
2Metric and Topological Spaces I

A key to rigorous multivariable calculus is a basic understanding of point set
topology in the framework of metric spaces. Covering these basic concepts is the
purpose of this chapter. We will see that studying these concepts in detail will really
pay off in the chapters below. While studying metric spaces, we will discover certain
concepts which are independent of metric, and seem to beg for a more general
context. This is why, in the process, we will introduce topological spaces as well.

1 Basics

1.1

Let RC denote the set of all non-negative real numbers and C1. A metric space
is a set X endowed with a metric (or distance function, briefly distance) d W X �
X ! RC such that
(M1) d.x; y/ D 0 if and only if x D y,
(M2) d.x; y/ D d.y; x/, and
(M3) d.x; y/C d.y; z/ � d.x; z/.
Condition (M3) is called the triangle inequality; the reader will easily guess why.
The elements of a metric space are usually referred to as points.

Very often one considers distance functions which take on finite values only, but
allowing infinite distances comes in handy sometimes.

1.1.1 Examples
(a) The set R of real numbers with the distance function d.x; y/ D jx � yj.
(b) The set (plane) C of complex numbers, again with the distance jx � yj; note,

however, that here the fact that it satisfies the triangle inequality is much less
trivial than in the previous case (see Theorem 1.3 of Chapter 1).

(c) The Euclidean space Rm D f.x1; : : : ; xm/ j xj 2 Rg
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34 2 Metric and Topological Spaces I

d..x1; : : : ; xm/; .y1; : : : ; ym// D
rX

.xj � yj /2:

Comment: In linear algebra, there are good reasons for distinguishing row and
column vectors, and equally good reasons why the ordinary Eucliean space
R
n should consist of column vectors. This is the reason why we used the

subscript Rn above for row vectors, which are easier to write down (compare
with A.7.3). From the point of view of metric and topological spaces, however,
the distinction between row and column vectors has no meaning. Because of
that, in this chapter, we will use the symbols R

n and Rn interchangably, not
distinguishing between row and column vectors.

(d) C.ha; bi/, the set of all continuous real functions on the interval ha; bi, with

d.f; g/ D max
x

jf .x/ � g.x/j:

(e) The set F.X/ of all bounded real functions on a set X with

d.f; g/ D sup
x

jf .x/ � g.x/j:

(f) The unit circle

S1 D f.x; y/ 2 R
2 j x2 C y2 D 1g

where for two points P;Q 2 S1, d.P;Q/ is the lesser of the two angles
between the lines ftPjt 2 Rg and ftQjt 2 Rg.

(g) Any set S with the metric given by d.x; y/ D 0 if x D y 2 S and d.x; y/ D 1

if x ¤ y 2 S . This is known as the discrete space.

1.2 Norms

The metrics in Examples 1.1.1 (a)–(e) in fact all come from a more special situation,
which plays an especially important role. A norm on a vector space V (over real or
complex numbers) is a mapping jj � jj W V ! R such that
(1) jjxjj � 0, and jjxjj D 0 only if x D o,
(2) jjx C yjj � jjxjj C jjyjj, and
(3) jj˛xjj D j˛j � jjxjj.

1.2.1
A normed vector space is a (real or complex) vector space V provided with a norm.
(The term normed linear space is also common.) Since we have

jjx � zjj D jjx � y C y � zjj � jjx � yjj C jjy � zjj;
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the function �.x; y/ D jjx � yjj is a metric on V , called the metric associated with
the norm. In this sense, we can always view a normed linear space as a metric space.

1.2.2 Examples
1. Any of the following formulas yields a norm in R

n.
(a) jjxjj D maxxj ,
(b) jjxjj D P jxj j,
(c) jjxjj D

qP
x2j .

Notice that (c) gives the metric space in Example 1.1.1 (c).
2. In the space of bounded real functions on a set X we can consider the norm

jj'jj D supfj'.x/j j x 2 Xg:

The associated metric gives rise to Example 1.1.1 (e) above.

1.2.3 A particularly important example
Example 1.2.2 (c) is in fact, a special case of the following construction: On a (real
or complex) vector space with an inner product (see 4.2 of Appendix A), we have a
norm

jjxjj D p
xx:

Indeed: (1) of 1.2 is obvious. Further, by the Cauchy-Schwarz inequality (see 4.4 of
Appendix A),

jjx C yjj2 D .x C y/.x C y/ D xx C xy C yx C yy

D jxx C xy C yx C yyj � jjxjj2 C jxyj C jyxj C jjyjj2

� jjxjj2 C 2jjxjjjjyjjj C jjyjj2 D .jjxjj C jjyjj/2:

Finally, jj˛xjj D p
.˛x/.˛x/ D p

˛˛.xx/ D j˛j � jjxjj. ut

1.3 Convergence

A sequence x1; x2; : : : of points of metric space converges to a point x whenever
for every " > 0, there exists an n0 such that for all n � n0, we have d.xn; x/ < ".
This is expressed by writing

lim
n!1xn D x or lim

n
xn D x or just lim xn D x:

We then speak of a convergent sequence. Note that obviously
(*) any subsequence .xkn/n of a convergent sequence converges to the same limit.
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1.3.1 Examples
(a) The usual convergence in R or C.
(b) Consider the examples in 1.1.1 (d) and (e). Realize that the convergence of a
sequence of functions f1; f2; : : : in these spaces is what one usually calls uniform
convergence of functions.

1.4

Two metrics d1; d2 on the same set X are said to be equivalent if there exist positive
real numbers ˛; ˇ such that for every x; y 2 X ,

˛d1.x; y/ � d2.x; y/ � ˇd1.x; y/:

Note that we have an obvious

1.4.1 Observation. If d1 and d2 are equivalent then .xn/n converges in .X; d1/ if
and only if it converges in .X; d2/.

1.5

Let .X; d/ and .Y; d 0/ be metric spaces. A map f W X ! Y is said to be continuous
if

for every x 2 X and every " > 0 there is a ı > 0 such that, for
every y in X ,

d.x; y/ < ı ) d 0.f .x/; f .y// < ":
(ct)

Later on we will need a stronger concept: a mapping f W X ! Y is said to be
uniformly continuous if

for every " > 0 there is a ı > 0 such that, for all x; y in X

d.x; y/ < ı ) d 0.f .x/; f .y// < ": (uct)

Note the subtle difference between the two concepts. In the former the ı can depend
on x, while in the latter it depends on the " only. For example,

f D .x 7! x2/ W R ! R

is continuous but not uniformly continuous.
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It is easy to prove

1.5.1 Proposition. A composition g ıf of continuous (resp. uniformly continuous)
maps f and g is continuous (resp. uniformly continuous).

1.5.2
Here is another easy but important

Observation. Let d; d1 be equivalent metrics on X and let d 0; d 0
1 be equivalent

metrics on Y . Then a map f W X ! Y is continuous (resp. uniformly continuous)
with respect to d; d 0 if and only if it is continuous (resp. uniformly continuous) with
respect to d1; d 0

1.

1.6 Proposition. A map f W .X; d/ ! .Y; d 0/ is continuous if and only if for every
convergent sequence .xn/n in .X; d/, the sequence .f .xn//n is convergent and

f .lim xn/ D limf .xn/:

(Compare with Proposition 3.2 of Chapter 1.)

Proof. ): Let limxn D x. Consider the ı > 0 from (ct) taken for the x and an
" > 0. There is an n0 such that n � n0 implies d.xn; x/ < ı. Then for n � n0,
d 0.f .xn//; f .x// < ".

(: Suppose f is not continuous. Then there is an x 2 X and an "0 > 0

such that for every ı > 0 there exists an x.ı/ such that d.x.ı/; x/ < ı while
d 0.f .x.ı// � "0. Now set xn D x. 1

n
/; obviously lim xn D x and .f .xn//n does not

converge to f .x/. ut

2 Subspaces and products

2.1

Let .X; d/ be a metric space and let X 0 � X be an arbitrary subset. Obviously
.X 0; d 0/ where d 0 is d restricted to X 0 �X 0 is a metric space again.

Examples.
(a) Intervals in the real line.
(b) More generally, the typical subspaces of the Euclidean space R

m one usually
works with: n-dimensional intervals (by which we mean cartesian products of
n-tuples of intervals), polyhedra, balls, spheres, etc.

(c) The space C.ha; bi/ from 1.1.1.(d) is a subspace of the F.ha; bi/ from 1.1.1.(e).

Convention. Unless otherwise stated we will think of subsets of spaces automat-
ically as subspaces.
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2.1.1 Observations. 1. Let .X 0; d 0/ be a subspace of .X; d/. Then the embedding
map j D .x 7! x/ W X 0 ! X is uniformly continuous. Consequently,
a restriction f jX 0 W .X 0; d 0/ ! .Y; d/ of a continuous (resp. uniformly
continuous) f W .X; d/ ! .Y; d/ is continuous (resp. uniformly continuous).

2. Let f W .X; d/ ! .Y; d/ be a continuous (resp. uniformly continuous) map and
let Y 0 � Y be a subspace such that f ŒX� � Y 0. Then f 0 D .x 7! f .x// W
.X; d/ ! .Y; d

0
/ is continuous (resp. uniformly continuous).

Proof. 1. For " > 0 take ı D ". For the consequence recall 1.5.1 and the fact that
f jX 0 D fj .

2. For x and " > 0 use the same ı as for f . ut

2.2

Let .Xi ; di /, i D 1; : : : ; m, be metric spaces. On the cartesian product
mY
iD1

Xi D
X1 � � � � �Xm consider the following distances:

�..x1; : : : ; xm/; .y1; : : : ; ym// D
vuut mX

iD1
di .xi ; yi /2;

�..x1; : : : ; xm/; .y1; : : : ; ym// D
mX
iD1

di .xi ; yi /; and

d..x1; : : : ; xm/; .y1; : : : ; ym// D maxdi.xi ; yi /:

(� and d satisfy (M1), (M2) and (M3) obviously. The triangle inequality of �
needs some simple reasoning – one can use, for instance, Theorem 4.4 from
Appendix A. In fact, we will rarely use this metric in the context of the topology
of multivariable functions. However, note its geometrical significance: it yields the
standard Pythagorean metric in the space R

m viewed as R � � � � � R.)

2.2.1 Proposition. The distance functions �, � and d are equivalent metrics.

Proof.

�..xi /i ; .yi /i / �
vuut mX

iD1
max
j
dj .xj ; yj /2 D p

n � d..xi /i ; .yi /i /:

Obviously d..xi /i ; .yi /i /� �..xi /i ; .yi /i /; �..xi /i ; .yi /i / and finally �..xi /i ;

.yi /i /�
mX
iD1

maxj dj .xj ; yj / D n � d..xi /i ; .yi /i /.



3 Some topological concepts 39

2.2.2
The space

Q
Xi endowed with any of the metrics �, � , d (typically, by d ) will be

referred to as the product of the spaces .Xi ; di /, i D 1; : : : ; m.

Theorem. 1. The projections pj D ..X1; : : : ; xm/ 7! xj / W
Y
i

.Xi ; di / !
.Xj ; dj / are uniformly continuous.

2. A sequence

.x11 : : : ; x
1
m/; .x

2
1 : : : ; x

2
m/; .x

3
1 : : : ; x

3
m/; : : : (*)

converges in
Q
.Xi ; di / if and only if each of the sequences

x1j ; x
2
j ; x

3
j : : : (**)

converges in the respective .Xj ; dj /.
3. Let fj W .Y; d/ ! .Xj ; dj / be continuous (resp. uniformly continuous). Then

the mapping

f D .y 7! .f1.y/; : : : ; fm.y/// W .Y; d 0/ !
Y
.Xi ; di /

(the unique mapping such thatpjf D fj for all j ) is continuous (resp.uniformly
continuous).

Proof. 1. We have d..xi /i ; .yi /i / � dj .xj ; yj /. Thus, it suffices to take ı D ".
2. If .�/ converges then each .��/ converges by 1 and 1.6. For " > 0 choose nj

such that for k � nj , dj .xkj ; xj / < ", and consider n0 D maxj nj . Then for

k � n0, dj .xkj ; xj / < " for all j , and hence maxdj .xkj ; xj / < ".
3. immediately follows from 2 and 1.6.

3 Some topological concepts

3.1 Neighborhoods

First, define the "-ball with center x as

�.x; "/ D fy j d.x; y/ < "g:

A subset U � X is a neighborhood of a point x 2 X if there exists an " > 0 such
that

�.x; "/ � U:



40 2 Metric and Topological Spaces I

Remark: While the concept of an "-ball depends on the concrete metric, the
concept of neighborhood does not change if we replace a metric by an equivalent
one. In fact, we can change the metric even much more radically – see Exercise (5)
below.

3.1.1 Observations. 1. If U is a neighborhood of x and U � V then V is a
neighborhood of x.

2. If U1; U2 are neighborhoods of x then so is U1 \ U2.

(1: for V use the same �.x; "/. 2: if �.x; "i / � Ui then �.x;min."1; "2// �
U1 \ U2.)

3.2 Open and closed sets

A subset U � .X; d/ is open if it is a neighborhood of each of its points.
A subset A � .X; d/ is closed if for every sequence .xn/n, xn 2 A convergent in

.X; d/, the limit limxn is in A.

3.2.1 Proposition. 1. X and ; are open. If U and V are open then U \V is open,
and if Ui , i 2 J , are open (J arbitrary) then

S
i2J

Ui is open.

2. U is open if and only if X X U is closed.
3. X and ; are closed. IfA andB are closed thenA[B is closed, and ifAi , i 2 J ,

are closed then
[
i2J

Ai is closed.

Proof. 1 is straightforward (use 3.1.1).
2: Let U be open, A D X X U . The limit x of a sequence .xn/n that is all in A

cannot be in U since there is an " > 0 such that �.x; "/ � U , and the xn’s with
sufficiently large n have to be in such�.x; "/.

On the other hand, if U is not open, then there is an x 2 U such that for every n,
�.x; 1

n
/ ª U . Therefore, we can choose points xn 2 �.x; 1

n
/\Awith x D lim xn 2

U D X X A.
3 follows from 1.3 and the formulas relating intersections and unions with

complements. ut

3.3 Closure

Let A be a general subset of a metric space X D .X; d/. For a point x 2 X , define
the distance of x from A by

d.x;A/ D inffd.x; a/ j a 2 Ag:
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Note that if x 2 A then d.x;A/ D 0 but d.x;A/ can be 0 even if x … A.

The closure of a set A in .X; d/ is the set

A D fx j d.x;A/ D 0g:
This definition seems to depend heavily on the distance function. But we have

3.3.1 Proposition. 1. The set A is closed, and it is the smallest closed set
containing A. In other words,

A D
\

fB closed j A � Bg:

2. A point x 2 X is in A if and only if for each of its neighborhoodsU , U \A ¤ ;
(in other words, if and only if for each open U 3 x, U \ A ¤ ;).

Proof. 1 : U D X XA is open, since if x … A there is an " > 0 such that�.x; 2"/\
A D ; and hence by the triangle inequality�.x; "/ \ A D ;.

Let B be closed and B 	 A. Let x 2 A. For each n choose an xn 2 A (and
hence in B) such that d.x; xn/ < 1

n
. Then x D limxn is in B . The correctness of

the formula follows from 3.2.1.
2 is obvious: in yet other words we are speaking about the balls �.x; "/

intersecting A. ut

3.3.2 Proposition. 1. ; D ;, A � A, and A � B ) A � B ,
2. A [ B D A[ B , and
3. A D A.

Proof. 1 is trivial.
2: By 1, A [ B � A[ B . Now let x 2 A [ B; x is or is not in A. In the latter

case, all sufficiently close elements from A [ B have to be in B and hence x 2 B .

3: By 3.3.1 1, A is closed and since it contains B D A, it also contains B D A.
ut

We also define the interior Int.A/ D X 
 X XA. The interior of A is also
denoted by Aı. It immediately follows from Proposition 3.3.1 that the interior is
the union of all open sets contained in A. The boundary of A is defined as @A D
A X Int.A/.

3.4

Continuity can be expressed in terms of the concepts introduced in this section. We
have
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Theorem. The following statements on a mapping f W .X; d/ ! .Y; d 0/ are
equivalent.
(1) f is continuous.
(2) For every 2 X and every neighborhood V of f .x/ there is a neighborhood U

of x such that f ŒU � � V .
(3) For every U open in .Y; d 0/ the preimage f �1ŒU � is open in .X; d/.
(4) For every A closed in .Y; d 0/ the preimage f �1ŒA� is closed in .X; d/.
(5) For every subset A � X ,

f ŒA� � f ŒA�:

(6) For every subset B � Y ,

f �1ŒB� 	 f �1ŒB�:

Proof. (1))(2) : Let V be a neighborhood of f .x/ with �.f .x/; "/ � V . Choose
a ı > 0 as in (ct) for x and ". Then f Œ�.x; ı/� � �.f .x/; "/, and �.x; ı/ is a
neighborhood of x.

(2))(3) : If U � Y is open and x 2 f �1ŒU � then f .x/ 2 U and U is a
neighborhood. Hence there is a neighborhood V of x such that f ŒV � � U and we
have x 2 V � f �1ŒU �, making f �1ŒU � a neighborhood of x.

(3),(4) by 3.2.1 2, since f �1Œ�� preserves complements.
(4))(5) : We have

A � f �1ŒŒf ŒA�� � f �1Œf ŒA��:

Since f �1Œf ŒA�� is closed, we have by 3.3.1 A � f �1Œf ŒA�� and the statement
follows.

(5))(6) : We have, by (5), f Œf �1ŒB�� � f Œf �1ŒB�� � B and hence f �1ŒB� �
f �1ŒB�.

(6))(1) : If f .y/ 2 �.f .x/; "/ then f .y/ … Y X�.f .x/; "/ and hence y …
f �1ŒB� where B D Y X �.f .x/; "/. Hence y … f �1ŒB� and there is a ı > 0

such that �.y; ı/ \ f �1ŒB� D ;. Thus if d.x; y/ > ı then f .y/ … B , that is,
f .y/ 2 �.f .x/; "/. ut

3.5

A continuous mapping f W .X; d/ ! .Y; d 0/ is called a homeomorphism if there is
a continuous mapping g W .Y; d 0/ ! .X; d/ such that

fg D idY and gf D idX :
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If there exists a homeomorphism f W .X; d/ ! .Y; d 0/ we say that the spaces
.X; d/ and .Y; d 0/ are homeomorphic.

Note that if d and d 0 are equivalent metrics then the identity map idX W .X; d/ !
.X; d 0/ is a homeomorphism. But idX W .X; d/ ! .X; d 0/ can be a homeomorphism
even when d and d 0 are far from being equivalent (consider, e.g., the interval h0; �/
with the standard metric d and with d 0.x; y/ D j tanx � tan yj).

A property of a space or a concept related to spaces is said to be topological
if it is preserved under all homeomorphisms. For example, by Theorem 3.4, for a
set to be a neighborhood of a point, or to be open resp, closed, or the closure, are
topological concepts. By 1.6, convergence is a topological concept.

Continuity is a topological concept, but uniform continuity is not.
This suggests the possibility of formulating a notion of a space based only on

topological properties. We will explore this in the next section.

4 First remarks on topology

Very often, a choice of metric is not really important. We may be interested just
in continuity, and a concrete choice of metric may be somehow off the point. For
example, note that the ”natural” Pythagorean metric would have been a real burden
in dealing with the product. Sometimes it even happens that one has a natural notion
of continuity, or convergence, without having a metric defined first. It may even
happen that there is no reasonable way to define a metric.

This leads to a more general notion of a space, called a topological space. The
idea is to describe the structure of interest simply in distinguishing whether a subset
U � X containing x “surrounds” (is a neighborhood of) x, or declaring some
subsets open resp. closed, or specifying an operator of closure. We will present here
three variants of the definition, which turn out to be equivalent.

4.1

We will start with the neighborhood approach, which was historically the first one
(introduced by Hausdorff in 1914). It is convenient to denote by P.X/ the power
set of X , which means the set of all subsets of X (including the empty set and X ).
With every x 2 X , one associates a set U.x/ � P.X/, called the system of the
neighborhoods of x, satisfying the following axioms:
(1) For each U 2 U.x/, x 2 U ,
(2) If U 2 U.x/ and U � V � X then V 2 U.x/,
(3) If U; V 2 U.x/ then U \ V 2 U.x/, and
(4) For every U 2 U.x/ and every y 2 V there is a V 2 U.x/ such that U 2 U.y/.
One then defines a (possibly empty) subsetU ofX to be open ifU is a neighborhood
of each of its points. One defines a subset A of X to be closed if the complement
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X X A of A is open. The closure of a subset S of X is defined by the formula
S D fx j 8U 2 U.x/; U \ S ¤ ;g.

4.2

Nowadays probably the most common approach to the structure of topology is to
define open sets first as a set of subsets of X satisfying certain axioms. It may be
perhaps less intuitive, but it turns out to be much simpler technically.

In this approach, a topology on a set X is a subset � � P.X/ satisfying
(1) ;; X 2 � ,
(2) U; V 2 � ) U \ V 2 � ,
(3) Ui 2 �; i 2 J ) S

Ui 2 � .
In other words, we may simply say that a topology is a subset of the set P.X/
of all subsets of X which is closed under all unions and all finite intersections.
(To include (1), we allow the union of an empty set of subsets of X , which is said
to be ;, and the intersection of an empty set of subsets of X , which is said to be X .)

One then defines a closed set as a complement of an open set; U is a
neighborhood of x if there is an open V such that x 2 V � U , and the closure
is defined by the formula

A D
\

fB j A � B; B closedg:

A subset A � X is called dense if A D X .

Remark: It is possible to start equivalently with closed sets first and then define
open sets as their complements; the axioms of closed sets are obtained by expressing
the axioms for open sets in terms of their complements (see Exercise (9)).

4.3

Or, one can start with a closure operator u W P.X/ ! P.X/ satisfying
(1) u.;/ D ; and A � u.A/,
(2) u.A[ B/ D u.A/[ u.B/ and
(3) u.u.A// D u.A/.
A is declared closed if u.A/ D A, the open sets are complements of the closed ones,
and U is a neighborhood of x if x … u.X X U /.

4.4

In fact one usually thinks of a topological space as a set endowed with all the
above mentioned notions simultaneously, and the only question is which of them
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one considers primitive concepts and which are defined afterwards. The resulting
structure is the same. (See the Exercises.)

4.5

A topology is not always obtained from a metric (if it is we speak of a metrizable
space). Here are two rather easy examples.

(a) Take an infinite set X and declare U � X to be open if either it is void or if
X X U is finite.

(b) Take a partially ordered set .X;�/ and declare U to be open if U D
fx j 9y 2 U ; x � yg. (Note: this topology is metrizable for certain special
choices of partial orderings, but certainly not in general.)

Non-metrizable spaces of importance are of course seldom defined as easily as
this. But it should be noted that many non-metrizable spaces are of interest today.

4.6

A mapping f W X ! Y between topological spaces is continuous if for every
x 2 X and every neighborhood V of f .x/ there is a neighborhood U of x such
that f ŒU � � V (cf. (2) in Theorem 3.4). If we replace in 3.4 the metric definition of
continuity (1) with the definition we just made, we have the following more general
result:

Theorem. Let X; Y be topological spaces. Then the following statements on a
mapping f W X ! Y are equivalent.
(1) f is continuous.
(2) For every U open in Y the preimage f �1ŒU � is open in X .
(3) For every A open in Y the preimage f �1ŒA� is closed in X .
(4) For every subset A � X ,

f ŒA� � f ŒA�:

(5) For every subset B � Y ,

f �1ŒB� 	 f �1ŒB�:

Proof. Most of the implications can be proved by the same reasoning as in 3.4. The
only one needing a simple adjustment is

(5))(1): Let (5) hold and let V be a neighborhood of f .x/. Thus, f .x/ …
Y X V , that is, x … f �1ŒY X V �. Hence, U D X X f �1ŒY X V � D f �1ŒV � is
a neighborhood of x, and f ŒU � D ff �1ŒV � � V . ut
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4.7

The system of open sets � constituting a topology is often determined by a so-called
basis, which means a subset B � � such that

B1;B2 2 B ) B1 \ B2 2 B and

for every U 2 �; U D
[

fB j B 2 B; B � U g:

(For example, the set of all open intervals, or the set of all open intervals with
rational endpoints are bases of the standard topology of the real line R).

One may wish to define a topological space where some particular subsets
are open, thus specifying a subset S � P.X/ of such sets without any a priori
properties. One easily sees that the smallest topology containing S is the set of all
unions of finite intersections of elements of S. Then one speaks of S as of a subbasis
of the topology obtained.

The preimages of (finite) intersections are (finite) intersections, and preimages of
unions are unions of preimages. Consequently we obtain from 4.6 an important

Observation. A mapping f W .X; �/ ! .Y; �/ is continuous if and only if there is
a subbasis S of � such that each f �1ŒS� with S 2 S is open.

(Thus e.g. to make sure a real function f W X ! R is continuous it suffices to
check that all the f �1Œ.�1; a/� and f �1Œ.a:C 1/� are open.)

4.8

Let .X; �/ be a topological space and let Y � X be a subset. We define the subspace
of .X; �/ carried (or induced) by Y as

.Y; � jY / where � jY D fU \ Y j U 2 �g:

Since for the embedding map j W Y ! X , j�1ŒU � D U , the map j is continuous;
furthermore, if f W .Z; �/ ! .X; �/ is a continuous map such that f ŒZ� � Y then
the map .z 7! f .z// W .Z; �/ ! .Y; � jY / is continuous as well.

Note that this is in accordance with the concept of subspace in the metric case: the
metric subspace (cf. 2.1) has the topology just described, obtained from the topology
of the larger metric space.

4.8.1 Convention
Unless otherwise stated, the subsets of a topological space will be understood to
be endowed with the induced topology, and we will subject the terminology to this
convention. Thus we will speak of “connected subsets” or “compact subsets” etc
(see below) or on the other hand of an ‘open subspace” or ”closed subspace”, etc.
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5 Connected spaces

One of the simplest notions defined for topological spaces is connectedness.

5.1

A topological space X is said to be connected if for any two open sets U; V � X

which satisfy U \ V D ; and U [ V D X , we have U D ; (and hence V D X ),
or V D ; (and hence U D X ). It is also common, for a subset S � X , to say
that S is connected if S is a connected topological space with respect to the induced
topology. Note that this is equivalent to saying that for open sets U; V � X such
that U \ V \ S D ; and U [ V 	 S , we have U 	 S or V 	 S . The following
observations are immediate.

5.1.1 Proposition. Let X be a connected space and f W X ! Y a continuous map
which is onto. Then Y is connected.

Proof. Suppose U; Y � Y are open, U \ V D ;, U [ V D Y . Then f �1ŒU � \
f �1ŒV � D ;, f �1ŒU � [ f �1ŒV � D X , so f �1ŒU � D ; or f �1ŒV � D ;, which
implies U D ; or V D ; since f is onto. ut

5.1.2 Proposition. Let Si � X , i 2 I , and let each Si be connected. Suppose
further for every i; j 2 I , there exist i0; : : : ; ik 2 I , i0 D i , ik D j such that
Sit \ SitC1

¤ ;. Then

S D
[
i2I
Si

is connected.

Proof. Suppose U; V are open in X , U [V 	 S; U \V \S D ;. Suppose further
U is non-empty. Then there exists an i 2 I such thatU \Si ¤ ;, and henceU 	 Si
since Si is connected. Now select any j 2 I and let i0; : : : ; ik be as in the statement
of the Proposition. By induction on t , we see that U \ Sit ¤ ;, and hence U 	 Sit
since Sit is connected. Thus, U 	 Sj . Since j 2 I was arbitrary, U 	 S . ut

5.1.3 Corollary. A product X � Y of two connected metric spaces X; Y is
connected.

Proof. Choose a point x 2 X and consider the sets S0 D fxg � Y , Sy D X � fyg
for y 2 Y . Then Si , i 2 Y q f0g, satisfy the assumptions of Proposition 5.1.2. ut

5.1.4 Proposition. The closure of a connected subset S of a topological space is
connected.
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Proof. If U; V � S satisfy U \ V D ;, U [ V D S and U; V are non-empty open
in S , then U \ S , V \ S are non-empty and open in S , their union is S and their
intersection is non-empty, contradicting the assumption that S is connected. ut

5.2 Connectedness of the real numbers

The fact that the set R of all real numbers is connected is “intuitively obvious”, but
must be proved with care. Let us start with a preliminary result.

5.2.1 Lemma. Every open set U � R is a union of countably (or finitely) many
disjoint open intervals.

Proof. We know that U is a union of countably many open intervals Ui , i D
1; 2; : : : since open intervals .q1; q2/, q1; q2 2 Q, form a basis of the topology
of R. Note also that if V;W are open intervals and V \ W ¤ ;, then V [ W is
an open interval, and that an increasing union of open intervals is an open interval.
Now consider an equivalence class on f1; 2; : : : g where i 
 j if and only if there
exist i0; : : : ; ik such that i0 D i , ik D j and Uit \ UitC1

¤ ;. Then the sets

[
i2C

Ui

where C are equivalence classes with respect to 
 are disjoint open intervals whose
union is U . ut

5.2.2 Theorem. The connected subsets of R are precisely (open, closed, half-open,
bounded, unbounded, etc.) intervals.

Proof. Let us first prove that intervals are connected. Let J be an interval. Suppose
U; V are open in R, U \ V 	 J , U \ V \ J D ;. Suppose U is non-empty. By
Lemma 5.2.1,U is a disjoint union of countably many open intervalsUi , i 2 I ¤ ;.
Without loss of generality, none of the sets Ui is disjoint with J . Choose i 2 I , and
suppose Ui D .a; b/ does not contain J . Then .a; b/ [ J is an interval containing
but not equal to .a; b/, so a 2 J or b 2 J . Let, without loss of generality, b 2 J .
Then b … V , b … Uj , j ¤ i , since V , Uj , j ¤ i are open and disjoint with Ui .
Thus, b 2 J X .U [ V /, which is a contradiction.

On the other hand, suppose that S � R is connected but isn’t an interval. Then
there exist points x < z < y, x; y 2 S , z … S . But then S � .�1; z/ [ .z;1/,
which contradicts the assumption that S is connected. ut

5.2.3 Corollary. The Euclidean space Rn is connected.

Proof. This follows from Theorem 5.2.2 and Corollary 5.1.3. ut
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5.3 Path-connected spaces

A topological space X is called path-connected if for any two points x; y 2 X ,
there exists a continuous map 	 W h0; 1i ! X such that 	.0/ D x, 	.1/ D y.
By Theorem 5.2.2, Proposition 5.1.1 and Proposition 5.1.2, a path-connected space
is connected. See Exercise (14) for an example of a closed subset of R2 which is
connected but not path-connected.

5.3.1 Proposition. Let U � R
n be a connected open set (with the induced

topology). Then U is path-connected.

Proof. If U is empty, it is clearly path-connected. SupposeU is non-empty. Choose
a point x 2 U . Let V � U be the set of all points y 2 U for which there exists a
continuous map 	 W h0; 1i ! U such that 	.0/ D x, 	.1/ D y. We claim that V is
open in U : this is the same as being open in R

n. If 	 is as above,�.y; "/ � U , and
z 2 �.y; "/, extend 	 to a map h0; 2i ! U by putting 	.1C t/ D tz C .1� t/y for
t 2 h0; 1i. Clearly 	 is continuous, and defining  W h0; 1i ! U by  .t/ D 	.2t/

shows z 2 V .
We also claim, however, that V is closed in U : Let yn ! y, yn 2 V , y 2 U .

Since U is open, there exists an " > 0, �.y; "/ � U . Then there exists an n such
that yn 2 �.y; "/. Then we proceed the same way as above: Let 	 W h0; i ! U ,
	.0/ D x, 	.1/ D yn. Extend 	 to a map h0; 2i ! U by putting 	.1 C t/ D
ty C .1 � t/yn for t 2 h0; 1i. Putting again  .t/ D 	.2t/ shows that y 2 V .

Since V ¤ ; (since x 2 V ), and since V is open and closed in U , we must have
V D U , since U is connected. ut

5.4 Connected components

Let X be a topological space. Let 
 be a relation on X where x 
 y if and
only if there exists a connected subset S � X such that x; y 2 S . Then 
 is an
equivalence relation (transitivity follows from Proposition 5.1.2). The equivalence
classes of 
 are called the connected components of X . Also by Proposition 5.1.2,
connected components are connected subsets of X .

An immediate consequence of Proposition 5.1.4 is the following:

5.4.1 Lemma. Connected components of X are closed subsets of X . ut

Connected components may not be open: consider Q (with the topology induced
from R). Then the connected components are single points. We have, however,

5.4.2 Lemma. Let U � R
n be an open set. Then the connected components of U

are open in U (hence in R
n).
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Proof. Let x 2 U . Then there exists " > 0 such that �.x; "/ � U , but �.x; "/
is homeomorphic to R

n and hence connected by Corollary 5.2.3, so �.x; "/ is
contained in the connected component of x. Since this is true for every point x,
the connected components are open. ut

5.5 A result on bounded closed intervals

The proof of the following result will seem, in nature, related to the proof of the
fact that the real numbers are connected. While this is true, it turns out to be mainly
due to special properties of the real numbers. The result itself is a reformulation of
compactness, a notion which we will discuss in the next section. An understanding
of this connection for general metric spaces, however, will have to be postponed
until Chapter 9 below.

By an open interval (resp. bounded closed interval) in R
n we mean a set of the

form
nY

kD1
.ak; bk/ (resp. of the form

nY
kD1

hak; bki, �1 < ak; bk < 1).

Theorem. For every bounded closed interval K in R
n and every set of open

intervals S such that K �
[
I2S

I , there exists a finite subset F � S such that

J �
[
I2F

I .

Proof. Let us first consider the case n D 1. Let ha; bi be contained in a union of a
set S open intervals. Let t 2 ha; bi be the supremum of the set M of all s 2 ha; bi
such that ha; si is contained in a union of some finite subset of S . We want to prove
that t D b. Assume, then, that t < b. Then there exists a J 2 S such that t 2 J . On
the other hand, by the definition of supremum, there exist si 2 M such that si % t .
Then, for some i , si 2 J . But we also know that there exists a finite subset F � S

whose union contains ha; si i. Then the union of the finite subset F [ fJ g contains
ha; xi for every x 2 J , contradicting t D supM .

Now let us consider general n. Assume, by induction, that the statement holds
with n replaced by n � 1. Let K D ha1; b1i � � � � � han; bni. Then for every point
x 2 ha1; b1i, there exists, by the induction hypothesis, a finite subset Fx � S

such that fxg � ha2; b2i � � � � � han; bni � Fx . Let Ix be the intersection of all the
(1-dimensional) intervals I1 where I1 � � � � � In 2 Fx . Then ha1; b1i is contained in
the union of the open intervals Ix , x 2 ha1; b1i, and hence there are finitely many

points x1; : : : ; xk 2 ha1; b1i such that ha1; b1i �
k[
iD1

Ixi . ThenK is contained in the

union of the open intervals in Fx1 [ � � � [ Fxk . ut
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Corollary. For every bounded closed interval K in R
n and every set of open sets

Q such that K �
[
I2Q

I , there exists a finite subset F � Q such that J �
[
I2F

I .

(Apply the theorem to the set S of all open intervals which are contained in one
of the open sets in Q.)

6 Compact metric spaces

6.1

A metric space X is said to be compact if each sequence .xn/n in X contains a
convergent subsequence. Thus, in particular, a bounded closed interval ha; bi in R

is compact (recall Theorem 2.3 of Chapter 1).

6.2 Proposition. 1. A subspace of a compact space is compact if and only if it is
closed.

2. If f W X ! Y is continuous then the image f ŒA� of any compact A � X is
compact.

Proof. 1. Let A be a closed subspace of a compact X . Let .xn/n be a sequence of
points of A. There is a subsequence xk1 ; xk2 ; xk3 ; : : : converging in X . Since A
is closed, the limit is in A.
Now let A not be closed. Then there is a sequence .xn/n of elements of A
convergent in X , with the limit x in X X A; since each subsequence converges
to x, there is none converging to a point in A.

2. Let .yn/n be a sequence in f ŒA�. Choose xi 2 A such that yi D f .xi /. Since
A is compact we have a subsequence xk1 ; xk2 ; xk3 ; : : : converging to an x 2 A.
Then by 1.5, yk1 ; yk2 ; yk3 ; : : : converges to f .x/. ut

6.2.1
Note that from the second part of the proof of the first statement we obtain an
immediate

Observation. A compact subspace of any metric space X is closed in X .

Remark. Thus we have a slightly surprising consequence: if X is compact, Y is
a general metric space and if f W X ! Y is a continuous mapping then, besides
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preimages of closed sets being closed, also the images of closed sets are closed.
We will learn more about this phenomenon in Chapter 9 below. For now, let us
record the following

6.2.2 Corollary. Let f W X ! Y be a continuous bijective (i.e. one to one and
onto) map of metric spaces where X is compact. Then f is a homeomorphism.

6.3 Proposition. Let X be a compact metric space. Then for each continuous real
function f on X there exist x1; x2 2 X such that

f .x1/ D minff .x/ j x 2 Xg and f .x2/ D maxff .x/ j x 2 Xg:

(Compare with 3.4 of Chapter 1.)

Proof. A compact subspace A of R has a minimal and a maximal point, namely
infA and supA that are obviously limits of sequences in A. Apply to A D f ŒX�,
compact by 6.2. ut

6.4 Proposition. (Finite) products of compact spaces are compact.

Proof. We will begin with the product X � Y of two compact metric spaces - the
extension to a general finite product follows by induction.

Let

.x1; y1/; .x2; y2/; .x3; y3/; : : : (*)

be a sequence of points of X � Y . In X , choose a convergent subsequence .xkn/n
of .xn/n. Now take the sequence .ykn/n in Y and choose a convergent subsequence
.ykrn /n. Then by 2.2.2.2 (and (1.2.1)),

.xkr1 ykrn /; .xkr2 ; ykr2 /; .xkr3 ; ykr3 /; : : :

is a convergent subsequence of (*). ut

A metric space .X; d/ is bounded if there exists a number K such that for all
x; y 2 X , d.x; y/ < K . From the triangle inequality we immediately see that this
is equivalent to any of the following statements:

there is a K such that for every x; X � �.x;K/;

for every x there is a K such that X � �.x;K/:
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6.5 Theorem. A subspace of the Euclidean space Rm is compact if and only if it is
bounded and closed.

Proof. I. From Theorem 2.3 of Chapter 1, we already know that a bounded closed
interval is compact.

II. Now let X be a bounded closed subspace of Rm. Since it is bounded there are
intervals hai ; bi i, i D 1; ; : : : ; m, such that

X � J D ha1; b1i � � � � � ham; bmi:

By 6.4 and I, J is compact. The subspace X is closed in R
m, hence in J , and

hence it is compact by 6.2.
III. Let X not be closed in R

m. Then it is not compact, by 6.2.1.
IV. LetX not be bounded. Choose arbitrarily x1 and then xn such that d.x1; xn/>n.

A convergent sequence is always bounded (all but finitely many of its elements
are in the "-ball of the limit). Thus, .xn/n cannot have a convergent subsequence
as it has no bounded one. ut

6.6

We have already observed that uniform continuity is a much stronger property than
continuity (even the real function x 7! x2 is not uniformly continuous). But the
situation is different for compact spaces. We have

Theorem. Let X; Y be metric spaces and let X be compact. Then a mapping f W
X ! Y is uniformly continuous if and only if it is continuous.

(Compare with Theorem 3.5.1 of Chapter 1.)

Proof. Let f be continuous but not uniformly continuous. Negating the defini-
tion,

there is an "0 > 0 such that for every ı > 0 there are x.ı/; y.ı/ such that

d.x.ı/; y.ı// < ı while d 0.f .x.ı//; f .y.ı/// � "0:

Consider xn D x. 1
n
/ and yn D y. 1

n
/. Choose a convergent subsequence .xkn/n of

.xn/n and a convergent subsequence .ykrn /n of .ykn/n, set exn D xkrn and eyn D ykrn ,
and finally x D limexn and y D limeyn. As d.exn;eyn/ < 1

n
, x D y. This is a

contradiction since by continuity f .x/ D limf .exn/ and f .y/ D lim f .eyn/ and
d.f .exn/; f .eyn// is always at least "0. ut
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7 Completeness

7.1

A sequence .xn/n in a metric space .X; d/ is said to be Cauchy if

8" > 0 9n0 such that 8m; n � n0; d.xm; xn/ < ":

7.2 Proposition. 1. Every convergent sequence is Cauchy.
2. Let a Cauchy sequence .xn/n contain a convergent subsequence; then the whole

sequence .xn/n converges.
3. Every Cauchy sequence is bounded.

Proof. 1. Let lim xn D x. For " > 0 choose an n0 such that d.xn; x/ < "
2

for all
n � n0. Then form; n � n0,

d.xm; xn/ � d.xm; x/C d.x; xn/ <
"

2
C "

2
D ":

2. Let .xn/n be Cauchy and let .xkn/n be a subsequence converging to a point x.
Choose an n1 such that for m; n � n1, d.xm; xn/ < "

2
, and an n2 such that for

n � n2, d.xkn ; x/ <
"
2
. Set n0 D max.n1; n2/. Since kn � n we have, for

n � n0,

d.xn; x/ � d.xn; xkn/C d.xkn ; x/ < ":

3. Choose n0 such that form; n � n0, d.xm; xn/ < 1. Then for any n,

d.x; xn0/ < 1C max
k�n0

d.xn0; xk/: ut

7.3

A metric space .X; d/ is said to be complete if every Cauchy sequence in X

converges.

7.3.1 Proposition. A subspace A of a complete space X is complete if and only if
it is closed.

Proof. Let A be closed. If a sequence is Cauchy in A, it is Cauchy in X and hence
convergent. Since A is closed, the limit of the sequence has to be in A.

If A is not closed there is a sequence .xn/n with xn 2 A, convergent in X to
an x 2 X X A. Then .xn/n is Cauchy in X and hence in A as well; but all of its
subsequences converge to x and hence do not converge in A. ut
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7.4 Proposition. A compact metric space is complete.

Proof. Let .xn/n be a Cauchy sequence in a compact metric space X . Then it has a
convergent subsequence, and by 6.2 2, it converges. ut

7.5 Theorem. The Euclidean space R
m (in particular, the real line R) is complete.

Consequently, a subspace of Rm is complete if and only if it is closed.

Proof. Let .xn/n be a Cauchy sequence in R
m. By 6.2 it is bounded and hence

fxn j n D 1; 2; : : : g � J D ha1; b1i � � � � � ham; bmi

for sufficiently large intervals haj ; bj i. By 6.4 .xn/n converges in J and hence it
converges in R

m. ut

Remark. The special case of the real line is the well-known Bolzano-Cauchy
Theorem (Theorem 2.4 of Chapter 1).

7.6

The following is the well-known Banach Fixed Point Theorem. At first sight it
may seem that its use will be rather limited: the assumption is very strong. But the
reader will be perhaps surprised by the generality of one of the applications in 3.3
of Chapter 6.

Theorem. Let .X; d/ be a complete metric space. Let f W X ! X be a mapping
such that there is a q < 1 with

d.f .x/; f .y// � q � d.x; y/ (*)

for all x; y 2 X . Then there is precisely one x 2 X such that f .x/ D x.

Proof. Choose any x1 2 X and then, inductively,

xnC1 D f .xn/:

Set C D d.x1; x2/. By the assumption we have

d.x2; x3/ � Cq; d.x3; x4/ � Cq2; : : : ; d.xn; xnC1/ � Cqn�1:

Thus, by triangle inequality, form � nC 1,

d.xn; xm/ D C.qn�1CqnC� � �Cqm�2/ � Cqn�1.1CqCq2C� � � / D C

1 � q �qn�1:
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Hence, .xn/n ia a Cauchy sequence and we have a limit x D limxn. Now a mapping
f satisfying (*) is clearly continuous and hence we have

f .x/ D f .lim xn/ D lim f .xn/ D lim xnC1 D x:

Finally, if f .x/ D x and f .y/ D y then

d.x; y/ D d.f .x/; f .y// � q � d.x; y/ with q < 1

which is possible only if d.x; y/ D 0. ut

7.7 An Example: Spaces of continuous functions

Let X D .X; d/ be a metric space. Denote by

C.X/

the space of all bounded continuous real functions f W X ! R, endowed with the
metric

d.f; g/ D sup
x2X

jf .x/ � f .x/j:

(The function d thus defined really is a metric. Obviously d.f; g/ D 0 implies
f D g and d.f; g/ D d.g; f /. Suppose d.f; g/ C d.g; h/ < d.f; g/; then there
is an x 2 X such that d.f; g/ C d.g; h/ < jf .x/ � h.x/j, but then in particular
jf .x/ � g.x/j C jg.x/ � h.x/j < jf .x/ � h.x/j, a contradiction.)

Remark. Of course, by 2.4.2, if X is compact then C.X/ is the space of all
continuous functions on X .

7.7.1 Observation. The convergence in C.X/ is exactly the uniform convergence
defined in 8.1.

(We have d.f; g/ < " if and only if for all x 2 X , jf .x/ � g.x/j < ".)

7.7.2 Proposition. The space C.X/ with the metric defined above is complete.

Proof. Let .fn/n be a Cauchy sequence in C.X/. Then, since jfn.x/ � fm.x/j �
d.fn; fm/ for each x 2 X , every .fn.x//n is a Cauchy sequence in R, and hence a
convergent one. Set
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f .x/ D lim
n
fn.x/:

Claim. The sequence .fn/n converges to f uniformly.
Proof of the Claim. Consider an " > 0. There exists an n0 such that
form; n � n0,

8x; jfn.x/ � fm.x/j < "
2

and hence lim
m!1 jfn.x/ � fm.x/j D jfn.x/� lim

m!1fm.x/j D
jfn.x/� f .x/j � "

2
< ". Thus, for n�n0 and for all x 2X , jfn.x/ �

f .x/j<". ut
Proof of the Proposition continued. By the Claim and 8.2, f is continuous. Now
there exists an n0 such that for all n;m � n0, d.fn; fm/ D sup

x

jfn.x/ � fm.x/j <
1 and hence, taking the limit, we obtain jfn.x/ � f .x/j � 1 for all x. Thus, if
jfn0.x/j � K we have jf .x/j � K for all x.

Now we know that f is bounded and continuous, hence f 2 C.X/, and by 7.7.1
and the Claim again, .fn/n converges to f in C.X/. ut

7.7.3
Let a; b 2 R [ f�1:C 1g. Put

C.X I a; b/ D ff 2 C.X/ j 8x; a � f .x/ � bg:

Proposition. The subspace C.X I a; b/ is closed in C.X/. Consequently, it is
complete.

Proof. Recall 8.1.1. Since uniform convergence implies pointwise convergence, if
a � fn.x/ � b and fn converge to f then a � f .x/ � b and f 2 C.X I a; b/.

The consequence follows from 7.3.1. ut

8 Uniform convergence of sequences of functions.
Application: Tietze’s Theorems

On various occasions we have seen that general facts the reader knew about real
functions of one real variable held generally, and the proofs did not really need
anything but replacing jx � yj by the distance d.x; y/. For example, this was
the case when studying the relationship between continuity with convergence, or
when proving that continuous maps of compact spaces are automatically uniformly
continuous; or the fact about maxima and minima of real functions on a compact
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space (where in fact the general proof was in a way simpler, or more transparent,
due to the observation that the image of a compact space is compact).

In this section we will introduce yet another case of such a mechanical exten-
sion, namely the behavior of uniformly convergent sequences of mappings, resp.
uniformly convergent series of real functions. As an application we will present
rather important Tietze Theorems on extension of continuous maps.

8.1

Let .X; d/, .Y; d 0/ be metric spaces. A sequence of mappings

f1; f2; f3; : : : W X ! Y

is said to converge uniformly to f if
for every " > 0 there is an n0 such that for all n � n0 and for all x 2 X ,

d 0.fn.x/; f .x// < ":

This is usually indicated

fn � f:

8.1.1 Remarks
1. Note that if fn � f then

lim fn.x/ D f .x/ for all x. (*)

The statement (*) alone, (called pointwise convergence), is much weaker, and
would not suffice as an assumption in 8.2 below.

2. Also note that in the above definition, one uses the metric structure in .Y; d 0/
only. See 8.2.1 below.

8.2 Proposition. Let fn � f for mappings .X; d/ ! .Y; d 0/. Let all the functions
fn be continuous. Then f is continuous.

Proof. For " > 0 choose n such that d 0.fn.x/; f .x// < "
3

for all x. Since fn is
continuous there is a ı > 0 such that d.x; y/ < ı implies d 0.fn.x/f .x// < "

3
. Now

we have the implication

d.x;y/ < ı ) d 0.f .x/; f .y//

� d 0.f .x/; fn.x//C d 0.fn.x/; fn.y//C d 0.fn.y/; f .y// <
"

3
C "

3
C "

3
D ":

ut
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8.2.1
Note that an analogous proposition also holds for a topological space .X; �/ instead
of a metric one. In the proof replace the requirement of ı by a neighborhoodU of x
such that fnŒU � � �.fn.x/;

"
3
/ and use for y 2 U the triangle inequality as before.

8.3 Corollary. Let fn W .X; d/ ! R be continuous functions, let
P
an be a

convergent series of real numbers, and let for every n and every x, jfn.x/j � an.

Then gn.x/ D
nX

kD1
fk.x/ uniformly converge to

1X
kD1

fk.x/ and hence g D .x 7!
1X
kD1

fk.x// is a continuous function.

8.4 Lemma. Let A;B be disjoint closed subsets of a metric space .X; d/ and let
˛; ˇ be real numbers. Then there is a continuous function

' D ˆ.A;BI˛; ˇ/ W X ! R

such that

'ŒA� � f˛g; 'ŒB� � fˇg and minf˛; ˇg � '.x/ � maxf˛; ˇg: (ˆ)

Proof. Set

'.x/ D ˛ C .ˇ � ˛/ d.x;A/

d.x;A/C d.x;B/
:

This definition is correct: d.x;A/ C d.x;B/ D 0 yields d.x;A/ D d.x;B/ D 0

and by closedness x 2 A and x 2 B; but A and B are disjoint.
Furthermore,  .x/ D d.x; C / is continuous (by triangle inequality, d.y; C / �

d.x; C / C d.x; y/ and hence jd.x; C / � d.y; C /j � d.x; y/) so that ', obtained
by arithmetic operations from continuous functions, is continuous as well.

The properties listed in .ˆ/ are obvious. ut

8.5 Theorem. (Tietze) Let A be a closed subspace of a metric space X and let
J be a compact interval in R. Then each continuous mapping f W A ! J can be
extended to a continuous g W X ! J (that is, there is a continuous g such that
gjA D f ).

Proof. For a degenerate interval ha; ai the statement is trivial and all the other
compact intervals are homeomorphic; if the statement holds for J1 and if h W J !
J1 is a homeomorphism we can extend for f W A ! J the hf to a g W X ! J1
and then take g D h�1g. Thus we can choose the J arbitrarily. For our purposes,
J D h�1; 1i will be particularly convenient.
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Set A1 D f �1Œh�1;� 1
3
i� and B1 D f �1Œh 1

3
; 1i� and consider

'1 D ˆ.A1; B1I �1
3
;
1

3
/:

We obviously have

8x 2 A; jf .x/ � '1.x/j � 2

3
:

Set f1 D f � '1.
Suppose we already have continuous

f D f1; f2; : : : ; fn W A ! h�1; 1i and '1; '2; : : : 'n W X ! h�1; 1i

such that for all k D 1; : : : ; n,

j'k.x/j � 1

3k
; fk.x/ D fk�1.x/ � 'k.x/ and jfk.x/j � 2

3k
: (*)

Then set

AnC1 D f �1Œh� 1

3n
;� 1

3nC1 i�; BnC1 D f �1Œh 1

3nC1 ;
1

3n
i�;

'nC1 D ˆ.AnC1; BnC1I � 1

3nC1 ;
1

3nC1 / and fnC1 D fn � 'nC1:

Thus we obtain sequences of continuous functions '1; '3; : : : ; 'k; : : : and f D
f0; f1; : : : ; fk; : : : satisfying (*) for all k. By 7.3, we have a continuous function

g D .x 7!
1X
kD1

'k.x// W X ! R and since jg.x/j �
1X
kD1

2

3k
D 1, we can view it as

a continuous function

g W X ! h�1; 1i:

Now let x 2 A. We have

f .x/ D '1.x/Cf1.x/ D '1.x/C'2.x/Cf2.x/ D � � � D '1.x/C� � �C'n.x/Cfn.x/

and since limn fn.x/ D 0 we conclude that f .x/ D g.x/. ut
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8.5.1 Theorem. (Tietze’s Real Line Theorem) Let A be a closed subspace of a
metric space X . Then each continuous mapping f W A ! R can be extended to
a continuous g W X ! R.

Proof. We can replace R by any space homeomorphic with R (recall the first
paragraph of the previous proof). We will take the open interval .�1; 1/ instead
and extend a map f W A ! .�1; 1/.

By 8.5, f can be extended to a g W X ! h�1; 1i. Such g can, however reach the
values �1 or 1 and hence is not an extension as desired. To remedy the situation,
consider B D g�1Œf�1; 1g� which is a closed set disjoint with A, consider the ' D
ˆ.A;B; 0; 1/ from 8.4, and define

g.x/ D g.x/ � '.x/:

Now we have f .x/ D g.x/ D g.x/ for x 2 A, and jg.x/j < 1 for all x 2 X : if
g.x/ D 1 or �1 then '.x/ D 0.

8.5.2
A subspace R of a space Y is said to be a retract of Y if there exists a continuous
r W Y ! R such that r.x/ D x for all x 2 R.

A metric space Y is injective if for every metric space X and closed A � X ,
each continuous f W A ! Y can be extended to a continuous g W X ! Y . (Thus,
we have learned above that R and any compact interval are injective spaces.)

Theorem. Every retract of a Euclidean space is injective.

Proof. First we will prove that a Euclidean space itself is injective. Consider it as
the product

R
m D R � � � � � R m times

with the projections pj ..x1; : : : ; xm// D xj . Let f W A ! R
m be a continuous

mapping. Then we have by 8.5.1 continuous gj W X ! R such that gj jA D pjf .
By 2.2.2 we have the continuous g D .x 7! .g1.x/; : : : ; gm.x/// W X ! R

m and
for x 2 A we obtain g.x/ D .p1f .x/; : : : ; pmf .x// D f .x/.

Now let Y be a retract of Rm with a retraction r W Rm ! Y and an inclusion map
j W Y ! R

m (thus, rj D id). Now if f W A ! Y (or, rather, jf W A ! R
m) is

extended to g W X ! R
m, the desired extension g is rg. ut
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9 Exercises

(1) Prove 1.4.1.
(2) Prove Proposition 1.5.1.
(3) Prove Observation 1.5.2.
(4) Prove that f W .X; d/ ! .Y; d 0/ is continuous if and only if for each

convergent sequence .xn/n in .X; d/ the sequence .f .xn// is convergent (not
specifying the limits.).

(5) (a) Consider the set of real numbers R. Prove that the function

d 0.x; y/ D jx3 � y3j

is a metric which is not equivalent to the metric d given in exam-
ple 1.1.1 (a).

(b) Prove that nevertheless, neighborhoods with respect to d are the same as
neighborhoods with respect to d 0.

(6) Each �.x; "/ is open (use the triangle inequality).
(7) Let Y be a subspace of .X; d/. U is open (closed) in Y if and only if there

exists an open (closed) V in X such that U D V \ Y . The closure of A in y
is A \ Y where A is the closure in X (discuss this from the various aspects of
closure as presented in 3.3.

(8) Find an example when uniform continuity is not preserved under homeomor-
phism.

(9) Write down a definition of topology based on closed subsets of X .
(10) Check that the closures as defined in 4.1 and 4.2 satisfy the requirements

of 4.3).
(11) Starting with open sets, define neighborhoods, and from them define closure

as indicated above. Prove that you get the same as the closure defined from
open sets directly.

(12) Start with open sets, define neighborhoods, and then open sets as in 4.1. Prove
that the open sets thus defined are precisely the same sets as the original ones
(note the role of the somewhat clumsy requirement (4) in 4.1).

(13) Preserving connectedness is not the same as continuity. Give an example of a
map f W X ! Y such that for every connected S � X , f ŒS� is connected
(with the induced topology from Y ), but f is not continuous. [Hint: TakeX D
Q, the rational numbers.]

(14) Let X � R
2 be the union of the set of all points .0; y/, y 2 h�1; 1i and the set

of all points .x; sin.1=x//, x > 0, with the induced topology.
(a) Prove that X � R

2 is a closed subset.
(b) Prove that X is connected but not path-connected.

(15) Let U � R
n be a connected open set, and let x; y 2 U . Prove that

there exist x0; : : : ; xk 2 U , x0 D x, xk D y, such that the straight line
segment connecting xt ; xtC1 is contained in U . [Hint: mimic the proof of
Proposition 5.3.1.]
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(16) Path-connected components are defined the same way as connected com-
ponents in 5.4, with the word “connected” replaced by the word “path-
connected”. Are path-connected components necessarily closed? Prove or give
a counterexample.

(17) Check that convergence in the metric spaces defined in 1.1.1 (d), (e) is
precisely uniform convergence.

(18) Prove an analogue of Proposition 8.2 for uniform continuity instead of
continuity.

(19) LetK be the set of all real numbers of the form
1X
kD1

ak3
�k, where ak 2 f0; 2g.

(This is called the Cantor set.) Prove thatK is compact. Prove thatK contains
no compact interval with more than one point.

(20) Prove that a subspace of Rm is injective if and only if it is a retract.
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