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The general relativistic notion of ‘domain of dependence’ is important in the (global)
analysis of gravitational fields. It is technically convenient because it is a geometrical
concept defined, irrespective of any field equations, purely in terms of the metric. Its
fundamental importance, however, comes from the fact that it gives precise meaning
to the statement that the evolution process of the Einstein equations respects the notion
of causality defined by the solution metrics of these equations.

This is taken for granted nowadays but it was not obvious in the early days
of General Relativity. It is the merit of Stellmacher’s article that it clarifies this
issue for the first time. Previous work by A. Einstein, D. Hilbert, G. Darmois,
C. Lanczos and others, which revealed important properties of the field equa-
tions, was based on the study of linearizations, formal expansions and Cauchy–
Kowalevskaja type arguments. These techniques did not allow one to draw any
conclusion of the type given in Stellmacher’s article. The new ingredient he uses
is an argument based on ‘energy integrals’ which was proposed by K. O. Friedrichs
and H. Lewy (cf. [1] for earlier work in this direction). It is discussed in section 2
(we note that the inequality following equations (3) is slightly misleading and should
be replaced by the statement that the mean value theorem is used to obtain these
equations).

The republication of the original paper can be found in this issue following the editorial note and online
via doi:10.1007/s10714-010-0960-1.
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It appears to be the first time that this powerful argument has been used in the con-
text of general relativity. It has largely been generalized by now and ‘energy estimates’
represent an indispensable tool in the existence theory.

Stellmacher analyses the Einstein–Maxwell equations in harmonic and Lorentz
gauge respectively, arguing that these gauge conditions themselves respect the cau-
sality relations defined by the solution metric. In this case the proof that the domains
of (geometric) uniqueness for the field equations coincide with the domains of depen-
dence defined by the metric is short, clear, and clean. He also analyses the case of
pressure free matter (dust) which is more complicated and his results are in fact not
so clear and complete because they only refer to regions where neither caustics nor
matter-vacuum interfaces occur. This should not be held against him, the situation is
complicated and poses problems even nowadays (cf. the discussion in [2]). He finally
also remarks that he did not succeed in the case of more general matter fields. Again,
this is not surprising.

While Stellmacher’s results and methods are standard now they were certainly new
at the time and marked in a sense a kind of ‘phase transition’ in the analysis of the field
equations. Had the times been better (K. O. Friedrichs who had suggested the work
had left the country for political reasons half a year before the article was submitted)
it might have led to a much earlier clarification of the local Cauchy problem.

Karl Ludwig Stellmacher—a brief biography

By Hubert Goenner, based on Ref. [3].

Karl Ludwig Stellmacher (1910–2001) studied mathematics, physics and chemis-
try at the University of Göttingen from 1927–1933 in order to become a teacher
at a Gymnasium (high school/first two college years). His final exam did not rec-
ommend him for a PhD. Nevertheless, Richard Courant seems to have given him a
problem in hyperbolic differential equations. After having lost Courant as an advi-
sor, in 1935 the mathematician Gustav Herglotz (1881–1953) took him on and pro-
posed propagation of gravity as a subject. Stellmacher finished his dissertation in
1937; it is the paper reproduced here. Surprisingly, he credited Kurt Friedrichs as
responsible for the theme who, in the same year left his position in Braunschweig/
Germany as a consequence of his political views and his jewish fiancée (whom he
later married).

After his dissertation, Stellmacher worked as an assistant to Max Schuler (1882–
1972), director and successor of the famous pioneer of aerodynamics, Ludwig Prandtl
(1875–1853), in the Kaiser-Wilhelm Institute for Fluid Dynamics, on problems con-
cerning gyroscopes. During the 2nd world war, he had to be a soldier from 1939 to
1944. After the war, his results on the gyroscope found no interest s that he went
back to pure mathematics.

In 1948 he became both an assistant and a Privatdozent (lecturer) in the Mathemat-
ics Institute of the University of Göttingen. After having received the title of professor
(but not the pay) in 1955, he left Göttingen immediately to become a research associ-
ate in the Institute for Fluid Dynamics and Applied Mathematics of the University of
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Maryland in College Park. Within a year, he became full professor and stayed there
until retirement in 1977.
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K. Stellmacher

On the initial value problem of the equations of gravitation

By
Karl Stellmacher at Göttingen∗):

For the solutions of the field equations of general relativity it is shown
in the following that they possess the property of depending in a world point
P only on that part of the remaining world, which lies inside the past of the
temporal divide defined by the point P .

If, hence, the state variables are changed outside of the temporal divide,
these variables will keep their values in P , respectively they can be returned
to their original values by a transformation.

1.

In general relativity one defines: a world point P is “earlier”1) than
a world point Q, if P and Q can be connected by an everywhere timelike
line and if Q is associated with a larger value of the x0-coordinate than P .

“Simultaneous” are called two points, which can be connected by an
everywhere spacelike line.

By these definitions a certain causal connectedness is imprinted on the
world, as one will have to demand that for simultaneity no cause–effect
relationship can exist.

The value of a state variable in a world point P can therefore depend
only on those world points, which can be connected to P by everywhere
timelike lines; i.e., only on those points, which lie in the interior of the
temporal divide constructed in P , namely in that part which is directed into
the past. Hence, all field actions are allowed to propagate at most at the
speed of light.

However, the cause–effect relationship is determined independently of
these definitions by certain partial differential equations for the physical
state variables.

Therefore, the question arises whether the cause–effect relationship
which is fixed by the field equations is in agreement with the cause–effect

∗) This work is part of a dissertation accepted by the Faculty of Mathematics and the
Natural Sciences of the University of Göttingen. It was suggested to me by Herr Professor
Friedrichs. For this favour, as well as for his supporting interest, I feel obliged to thank him
dearly.

1) See Hilbert, Math. Annalen 92, p. 11ff. — Ges. Abh. Bd. III, p. 268ff.
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relationship, which is imposed on the world by the introduction of an in-
definite metric.

In the case of special relativity it is known of the Maxwell–Lorentzian
equations that they yield the correct cause–effect relationship for the elec-
tromagnetic field strength.

That is, if the Cauchyian initial value problem is posed, i.e., if the field
strength is specified at a certain time x0 = 0, then its value in a later world
point P depends only on that part of the initial values, which is cut out of
the initial surface by the characteristic cone of this equation system to be
constructed in P ; the characteristic cone coincides with the temporal di-
vide. Here, the demanded cause–effect relationship arises as a very special
property of a solution to the Maxwell–Lorentzian equations.

Also in the case of general relativity we need to investigate if the field
equations, and the gravitational equations in particular, possess the respec-
tive property to depend only on a part of the initial values.

This issue has already been raised a number of times. Initially it was
Einstein, who settled the problem for weakly gravitating fields in first ap-
proximation2).

Next, it was shown by Vessiot3) that the characteristic cone of the equa-
tions of gravitation coincides with the temporal divide, i.e., that all discon-
tinuities of derivatives of second or higher order of the field components
propagate at the speed of light, wherein these singularities cannot be re-
moved by a transformation, and wherein the respective derivatives of lower
order are continuous in the point of concern.

A further step towards settling this problem was taken by de Donder4),
who carried over the coordinate system used by Einstein for weak fields to
the case of arbitrary gravitational fields; in such a coordinate system the
equations of gravitation assume a form in which the propagation of grav-
itation at the speed of light and the correct causal structure of the world
already become quite plausible. (This coordinate system will be the foun-
dation of one of our two proofs. For further details, see Chapter 3.)

(In not so immediate connection to the present question are the famous

2) Ber. d. Berl. Akad. Wiss. 1916, p. 688, and 1918, p. 154; see thereto the comments
and concerns of Eddington, Relativitätstheorie in math. Behandlung (Berlin 1925), § 57.

3) Compt. rend. 166 (1918); see on this also Levi–Civita, Atti d. Linc. 11 (1930), p. 1.
4) La gravifique Einsteinienne (Paris 1921), p. 40–41.

21 123Reprinted from the journal

1771



K. Stellmacher

Hilbertian investigations on the causality problem5). Based on the theo-
rem by Cauchy–Kowalewsky it is shown there, that the values of the field
components and their first derivatives, to be analytically given on a space-
like initial manifold, uniquely induce, up to transformations, an analytical
solution in a neighbourhood of the initial surface.

The question which is of interest to us is barely touched upon hereby,
as no statement is made on the domain of dependence of the solution, and,
by means of the method of Cauchy–Kowalewsky, such a statement is im-
possible in principle. Also, uniqueness is not guaranteed inasmuch as the
case is conceivable that a second non-analytical system of solutions may
exist.)

In contrast to this we will conduct the proof that field actions propagate
at most at the speed of light, thereby considering two cases; 1. arbitrary
electrical and gravitating fields in empty space, 2. pure gravitational fields,
which are superimposed on continuously distributed matter.

2.

The pursuit of our proof for the validity of the postulate of causality suc-
ceeds on the basis of applying a method devised by Friedrichs and Lewy6).

First we prove as a lemma that the uniqueness theorem by Friedrichs
and Lewy can be carried over without difficulty to the case of an arbitrary,
no longer necessarily linear hyperbolic differential equation. This allows us
to repeat, simultaneously, the course of thoughts of the Friedrichs–Lewyian
proof. It shall be shown that the value of the solution of a given differential
equation of totally hyperbolic character depends only on that part of the
initial values, which is cut out from the initial surface by the characteristic
conoid to be constructed in P .

Let an equation be given of the type7):

(1) L [u] ≡ aik uik + f = 0
(

uik =
∂2u

∂xi∂xk

)
.

5) See the work cited in footnote 1.
6) Math. Annalen 98, p. 192ff.
7) One overlooks easily, that the present simple generalisation can also be carried over to

the case that an arbitrary differential equation of the most general form F (u) = 0 is given.
For then the considerations can be applied, under respective assumptions of differentiability,

to the differentiated equation
∂F

∂x0
=

∂F

∂uik
uik0 + W = 0. See on this the work by

Schauder, Fundam. Mathem. 34 (1935), p. 213.
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In a domain G, which contains a part of the initial surface A, let aik and f
be continuously differentiable functions of the four independent variables
xi, as well as of u and its first derivatives, the ui. Equation (1) shall be
totally hyperbolic for a certain given solution u, i.e. the quadratic form
associated with aik shall possess the index (−−− +); furthermore, the aik

shall transform contravariantly, and the coordinate system shall be chosen
such that the conditions of spacelikeness are satisfied:

(2) a00 > 0,

∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣ < 0 .

Then the matrix (aik) (i, k = 1, 2, 3) is evidently non-degenerate negative
definite; since the discriminant of the form is negative by assumption, and
so only the indices of inertia (+ + −) or (− − −) are possible. How-
ever, since by assumption only one positive sign can occur, the claim thus
follows.

Within the domain G there shall be given a well determined second so-
lution ŭ8) of the differential equation (1), which coincides on a spacelike9)
initial manifold A with respect to its value as well as the values of the first
derivatives with the solution u. Let ŭ in G, besides its derivatives of first
and second order, be bounded from above; likewise, of course, u:

|u|, |ui|, |uik|, |ŭ|, |ŭi|, |ŭik| < M i, k = 0, 1, 2, 3.

M is a fixed well determined number. Thus, it also holds:

L [ŭ] = ăik ŭik + f̆ = 0,

where ăik and f̆ mean the functions aik, f , upon substitution therein of
u and its derivatives by ŭ and its derivatives. Under these premises there
holds the

8) That we consider one particular second solution, therein lies the new aspect compared
to Friedrichs and Lewy.

9) Let A be the surface f = const. Then f is called spacelike, if

aik ∂f

∂xi

∂f

∂xk
> 0.
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T h e o r e m. Within a still to be determined neighbourhood of A both
solutions are identical.

To begin with the proof we form L(u) − L(ŭ):

aik (uik − ŭik) + ŭik (aik − ăik) + (f − f̆) = 0 .

If I now set:

u − ŭ = v,

ui − ŭi = vi,

uik − ŭik = vik,

then I obtain an in v linear and homogeneous differential equation with
vanishing initial values on A:10

(3) aik vik + bρ vρ + c v = 0

⎧⎪⎪⎨⎪⎪⎩
bρ =

∂aik(u)
∂uρ

ŭik +
∂f(u)
∂uρ

c =
∂aik(u)

∂u
ŭik +

∂f(u)
∂u

⎫⎪⎪⎬⎪⎪⎭
ŭ ≤ u ≤ u .

From now on we can transfer the considerations by Friedrichs and Lewy
(in particular l.c. Chapter 4) without further ado.

One constructs in a point P within G the characteristic cone B, of
which we make the simplifying assumption that, together with the initial
surface A, it defines a simply connected domain G′; this domain shall be
completely contained within G. B in turn shall cut out from A a domain
A′ which is also simply connected. Furthermore, without loss of generality
we assume that A be the surface x0 = 0 (see Fig. 1).

We then imagine the interior of the cone to be filled by a foliation of
surfaces x0 = const, which we assume to be spacelike in the interior of G′.
By integration of equation (3), multiplied by v0, over a domain G′′, which
is bounded by A′, x0 = c > 0 and B′, one obtains the equation

(4)
∫∫∫
G′′

(
aik vik + bρ vρ + c v

)
v0 dτ = 0.

10In the last ∂f/∂u in the equation below the argument of f was corrected from u to u
by the translator.
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The integrand may be represented by a divergence and an additional quadratic
form of the first derivatives of v and of v itself:∫∫∫

G′′

[(
aik vi v0

)
k
− 1

2

(
vi vk aik

)
0

]
dτ =

∫∫∫
G′′

Q(vi, v) dτ.

The left-hand side is converted into a surface integral by the Gaußian inte-
gral theorem:∫∫

O

aik
(
vi v0 ξk − 1

2 vi vk ξ0

)
dω =

∫∫∫
G′′

Q(vi, v) dτ.

The ξi denote the direction cosines of the inward-pointing normals. The
part of the surface integral extending over A′ vanishes; the remaining part
subdivides into a surface integral over a strip M ′ of the mantle of the conoid
M and a surface integral over the domain C of the surface x0 = c. We
recast the integrand of the surface integral and obtain:

− 1
2

∫∫
C+M ′

1
ξ0

[
aik (vi ξ0 − v0 ξi) (vk ξ0 − v0 ξk) − aik ξi ξk v2

0

]
dω

=
∫∫∫
G′′

Q(vi, v) dτ.

Under the surface integral on the left-hand side we have evidently, as on C
ξi = δ0

i and therefore aik ξi ξk = a00 holds, as integrand of the part over
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C a non-degenerate negative definite form of all first derivatives of v. The
integrand of the part extending over M ′ certainly does not become nega-
tive, as on M aikξiξk = 0 holds. By suppressing this latter part, we can
evidently estimate:∫∫

C

∑
v2
i dω ≤ D

∫∫∫
G′′

(∑
v2
i + v2

)
dτ ≤ E

∫∫∫
G′′

∑
v2
i dτ.

E and D are constants which do not depend on the choice of the parameter
c11). By integration of the inequality with respect to x0 from x0 = 0 up to
x0 = c one obtains eventually:∫∫∫

G′′

∑
v2
i dτ ≤ cE

∫∫∫
G′′

∑
v2
i dτ.

Now by choosing c < 1/E it follows evidently that v = 0 within G′′.
If, with the method of proof just given, I now proceed piecewise from

the surface x0 = c up to the surface x0 = c′, then from c′ up to c′′ and so
on, I can eventually reach the tip P of the characteristic cone, as one can
give an a priori estimate for E which holds evenly for every domain strip
between x0 = c(n) and x0 = c(n+1), irrespective of how these two positive
constants c(n) and c(n+1) may be chosen (as long as c < c(P )).

Accordingly, we have proven the following theorem: every within and
on the boundary of G′′ twice continuously differentiable function ŭ, which
there, besides its derivatives of first and second order, is bounded, and
which in the subdomain A′ of the initial surface A (including its bound-
ary), besides its first derivatives, agrees with u, is identical to u within G′.

Therefore, it follows, too: u(P ) does not change when arbitrary changes
of the initial values on A are introduced outside of A′.

3.

In order to be able to apply this method to the equations of gravitation,
we use a coordinate system in which the equations of gravitation appear
considerably simplified with respect to those parts which contain the second
derivatives of the gik with respect to the coordinates.

11) For further details see the original work.
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In this regard we are considering a generalisation of the coordinate
system used by Einstein when integrating the equations for non-stationary
weak metric fields.

(The possibility of introducing such a coordinate system was first dis-
covered by de Donder12); a little later Lanczos13) discovered it indepen-
dently and gave the equations to be satisfied a particularly elegant and con-
cise form (see on this also the remark by Darmois14)).

According to Lanczos, in a coordinate systems in which the four rela-
tions
(1)

1√−g

∂
√−g gri

∂xr
= 0 (i = 0, 1, 2, 3)

are satisfied, the components of the contracted Riemannian tensor simplify

to the following form
(
we write � for gλμ ∂2

∂xλ ∂xμ

)
:

(2) Rik = 1
2 � gik + Γrp,iΓqs,kg

rsgpq − ∂gpi

∂xr

∂gqk

∂xs
gpqgrs.

We show that in the neighbourhood of an arbitrary spacelike hypersur-
face (x0 = 0) we can always find a new proper15) coordinate system such
that the coordinate surfaces xi = const are connected with the metric field
in an invariant way, and that there the equations (1) are satisfied.

We thus look for a non-singular transformation
(3)

xi = ϕ(i)(x0, x1, x2, x3) (i = 0, 1, 2, 3)
such that in the new coordinate system it is true that:16

(1a)
1√−g

∂
√−g gri

∂xr = 0 (i = 0, 1, 2, 3).

For this purpose we consider the “generalised potential equation”:

(4)
1√−g

∂
√−g grs ∂ϕ

∂xs

∂xr
= 0.

12) La gravifique Einsteinienne (Paris 1921), p. 40/41.
13) Phys. Zeitschr. 23 (1921), p. 537ff.
14) Mém. des Sc. Math. 25 (1926), p. 14–19.
15) See Hilbert, l. c.
16A typo in the formula below was corrected by the translator: the bar over xr was

missing.
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It is invariant, if ϕ constitutes a scalar function. Then we determine four
scalar functions ϕ(i) such that each one of them satisfies equation (4), and
that in addition the initial conditions

(5)

⎧⎪⎪⎨⎪⎪⎩
(ϕ(i))x0=0 = xi,(
∂ϕ(i)

∂x0

)
x0=0

= δi
0,

hold, from which follows immediately:

∂ϕ(i)

∂xk
= δi

k.

The solution of this initial value problem can be obtained following Had-
amard17).

On the four equations obtained in this way,

1√−g

∂

(
√−g grs ∂ϕ(i)

∂xr

)
∂xs

= 0 (i = 0, 1, 2, 3),

we apply the transformation (3); then there evidently results:18

1√−g

∂(
√−g grs δi

r)
∂xs = 0 (i = 0, 1, 2, 3),

i.e., the equations (1a).
When the old coordinate system was a proper one, in particular on the

initial surface, then, by reasons of continuity, this also holds in a certain
neighbourhood of the initial surface for the new one.

A de Donderian coordinate system is determined uniquely by the prop-
erty that, along a certain spacelike hypersurface, it coincides with an ar-
bitrarily given second one up to the first derivatives of the transformation
functions. Then the components of an arbitrary tensor agree on this initial

17) Le problème de Cauchy, App. 1. – There the existence proof is given only for equa-
tions with analytical coefficients. However, as Hadamard remarks himself, there are no
essential difficulties involved in overcoming this premise.

18A typo in the formula below was corrected by the translator: the bar over grs was
missing.
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surface in both coordinate systems. The new coordinate surfaces are con-
nected in an invariant way with the metric, since the equation (4) possesses
an invariant form.

4.

Now the means have been made available to settle the problem. We
imagine a world piece G, free of matter, in which, hence, the equations
hold:
(1)

Rik = kSik (i, k = 0, 1, 2, 3).

Rik denotes the contracted Riemannian tensor, Sik the electromagnetic en-
ergy tensor:

−Sik = FiαFα
.

.
k − 1

4gikFαβFαβ (i, k = 0, 1, 2, 3)

with S = 0. The skew symmetrical tensor Fik of the electric field strength
can be represented by the vector potential Φi.
(2)

Fik =
∂

∂xi
Φk − ∂

∂xk
Φi (i, k = 0, 1, 2, 3),

and there hold the Maxwell–Lorentzian field equations:
(3)

∂
√−g F iα

∂xα
= 0 (i = 0, 1, 2, 3).

It is well known that by (2) and (3) the vector Φi is determined only up to
an arbitrary additive gradient, so that in general one imposes the additional
constraint

(4)
∂
√−g Φα

∂xα
= 0.

From (2), (3) and (4) one obtains by simple algebra19):

1√−g

∂

∂xl

(
gkl√−g

∂Φi

∂xk

)
+

1√−g

∂

∂xk

[
Φl

∂

∂xi

√−g gkl

]
(5)

+gihF .
j
k
.

∂ghj

∂xk
= 0 (i = 0, 1, 2, 3).

19) v. Laue, Phys. Zeitschr. 21 (1920), p. 659ff.; see also Rel. Theor. Bd. II, 1st ed.,
p. 148.
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Within G we now construct in analogy with Chapter 2 (Fig. 1) the char-
acteristic conoid B (that is the temporal divide), which, together with the
initial surface x0 = 0, bounds the simply connected domain G′. Now sup-
pose that in G′ there exist two systems of solutions of equations (1), (5)

gik, Φi and ğik, Φ̆i (i, k = 0, 1, 2, 3),
which we assume both to be twice continuously and bounded differentiable
within G′ and on its boundary surfaces. Both systems of solutions may
agree on the domain A′ cut out by the temporal divide B from the surface
x0 = 0, including their first derivatives.

Under these premises we prove the T h e o r e m: Within G′ both sys-
tems of solutions are transferable into each other by a coordinate transfor-
mation, hence, are physically equivalent.

For the proof we introduce in the world with the metric gik a de Don-
derian coordinate system xI. In this world there thus holds:

∂
√−g gir

∂xr
I

= 0 (i = 0, 1, 2, 3).

Respecting the initial conditions (5) of Chapter 3, this coordinate system
shall, besides the x0

I -axes emerging from the initial surface, agree with that
proper one on the initial surface x0 = 0 in which the initial values are given.

Analogously we choose in the second world with the metric ğik a de
Donderian coordinate system xII, which satisfies the conditions:

∂
√−ğ ğir

∂xr
II

= 0 (i = 0, 1, 2, 3).

Again, on x0 = 0 the coordinates xII shall agree with the coordinates in
which the initial values are given, likewise thereupon the x0-axes, too.

If we then map the world II by the equations

xi
I = xi

II (i = 0, 1, 2, 3)
onto the world I, then in this mapping all invariant equations which existed
in the world II remain valid. On the initial surface there then holds:20

(6) (gik)x0=0 = (ğik)x0=0

20Two typos in the formula below were corrected by the translator: (i) The sign˘over g
on the right-hand side was missing in the original; (ii) Equation-number (6) did not exist
anywhere; most probably it should be here and therefore it was added.
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(see p. 9).21 But also the first derivatives of the gik still agree on the initial
surface, as the second derivatives of the transformation functions ϕ

(i)
I and

ϕ
(i)
II agree on the initial surface, which can be easily confirmed with the

help of (4), Chapter 3.
In this way we then have gained in the world I, according to Ch. 3,

equation (2), the two equations:

(7)
� gik + Aik = kSik

(
� = gλμ ∂2

∂xλ ∂xμ

)
,

�̆ ğik + Ăik = kS̆ik

(
�̆ = ğλμ ∂2

∂xλ ∂xμ

)
.

The Aik are expressions that only contain the gik and their first derivatives.
This also holds for the Ăik

22).
In addition we have the equations (5) for the electromagnetic poten-

tials. As in these the second derivatives of the gik occur only in the combi-

nation
1√−g

∂
√−g gie

∂xe
, respectively in derivatives of these quantities, we

can write for these equations:

(8)
�Φi + Bi = 0,

�̆ Φ̆i + B̆i = 0,

where the Bi only contain first derivatives of the gik and the Φi. Also, the
Sik in the equations (7) contain at most first derivatives of the Φi. Similarly
for the quantities flagged with a hook.

When we now set

gik − ğik = lik and Φi − Φ̆i = fi,

then we obtain from forming differences of (7), (8):

Lik ≡ � lik − Dik = 0,

Li ≡ � fi − Di = 0.

21The page numbers referred to are at the bottom of each page [editor].
22) Although in Ch. 2 we did not need for the second solution ŭ the assumption that for it

the coefficients aik satisfy the conditions of total hyperbolicity, we here need to also assume
of the ğik that its matrix possesses the index of inertia (−−− +) (in the proof of the next
section this is not necessary), as otherwise in the world II the transformation of de Donder
need not be feasible.
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In analogy to equation (3), p. 5, the D are linear functions of the lik and
their first derivatives, and of the fi and their first derivatives. As coeffi-
cients of these linear forms D serve certain polynomial forms of the gik,
ğik, Φi, Φ̆i and their first and second derivatives. The particular appearence
of these forms is of no importance for the proof. On the equation system
thus obtained, we can apply the Friedrichs–Lewyian considerations. Evi-
dently, the gik satisfy all preconditions that we set in Chapter 2 for the aik

with regard to the index of inertia and, in particular, also with regard to con-
ditions (2), Section 2, which are equivalent to the Hilbertian demand for a
proper coordinate system23).

According to the conclusion of Chapter 2, the demanded proof is thus
completed. Instead of the integral (4), p. 5, one only has to form:∫∫∫

G′′

(
∂lik
∂x0

Lik

)
dτ = 0 resp.

∫∫∫
G′′

(
∂fi

∂x0
Li

)
dτ = 0

and then proceed just as in Chapter 2. We thus obtain the domain of depen-
dence of the solution in a point P by envisaging the temporal divide in this
point. The domain of dependence is then cut out from the initial manifold
by the temporal divide.

In the language of relativity theory we can also express this theorem by:
In parts of space which are free of matter, “simultaneously” positioned

world points cannot influence one another.

5.

The proof just given cannot be extended to the case where, besides
the state variables gik and Φi, there is also continuously distributed matter
present24).

By a special trick, however, one can treat the case of incoherent matter
in the absence of any electrical fields.

We then have the equation system:

(1) Rik = k(Tik − 1
2gikT)

with
Tik = muiuk.

23) l. c.
24) Attempts in this direction fail due to the form of the divergence equation of the matter,

the treatment of which, in our sense, proves altogether unpleasant.
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As usual, m denotes the mass density of the matter; ui the tangent vector of
length 1 to the world lines of the matter. For determining these quantities
we have the equations:

(2)
dui

ds
+ Γi

αβuαuβ = 0, giku
iuk = 1

and

(3)
∂(uim)

∂xi
= 0.

In G′25) let there be given two systems of solutions (twice continuously and
bounded differentiable)

gik, ui, m and ğik, ŭi, m̆

of these equations, which agree in the domain A′ of the initial surface x0 =
0; in particular, the gik shall agree up to their first derivatives, while the
functions ui and m must agree only themselves with ŭi and m̆ on x0 = 0.

Again, we then have the T h e o r e m: under the stated assumptions both
systems of solutions are transferable into one another by transformation.

The settling of the problem, i.e. the proof of the theorem, succeeds due
to the introduction of a “rest coordinate system” (see Hilbert, l. c.); that is,
a coordinate system in which the contravariant tangent vector ui possesses
the components (1 0 0 0). In contrast to the de Donder coordinate system
the rest coordinate system is fixed by differential equations of first order for
the coordinates. This is as in the new coordinate system there shall hold:

(2a) ui =
∂xi

∂xα
uα = δi

0 (i = 0, 1, 2, 3).

Those world positions in which there is no matter present shall be
viewed as filled in a continuously differentiable way by a unit vector field
that also satisfies the differential equations of the geodesic lines.

In our rest coordinate system the continuity equation of the matter as-
sumes the form:

(3a)
∂m

∂x0
= 0.

25) Cf. Ch. 2, Fig. 1.
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Moreover, it follows from the equations of motion (2) by respecting the
value for the vector ui:

Γi
00 = 0 (i = 0, 1, 2, 3),

therefore, too:

(4) Γ00,i = 0 (i = 0, 1, 2, 3).
Moreover, because of ui ui = 1 (unit vector!) it holds:

g00 = 1.

Therefore, we obtain from the equations (4)

(5) ∂g0i

∂x0
= 0 (i = 0, 1, 2, 3).

In each of the two envisaged worlds we introduce a rest coordinate
system xI, respectively xII (according to the procedure given on p. 11),
which agree on x0 = 0 with the original coordinate system. Due to the
agreement of the initial values of the ui, on the initial surface there then
also agree, because of (2a), the derivatives

∂xi
I

∂xk
resp.

∂xi
II

∂xk

with the unit tensor δi
k. For the same reason also the second derivatives of

the xI, respectively xII agree on the initial surface.
If we map again the world II by the equations xI = xII onto the world I,

i.e. if we let the world lines of the matter of the two worlds sit on top of one
another, then we obtain agreeing initial values of the gik and m with the ğik,
respectively m̆; moreover, there follows in the interior of G′, due to (3a),

(6) m̆ = m

and from (5)

(7) g0i = ğ0i (i = 0, 1, 2, 3).
Respecting the simplifications that our coordinate system yields, we

obtain for the two solutions, instead of (1), the systems of equations:

Rik = k
m√−g

(g0i g0k − 1
2 gik)

R̆ik = k
m̆√−ğ

(ğ0i ğ0k − 1
2 ğik).
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Employing (6) and (7), we form the differences:

(1a) Rik − R̆ik =

k · m
[(

1√−g
− 1√−ğ

)
(g0i g0k − 1

2 gik) +
1√−ğ

(−1
2)(gik − ğik)

]
.

We set again gik − ğik = lik and can express the right-hand side of (1a) as
a homogeneous linear function of the six quantities lik (i, k = 1, 2, 3). We
will also express the left-hand side as a linear form of the lik and their first
and second derivatives. In line with Section 2, we will be most interested
in that part which contains the second derivatives of the lik.

Moreover, for the following it will be important that in the equation (1a)
with index 0 0, the left-hand side allows for such a representation of the first
derivatives of the lik in which only derivatives with respect to x0 occur.
Because of the equations (4), it evidently holds:

R00 = −∂Γr
0r

∂x0
− Γr

0sΓ
s
0r,

R̆00 = −∂Γ̆r
0r

∂x0
− Γ̆r

0sΓ̆
s
0r,

and from this by subtraction26

R00 − R̆00 = − 1
2 grs ∂2(grs − ğrs)

(∂x0)2
+ Γr

0s (Γs
0r − Γ̆s

0r)

+ Γ̆s
0r (Γr

0s − Γ̆r
0s) + lρμ Aρμ.

The Aρμ are polynomials of the gik, gik and the Γik,l, as well as of the ğik,
ğik and the Γ̆ik,l, and of their first derivatives.

By equation (7) l0i = 0 holds; it then follows:

R00 − R̆00 = − 1
2

grs ∂2lrs

(∂x0)2
+

1
2

∂lrt

∂x0
(Γt

0sg
sr + Γ̆t

0sğ
sr) + lρμ A

ρμ
.

By integration with respect to x0 from the initial surface up to x0, and a
suitable subsequent recasting by means of integration by parts, we obtain

26A typo in the equation below was corrected by the translator: the indices ”r” and ”s”
in the last Γ of the first line were interchanged.
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eventually:

(8)
∫ x0

0
(R00− R̆00) dx0 = − 1

2
∂lrs

∂x0
·grs + lρμ Bρμ +

∫ x0

0
lρμ Cρμ dx0,

wherein the coefficients Cρμ are again formed by polynomial algebraic op-
erations, the Bρμ in addition also by integration with respect to x0, from
the gik, ğik and their first and second derivatives.

Before we write down the remaining components, we remark that the
contracted Riemannian tensor can be written with respect to its second
derivatives as follows:27

2Rik = − grs ∂2

∂xr ∂xs
gik +

∂

∂xi
βk +

∂

∂xk
βi + Lik ;

herein we set

(9) βi = grs

(
∂gri

∂xs
− 1

2
∂grs

∂xi

)
,

while the Lik only contain first derivatives of the gik. By subtraction it
follows from this:

(9a) 2(Rik − R̆ik) = − grs ∂2lik
∂xr ∂xs

+
∂γk

∂xi
+

∂γi

∂xk
+ Mik

with

(9b) γi = grs

(
∂lir
∂xs

− 1
2

∂lrs

∂xi

)
.

Then, respecting equations (8), (9a), (9b), equations (1a) can be written:28

(10)

a) − 2 γ0 = lρμ Bρμ +
∫ x0

0 lρμ C
ρμ

dx0,

b) − ∂γ0

∂xi
− ∂γi

∂x0
= Λi (i = 1, 2, 3),

c) � lik − ∂γi

∂xk
− ∂γk

∂xi
= Λik (i, k = 1, 2, 3).

27A typo in the equation below was corrected by the translator: a missing index “k” in
the third term on the right-hand side was added.

28Several identical typos were corrected by the translator: in the original text, the upper
limit in the integral was x0 in the first equation below, in the first equation after (11), in the
text above (15), in eqs. (13) – (16) and in the next one after (16).

36123 Reprinted from the journal

1786



Republication of: On the initial value problem of the equations of gravitation

The Λ are again linear forms of the lik and their first derivatives.
By eliminating γ0 between equations (10a) and (10b), we obtain the

following three equations:

− ∂γi

∂x0
= Λi −

∫ x0

0

∂

∂xi
lrs C

rs
dx0 − ∂

∂xi
lrs Brs,

or

(11)
∂γi

∂x0
= Λi −

∫ x0

0
Vi dx0,

where Λi and Vi are again linear forms of the lik and their first derivatives.

Now we multiply, respectively, the equations (10c) by
∂lik
∂x0

and (11) by

2
∂lik
∂xk

, add these up, and obtain:

� (lik) · ∂lik
∂x0

− ∂lik
∂x0

(
∂γi

∂xk
+

∂γk

∂xi

)
+ 2

∂lik
∂xk

∂γi

∂x0
= L +

∫ x0

0
N dx0.

The left-hand side is a divergence up to quadratic forms of the
∂lik
∂xr

; this is
because the following holds (see Friedrichs and Lewy)

2
∂2lik

∂xr ∂xs

∂lik
∂x0

=
(

∂lik
∂xr

∂lik
∂x0

)
s

−
(

∂lik
∂xr

∂lik
∂xs

)
0

+
(

∂lik
∂xs

∂lik
∂x0

)
r

.

We thus obtain:(
grs ∂lik

∂xr

∂lik
∂x0

)
s

− 1
2

(
grs ∂lik

∂xr

∂lik
∂xs

)
0

−
∂
(

∂lik
∂x0 γi

)
∂xk

(12)

−
∂
(

∂lik
∂x0 γk

)
∂xi

+ 2
∂
(

∂lik
∂xk · γi

)
∂x0

= L +
∫ x0

0
N dx0.

Furthermore, we also add to (12) the equations (11) correspondingly
multiplied by 2P γi:

(13) + P
∂(γi)2

∂x0
= 2P Λi γi + 2 γi P

∫ x0

0
N dx0.

(P is a constant, the choice of which we still keep open.) We integrate the
sum of the left-hand sides of (12) and (13) over the domain G′′ (see p. 6,
Fig. 1). Then there results upon application of the Gaußian integral theorem
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under the surface integral a quadratic form of the 4 · 6 derivatives of first
order of the lik and the three γi, namely

grs

(
∂lik
∂xr

∂lik
∂x0

ξs − 1
2

∂lik
∂xr

∂lik
∂xs

ξ0

)
− ∂lik

∂x0
γi ξk − ∂lik

∂x0
γk ξi

+2
∂lik
∂xk

γi ξ0 + 2P (γi)2 ξ0.

The part deriving form the �-expressions is positive definite on C (cf. Ch.
2). Hence, this quadratic form can be made positive definite on C by a
sufficiently large choice of the constant P . By substituting for the γi again
their values (9b),29 we gain an equation:∫∫

M ′+C

Q

(
∂lik
∂xr

)
dω(14)

=
∫∫∫
G′′

[
Q

(
∂lik
∂xr

lst

)
+ Eirmn ∂lmn

∂xr

∫ x0

0
Vi dx0

]
dτ.

Q and Q are quadratic forms of the 24 first derivatives of the lik, Q also of
the lik, Q is on C non-degenerate positive definite, on M ′ possibly degener-
ate positive definite. Besides the quadratic form Q, we also have under the
volume integral on the right-hand side an expression which may be viewed
as a quadratic form of the lik and their first derivatives, as well as of the

three quantities
∫ x0

0
V i dx0. Accordingly, we gain from (14) the inequal-

ity:
(15)∫∫

C

(
∂lik
∂x0

)2

dω ≤ D

∫∫∫
G′′

⎡⎣(∂lik
∂xr

)2

+ (lik)2 +

(∫ x0

0
Vi dx0

)2
⎤⎦ dτ.

With the aid of the Schwarzian inequality one easily gains:

(16)

(∫ x0

0
Vi dx0

)2

≤ E

∫ x0

0
(Vi)2 dx0.

29This reference to the equation-number was corrected by the translator, in the original
text it was (9a).

38123 Reprinted from the journal

1788



Republication of: On the initial value problem of the equations of gravitation

Furthermore, it evidently holds:∫ c

0
dx0

∫ x0

0
(Vi)2 dx0 ≤ W

∫ c

0
(Vi)2 dx0.

D, E and W are constants, which may be chosen independently of the
parameter c. Then we obtain from (15):30

(17)
∫∫
C

(
∂lik
∂xr

)2

dω ≤ F

∫∫∫
G′′

[(
∂lik
∂xr

)2

+ (lik)
2

]
dτ,

again F can be chosen independently of c (cf. p. 7). From equation (17)
then follows, according to what was said in Chapter 2, the uniqueness
within G′. Thus, the theorem is proven.

Therefore, also for the case of a world with arbitrarily distributed inco-
herent matter the correct causal structure is guaranteed.

6.

So far, I have not succeeded in the settling of the general case, in which
the matter is in addition charged. However, on the basis of results from
Chapter 4, some statements can be made on causality also in this case,
given the charged matter is distributed discontinuously on several very thin
world tubes. With the aid of the final result of Chapter 4 one can then easily
derive the theorem:

All actions that a matter particle generates in a world point P lie within
the future-directed part of the temporal divide to be constructed in P .

To show this, one only has to use in the course of the proof of Chapter 4
as the boundary of the domain G′ instead of the temporal divide B′ a hy-
persurface which is obtained as follows: one erects in P the future-directed
temporal divide B and forms the intersection of it with an arbitrary space-
like surface R. Then the envelope of all those temporal divides, which
are to be envisaged in points of the intersection manifold B,R, yields the
desired new boundary surface of the domain G′.

(Received on 7.6.1937)

30A typo in (17) was corrected by the translator: the volume element on the right-hand
side was dω in the original text.
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