
2The Pigeonhole Principle

2.1 The Pigeonhole Principle

The pigeonhole principle is one of the most used tools in combinatorics, and one
of the simplest ones. It is applied frequently in graph theory, enumerative combi-
natorics and combinatorial geometry. Its applications reach other areas of mathe-
matics, like number theory and analysis, among others. In olympiad combinatorics
problems, using this principle is a golden rule and one must always be looking for
a way to apply it. The first use of the pigeonhole principle is said to be by Dirichlet
in 1834, and for this reason it is also known as the Dirichlet principle.

Proposition 2.1.1 (Pigeonhole principle) If n + 1 objects are arranged in n places,
there must be at least two objects in the same place.

The proof of this proposition is almost immediate. If in every place there would
be at most one object, we would have at most n objects, which contradicts the hy-
pothesis. However, with the same reasoning we can prove a stronger version.

Proposition 2.1.2 (Pigeonhole principle, strong version) If n objects are arranged
in k places, there are at least �n

k
� objects in the same place.

�x� represents the smallest integer that is greater than or equal to x. Even though
this result seems rather inconspicuous, it has very strong applications and is used
frequently in olympiad problems.

Example 2.1.3 Given a triangle in the plane, prove that there is no line that does not
go through any of its vertices but intersects all three sides.

Solution Any line divides the plane into two parts. By the pigeonhole principle,
since there are three vertices, there must be at least two on the same side. The trian-
gle side formed by those two vertices does not intersect the line. �
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18 2 The Pigeonhole Principle

Example 2.1.4 Prove that given 13 points with integer coordinates, one can always
find 4 of them such that their center of gravity1 has integer coordinates.

Solution Let us regard the coordinates modulo 2. There are only 4 possibilities:
(0,0), (0,1), (1,0) and (1,1). So, by the pigeonhole principle, out of every 5 there
must be two that have the same coordinates modulo 2. Let us take 2 such points and
separate them from the others. We can continue this process and remove pairs with
the same parity modulo 2 until we only have 3 points left. At that moment we have
5 different pairs which sum to 0 modulo 2 in both entries. Each sum modulo 4 can
be 0 or 2, which gives only 4 possibilities for the sums modulo 4. Since we have 5
pairs, there must be 2 of them whose sums have the same entries modulo 4. These
4 points are the ones we were looking for. �

Exercise 2.1.5 Find 12 points in the plane with integer coordinates such that the
center of gravity of any 4 of them does not have integer coordinates.

Example 2.1.6 (Russia 2000) A 100 × 100 board is divided into unit squares. These
squares are colored with 4 colors so that every row and every column has 25 squares
of each color. Prove that there are 2 rows and 2 columns such that their 4 intersec-
tions are painted with different colors.

Solution Let us count the number P of pairs of squares (a1, a2) such that a1 and
a2 are in the same row and have different colors. In every row there are 25 squares
of each color, so there are

(4
2

)
25 · 25 = 6 · 25 · 25 such pairs in each row. Thus

P = 100 · 6 · 25 · 25. We know there are
(100

2

)
pairs of columns and each of the P

pairs must be in one of these pairs of columns. By the pigeonhole principle, there is
a pair of columns that has at least

P
(100

2

) = 100 · 6 · 25 · 25
100·99

2

= 12 · 25 · 25

99
= 100 · 75

99
> 75

of the P pairs. From now on we only consider the pairs of squares in the same row,
with different colors and that use these two columns.

If these are not the columns we are looking for, then for any two of the pairs of
squares we just mentioned there is at least one color they share. Take one of these
pairs, and suppose it uses colors black and blue. Since there are more than 50 of
these pairs, there is at least one that does not have color black. If it did not have

1The center of gravity of the set S of points (x1, y1), (x2, y2), . . . , (xn, yn) in the plane is defined
as the point

(
x1 + x2 + · · · + xn

n
,

y1+y2+···+yn

n

)
.

That is, it is the average of the set of points.
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color blue, we would be done, so it must have blue and some other color (suppose it
is green). In the same way there must be a pair that does not use color blue. Since it
must share at least one color with the first pair, it must have black, and since it must
share at least one color with the second pair it must have green. So the other pair is
black and green.

Once we know we have these 3 pairs, any other pair must be either black and
blue, blue and green or green and black. Since we have more than 75 of these pairs,
these colors are used more than 150 times. However, each color is used only 25
times in each of the columns, so they can be used at most 150 times in total, which
contradicts the previous statement. Thus, there are two rows of the kind we are
looking for in the problem. �

A different version of the pigeonhole principle can also be used for infinite sets.

Proposition 2.1.7 (Infinite pigeonhole principle) Given an infinite set of objects, if
they are arranged in a finite number of places, there is at least one place with an
infinite number of objects.

The proof is analogous to the one for the pigeonhole principle: if in every place
there is a finite number of objects, in total there would be a finite number of objects,
which is not true.

Example 2.1.8 A 100×100 board is divided into unit squares. In every square there
is an arrow that points up, down, left or right. The board square is surrounded by a
wall, except for the right side of the top right corner square. An insect is placed in
one of the squares. Each second, the insect moves one unit in the direction of the
arrow in its square. When the insect moves, the arrow of the square it was in moves
90 degrees clockwise. If the indicated movement cannot be done, the insect does
not move that second, but the arrow in its squares does move. Is it possible that the
insect never leaves the board?

Solution We are going to prove that regardless of how the arrows are or where the
insect is placed, it always leaves the board. Suppose this is not true, i.e., the insect is
trapped. In this case, the insect makes an infinite number of steps in the board. Since
there are only 1002 squares, by the infinite pigeonhole principle, there is a square
that is visited an infinite number of times.

Each time the insect goes through this square, the arrow in there moves. Thus,
the insect was also an infinite number of times in each of the neighboring squares.
By repeating this argument, the insect also visited an infinite number of times each
of the neighbors of those squares. In this way we conclude that the insect visited an
infinite number of times each square in the board, in particular the top right corner.
This is impossible, because when that arrow points to the right the insect leaves the
board. �

If one is careful enough, one can solve the previous example using only the finite
version of the pigeonhole principle. However, doing it with the infinite version is
much easier.



20 2 The Pigeonhole Principle

2.2 Ramsey Numbers

Example 2.2.1 Prove that in a party of 6 persons there are always three of them who
know each other, or three of them such that no two of them know each other.

Solution Consider 6 points in the plane, one for each person in the party. We are
going to draw a blue line segment between two points if the persons they represent
know each other and a green line segment if they do not. We want to prove that there
is either a blue triangle or a green triangle with its vertices in the original points.

Let v0 be one of the points. From v0 there are 5 lines going out to the other
points, which are painted with two colors. By the pigeonhole principle, there are at
least three of these lines painted in the same color (suppose it is blue). Let v1, v2,
v3 be three points that are connected with v0 with a blue segment. If there is a blue
segment between any two of them, those two vertices and v0 form a blue triangle.
If there is no blue segment between any two of them, then v1, v2, v3 form a green
triangle. �

By solving this problem, we have proved that if we place 6 points in the plane and
we join them with lines of two colors, there are three of them that form a triangle of
only one color. The question now is if we can generalize this to bigger sets, when we
are no longer looking for triangles of one color. That is, given two positive integers
l and s, is there a number n large enough such that by placing n points in the plane
and joining them with blue or green lines, there are always l of them such that all
lines between two of them are blue or there are s of them such that all lines between
two of them are green? In the previous example we saw that if l = s = 3, then n = 6
works. If there are such numbers n, we are interested in finding the smallest one that
satisfies this property. If such number exists, it is denoted by

r(l, s)

and it is called the “Ramsey’s number of (l, s)”.

Exercise 2.2.2 Prove that if l = s = 3, then n = 5 is not enough.

Exercise 2.2.3 Let l be a positive integer. Prove that r(2, l) exists and that
r(2, l) = l.

Proposition 2.2.4 For each pair (l, s) of positive integers the Ramsey number
r(l, s) exists, and if l, s ≥ 2, then r(l, s) ≤ r(l − 1, s) + r(l, s − 1).

Proof We prove this by induction on l + s. By Exercise 2.2.3, we know that if one
of l, s is at most 2, r(l, s) exists. This covers all cases with l + s ≤ 5.

Suppose that if l + s = k −1 then r(l, s) exists. We want to prove that if l + s = k

then r(l, s) exists. If any of l, s is at most 2, we have already done those cases, so
we can suppose l, s ≥ 3. Notice that l + (s − 1) = (l − 1) + s = k − 1, so r(l, s − 1)

and r(l − 1, s) exist.
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Fig. 2.1 p0 is joined with
blue lines with A and with
green lines with B

Consider a set of r(l − 1, s) + r(l, s − 1) points in the plane joined with blue or
green line segments. We want to prove that there are l of them joined only by blue
segments or there are s of them joined only by green segments. Since r(l, s) would
be the minimum number that satisfies this, we would obtain that r(l, s) exists and
that r(l, s) ≤ r(l − 1, s) + r(l, s − 1).

Let p0 be one of the points. We claim that p0 must be joined with at least
r(l − 1, s) points with blue segments or at least with r(l, s − 1) points with green
segments. If this does not happen, p0 would be joined with at most r(l − 1, s) − 1
points with blue segments and at most with r(l, s − 1) − 1 points with green seg-
ments, so it would not be joined with the other r(l − 1, s) + r(l, s − 1) − 1 points.
(See Fig. 2.1.)

In other words, using the notation of the figure, we showed that either |A| ≥
r(l −1, s) or |B| ≥ r(l, s −1). Suppose that p0 is joined with r(l −1, s) points with
blue segments. Among these points there are l − 1 joined only with blue segments
or s joined only with green segments. In the first case, these l − 1 points and p0

are only joined with blue segments, and in the second case, we have s points joined
only with green segments. If p0 is connected with r(l, s − 1) points with green
segments, the way to find the sets is analogous. Thus r(l, s) exists and r(l, s) ≤
r(l − 1, s) + r(l, s − 1). �

With this we have proven that the Ramsey numbers exist. However, finding spe-
cific Ramsey numbers turns out to be incredibly difficult. Up to this date no Ramsey
number r(l, s) is known with both l, s ≥ 5.
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2.3 The Erdős-Szekeres Theorem

Another important application of the pigeonhole principle is to number se-
quences. The question we are interested in is: If we have a long enough sequence
(c1, c2, . . . , ck) of different numbers, when is there a large increasing subsequence
or a large decreasing subsequence? More precisely, given positive integers a and b,
is there a k large enough such that any sequence of k different numbers contains
either an increasing subsequence of a + 1 numbers or a decreasing subsequence of
b + 1 numbers?

Once we know the Ramsey numbers exist, it is easy to see that there is such a k.
This is because if our sequence has at least r(a+1, b+1) numbers, we can associate
each of them with a point in the plane. Any two points are going to be joined with a
blue segment if the sequence they form is increasing and with a green segment if the
sequence they form is decreasing. Then, there must be a + 1 points that are joined
only with blue segments or b + 1 points that are joined only with green segments.
This set represents the subsequence we were looking for.

The bound we obtained in this process is r(a + 1, b + 1), which is much larger
than we needed. The Erdős-Szekeres theorem gives us the best possible bound for
this result.

Theorem 2.3.1 (Erdős, Szekeres 1935) Given any sequence of ab+1 different num-
bers, there is always an increasing subsequence of at least a + 1 numbers or a
decreasing subsequence of at least b + 1 numbers.

Proof Consider a sequence (c1, c2, . . . , cab+1) of ab+1 different numbers. To each
cj of the sequence we assign a pair (aj , bj ) of positive integers, where aj is the
length of the longest increasing subsequence that ends in cj and bj is the length of
the longest decreasing subsequence that ends in cj .

Given two numbers ci and cj in the sequence with i < j , we prove that their
pairs (ai, bi) and (aj , bj ) cannot be equal. If ci < cj , we can add cj to the largest
increasing subsequence that ends in ci , so we have an increasing subsequence of
length ai + 1 that ends in cj . This gives aj ≥ ai + 1. If ci > cj , we can add cj to the
largest decreasing subsequence that ends in ci , so we have a decreasing subsequence
of length bi + 1 that ends in cj . This gives bj ≥ bi + 1.

If there were no subsequences of the lengths we were looking for, then for each
1 ≤ j ≤ ab + 1 we would have aj ≤ a and bj ≤ b. This would give us at most ab

different pairs. Since we have ab + 1 pairs, by the pigeonhole principle at least two
must be equal, which is a contradiction. �

Exercise 2.3.2 Given any two positive integers a and b, find a sequence of ab dif-
ferent real numbers with no increasing subsequences of length a + 1 or more and
no decreasing subsequences of length b + 1 or more.
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2.4 An Application in Number Theory

Besides its importance in combinatorics, the pigeonhole principle has various strong
applications in number theory. One of the most known ones is in showing that the
decimal representation of any rational number2 is periodic after some point. In other
words, after some point is begins to repeat itself.

In this section we show a different application, establishing that every prime
number of the form 4k + 1 can be written as the sum of two squares. To see this we
need the following proposition:

Proposition 2.4.1 For any integers n and u, there are integers x and y not both 0
such that −√

n ≤ x ≤ √
n, −√

n ≤ y ≤ √
n and x − uy is divisible by n.

Proof Let k + 1 = �√n� be the largest integer that is smaller than or equal to
√

n,
that is, k ≤ √

n < k + 1. Consider the numbers of the form x − uy with x and
y in {0,1,2, . . . , k}. Each has k + 1 options, so there are (k + 1)2 > n possible
numbers. Thus (by the pigeonhole principle!), there are two that leave the same
remainder when divided by n. If they are x1 − uy1 and x2 − uy2, their difference
(x1 − x2) − u(y1 − y2) is divisible by n. If we take x = x1 − x2 and y = y1 − y2,
we have that they are not both 0, since the pairs (x1, y1) and (x2, y2) were different.
Also, x and y are in the desired intervals. �

With this we are ready to prove that every prime number of the form 4k +1 is the
sum of two squares. The only thing we need to know about these numbers is that for
every prime p of the form 4k + 1 there is a u such that u2 + 1 is divisible by p. This
last result can also be proven in a combinatorial way, counting how many pairs of
numbers a, b in {0,1,2, . . . , p − 1} satisfy ab ≡ −1 (mod p) and how many pairs
of different numbers a, b satisfy ab ≡ 1 (mod p). However, we will not do it in this
book.

Theorem 2.4.2 (Fermat) Every prime p of the form 4k + 1 can be written as the
sum of two squares.

Proof Let u be an integer such that u2 +1 is divisible by p. Using Proposition 2.4.1
we know that there are integers x, y not both 0 such that x − uy is divisible by p

and −√
p ≤ x ≤ √

p, −√
p ≤ y ≤ √

p. The condition can be translated to x2 ≤ p

and y2 ≤ p. Since p is prime, it is not a perfect square, so the inequalities are strict.
Since x ≡ uy (mod p), we have that x2 ≡ u2y2 ≡ −y2 (mod p), so x2 + y2 is
divisible by p. However,

0 < x2 + y2 < 2p.

With this we have that x2 + y2 = p. �

2A rational number is one that can be written as the quotient of two integers.
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It is also known that a prime p of the form 4k + 1 can be written as the sum of
two squares in a unique way, so this application of the pigeonhole principle finds
the only pair that satisfies this. This shows that even though the technique seems
elementary, it gives very precise results.

2.5 Problems

Problem 2.1 Show that given 13 points in the plane with integer coordinates, there
are three of them whose center of gravity has integer coordinates.

Problem 2.2 Show that in a party there are always two persons who have shaken
hands with the same number of persons.

Problem 2.3 (OIM 1998) In a meeting there are representatives of n countries
(n ≥ 2) sitting at a round table. It is known that for any two representatives of the
same country their neighbors to their right cannot belong to the same country. Find
the largest possible number of representatives in the meeting.

Problem 2.4 (OMM 2003) There are n boys and n girls in a party. Each boy likes
a girls and each girl likes b boys. Find all pairs (a, b) such that there must always
be a boy and a girl that like each other.

Problem 2.5 For each n show that there is a Fibonacci3 number that ends in at least
n zeros.

Problem 2.6 Show that given a subset of n + 1 elements of {1,2,3, . . . ,2n}, there
are two elements in that subset such that one is divisible by the other.

Problem 2.7 (Vietnam 2007) Given a regular 2007-gon, find the smallest positive
integer k such that among any k vertices of the polygon there are 4 with the property
that the convex quadrilateral they form shares 3 sides with the polygon.

Problem 2.8 (Cono Sur Olympiad 2007) Consider a 2007 × 2007 board. Some
squares of the board are painted. The board is called “charrúa” if no row is com-
pletely painted and no column is completely painted.

• What is the maximum number k of painted squares in a charrúa board?
• For such k, find the number of different charrúa boards.

Problem 2.9 Show that if 6 points are placed in the plane and they are joined with
blue or green segments, then at least two monochromatic triangles are formed with
vertices in the 6 points.

3Fibonacci numbers are defined by the formulas (6.3) and (6.4).
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Problem 2.10 (OMM 1998) The sides and diagonals of a regular octagon are col-
ored black or red. Show that there are at least 7 monochromatic triangles with ver-
tices in the vertices of the octagon.

Problem 2.11 (IMO 1964) 17 people communicate by mail with each other. In all
their letters they only discuss one of three possible topics. Each pair of persons
discusses only one topic. Show that there are at least three persons that discussed
only one topic.

Problem 2.12 Show that if l, s are positive integers, then

r(l, s) ≤
(

l + s − 2

l − 1

)
.

Problem 2.13 Show that r(3,4) = 9.

Problem 2.14 Show that if an infinite number of points in the plane are joined with
blue or green segments, there is always an infinite number of those points such that
all the segments joining them are of only one color.

Problem 2.15 (Peru 2009) In the congress, three disjoint committees of 100 con-
gressmen each are formed. Every pair of congressmen may know each other or not.
Show that there are two congressmen from different committees such that in the
third committee there are 17 congressmen that know both of them or there are 17
congressmen that know neither of them.

Problem 2.16 (IMO 1985) We are given 1985 positive integers such that none has
a prime divisor greater than 23. Show that there are 4 of them whose product is the
fourth power of an integer.

Problem 2.17 (Russia 1972) Show that if we are given 50 segments in a line, then
there are 8 of them which are pairwise disjoint or 8 of them with a common point.

Problem 2.18 (IMO 1972) Show that given 10 positive integers of two digits each,
there are two disjoint subsets A and B with the same sum of elements.

Problem 2.19 There are two circles of length 420. On one 420 points are marked
and on the other some arcs of circumference are painted red such that their total
length adds up less than 1. Show that there is a way to place one of the circles on
top of the other so that no marked point is on a colored arc.

Problem 2.20 (Romania 2004) Let n ≥ 2 be an integer and X a set of n elements.
Let A1,A2, . . . ,A101 be subsets of X such that the union of any 50 of them has more
than 50n

51 elements. Show that there are three of the Aj ’s such that the intersection
of any two is not empty.
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Problem 2.21 (Tournament of towns 1985) A class of 32 students is organized in
33 teams. Every team consists of three students and there are no identical teams.
Show that there are two teams with exactly one common student.

Problem 2.22 (Great Britain 2011) Let G be the set of points (x, y) in the plane
such that x and y are integers in the range 1 ≤ x, y ≤ 2011. A subset S of G is said
to be parallelogram-free if there is no proper parallelogram with all its vertices in S.
Determine the largest possible size of a parallelogram-free subset of G.

Note: A proper parallelogram is one whose vertices do not all lie on the same
line.

Problem 2.23 (Italy 2009) Let n be a positive integer. We say that k is n-square if
for every coloring of the squares of a 2n × k board with n colors there are two rows
and two columns such that the 4 intersections they make are of the same color. Find
the minimum k that is n-square.

Problem 2.24 (Romania 2009) Let n be a positive integer. A board of size N =
n2 + 1 is divided into unit squares with N rows and N columns. The N2 squares
are colored with one of N colors in such a way that each color was used N times.
Show that, regardless of the coloring, there is a row or a column with at least n + 1
different colors.
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