
Chapter 2
Steady Optimisation Time, ST

2.1 Steady Optimisation Time, ST

Figure 2.1 presents a model system of three interconnected reservoirs supplying water
to independent consumers. The end conditions in the reservoir state trajectories are
steady. This means that after an optimisation period W, the reservoir states should
match previously determined values. For the vector of predicted inflows to the reser-
voirs, the optimising task formulated with index (2.1) comes down to:

• defining the control vector (outflows from reservoirs),

û(t − h(t))(+), ∀t ∈ [t0,W ] (2.1)

which will minimally differ from the vector consisting of partial water demands
per individual system reservoir,

B(t) · Y(t) · S · 1,∀t ∈ [t0,W ] (2.2)

• achieving the target specified above at minimum transfer cost among reservoirs,
• obtaining at the end of optimisation horizon W the vector for the filling levels for

the reservoirs x(W ) satisfying the required values,

The reservoirs supply water to four consumers (WTPs) at the same time; therefore,
to describe the system any further it is necessary to introduce a function for reservoir
involvement in carrying out water demand functions Y j (t), j = 1, . . . , 4 ∀t ∈
[t0,W ] dividing (for each instant in time) the function Y j (t), j = 1, . . . , 4 among
the reservoirs in the system:

Y j (t)−
4∑

i=1

bi, j (t) · Y j = 0, j = 1, . . . , 4 (2.3)
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Fig. 2.1 The complex water-management system

In this problem of reservoir system functioning (Fig. 2.1), there are a number of
delays in individual system input and output variables. The abovementioned delays,
which substantially complicate the formal record of system function, come down to
the following dependencies:

• vector of delays related to water flow through the reservoirs

τ(t)T = [τ1(t) τ2(t) τ3(t)] (2.4)

The water flow rate measurement point
[
m3/s

]
is usually located in the area where

a river flows into a reservoir. Flow rates measured at the reservoir inlet will appear
in the vicinity of a dam after a given time, that is, with a delay dependent on the
reservoir’s dimensions. The delay is also a function of time, because it may change
with hydrological and climatic conditions within the reservoir area (higher, lower,
variable rate of water flow through reservoir).
Therefore, the vector of inflows into the system reservoirs taking into account the
abovementioned delays should be defined as follows:

QP (t − τ(t)) =
⎡

⎢⎣
Q P

1 (t − τ1(t))

Q P
2 (t − τ2(t))

Q P
3 (t − τ3(t))

⎤

⎥⎦ (2.5)
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Fig. 2.2 Optimisation start and end time

• Another are transport-related delays in water distribution from the reservoir system
to the WTPs (2.6). These delays result from the distance between individual reser-
voirs and water consumers. The vector of controlled outflows from reservoirs tak-
ing into account the abovementioned delays is defined by the following formula
(2.7):

h(t) =

⎡

⎢⎢⎣

h11(t) h21(t) h31(t)
h12(t) h22(t) h32(t)
h13(t) h23(t) h33(t)
h14(t) h24(t) h34(t)

⎤

⎥⎥⎦ (2.6)

û(t − h(t))(+) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡

⎢⎢⎣

u11(t − h11(t))
u12(t − h12(t))
u13(t − h13(t))
u14(t − h14(t))

⎤

⎥⎥⎦

⎡

⎢⎢⎣

u21(t − h21(t))
u22(t − h22(t))
u23(t − h23(t))
u24(t − h24(t))

⎤

⎥⎥⎦

⎡

⎢⎢⎣

u31(t − h31(t))
u32(t − h32(t))
u33(t − h33(t))
u34(t − h34(t))

⎤

⎥⎥⎦

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.7)
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• Also, there are transport-related delays in water transfers among the system reser-
voirs, which result from the location of reservoirs in the field. Additionally, delays
in water transport between reservoirs are asymmetrical, which means that, for
instance, a delay in water transport from reservoir no. 1 to reservoir no. 2 may
differ from the delay in water transport in the opposite direction.

ωT =
[[
ω12
ω21

] [
ω23
ω32

] [
ω31
ω13

]]
(2.8)

The vector of controlled transfers among the reservoirs taking into account the
delays in water transport may be defined using the following formula:

ẑ(t − ω) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡

⎣z1 =
z12(t − ω12)

or
z21(t − ω21)

⎤

⎦

⎡

⎣z2 =
z23(t − ω23)

or
z32(t − ω32)

⎤

⎦

⎡

⎣z3 =
z31(t − ω31)

or
z13(t − ω13)

⎤

⎦

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.9)

2.1.1 Quality Coefficient

Optimal reservoir state trajectories and trajectories of outflows from reservoirs (con-
trol room) will be determined through solving the dynamic optimising task specified
below. Its requisite elements include:

F = 0, 5

W∫

t0

⎧
⎪⎪⎨

⎪⎪⎩

[B(t) · Y(t) · S · 1− u(t − h(t))]T
(+)

·A1·
[B(t) · Y(t) · S · 1− u(t − h(t))](+)
·z(t − ω)T · A2 · z(t − ω)

⎫
⎪⎪⎬

⎪⎪⎭
dt (2.10)

Regarding Fig. 2.1, the following symbols are used in Eq. (2.10):

• Matrix B(t) is a diagonal block matrix with terms constituting diagonal matrixes.
Their elements are functions of reservoir involvement i = 1, . . . , 3 in carrying out
the demand functions Y j (t), j = 1, . . . 4, [m3/s] .

B(t) =
⎡

⎣
B1(t) ∗ ∗
∗ B2(t) ∗
∗ ∗ B3(t)

⎤

⎦ (2.11)
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where:

B1(t) =

⎡

⎢⎢⎣

b11(t) 0 0 0
0 b12(t) 0 0
0 0 b13(t) 0
0 0 0 b14(t)

⎤

⎥⎥⎦ (2.12)

B2(t) =

⎡

⎢⎢⎣

b21(t) 0 0 0
0 b22(t) 0 0
0 0 b23(t) 0
0 0 0 b24(t)

⎤

⎥⎥⎦ (2.13)

B3(t) =

⎡

⎢⎢⎣

b31(t) 0 0 0
0 b32(t) 0 0
0 0 b33(t) 0
0 0 0 b34(t)

⎤

⎥⎥⎦ (2.14)

∗ =

⎡

⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤

⎥⎥⎦ (2.15)

Matrix Y(t) is a diagonal block matrix with terms constituting diagonal matrixes.
Their elements are the demand functions effective in the system Y j (t), j =
1, . . . 4, [m3/s] Fig. 2.2

Y(t) =
⎡

⎣
◦(t) ∗ ∗
∗ ◦(t) ∗
∗ ∗ ◦(t)

⎤

⎦ (2.16)

where:

◦(t) =

⎡

⎢⎢⎣

Y1(t) 0 0 0
0 Y2(t) 0 0
0 0 Y3(t) 0
0 0 0 Y4(t)

⎤

⎥⎥⎦ (2.17)

• The control vector (of controlled outflows from reservoirs) (7) is a block vector.
Its elements are vectors, and their elements are reservoir outflows i = 1, . . . , 3 to
conurbations j = 1, . . . , 4.
• Then, matrix A1 is a positively definite block matrix with terms on a diagonal also

being diagonal matrixes. Their elements are weight coefficients related to proper
control vector elements

A1 =
⎡

⎣
•1 ∗ ∗
∗ •2 ∗
∗ ∗ •3

⎤

⎦ (2.18)
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where:

•1 =

⎡

⎢⎢⎣

a11 0 0 0
0 a12 0 0
0 0 a13 0
0 0 0 a14

⎤

⎥⎥⎦ (2.19)

•2 =

⎡

⎢⎢⎣

a21 0 0 0
0 a22 0 0
0 0 a23 0
0 0 0 a24

⎤

⎥⎥⎦ (2.20)

•3 =

⎡

⎢⎢⎣

a31 0 0 0
0 a32 0 0
0 0 a33 0
0 0 0 a34

⎤

⎥⎥⎦ (2.21)

• Further, positively definite diagonal matrix A2,

A2 =
⎡

⎣
a11 0 0
0 a22 0
0 0 a33

⎤

⎦ (2.22)

with elements, which are weight coefficients related to a subintegral section of
the quality coefficient (2,10), corresponding to the costs of water transfers among
the reservoirs, e.g. a11 all applies to transfer cost z1(t), that is from reservoir 1
to reservoir 2, or the other way round, etc. Regarding the matrix, this way of
presenting the problem is a simplification, because in a general case the water
transfer cost e.g. from reservoir no. 1 to reservoir no. 2 will not necessarily equal
the cost of water transfer from reservoir no. 2 to reservoir no. 1 (e.g. gravitational
flow and pumping: azb1→zb2

11 �= azb1←zb2
11 ).

• Then, unit vector
1T = [⊗ ⊗ ⊗ ]

, ⊗ = [
1 1 1 1

]
(2.23)

• and vector of transfers among reservoirs (2.9)

2.1.2 State Equation of Reservoirs

The following have been assumed: balance equation of state for the system reservoirs,
and start and end conditions in reservoir state trajectories

f : ẋ(t) = QP(t − τ (t))− S1u(t− h(t))+ S2 z(t− ω) (2.24)
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x0(t0)
T = [

x01(t0) x02(t0) x03(t0)
]

(2.25)

xU (W )T = [
x1

U (W ) x2
U (W ) x3

U (W )
]

(2.26)

The following symbols are used in state equation (2.24):

• vector of reservoir state derivatives

ẋT(t) = [dx1(t)/dt dx2(t)/dt dx3(t)/dt] (2.27)

• vector of predicted inflows to reservoirs (2.5)
[
m3/s

]

• vector of predetermined initial filling levels in reservoirs (2.25)
[
ms

]

• vector of predetermined final filling levels in reservoirs (2.26)
[
ms

]

• t0 predetermined optimisation start time [s]
• W predetermined optimisation end time [s]
• diagonal structural matrix S1 , needed to record the system structure and the system

state equation

S1 =
⎡

⎣
⊗ [0] [0]
[0] ⊗ [0]
[0] [0] ⊗

⎤

⎦ [0] = [
0 0 0 0

]
(2.28)

• structural matrix needed to record the relations between reservoirs with reference
to transfers among reservoirs in the system state equation

S2 =
⎡

⎣
−1 0 1
1 −1 0
0 1 −1

⎤

⎦ (2.29)

• Matrix S is a structural matrix derived from operation S = ((S1
T ·S1)∗I), (asterisk

∗, table multiplication).

2.1.3 Solution for the Optimising Task

Hamilton’s function for the system of Eqs. (2.10) and (2.24) has the following form:

H = − f0 + ψT · f (2.30)

f0 —sub-integral function of coefficient (2.10)
f —state equation for reservoirs (2.24)
ψ —conjugate variable, vector [3*1]
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H = − 0, 5 ·

⎧
⎪⎪⎨

⎪⎪⎩

[B(t) · Y(t) · S · 1− u(t − h(t))]T
(+)

·A1·
[B(t) · Y(t) · S · 1− u(t − h(t))](+)
·z(t − ω)T · A2 · z(t − ω)

⎫
⎪⎪⎬

⎪⎪⎭
(2.31)

+ ψ(t)T · [QP(t − τ (t))− S1u(t− h(t))+ S2 z(t− ω)]

The system of equations for Hamilton’s function in form (2.31) is shown below:

1.

[
(∇u H)û,x̂,ψ̂

]T = 0 ⇒ û(t − h(t))(+)

= B(t) · Y(t) · S · 1− A−1
1 · S1

T · ψ̂(t) (2.32)

2. [
(∇z H)û,ẑ,x̂,ψ̂

]T = 0 ⇒ ẑ(t − ω) = A−1
2 · ST

2 · ψ̂(t) (2.33)

3.

[(∇ψH
)

û,x̂

]T = ẋ(t) ⇒ QP(t − τ (t))− S1u(t− h(t))

+ S2 z(t− ω) (2.34)

4. [
− (∇x H)û,x̂,ψ̂

]T = ˙̂ψ(t) ⇒ ˙̂
ψ(t) = 0(3∗1) (2.35)

Equation (2.35) proves that:
ψ̂(t) = C1 (2.36)

Integration of Eq. (2.34) enables us to obtain an equation characterising the general
form of a state trajectory vector:

x̂(t) =
t∫

t0

⎧
⎨

⎩

QP (ξ − h(ξ))+
−S1 · û(ξ − h(ξ))(+)
+S2 · ẑ(ξ − ω)

⎫
⎬

⎭dξ + C2 (2.37)

We substitute term (2.36) in Eq. (2.32), and then the control vector is defined by the
following equation:

û(t − h(t))(+) = B(t) · Y(t) · S · 1− A−1
1 · ST

1 · C1 (2.38)

We substitute term (2.36) in Eq. (2.33), and then the vector of controlled transfers
among reservoirs is defined by the following equation:
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ẑ(t − ω) = A−1
2 · ST

2 · C1 (2.39)

Then, we attempt to determine the state vector. We substitute (2.38) and (2.39) in
(2.37), thus receiving

x̂(t) =
t∫

t0

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

QP (ξ − h(ξ))
−S1 · [B(ξ) · Y(ξ) · S · 1]

+S1 ·
[
A−1

1 · ST
1 · C1

]

+S2 ·
[
A−1

2 · ST
2 · C1

]

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

dξ + C2 (2.40)

for t = t0 ⇒ C2 = x(t0).
After regrouping and integrating the component constant in time, and for t = W , the
state trajectory vector assumes the following form:

x(W ) =
W∫

t0

{
QP (t − h(t))
−S1 · [B(t) · Y(t) · S · 1]

}
dt

+
(

S1 · A−1
1 · S1

T + S2 · A−1
2 · ST

2

)
· C1 · (W − t0)+ x(t0) (2.41)

We calculate the vector of constants C1 from Eq. 2.41)

C1 =
[(

S1 · A−1
1 · ST

1 + S2 · A−1
2 · ST

2

)
· (W − t0)

]−1 ·
⎧
⎨

⎩

x(W )− x(t0)−
+

W∫
t0

[
QP (t − h(t))− S1 · B(t) · Y(t) · S · 1

]
dt

⎫
⎬

⎭
(2.42)

Further solving of the problem does not represent any major difficulties—
substitute (2.42) in (2.36), and then obtained result in (2.32) and (2.33), thus receiving
optimal control vector û(t − h(t))(+),∀t ∈ [t0,W ] , and vector of transfers among
reservoirs ẑ(t − ω). Transport-related delays in transfers among reservoirs essen-
tially affect satisfying end condition of reservoir state trajectories (2.26). They force
changes in transfer vector value so as to fulfil condition (2.26). Satisfying prerequi-
site condition (2.26) involves a need to introduce modified water distribution among
the reservoirs. This change is a consequence of the scheme shown below. Formula
(2.43) determines adequately increased/reduced transfer among the reservoirs during
the distribution period, taking into account the delays.

z(t − ω) =
⎡

⎣
z1(t − ω12∨ 21) : ⊗1
z2(t − ω23∨ 32) : ⊗2
z3(t − ω31∨ 13) : ⊗3

⎤

⎦
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⊗1 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

|z| = |z12| = |z21|
(sgn(z1) = 1 ∧ ω12 > 0 ) ⇒

z1(t − ω12 ) = |z12| +
ω12∫

0
|z12|dt

(W−ω12)
;

(sgn(z1) = −1 ∧ ω21 > 0 ) ⇒

z1(t − ω21 ) = |z12| +
ω21∫

0
|z12|dt

(W−ω21)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.43)

⊗2 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

|z| = |z23| = |z32|
(sgn(z2) = 1 ∧ ω23 > 0 ) ⇒

z2(t − ω23 ) = |z23| +
ω23∫

0
|z23|dt

(W−ω23)

(sgn(z2) = −1 ∧ ω32 > 0 ) ⇒

z2(t − ω32 ) = |z32| +
ω32∫

0
|z23|dt

(W−ω32)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.44)

⊗3 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

|z| = |z31| = |z13|
(sgn(z3) = 1 ∧ ω31 > 0 ) ⇒

z3(t − ω31 ) = |z31| +
ω31∫

0
|z31|dt

(W−ω31)

(sgn(z3) = −1 ∧ ω13 > 0 ) ⇒

z3(t − ω13 ) = |z13| +
ω13∫

0
|z13|dt

(W−ω13)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Formulas (2.43, 2.44) take into account the possibility of water transfer both ways
(e.g. from reservoir no. 1 to reservoir no. 2 and vice versa) and asymmetrical transport-
related delay (np. ω12 �= ω21). This principle is applicable to all relations among
the reservoirs. As regards this water system (Fig. 2.1), notation of transfer vector
modifications ẑ(t − ω) formula (2.43, 2.44), is relatively simple. Its complexity
degree increases very quickly with the system dimensionality, and is particularly
dependent on the number and direction of transfers among reservoirs and the delay
involved.

Having completed the abovementioned modifications, we substitute (2.38) and
(2.39) in (2.41) to obtain the vector of optimal state trajectories satisfying condition
(2.30). We receive the minimum quality coefficient value by substituting (2.38) and
(2.30) in (2.10).

2.1.4 Computer Simulations

Hipothetical scenario of events. Example 1 In order to test whether the solution
obtained is optimal and correct, in the first example we will make the following
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simple numerical assumptions, specifying that there will be no delays in inflow and
further distribution of water:

• initial/start states in reservoirs

x0(t0)
T = [

10 10 10
] [

m3
]

• final/end states in reservoirs xU (W )T = [
30 30 30

] [
m3

]

• inflows to reservoirs

QP (t − τ (t)) =
⎡

⎣
(t − (τ1 = 0)+ 1)
(t − (τ2 = 0)+ 1)
(t − (τ3 = 0)+ 1)

⎤

⎦
[
m3/s

]

• water demand below reservoirs

Y(t) =
⎡

⎣
[∗] 0∗ 0∗
0∗ [∗] 0∗
0∗ 0∗ [∗]

⎤

⎦[
m3/s

]

[∗] =

⎡

⎢⎢⎣

4(t) 0 0 0
0 4(t) 0 0
0 0 4(t) 0
0 0 0 4(t)

⎤

⎥⎥⎦

0∗ =

⎡

⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤

⎥⎥⎦

• the functions of reservoir involvement in carrying out the demand functions

B(t) =
⎡

⎣
[∗1] 0∗ 0∗
0∗ [∗1] 0∗
0∗ 0∗ [∗1]

⎤

⎦

[∗1] =

⎡

⎢⎢⎣

0.33 0 0 0
0 0.33 0 0
0 0 0.33 0
0 0 0 0.33

⎤

⎥⎥⎦ · (t)

• matrices of weight coefficients

A1 =
⎡

⎣
[∗] 0∗ 0∗
0∗ [∗] 0∗
0∗ 0∗ [∗]

⎤

⎦ , [∗] =

⎡

⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤

⎥⎥⎦
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A2 =
⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦

• structural matrix

S1 =
⎡

⎣
[∗] 0• 0•
0• [∗] 0•
0• 0• [∗]

⎤

⎦

[∗] = [
1 1 1 1

]
, 0• = [

0 0 0 0
]

• structural matrix

S2 =
⎡

⎣
−1 0 1
1 −1 0
0 1 −1

⎤

⎦

• start time t0 = 0[s], same for all reservoirs,
• end time W = 10[s], same for all reservoirs,

Solution

• acc. to (2.42) C1 = [0, 32 0, 32 0, 32]
• acc. to (2.38) û(t − h(t))(+) = B(t) · Y(t) · S · 1− A−1

1 · S1
T · C1

û(t − h(t))(+) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡

⎢⎢⎣

1.32
1.32
1.32
1.32

⎤

⎥⎥⎦

⎡

⎢⎢⎣

1.32
1.32
1.32
1.32

⎤

⎥⎥⎦

⎡

⎢⎢⎣

1.32
1.32
1.32
1.32

⎤

⎥⎥⎦

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡

⎢⎢⎣

0, 32
0, 32
0, 32
0, 32

⎤

⎥⎥⎦

⎡

⎢⎢⎣

0, 32
0, 32
0, 32
0, 32

⎤

⎥⎥⎦

⎡

⎢⎢⎣

0, 32
0, 32
0, 32
0, 32

⎤

⎥⎥⎦

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡

⎢⎢⎣

1.0
1.0
1.0
1.0

⎤

⎥⎥⎦

⎡

⎢⎢⎣

1.0
1.0
1.0
1.0

⎤

⎥⎥⎦

⎡

⎢⎢⎣

1.0
1.0
1.0
1.0

⎤

⎥⎥⎦

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

• acc. to (2.39) ẑ(t − ω) = A−1
2 · ST

2 · C1

ẑ(t − ω) =
⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦ ·
⎡

⎣
−1 1 0
0 −1 1
1 0 −1

⎤

⎦ ·
⎡

⎣
0, 32
0, 32
0, 32

⎤

⎦ =
⎡

⎣
0.0
0, 0
0.0

⎤

⎦

It is worth observing that in the case of identical input data for the system of
reservoirs and identical parameters related to WTPs, there are no transfers among
reservoirs. The end reservoir filling level (for W = 10 [s]) should be determined
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from Eq. 2.37), taking into account the values obtained for the vector of controlled
outflows from reservoirs and the vector of transfers among reservoirs.

x̂(W ) =
⎡

⎣
30
30
30

⎤

⎦

The quality coefficient value in the discussed time interval W = 10 [s] for the
assumed input data is: Fmin = 6.144, while the percentage execution of the water
demand function for a given WTP is, respectively:

Y(W ) =

⎡

⎢⎢⎣

75 % 0 0 0
0 75 % 0 0
0 0 75 % 0
0 0 0 75 %

⎤

⎥⎥⎦

A graphical illustration of the example is shown in the diagrams (Fig. 2.4) obtained
as a result of the system operation simulation carried out using an original application
constructed in the Matlab/Simulink environment (Fig. 2.3). Each attempt to change
the optimal control values obtained from the system operation simulation leads to
an increase in the value of the assumed quality coefficient (2.10), or to a violation of
the conditions imposed on reservoir end states (2.26). This proves the correctness of
the solution, and ensures that it is optimum with regard to the coefficient and further
assumptions applied.

Fig. 2.3 Diagram of an analogue/digital simulation (Matlab/Simulink)
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Fig. 2.4 Simulation results for a hypothetical scenario of events

Since the input data for the system operation simulation are identical for all reser-
voirs and consumers (Water Treatment Plants—WTP), the diagrams obtained are
also identical for each of the reservoirs.

• on the left (4.1), the diagram shows the reservoir inflow vector,
• diagram (4.2) shows the trajectories of controlled outflows,
• diagram (4.3) illustrates the performance of the WTP demand functions, and
• diagram (4.4) shows reservoir state trajectories for the optimisation period

Hipothetical scenario of events. Example 2 The next stage in checking the optimality
and correctness of the solution obtained involves introducing:

• delays in the vector of water inflows to reservoirs

QP (t − τ (t)) =
⎡

⎣
(t − (τ1 = 1s)+ 1)
(t − (τ2 = 3s)+ 1)
(t − (τ3 = 5s)+ 1)

⎤

⎦
[
m3/s

]

• transport-related delays in the controlled water outflows from reservoirs to con-
sumers (WTP plants):
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û(t − h(t))(+) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡

⎢⎢⎣

u11(t − h11(t) = 5s)
u12(t − h12(t) = 5s)
u13(t − h13(t) = 5s)
u14(t − h14(t) = 5s)

⎤

⎥⎥⎦

⎡

⎢⎢⎣

u11(t − h11(t) = 3s)
u12(t − h12(t) = 3s)
u13(t − h13(t) = 3s)
u14(t − h14(t) = 3s)

⎤

⎥⎥⎦

⎡

⎢⎢⎣

u11(t − h11(t) = 1s)
u12(t − h12(t) = 1s)
u13(t − h13(t) = 1s)
u14(t − h14(t) = 1s)

⎤

⎥⎥⎦

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

• other parameters remain unchanged

A graphical illustration of the example is shown in Fig. 2.5.

• Diagram (5.1) shows inflows to reservoirs taking into account delays during water
flow through reservoirs.
• Diagram (5.2) contains the trajectories of controlled outflows as seen by the WTP

water consumer. From this perspective, we see the impact of transport-related
delays in water distribution from reservoirs to consumers.
• Diagram (5.3) clearly indicates that, for example, in different time intervals the

demand function is carried out by 1, 2 or 3 reservoirs.
• Diagram (5.4) shows the significant trajectories of reservoir states, thus confirming

that condition (26) is satisfied.
• Diagram (5.5) shows the trajectories of transfers among reservoirs.
• Diagram (5.6) demonstrates the directions of transfers among reservoirs (assumed

and actual).

The quality coefficient value in the time interval discussed for assumed delays
and input data is Fmin = 84, 56, while the percentage execution of water demand
function for a WTP is, respectively:

Y(W ) =

⎡

⎢⎢⎣

12.08 % 0 0 0
0 12.08 % 0 0
0 0 12.08 % 0
0 0 0 12.08 %

⎤

⎥⎥⎦

Reduction of the quality coefficient value and percentage execution of the water
demand function in WTP plants is dictated by the assumed transport-related delay
in water delivery from the reservoirs to the WTPs. Water is distributed from reser-
voirs immediately as a result of receiving the optimising task solution, while, due
to transport-related delays, the water is delivered to its consumer after a given time
(with a delay) which, considering the quality coefficient, affects its value. This is so
because, in different time intervals during the optimisation horizon, the WTP plants
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Fig. 2.5 Simulation results for a hypothetical scenario of events

either do not receive water at all or receive water from one, two or three reservoirs.
In contrast, transport-related delays between reservoirs and water consumers (the
WTP plants) have no impact on the end states in reservoirs and, as a result of this,
condition (2.26) is always satisfied.

A completely different situation is observed when looking at the occurrence of
delays during transfers among reservoirs. Delays in water transport among reservoirs
affect the values of end states in reservoirs and, if they occur, condition (2.26) is not
immediately satisfied. It is thus necessary to correct the values of water transfers
among reservoirs in time, which does not affect the change in values of previously
calculated controlled outflows from reservoirs to the WTP plants.
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• examples of transport-related delays in water transfers among the system reser-
voirs, resulting from reservoir locations in the field;

ωT =
[[
ω12 = 2s
ω21 = 4s

] [
ω23 = 4s
ω32 = 6s

] [
ω31 = 2.5s
ω13 = 3s

]]

other parameters remain unchanged.
A graphical illustration of the example is shown in Figs. 2.6 and 2.7. Diagrams 6.1,

6.2 and 6.3 are the same as Fig. 2.5. Diagram 6.4 shows the trajectories of transfers
among reservoirs, in which delays in water transport among reservoirs have been
taken into account. Diagram 6.5 presents the trajectories of reservoir states showing

Fig. 2.6 Simulation results for a hypothetical scenario of events
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Fig. 2.7 Simulation results for a hypothetical scenario of events

those values which do not satisfy condition (2.26) concerning the end values of
state trajectories at the instant of optimisation end. !!!!!. The quality coefficient
value reaches Fmin = 246, 1. The further procedure satisfying condition (2.26) is
based on formulas (2.43) and (2.44) and comes down to determining the corrections
to the values of transfers among reservoirs and their duration so as to ensure that
consequently, at the instant of optimisation end, condition (2.26) for trajectories of
reservoir system states is satisfied. The graphical illustration is shown in Fig. 2.7.

2.1.5 Summary

The following conclusions may be derived as a result of many further simulations,
carried out for systems characterised by various structure of connections with ref-
erence both to reservoirs and conurbations, and to transfers among reservoirs and
different sets of delays in inflows, outflows and transfers:

1. The possibility of including and applying water transfers among reservoirs sig-
nificantly affects the operation of a system of combined reservoirs, mainly with
respect to leaving the reservoir end states at the required levels (condition (2.26)),
and that these states will be reached with a minimum value for the quality coeffi-
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cient (2.10). The possibility to take into account delays related to water transfers
among reservoirs considerably raises the substantive aspect of the solution.

2. Cooperation of a system of reservoirs in a configuration without transfers among
reservoirs comes down to the operation of reservoirs which have one shared
purpose—satisfy the water demands imposed on the system. None of the reser-
voirs sees other reservoirs in the system while satisfying the system’s water
demands assigned to that particular reservoir. In some cases this cooperation may
lead to a situation in which, within a system of reservoirs working together, some
of the reservoirs will remain with very low end states/levels with unfavourable,
low predicted inflow and after optimisation time W. This unfavourable effect
may be mitigated as a result of including transfers among reservoirs. According
to the optimising task conditions, these transfers will be selected (for value and
transfer direction) so as to ensure the required end states for the system reservoirs
at a given vector of predicted inflows to the reservoir system.
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