j
Z 1

0

e�2t
p
1 � e�2t dt D

r
2

�
: (121)

Now, let F W R ! R be the function given by

F.x/ D
Z 1

0

EŒh.N / � h.e�t x C
p
1 � e�2tN /�dt; x 2 R:

Observe that F is well-defined since h.N / � h.e�t x C p
1 � e�2tN / is integrable

due to

ˇ̌
h.N / � h.e�t x C

p
1 � e�2tN /

ˇ̌
6 e�t jxj C �

1 �
p
1 � e�2t �jN j

6 e�t jxj C e�2t jN j;

where the last inequality follows from 1 � p
1 � u D u=.

p
1 � u C 1/ 6 u if

u 2 Œ0; 1�. By dominated convergence, we immediately see that F is differentiable
with

F 0.x/ D �
Z 1

0

e�t EŒh0.e�t x C
p
1 � e�2tN /�dt:

By integrating by parts, we see that F 0.x/ D f .x/. Moreover, by using the notation
introduced in Sect. 4, we can write

f 0.x/ � xf .x/

D LF.x/; by decomposing in Hermite polynomials, since LHq D �qHq DH 00
q �XH 0

q

D �
Z 1

0

LPth.x/dt; since F.x/ D R1

0

�
EŒh.N /� � Pth.x/

�
dt

D �
Z 1

0

d

dt
Pth.x/dt

D P0h.x/ � P1h.x/ D h.x/ �EŒh.N /�:
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This proves the claim for kf 0k1. The claim for kf 00k1 is a bit more difficult to
achieve; we refer to Stein [52, pp. 25–28] to keep the length of this survey within
bounds. ut

We can now derive a bound for the Gaussian approximation of any centered
element F belonging to DomD, compare with (115).

Theorem 25 (Peccati, Solé, Taqqu and Utzet (2010); see [44]). Consider F 2
DomD with EŒF � D 0. Then, with N � N .0; 1/,

dW .F;N / 6
r
2

�
E
�ˇ̌
1 � hDF;�DL�1F iL2.�/

ˇ̌	CE

�Z
A

.DtF /
2jDtL

�1F j�.dt/



:

Proof. Let h 2 Lip.1/ and let f be the function of Lemma 6. Using (118) and a
Taylor formula, we can write

Dtf .F / D f .F CDtF / � f .F / D f 0.F /DtF CR.t/;

with jR.t/j 6 1
2
kf 00k1.DtF /

2 6 .DtF /
2. We deduce, using (117) as well,

EŒh.F /� � EŒh.N /� D EŒf 0.F /� � EŒFf .F /�

D EŒf 0.F /� � EŒhDf.F /;�DL�1F iL2.�/�
D EŒf 0.F /.1 � hDF;�DL�1F iL2.�//�

C
Z
A

.�DtL
�1F /R.t/�.dt/:

Consequently, since kf 0k1 6
q

2
�

,

dW .F;N / D sup
h2Lip.1/

jEŒh.F /� � EŒh.N /�j

6
r
2

�
E
�ˇ̌
1 � hDF;�DL�1F iL2.�/

ˇ̌	CE

�Z
A

.DtF /
2jDtL

�1F j�.dt/



:

ut
Poisson Approximation. To conclude this section, we will prove a very interesting
result, which may be seen as a Poisson counterpart of Theorem 25.

Theorem 26 (Peccati (2012); see [43]). Let F 2 DomD with EŒF � D � > 0 and
F taking its values in N. Let P� � Po.�/. Then,

sup
C�N

ˇ̌
P.F 2 C/ � P.P� 2 C/ˇ̌ 6 1 � e��

�
Ej�� hDF;�DL�1F iL2.�/j (122)

C1 � e��

�2
E

Z
jDtF.DtF � 1/DtL

�1F j�.dt/:
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Just as a mere illustration, consider the case where F D �.B/ D I
O�
1 .1B/ with

B 2 A�. We then have DF D �DL�1F D 1B , so that hDF;�DL�1F iL2.�/ DR
1Bd� D �.B/ and DF.DF �1/ D 0 a.e. The right-hand side of (122) is therefore

zero, as it was expected since F � Po.�/.
During the proof of Theorem 26, we shall use an analogue of Lemma 2 in the

Poisson context, which reads as follows.

Lemma 7 (Chen (1975); see [8]). Let C � N, let � > 0 and let P� � Po.�/.
The equation with unknown f W N ! R,

�f .k C 1/� kf .k/ D 1C .k/� P.P� 2 C/; k 2 N; (123)

admits a unique solution such that f .0/ D 0, denoted by fC . Moreover, by setting
�f.k/ D f .k C 1/ � f .k/, we have k�fCk1 6 1�e��

�
and k�2fCk1 6

2
�
k�fCk1.

Proof. We only provide a proof for the bound on �fC ; the estimate on �2fC is
proved e.g. by Daly in [10]. Multiplying both sides of (123) by �k=kŠ and summing
up yields that, for every k > 1,

fC .k/ D .k � 1/Š

�k

k�1X
rD0

�r

rŠ
Œ1C .r/ � P.P� 2 C/� (124)

D
X
j2C

ffj g.k/ (125)

D �fCc .k/ (126)

D � .k � 1/Š

�k

1X
rDk

�r

rŠ
Œ1C .r/ � P.P� 2 C/�; (127)

where Cc denotes the complement of C in N. (Identity (125) comes from the
additivity property of C 7! fC , identity (126) is because fN � 0 and identity
(126) is due to

1X
rD0

�r

rŠ
Œ1C .r/ � P.P� 2 C/� D EŒ1C .P�/� EŒ1C .P�/�� D 0:

�

Since fC .k/ � fC .k C 1/ D fCc .k C 1/� fCc .k/ (due to (126)), it is sufficient to
prove that, for every k > 1 and every C � N, fC .k C 1/� fC .k/ 6 .1 � e��/=�.
One has the following fact: for every j > 1 the mapping k 7! ffj g.k/ is negative
and decreasing for k D 1; : : : ; j and positive and decreasing for k > j C1. Indeed,
we use (124) to deduce that, if 1 6 k 6 j ,

ffj g.k/ D �e�� �j

j Š

kX
rD1

��r .k � 1/Š

.k � r/Š (which is negative and decreasing in k);
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whereas (127) implies that, if k > j C 1,

ffj g.k/ D e�� �j

j Š

1X
rD0

�r
.k � 1/Š
.k C r/Š

(which is positive and decreasing in k):

Using (125), one therefore infers that fC .k C 1/� fC .k/ 6 ffkg.kC 1/� ffkg.k/,
for every k > 0. Since

ffkg.k C 1/� ffkg.k/ D e��
"
k�1X
rD0

�r

rŠk
C

1X
rDkC1

�r�1

rŠ

#

D e��

�

"
kX
rD1

�r

rŠ
� r

k
C

1X
rDkC1

�r

rŠ

#

6 1 � e��

�
;

the proof is concluded. ut
We are now in a position to prove Theorem 26.

Proof of Theorem 26. The main ingredient is the following simple inequality, which
is a kind of Taylor formula: for all k; a 2 N,

ˇ̌
f .k/ � f .a/ ��f.a/.k � a/ˇ̌ 6 1

2
k�2f k1j.k � a/.k � a � 1/j: (128)

Assume for the time being that (128) holds true and fix C � N. We have, using
Lemma 7 and then (117)

ˇ̌
P.F 2 C/� P.P� 2 C/ˇ̌ D ˇ̌

EŒ�fC .F C 1/� �EŒFfC .F /�
ˇ̌

D ˇ̌
�EŒ�fC .F /� � EŒ.F � �/fC .F /�

ˇ̌

D ˇ̌
�EŒ�fC .F /� � EŒhDfC .F /;�DL�1F iL2.�/�

ˇ̌
:

Now, combining (118) with (128), we can write

DtfC .F / D �fC .F /DtF C S.t/;

with S.t/ 6 1
2
k�2fC k1jDtF.DtF � 1/j 6 1�e��

�2
jDtF.DtF � 1/j, see indeed

Lemma 7 for the last inequality. Putting all these bounds together and since
k�fCk1 6 1�e��

�
by Lemma 7, we get the desired conclusion.

So, to conclude the proof, it remains to show that (128) holds true. Let us first
assume that k > a C 2. We then have
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f .k/ D f .a/C
k�1X
jDa

�f .j / D f .a/C�f.a/.k � a/C
k�1X
jDa

.�f .j / ��f.a//

D f .a/C�f.a/.k � a/C
k�1X
jDa

j�1X
lDa

�2f .l/

D f .a/C�f.a/.k � a/C
k�2X
lDa

�2f .l/.k � l � 1/;

so that

jf .k/ � f .a/ ��f.a/.k � a/j 6 k�2f k1
k�2X
lDa
.k � l � 1/

D 1

2
k�2f k1.k � a/.k � a � 1/;

that is, (128) holds true in this case. When k D a or k D a C 1, (128) is obviously
true. Finally, consider the case k 6 a � 1. We have

f .k/ D f .a/ �
a�1X
jDk

�f .j / D f .a/C�f.a/.k � a/C
a�1X
jDk

.�f .a/ ��f.j //

D f .a/C�f.a/.k � a/C
a�1X
jDk

a�1X
lDj

�2f .l/

D f .a/C�f.a/.k � a/C
a�1X
lDk

�2f .l/.l � k C 1/;

so that

jf .k/ � f .a/ ��f.a/.k � a/j 6 k�2f k1
a�1X
lDk
.l � k C 1/

D 1

2
k�2f k1.a � k/.a � k C 1/;

that is, (128) holds true in this case as well. The proof of Theorem 26 is done. ut
To Go Further. A multivariate extension of Theorem 25 can be found in [47].
Reference [19] contains several explicit applications of the tools developed in this
section.
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11 Fourth Moment Theorem and Free Probability

To conclude this survey, we shall explain how the Fourth Moment Theorem 2
extends in the theory of free probability, which provides a convenient framework
for investigating limits of random matrices. We start with a short introduction to
free probability. We refer to [22] for a systematic presentation and to [2] for specific
results on Wigner multiple integrals.

Free Tracial Probability Space. A non-commutative probability space is a von
Neumann algebra A (that is, an algebra of operators on a complex separable
Hilbert space, closed under adjoint and convergence in the weak operator topology)
equipped with a trace ', that is, a unital linear functional (meaning preserving the
identity) which is weakly continuous, positive (meaning '.X/ 	 0 whenever X
is a non-negative element of A ; i.e. whenever X D Y Y � for some Y 2 A ),
faithful (meaning that if '.Y Y �/ D 0 then Y D 0), and tracial (meaning that
'.XY / D '.YX/ for all X; Y 2 A , even though in general XY ¤ YX ).

Random Variables. In a non-commutative probability space, we refer to the self-
adjoint elements of the algebra as random variables. Any random variable X has a
law: this is the unique probability measure � on R with the same moments as X ; in
other words, � is such that

Z
R

xkd�.x/ D '.Xk/; k > 1: (129)

(The existence and uniqueness of � follow from the positivity of ', see [22,
Proposition 3.13].)

Convergence in Law. We say that a sequence .X1;n; : : : ; Xk;n/, n > 1, of random
vectors converges in law to a random vector .X1;1; : : : ; Xk;1/, and we write

.X1;n; : : : ; Xk;n/
law! .X1;1; : : : ; Xk;1/;

to indicate the convergence in the sense of (joint) moments, that is,

lim
n!1' .Q.X1;n; : : : ; Xk;n// D ' .Q.X1;1; : : : ; Xk;1// ; (130)

for any polynomialQ in k non-commuting variables.
We say that a sequence .Fn/ of non-commutative stochastic processes (that

is, each Fn is a one-parameter family of self-adjoint operators Fn.t/ in .A ; '/)
converges in the sense of finite-dimensional distributions to a non-commutative
stochastic process F1, and we write

Fn
f:d:d:! F1;
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to indicate that, for any k > 1 and any t1; : : : ; tk > 0,

.Fn.t1/; : : : ; Fn.tk//
law! .F1.t1/; : : : ; F1.tk//:

Free Independence. In the free probability setting, the notion of independence
(introduced by Voiculescu in [55]) goes as follows. Let A1; : : : ;Ap be unital
subalgebras of A . Let X1; : : : ; Xm be elements chosen from among the Ai ’s such
that, for 1 
 j < m, two consecutive elements Xj and XjC1 do not come from the
same Ai and are such that '.Xj / D 0 for each j . The subalgebras A1; : : : ;Ap are
said to be free or freely independent if, in this circumstance,

'.X1X2 � � �Xm/ D 0: (131)

Random variables are called freely independent if the unital algebras they generate
are freely independent. Freeness is in general much more complicated than classical
independence. For example, if X; Y are free and m; n > 1, then by (131),

'
�
.Xm � '.Xm/1/.Y n � '.Y n/1/� D 0:

By expanding (and using the linear property of '), we get

'.XmY n/ D '.Xm/'.Y n/; (132)

which is what we would expect under classical independence. But, by setting X1 D
X3 D X � '.X/1 and X2 D X4 D Y � '.Y / in (131), we also have

'
�
.X � '.X/1/.Y � '.Y /1/.X � '.X/1/.Y � '.Y /1/� D 0:

By expanding, using (132) and the tracial property of ' (for instance '.XYX/ D
'.X2Y /) we get

'.XYXY / D '.Y /2'.X2/C '.X/2'.Y 2/ � '.X/2'.Y /2;

which is different from '.X2/'.Y 2/, which is what one would have obtained if X
and Y were classical independent random variables. Nevertheless, ifX; Y are freely
independent, then their joint moments are determined by the moments of X and Y
separately, exactly as in the classical case.

Semicircular Distribution. The semicircular distribution S .m; �2/ with mean
m 2 R and variance �2 > 0 is the probability distribution

S .m; �2/.dx/ D 1

2��2

p
4�2 � .x �m/2 1fjx�mj�2�g dx: (133)
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If m D 0, this distribution is symmetric around 0, and therefore its odd moments
are all 0. A simple calculation shows that the even centered moments are given by
(scaled) Catalan numbers: for non-negative integers k,

Z mC2�

m�2�
.x �m/2kS .m; �2/.dx/ D Ck�

2k;

where Ck D 1
kC1

�
2k
k

�
(see, e.g., [22, Lecture 2]). In particular, the variance is �2

while the centered fourth moment is 2�4. The semicircular distribution plays here
the role of the Gaussian distribution. It has the following similar properties:

1. If S � S .m; �2/ and a; b 2 R, then aS C b � S .amC b; a2�2/.
2. If S1 � S .m1; �

2
1 / and S2 � S .m2; �

2
2 / are freely independent, then S1CS2 �

S .m1 Cm2; �
2
1 C �22 /.

Free Brownian Motion. A free Brownian motion S D fS.t/gt>0 is a non-
commutative stochastic process with the following defining characteristics:

(1) S.0/ D 0.
(2) For t2 > t1 > 0, the law of S.t2/�S.t1/ is the semicircular distribution of mean

0 and variance t2 � t1.
(3) For all n and tn > � � � > t2 > t1 > 0, the increments S.t1/, S.t2/ � S.t1/, . . . ,

S.tn/� S.tn�1/ are freely independent.

We may think of free Brownian motion as “infinite-dimensional matrix-valued
Brownian motion”.

Wigner Integral. Let S D fS.t/gt>0 be a free Brownian motion. Let us quickly
sketch out the construction of the Wigner integral of f with respect to S . For an
indicator function f D 1Œu;v�, the Wigner integral of f is defined by

Z 1

0

1Œu;v�.x/dS.x/ D S.v/ � S.u/:

We then extend this definition by linearity to simple functions of the form f DPk
iD1 ˛i1Œui ;vi �; where Œui ; vi � are disjoint intervals of RC. Simple computations

show that

'

�Z 1

0

f .x/dS.x/

�
D 0 (134)

'

�Z 1

0

f .x/dS.x/ �
Z 1

0

g.x/dS.x/

�
D hf; giL2.RC/

: (135)

By isometry, the definition of
R1
0 f .x/dS.x/ is extended to all f 2 L2.RC/, and

(134)–(135) continue to hold in this more general setting.
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Multiple Wigner Integral. Let S D fS.t/gt>0 be a free Brownian motion, and let
q > 1 be an integer. When f 2 L2.RqC/ is real-valued, we write f � to indicate the
function of L2.RqC/ given by f �.t1; : : : ; tq/ D f .tq; : : : ; t1/.

Following [2], let us quickly sketch out the construction of the multiple Wigner
integral of f with respect to S . Let Dq � R

q
C be the collection of all diagonals, i.e.

Dq D f.t1; : : : ; tq/ 2 R
q
C W ti D tj for some i ¤ j g: (136)

For an indicator function f D 1A, where A � R
q
C has the formA D Œu1; v1�� : : :�

Œuq; vq� with A \Dq D ;, the qth multiple Wigner integral of f is defined by

I Sq .f / D .S.v1/� S.u1// : : : .S.vq/� S.uq//:

We then extend this definition by linearity to simple functions of the form f DPk
iD1 ˛i1Ai ; where Ai D Œui1; v

i
1� � : : : � Œuiq; v

i
q� are disjoint q-dimensional

rectangles as above which do not meet the diagonals. Simple computations show
that

'.I Sq .f // D 0 (137)

'.I Sq .f /I
S
q .g// D hf; g�iL2.Rq

C
/: (138)

By isometry, the definition of ISq .f / is extended to all f 2 L2.R
q
C/, and (137)–

(138) continue to hold in this more general setting. If one wants ISq .f / to be a
random variable, it is necessary for f to be mirror symmetric, that is, f D f � (see
[17]). Observe that I S1 .f / D R1

0
f .x/dS.x/ when q D 1. We have moreover

'.I Sp .f /I
S
q .g// D 0 when p ¤ q, f 2 L2.RpC/ and g 2 L2.RqC/: (139)

When r 2 f1; : : : ; p ^ qg, f 2 L2.R
p
C/ and g 2 L2.R

q
C/, let us write

f
r
_ g to indicate the r th contraction of f and g, defined as being the element

of L2.RpCq�2r
C / given by

f
r
_ g.t1; : : : ; tpCq�2r / (140)

D
Z
R
r
C

f .t1; : : : ; tp�r ; x1; : : : ; xr /g.xr ; : : : ; x1; tp�rC1; : : : ; tpCq�2r /dx1 : : : dxr :

By convention, set f
0
_ g D f ˝ g as being the tensor product of f and g.

Since f and g are not necessarily symmetric functions, the position of the identified
variables x1; : : : ; xr in (140) is important, in contrast to what happens in classical
probability. Observe moreover that

kf r
_ gk

L2.R
pCq�2r

C
/

6 kf kL2.Rp
C
/kgkL2.Rq

C
/ (141)

by Cauchy–Schwarz, and also that f
q
_ g D hf; g�iL2.Rq

C
/ when p D q.
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We have the following product formula (see [2, Proposition 5.3.3]), valid for any
f 2 L2.RpC/ and g 2 L2.RqC/:

I Sp .f /I
S
q .g/ D

p^qX
rD0

I SpCq�2r .f
r
_ g/: (142)

We deduce (by a straightforward induction) that, for any e 2 L2.RC/ and any q > 1,

Uq

�Z 1

0

e.x/dSx

�
D I Sq .e

˝q/; (143)

where U0 D 1, U1 D X , U2 D X2 � 1, U3 D X3 � 2X , : : :, is the sequence
of Tchebycheff polynomials of second kind (determined by the recursion XUk D
UkC1 C Uk�1),

R1
0
e.x/dS.x/ is understood as a Wigner integral, and e˝q is the

qth tensor product of e. This is the exact analogue of (10) in our context.
We are now in a position to offer a free analogue of the Fourth Moment

Theorem 3, which reads as follows.

Theorem 27 (Kemp, Nourdin, Peccati and Speicher (2011); see [17]). Fix an
integer q > 2 and let fStgt>0 be a free Brownian motion. Whenever f 2 L2.R

q
C/,

set I Sq .f / to denote the qth multiple Wigner integrals of f with respect to S . Let
fFngn>1 be a sequence of Wigner multiple integrals of the form

Fn D I Sq .fn/;

where each fn 2 L2.RC/ is mirror-symmetric, that is, is such that fn D f �
n .

Suppose moreover that '.F 2
n / ! 1 as n ! 1. Then, as n ! 1, the following two

assertions are equivalent:

(i) Fn
Law! S1 � S .0; 1/;

(ii) '.F 4
n / ! 2 D '.S41 /.

Proof (following [24]). Without loss of generality and for sake of simplicity, we
suppose that '.F 2

n / D 1 for all n (instead of '.F 2
n / ! 1 as n ! 1). The proof of

the implication .i/ ) .ii/ being trivial by the very definition of the convergence
in law in a free tracial probability space, we only concentrate on the proof of
.ii/ ) .i/.

Fix k > 3. By iterating the product formula (142), we can write

F k
n D I Sq .fn/

k D
X

.r1;:::;rk�1/2Ak;q

I Skq�2r1�:::�2rk�1

�
.: : : ..fn

r1
_ fn/

r2
_ fn/ : : :/

rk�1
_ fn

�
;

where

Ak;q D ˚
.r1; : : : ; rk�1/ 2 f0; 1; : : : ; qgk�1 W r2 6 2q � 2r1; r3 6 3q � 2r1 � 2r2; : : : ;

rk�1 6 .k � 1/q � 2r1 � : : : � 2rk�2

�
:
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By taking the '-trace in the previous expression and taking into account that (137)
holds, we deduce that

'.F k
n / D '.I Sq .fn/

k/ D
X

.r1;:::;rk�1/2Bk;q
.: : : ..fn

r1
_ fn/

r2
_ fn/ : : :/

rk�1
_ fn; (144)

with

Bk;q D ˚
.r1; : : : ; rk�1/ 2 Ak;q W 2r1 C : : :C 2rk�1 D kq

�
:

Let us decompose Bk;q into Ck;q [ Ek;q , with Ck;q D Bk;q \ f0; qgk�1 and Ek;q D
Bk;q n Ck;q . We then have

'.F k
n / D

X
.r1;:::;rk�1/2Ck;q

�
.: : : ..fn

r1
_ fn/

r2
_ fn/ : : :/

rk�1
_ fn

�

C
X

.r1;:::;rk�1/2Ek;q

�
.: : : ..fn

r1
_ fn/

r2
_ fn/ : : :/

rk�1
_ fn

�
:

Using the two relationships fn
0
_ fn D fn ˝ fn and

fn
q
_ fn D

Z
R
q

C

fn.t1; : : : ; tq/fn.tq; : : : ; t1/dt1 : : : dtq D kfnk2L2.Rq
C
/

D 1;

it is evident that .: : : ..fn
r1
_ fn/

r2
_ fn/ : : :/

rk�1
_ fn D 1 for all .r1; : : : ; rk�1/ 2

Ck;q . We deduce that

'.F k
n / D #Ck;q C

X
.r1;:::;rk�1/2Ek;q

�
.: : : ..fn

r1
_ fn/

r2
_ fn/ : : :/

rk�1
_ fn

�
:

On the other hand, by applying (144) with q D 1, we get that

'.Sk1 / D '.I S1 .1Œ0;1�/
k/D

X
.r1;:::;rk�1/2Bk;1

.: : : ..1Œ0;1�
r1
_ 1Œ0;1�/

r2
_ 1Œ0;1�/ : : :/

rk�1
_ 1Œ0;1�

D
X

.r1;:::;rk�1/2Bk;1
1 D #Bk;1:

But it is clear that Ck;q is in bijection with Bk;1 (by dividing all the ri ’s in Ck;q by
q). Consequently,

'.F k
n / D '.Sk1 /C

X
.r1;:::;rk�1/2Ek;q

�
.: : : ..fn

r1
_ fn/

r2
_ fn/ : : :/

rk�1
_ fn

�
: (145)
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Now, assume that '.F 4
n / ! '.S41 / D 2 and let us show that '.F k

n / ! '.Sk1 / for
all k > 3. Using that fn D f �

n , observe that

fn
r
_ fn.t1; : : : ; t2q�2r /

D
Z
R
r
C

fn.t1; : : : ; tq�r ; s1; : : : ; sr /fn.sr ; : : : ; s1; tq�rC1; : : : ; t2q�2r /ds1 : : : dsr

D
Z
R
r
C

fn.sr ; : : : ; s1; tq�r ; : : : ; t1/fn.t2q�2r ; : : : ; tq�rC1; s1; : : : ; sr /ds1 : : : dsr

D fn
r
_ fn.t2q�2r ; : : : ; t1/ D .fn

r
_ fn/

�.t1; : : : ; t2q�2r /;

that is, fn
r
_ fn D .fn

r
_ fn/

�. On the other hand, the product formula (142) leads
to F 2

n D Pq
rD0 I S2q�2r .fn

r
_ fn/. Since two multiple integrals of different orders

are orthogonal (see (139)), we deduce that

'.F 4
n / D kfn ˝ fnk2

L2.R
2q

C
/
C �kfnk2L2.Rq

C
/

�2 C
q�1X
rD1

hfn r
_ fn; .fn

r
_ fn/

�i
L2.R

2q�2r

C
/

D 2kfnk4L2.Œ0;1�q/ C
q�1X
rD1

kfn r
_ fnk2

L2.R
2q�2r

C
/

D 2C
q�1X
rD1

kfn r
_ fnk2

L2.R
2q�2r

C
/
: (146)

Using that '.F 4
n / ! 2, we deduce that

kfn r
_ fnk2

L2.R
2q�2r

C
/

! 0 for all r D 1; : : : ; q � 1: (147)

Fix .r1; : : : ; rk�1/ 2 Ek;q and let j 2 f1; : : : ; k � 1g be the smallest integer such
that rj 2 f1; : : : ; q � 1g. Then:

ˇ̌
.: : : ..fn

r1
_ fn/

r2
_ fn/ : : :/

rk�1
_ fn

ˇ̌

D ˇ̌
.: : : ..fn

r1
_ fn/

r2
_ fn/ : : :

rj�1
_ fn/

rj
_ fn/

rjC1
_ fn/ : : :/

rk�1
_ fn

ˇ̌

D ˇ̌
.: : : ..fn ˝ : : :˝ fn/

rj
_ fn/

rjC1
_ fn/ : : :/

rk�1
_ fn

ˇ̌
(since fn

q
_ fn D 1)

D ˇ̌
.: : : ..fn ˝ : : :˝ fn/˝ .fn

rj
_ fn//

rjC1
_ fn/ : : :/

rk�1
_ fn

ˇ̌

6 k.fn ˝ : : :˝ fn/˝ .fn
rj
_ fn/kkfnkk�j�1 (Cauchy–Schwarz)

D kfn rj
_ fnk (since kfnk2 D 1)

! 0 as n ! 1 by (147):
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Therefore, we deduce from (145) that '.F k
n / ! '.Sk1 /, which is the desired

conclusion and concludes the proof of the theorem. ut
During the proof of Theorem 27, we actually showed (see indeed (146)) that the

two assertions .i/–.ii/ are both equivalent to a third one, namely

.iii/: kfn r
_ fnk2

L2.R
2q�2r

C
/

! 0 for all r D 1; : : : ; q � 1:

Combining .iii/ with Corollary 3, we immediately deduce an interesting transfer
principle for translating results between the classical and free chaoses.

Corollary 7. Fix an integer q > 2, let fBt gt>0 be a standard Brownian motion and
let fStgt>0 be a free Brownian motion. Whenever f 2 L2.R

q
C/, we write IBq .f /

(resp. I Sq .f /) to indicate the qth multiple Wiener integrals of f with respect to B
(resp. S ). Let ffngn>1 � L2.R

q
C/ be a sequence of symmetric functions and let

� > 0 be a finite constant. Then, as n ! 1, the following two assertions hold
true.

(i) EŒIBq .fn/� ! qŠ�2 if and only if '.I Sq .fn/
2/ ! �2.

(ii) If the asymptotic relations in .i/ are verified, then IBq .fn/
law! N .0; qŠ�2/ if

and only if I Sq .fn/
law! S .0; �2/.

To Go Further. A multivariate version of Theorem 27 (free counterpart of
Theorem 17) can be found in [36]. In [31] (resp. [14]), one exhibits a version of
Theorem 27 in which the semicircular law in the limit is replaced by the free Poisson
law (resp. the so-called tetilla law). An extension of Theorem 27 in the context of
the q-Brownian motion (which is an interpolation between the standard Brownian
motion corresponding to q D 1 and the free Brownian motion corresponding to
q D 0) is given in [12].
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Séminaire de Probabilités, vol. XXXVIII, LNM 1857 (Springer, New York, 2005),
pp. 247–262

47. G. Peccati, C. Zheng, Multidimensional Gaussian fluctuations on the Poisson space. Electron.
J. Probab. 15, paper 48, 1487–1527 (2010) (electronic)

48. G. Peccati, C. Zheng, Universal Gaussian fluctuations on the discrete Poisson chaos. arXiv
preprint arXiv:1110.5723v1

49. M. Penrose, Random Geometric Graphs (Oxford University Press, Oxford, 2003)
50. W. Rudin, Real and Complex Analysis, 3rd edn. (McGraw-Hill, New York, 1987)
51. I. Shigekawa, Derivatives of Wiener functionals and absolute continuity of induced measures.

J. Math. Kyoto Univ. 20(2), 263–289 (1980)
52. Ch. Stein, A bound for the error in the normal approximation to the distribution of a

sum of dependent random variables. In: Proceedings of the Sixth Berkeley Symposium on
Mathematical Statistics and Probability, Vol. II: Probability Theory, 583–602. University of
California Press, Berkeley, California (1972)

53. D.W. Stroock, Homogeneous chaos revisited. In: Séminaire de Probabilités, vol. XXI. Lecture
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