
Chapter II

Preliminary Results

1 Embedding properties and related facts

1.1 Poincaré inequalities

We consider some basic facts on Sobolev spaces without proof. First we collect
several inequalities which compare the Lq-norm of a function u with the Lq-
norm of its gradient

∇u = (D1u, . . . ,Dnu).

Such estimates are called Poincaré estimates. For the proofs we refer to [Nec67],
[Agm65], [Ada75], and [Fri69].

1.1.1 Lemma Let Ω ⊆ R
n, n ≥ 1, be any bounded domain, let 1 < q < ∞,

and let

d = d(Ω) := sup
x,y∈Ω

|x − y|

denote the diameter of Ω. Then

‖u‖Lq(Ω) ≤ C ‖∇u‖Lq(Ω)n (1.1.1)

for all u ∈ W 1,q
0 (Ω) where C = C(q, d) > 0 depends only on q and d.

Proof. See [Ada75, VI, 6.26]. �

From (1.1.1) we conclude that the norms ‖u‖W 1,q(Ω) and ‖∇u‖Lq(Ω) are
equivalent on the subspace W 1,q

0 (Ω) ⊆ W 1,q(Ω). To get estimates for general
functions u ∈ W 1,q(Ω), we need that Ω is a bounded Lipschitz domain, see
Section 3.2, I.
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44 II.1 Embedding properties and related facts

1.1.2 Lemma Let Ω ⊆ R
n be a bounded Lipschitz domain with n ≥ 2, let

Ω0 ⊆ Ω be any (nonempty) subdomain, and let 1 < q < ∞. Then

‖u‖Lq(Ω) ≤ C (‖∇u‖Lq(Ω)n + |
∫

Ω0

u dx|) (1.1.2)

for all u ∈ W 1,q(Ω) where C = C(q,Ω,Ω0) > 0 is a constant.

Proof. See [Nec67, Chap. 1, (1.21)]. Inequality (1.1.2) also holds for n = 1 where
Ω is a bounded open interval. �

From (1.1.2) we conclude that ‖u‖W 1,q(Ω) and ‖∇u‖Lq(Ω)n + | ∫
Ω0

u dx| are
equivalent norms on W 1,q(Ω).

The next result yields a bound for ‖u‖Lq(Ω) using the norms
‖∇u‖W−1,q(Ω)n and ‖u‖W−1,q(Ω). We need some preparations.

Let Ω ⊆ R
n be a bounded Lipschitz domain with n ≥ 2 and let 1 < q <

∞, q′ := q
q−1 .

Consider the spaces W−1,q(Ω)n and W−1,q(Ω), see Section 3.6, I. Then we
identify each u ∈ Lq(Ω) with the functional

< u, · > : v �→< u, v > =
∫

Ω

uv dx , v ∈ W 1,q′
0 (Ω),

which yields the embedding

Lq(Ω) ⊆ W−1,q(Ω) (1.1.3)

as usual for distributions. We get

|< u, v > | ≤ ‖u‖q‖v‖q′ ≤ ‖u‖q‖v‖1,q′ ,

and this yields
‖u‖W−1,q(Ω) ≤ ‖u‖Lq(Ω) (1.1.4)

which shows that the embedding (1.1.3) is continuous.

Further, for each u ∈ Lq(Ω) we define the functional ∇u = [∇u, · ] by

[∇u, v] := − < u, div v > = −
∫

Ω

u div v dx

for all v = (v1, . . . , vn) ∈ C∞
0 (Ω)n. Then we see that

∇u ∈ W−1,q(Ω)n ,
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and we get the estimate

|[∇u, v]| = |< u, div v > | ≤ ‖u‖q ‖∇v‖q′ ≤ ‖u‖q ‖v‖1,q′

which shows that

‖∇u‖−1,q := sup
0	=v∈C∞

0 (Ω)n

(|[∇u, v]| / ‖v‖1,q′) ≤ ‖u‖q . (1.1.5)

The inequality in the next lemma is basic for the theory of the operators
div and ∇ in the next section.

1.1.3 Lemma Let Ω ⊆ R
n, n ≥ 2, be a bounded Lipschitz domain and let

1 < q < ∞. Then

‖u‖Lq(Ω) ≤ C (‖∇u‖W−1,q(Ω)n + ‖u‖W−1,q(Ω)) (1.1.6)

for all u ∈ Lq(Ω) where C = C(q,Ω) > 0 is a constant.

Proof. See [Nec67, Chap. 3, Lemma 7.1] for q = 2 and [Nec67b] for general
q. The proof for q = 2 can be extended to all 1 < q < ∞ if we replace the
argument based on the Fourier transform by a potential theoretic fact. Here we
use this lemma only for q = 2. �

Using (1.1.4) and (1.1.5) we see that

‖∇u‖W−1,q(Ω)n + ‖u‖W−1,q(Ω) ≤ 2‖u‖Lq(Ω). (1.1.7)

Therefore, under the assumptions of Lemma 1.1.3 we conclude that

‖u‖Lq(Ω) and ‖∇u‖W−1,q(Ω)n + ‖u‖W−1,q(Ω)

are equivalent norms in Lq(Ω).

Inequality (1.1.6) can be extended as follows:

Let k ∈ N and consider the spaces

W−k,q(Ω) , W−k−1,q(Ω)n , W−k−1,q(Ω)

which are the dual spaces of

W k,q′
0 (Ω) , W k+1,q′

0 (Ω)n , W k+1,q′
0 (Ω),

respectively. Let u : v �→ [u, v] be any functional from W−k,q(Ω). Then the
inequality

|[u, v]| ≤ ‖u‖−k,q‖v‖k,q′ ≤ ‖u‖−k,q‖v‖k+1,q′



46 II.1 Embedding properties and related facts

shows that

‖u‖W−k−1,q(Ω) ≤ ‖u‖W−k,q(Ω) .

The gradient ∇u is treated as a functional [∇u, · · · ] : v �→ [∇u, v] defined
by

[∇u, v] := −[u, div v] , v ∈ C∞
0 (Ω)n ,

and using

|[∇u, v]| = |[u, div v]| ≤ ‖u‖−k,q ‖div v‖k,q′

≤ C‖u‖−k,q ‖v‖k+1,q′ ,

we get ∇u ∈ W−k−1,q(Ω)n and

‖∇u‖W−k−1,q(Ω)n ≤ C‖u‖W−k,q(Ω)

with some C = C(n) > 0.

1.1.4 Lemma Let Ω ⊆ R
n, n ≥ 2, be a bounded Lipschitz domain and let

1 < q < ∞, k ∈ N. Then

‖u‖W−k,q(Ω) ≤ C (‖∇u‖W−k−1,q(Ω)n + ‖u‖W−k−1,q(Ω)) (1.1.8)

for all u ∈ W−k,q(Ω) where C = C(q, k,Ω) > 0 is a constant.

Proof. See [Nec67, Chap. 3, Lemma 7.1]. Using the estimates above we see that
the both sides of (1.1.8) define equivalent norms. Lemma 1.1.3 is obtained by
setting k = 0. �

The next lemma shows that u ∈ Lq
loc(Ω), ∇u ∈ Lq(Ω)n even implies u ∈

W 1,q(Ω) if Ω is a bounded Lipschitz domain.

1.1.5 Lemma Let Ω ⊆ R
n, n ≥ 2, be any Lipschitz domain and let 1 < q < ∞.

Then we have:
a) If u ∈ Lq

loc(Ω) and ∇u ∈ Lq(Ω)n, then

u ∈ Lq
loc(Ω) and therefore u ∈ W 1,q

loc (Ω). (1.1.9)

b) If Ω is a bounded Lipschitz domain and u ∈ Lq
loc(Ω), ∇u ∈ Lq(Ω)n, then

u ∈ Lq(Ω) and therefore u ∈ W 1,q(Ω). (1.1.10)

Proof. This result follows by applying [Nec67, Chap. 2, Theorem 7.6] to bounded
Lipschitz subdomains of Ω. However, we can argue directly: Indeed, b) is a
consequence of a), and a) can be derived using b). It its sufficient to prove the
result in a neighbourhood of any x0 ∈ ∂Ω. Use a local coordinate system in
x0, see Section 3.2, I, define a translation in the exterior normal direction and
apply the estimate of Lemma 1.1.2. This yields the result. �
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1.2 Traces and Green’s formula

Let Ω ⊆ R
n, n ≥ 2, be a bounded Lipschitz domain with boundary ∂Ω, and let

1 < q < ∞, q′ = q
q−1 .

Our purpose is to introduce a bounded linear operator

Γ : u �→ Γu (1.2.1)

from W 1,q(Ω) onto W 1− 1
q ,q(∂Ω) so that

Γu = u|∂Ω (1.2.2)

holds for all u ∈ C∞(Ω). This means, Γu coincides with the restriction of u
to the boundary ∂Ω if u is smooth. In other words, Γ extends the restriction
operator u �→ u|∂Ω from the smooth function space C∞(Ω) to the larger space
W 1,q(Ω). W 1− 1

q ,q(∂Ω) will be the right space such that this operator is bounded
and even surjective.

Γ is called the trace operator of Ω. The existence, boundedness, and sur-
jectivity of such an operator

Γ : W 1,q(Ω) → W 1− 1
q ,q(∂Ω) ,

satisfying (1.2.2) for all u ∈ C∞(Ω), follows by combining [Nec67, Chap. 2,
Theorem 5.5] with [Nec67, Chap. 2, Theorem 5.7]. See also [Ada75, VII, 7.53].

We use the notation (1.2.2) not only for u ∈ C∞(Ω) but for all u ∈
W 1,q(Ω), and call Γu = u|∂Ω the trace of u ∈ W 1,q(Ω). We consider the trace
of u as the restriction of u to ∂Ω in the generalized sense.

The construction of Γ rests on the use of the local coordinate systems,
see Section 3.2, I. If the boundedness of Γ is shown on the subspace C∞(Ω) ⊆
W 1,q(Ω), the density property

C∞(Ω)
‖·‖W1,q(Ω) = W 1,q(Ω) , (1.2.3)

see [Nec67, Chap. 2, Theorem 3.1], then yields boundedness on W 1,q(Ω).
The boundedness of Γ means that there is a constant C = C(q,Ω) > 0 so

that the estimate
‖Γu‖

W
1− 1

q
,q

(∂Ω)
≤ C‖u‖W 1,q(Ω) (1.2.4)

holds for all u ∈ W 1,q(Ω). We will simply write

‖Γu‖
W

1− 1
q

,q
(∂Ω)

= ‖u‖
W

1− 1
q

,q
(∂Ω)

= ‖u‖1− 1
q ,q,∂Ω

if there is no confusion. See Section 3.4, I, for the definition of this norm.
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Using the trace Γu = u|∂Ω, we get a direct characterization of the space

W 1,q
0 (Ω) = C∞

0 (Ω)
‖·‖W1,q

. It holds that

W 1,q
0 (Ω) = {u ∈ W 1,q(Ω); u|∂Ω = 0} (1.2.5)

for our bounded Lipschitz domain Ω, see [Nec67, Chap. 2, Theorem 4.10] or
[Ada75, VII, 7.55].

Since Γ is a surjective operator, each given element g ∈ W 1− 1
q ,q(∂Ω) is

the trace g = u|∂Ω of at least one u ∈ W 1,q(Ω). Moreover, it is even possible
to select some u ∈ W 1,q(Ω) for each g ∈ W 1− 1

q ,q(∂Ω) in such a way that the
mapping

g �→ u with g = u|∂Ω

is a bounded linear operator from W 1− 1
q ,q(∂Ω) into W 1,q(Ω).

Thus there exists a bounded linear operator

Γe : W 1− 1
q ,q(∂Ω) → W 1,q(Ω) (1.2.6)

with the property
ΓΓeg = g (1.2.7)

for all g ∈ W 1− 1
q ,q(∂Ω). We call u = Γeg an extension of g from ∂Ω to Ω.

Γe is called an extension operator from W 1− 1
q ,q(∂Ω) into W 1,q(Ω), see

[Nec67, Chap. 2, Theorem 5.7]. The boundedness of Γe means that there is a
constant C = C(q,Ω) > 0 such that

‖Γeg‖W 1,q(Ω) ≤ C‖g‖
W

1− 1
q

,q
(∂Ω)

(1.2.8)

holds for all g ∈ W 1− 1
q ,q(∂Ω).

Green’s formula is well known in elementary classical analysis for smooth
functions, see [Miz73, Chap. 3, (3.54)] or [Nec67, Chap. 1, (2.9)]. It extends the
elementary rule of partial integration from intervals in R to higher dimensions
n ≥ 2. The following general formulation can be derived from the classical one
by using density and closure arguments, see [Nec67, Chap. 3, 1.2].

Let u ∈ C∞(Ω), v ∈ C∞(Ω)n, and let
∫

∂Ω
· · · dS denote the surface

integral, see Section 3.4, I. Then we get

div (uv) = (∇u) · v + u div v

by an elementary calculation, and Green’s formula reads∫
Ω

u div v dx =
∫

∂Ω

uN · v dS −
∫

Ω

(∇u) · v dx , (1.2.9)
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where N : x �→ N(x) = (N1(x), . . . , Nn(x)) means the exterior normal vector
field at the boundary ∂Ω, see (3.4.7), I. We can write this formula in the form

< u,div v >Ω = < u,N · v >∂Ω − < ∇u, v >Ω , (1.2.10)

see (3.4.6), I, for this notation.
Using the density property (1.2.3) and the trace operator Γ above, we

can extend Green’s formula to all u ∈ W 1,q(Ω) and v ∈ W 1,q ′(Ω)n. Then
< u,N · v >∂Ω remains well defined as a surface integral, see (3.4.3), I, with the
traces

u|∂Ω ∈ W 1− 1
q ,q(∂Ω) and N · v|∂Ω ∈ W 1− 1

q′ ,q′
(∂Ω) ; (1.2.11)

we see that uN · v|∂Ω ∈ L1(∂Ω). Note that |N | ∈ L∞(∂Ω), see (3.4.9), I. This
leads to the following result.

1.2.1 Lemma Let Ω ⊆ R
n, n ≥ 2, be a bounded Lipschitz domain with boundary

∂Ω, and let 1 < q < ∞, q′ := q
q−1 . Then for all u ∈ W 1,q(Ω) and v ∈ W 1,q′

(Ω)n,
(1.2.11) holds in the trace sense and we get the formula

< u,div v >Ω = < u,N · v >∂Ω − < ∇u, v >Ω , (1.2.12)

where N means the exterior normal field at ∂Ω.

Proof. See [Nec67, Chap. 3, Theorem 1.1]. �

Lemma 1.2.3 will give a further extension of Green’s formula (1.2.12) to
more general functions v. For this purpose we use the more general trace oper-
ator ΓN, see the next lemma, for which we need some preparation.

Inserting u = Γe g ∈ W 1,q(Ω) with u|∂Ω = g ∈ W 1− 1
q ,q(∂Ω) and v ∈

W 1,q′
(Ω)n in (1.2.12), we get

< Γe g, div v >Ω = < g,N · v >∂Ω − < ∇Γe g, v >Ω ,

and using (1.2.8) yields the estimate

|< g,N · v >∂Ω | ≤ |< ∇Γe g, v >Ω | + |< Γe g,div v >Ω | (1.2.13)
≤ C ‖g‖

W
1− 1

q
,q

(∂Ω)
(‖v‖q′ + ‖ div v‖q′),

with some constant C = C(q,Ω) > 0. This shows that the functional

< ·, N · v >∂Ω : g �→< g,N · v >∂Ω , g ∈ W 1− 1
q ,q(∂Ω) (1.2.14)
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is continuous in the norm ‖g‖
W

1− 1
q

,q
(∂Ω)

, for each fixed v ∈ W 1,q′
(Ω)n. There-

fore, < ·, N · v >∂Ω belongs to the dual space of W 1− 1
q ,q(∂Ω), which is the

space

W 1− 1
q ,q(∂Ω)′ = W−(1− 1

q ),q′
(∂Ω) = W− 1

q′ ,q′
(∂Ω),

see (3.6.9), I. Thus we get

< ·, N · v >∂Ω ∈ W− 1
q′ ,q′

(∂Ω) for all v ∈ W 1,q′
(Ω)

and we may treat the well defined functional (1.2.14) as the trace N · v|∂Ω of
the normal component of v at ∂Ω in the generalized sense. Further we get from
(1.2.13) that

‖ < ·, N · v >∂Ω ‖
W

− 1
q′ ,q′

(∂Ω)
≤ C (‖v‖q′

q′ + ‖div v‖q′
q′)

1
q′ (1.2.15)

holds with some constant C = C(q,Ω) > 0.
Let Eq′(Ω) be the Banach space of all v ∈ Lq′

(Ω)n with div v ∈ Lq′
(Ω)

(in the sense of distributions) and norm ‖v‖Eq′ (Ω) := (‖v‖q′
q′ + ‖div v‖q′

q′)
1
q′ . The

same density argument as in (1.2.3) yields that

C∞(Ω)n
‖·‖Eq′ (Ω)

= Eq′(Ω) , (1.2.16)

and therefore that
W 1,q′(Ω)n

‖·‖Eq′ (Ω) = Eq′(Ω) . (1.2.17)

Estimate (1.2.15) means that the operator

v �→< ·, N · v >∂Ω , v ∈ W 1,q′
(Ω), (1.2.18)

from W 1,q′
(Ω) to W− 1

q′ ,q′
(∂Ω) is continuous in the norm of Eq′(Ω). Therefore,

using (1.2.17) we see that the operator (1.2.18) extends by closure to a bounded
linear operator

v �→< ·, N · v >∂Ω , v ∈ Eq′(Ω), (1.2.19)

from Eq′(Ω) to W− 1
q′ ,q′

(∂Ω). The functional < ·, N · v >∂Ω is therefore well
defined as an element of W− 1

q′ ,q′
(∂Ω) for each v ∈ Eq′(Ω).

Replacing q′ by q, we thus obtain the following general trace lemma.

1.2.2 Lemma Let Ω ⊆ R
n, n ≥ 2, be a bounded Lipschitz domain with boundary

∂Ω, let 1 < q < ∞, q′ = q
q−1 , and let

Eq(Ω) := {v ∈ Lq(Ω)n ; div v ∈ Lq(Ω)} (1.2.20)
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be the Banach space with norm

‖v‖Eq(Ω) := (‖v‖q
q + ‖div v‖q

q)
1
q . (1.2.21)

Then there exists a bounded linear operator

ΓN : v �→ ΓNv , v ∈ Eq(Ω), (1.2.22)

from Eq(Ω) into W− 1
q ,q(∂Ω) such that ΓN v coincides with the functional

g �→ < g,N · v >∂Ω =
∫

∂Ω

g(x)N(x) · v(x) dS , g ∈ W
1
q ,q′

(∂Ω) (1.2.23)

if v ∈ C∞(Ω)n.

Proof. See [SiSo92, Theorem 5.3] or [Tem77, Chap. I, Theorem 1.2]. �
The operator ΓN : v �→ ΓN v from Eq(Ω) to W− 1

q ,q(∂Ω) is called the gen-

eralized trace operator for the normal component. For each v ∈ Eq(Ω), the
functional ΓNv ∈ W− 1

q ,q(∂Ω) is called the generalized trace of the normal com-
ponent N · v at ∂Ω. We use the notation

ΓNv = < ·, N · v >∂Ω = N · v|∂Ω (1.2.24)

for all v ∈ Eq(Ω), although N · v|∂Ω need not exist in the sense of usual traces
(unless v ∈ W 1,q(Ω)n). Note that v itself need not have a well defined trace
at ∂Ω in any sense. We refer to [Tem77, Chap. I, 1.2] and to [SiSo92, (5.1)]
concerning the space Eq(Ω).

The next lemma yields the most general formulation of Green’s formula.

1.2.3 Lemma Let Ω ⊆ R
n, n ≥ 2, be a bounded Lipschitz domain with boundary

∂Ω, and let 1 < q < ∞, q′ = q
q−1 .

Then for all u ∈ W 1,q(Ω) and v ∈ Eq′(Ω),

< u,div v >Ω = < u,N · v >∂Ω − < ∇u, v >Ω (1.2.25)

where < u,N · v >∂Ω is well defined in the sense of the generalized trace with

N · v|∂Ω ∈ W− 1
q′ ,q′

(∂Ω) , u|∂Ω ∈ W 1− 1
q ,q(∂Ω).

Proof. Using (1.2.17) we find a sequence (vj)∞j=1 in W 1,q′
(Ω)n with v=limj→∞vj

in the norm of Eq′(Ω). Then we insert vj for v in formula (1.2.12) and let j → ∞.
The estimate (1.2.15), used with v replaced by v − vj , shows that

< u,N · v >∂Ω = lim
j→∞

< u,N · vj >∂Ω .

This leads to (1.2.25). �
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1.3 Embedding properties

The embedding properties below will be used frequently, for example in order
to estimate the nonlinear term u · ∇u of the Navier-Stokes equations. The first
lemma contains a special case of Sobolev’s embedding theorem. For the proofs
we refer to [Nir59], [Fri69], [Nec67], [Ada75].

1.3.1 Lemma Let n ∈ N. Then we get:
a) If 1 < r ≤ n, 1 < q < ∞, 1 < γ < ∞, 0 ≤ β ≤ 1 such that

β(
1
r
− 1

n
) + (1 − β)

1
γ

=
1
q

, (1.3.1)

then

‖u‖Lq(Rn) ≤ C‖∇u‖β
Lr(Rn)n‖u‖1−β

Lγ(Rn) (1.3.2)

≤ C
(‖∇u‖Lr(Rn)n + ‖u‖Lγ(Rn)

)
for all u ∈ C∞

0 (Rn) where C = C(n, r, q, γ) > 0 is a constant.
b) If r > n, then

sup
x,y∈Rn,x 	=y

|u(x) − u(y)|
|x − y|1−n

r
≤ C‖∇u‖Lr(Rn)n (1.3.3)

for all u ∈ C∞
0 (Rn) where C = C(n, r) > 0 is a constant.

Proof. See [Nir59], [Fri69, Part 1, Theorem 9.3]. �
Remarks

a) In the special case r = n we get (1 − β) 1
γ = 1

q , 0 ≤ β < 1 (q = ∞ is
excluded), 1 < γ ≤ q < ∞, β = 1 − γ

q , and this leads to

‖u‖Lq(Rn) ≤ C ‖∇u‖1− γ
q

Ln(Rn)n ‖u‖
γ
q

Lγ(Rn) (1.3.4)

for all u ∈ C∞
0 (Rn). Note that an inequality of the form ‖u‖∞ ≤ C‖∇u‖n

is excluded.
b) The second inequality in (1.3.2) follows from the first one by Young’s

inequality (3.3.8), I.
c) Inequality (1.3.2) leads in the case 1 < r < n, β = 1, r < q, n ≥

2, 1
n + 1

q = 1
r to the estimate

‖u‖Lq(Rn) ≤ C ‖∇u‖Lr(Rn)n (1.3.5)

for all u ∈ C∞
0 (Rn) with C = C(n, q) > 0.

The following lemma yields a restricted result but includes the important
case q = ∞. It is a consequence of (1.3.3) and the Poincaré inequality (1.1.2).
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1.3.2 Lemma Let Ω ⊆ R
n, n ≥ 1, be an arbitrary domain with Ω �= R

n, and
let B ⊆ R

n be any open ball with B ∩ Ω �= ∅. Then we have:
a) If 1 < q < ∞, then

‖u‖Lq(B∩Ω) ≤ C ‖∇u‖Lq(Ω)n (1.3.6)

for all u ∈ C∞
0 (Ω) with C = C(q,Ω, B) > 0.

b) If q > n, then
‖u‖L∞(B∩Ω) ≤ C ‖∇u‖Lq(Ω)n (1.3.7)

for all u ∈ C∞
0 (Ω) with C = C(q,Ω, B) > 0.

Proof. Since Ω �= R
n we can choose some open ball B0 ⊆ R

n with B0 ∩ Ω = ∅.
To prove a) we use Poincaré’s inequality in Lemma 1.1.2 with Ω0,Ω replaced
by B0, Ω̃; Ω̃ means any bounded Lipschitz domain containing B0 and B ∩ Ω.
Extending each u ∈ C∞

0 (Ω) by zero we get u ∈ C∞
0 (Rn), and since u = 0 in B0

we obtain from (1.1.2) that

‖u‖Lq(B∩Ω) ≤ ‖u‖Lq(Ω̃) ≤ C ‖∇u‖Lq(Ω̃)n ≤ C ‖∇u‖Lq(Ω)n

for all u ∈ C∞
0 (Ω) with some C = C(q,Ω, B) > 0. Indeed, C depends only on

q,B0 and B.

To prove b) we apply the above estimate (1.3.3) to u ∈ C∞
0 (Ω) with r

replaced by q. Let y0 be the center of B0. Then we get, extending u by zero as
above, that

‖u‖L∞(B∩Ω) = sup
x∈B∩Ω

|u(x)| = sup
x∈B∩Ω

|u(x) − u(y0)|

≤ ( sup
x∈B∩Ω

|x − y0|1−n
q ) sup

x∈B∩Ω

|u(x) − u(y0)|
|x − y0|1−n

q

≤ C ( sup
x∈B∩Ω

|x − y0|1−n
q )‖∇u‖Lq(Ω)n

with C = C(n, q) > 0. This proves the lemma. �

The next two lemmas are special cases of Sobolev’s embedding theorem
for bounded domains.

1.3.3 Lemma Let Ω ⊆ R
n, n ≥ 2, be a bounded C1-domain, and let 1 < r ≤

n, 1 < q < ∞, 1 < γ < ∞, 0 ≤ β ≤ 1 so that

β(
1
r
− 1

n
) + (1 − β)

1
γ

=
1
q
. (1.3.8)



54 II.1 Embedding properties and related facts

Then

‖u‖Lq(Ω) ≤ C ‖u‖β

W1,r(Ω)
‖u‖1−β

Lγ(Ω) (1.3.9)

≤ C
(
‖u‖W1,r(Ω) + ‖u‖Lγ(Ω)

)
for all u ∈ W 1,r(Ω) ∩ Lγ(Ω) where C = C(Ω, q, r, γ) > 0 is a constant.

Proof. See [Fri69, Part 1, Theorem 10.1]. Note that the case n = r is not
excluded. In this case we have 0 ≤ β < 1. �

The next lemma concerns the embedding of continuous functions in certain
Wm,q-spaces for bounded domains.

1.3.4 Lemma Let k ∈ N0, m ∈ N, 1 < q < ∞ with m − n
q > k, n ≥ 2, and let

Ω ⊆ R
n be a bounded Cm-domain. Then, after redefinition on a subset of Ω of

measure zero, each u ∈ Wm,q(Ω) is contained in Ck(Ω) and

‖u‖Ck(Ω) ≤ C ‖u‖W m,q(Ω) (1.3.10)

where C = C(Ω,m, q) > 0 is a constant.

Proof. See [Fri69, Part 1, Theorem 11.1]. �
Finally we mention a special embedding result for the two-dimensional

case.

1.3.5 Lemma Let Ω ⊆ R
2 be any two-dimensional domain with Ω �= R

2, let
B0, B ⊆ R

2 be open balls with B0 ∩Ω = ∅, B ∩Ω �= ∅, and let 1 < q < ∞. Then

‖u‖Lq(B∩Ω) ≤ C ‖∇u‖L2(Ω)2 (1.3.11)

for all u ∈ C∞
0 (Ω) where C = C(B0, B, q) > 0 is a constant.

Proof. Let x0 be the center of B0, R > 0 the radius, and let u ∈ C∞
0 (Ω). Then

we use the inequality(∫
Ω

( |u(x)|
|x − x0| ln |x − x0|/R

)2

dx

) 1
2

≤ C ‖∇u‖L2(Ω)2 (1.3.12)

where C = C(B0) > 0 is a constant. An elementary proof of this inequality can
be found in [Lad69, Chap. 1, (14)].

Next we use the above inequality (1.3.9) for B with n = 2, 2 < q < ∞, r =
γ = 2, β = 1 − 2

q , and get

‖u‖Lq(B∩Ω) ≤ ‖u‖Lq(B) ≤ C (‖∇u‖L2(B)2 + ‖u‖L2(B)) (1.3.13)

with some C = C(B, q) > 0. On the right side, B can be replaced by B ∩ Ω.
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If 1 < q ≤ 2 we get using (1.3.12) that

‖u‖Lq(B∩Ω) ≤C1‖u‖L2(B∩Ω)

≤C1

(
sup

x∈B∩Ω
(|x−x0|ln|x−x0|/R)

)(∫
B∩Ω

( |u(x)|
|x−x0|ln|x−x0|/R

)2

dx

) 1
2

≤C2‖∇u‖L2(Ω)2

with constants C1 = C1(B, q) > 0, C2 = C2(B0, B, q) > 0. This yields the
result for 1 < q ≤ 2. If q > 2 we deduce from (1.3.13) and the last inequality
for q = 2 that

‖u‖Lq(B∩Ω) ≤ C ‖∇u‖L2(Ω)2 + ‖u‖L2(B∩Ω)

≤ C (‖∇u‖L2(Ω)2 + C2‖∇u‖L2(B∩Ω)2)

≤ C (1 + C2)‖∇u‖L2(Ω)2 .

This proves the lemma. �

1.4 Decomposition of domains

The decomposition property below will be used later on for technical reasons
in order to “approximate” an arbitrary unbounded domain Ω by a sequence of
bounded Lipschitz subdomains.

We need it, for example, for the existence proof of weak solutions, see the
proof of Theorem 3.5.1, III. A similar result as that in the following lemma is
contained in [Gal94a, III, proof of Lemma 1.1].

Recall the definition

dist(A,B) := inf
x∈A, y∈B

|x − y|

for arbitrary subsets A,B ⊆ R
n.

1.4.1 Lemma Let Ω ⊆ R
n be an arbitrary domain with n ≥ 2. Then there

exists a sequence (Ωj)∞j=1 of bounded Lipschitz subdomains of Ω and a sequence
(εj)∞j=1 of positive numbers with the following properties:

a) Ωj ⊆ Ωj+1, j ∈ N,
b) dist (∂Ωj+1,Ωj) ≥ εj+1, j ∈ N,
c) limj→∞ εj = 0,
d) Ω =

⋃∞
j=1 Ωj .

Proof. The proof rests on the following elementary considerations. Let

Br(x) := {y ∈ R
n; |y − x| < r}

be the open ball with center x ∈ R
n and radius r > 0.
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We fix some x0 ∈ Ω. Let Ω̃ be the largest domain concerning inclusions
such that

Ω̃ ⊆ Ω ∩ B1(x0) , x0 ∈ Ω̃.

The boundary ∂Ω̃ of Ω̃ is compact and therefore, for a given ε > 0, we can
choose finitely many balls Bε(xj) with xj ∈ ∂Ω̃, j = 1, . . . ,m, and

∂Ω̃ ⊆
m⋃

j=1

Bε(xj).

Let Ω̂ := Ω̃\⋃m
j=1 Bε(xj). We can choose ε with 0 < ε < 1 in such a way that

x0 ∈ Ω̂. Obviously, Ω̂ is a bounded Lipschitz domain, its boundary consists of
parts of the boundaries of balls. We set Ω1 := Ω̂ and ε1 := ε.

Next we choose Ω̃ as the largest domain with

Ω̃ ⊆ Ω ∩ B2(x0) , x0 ∈ Ω̃.

Then the domain Ω̂ is constructed in the same way as before with 0 < ε < 1
2

and ε < 1
2 dist (∂Ω̃,Ω1). Now we set Ω2 := Ω̂, ε2 := ε and obtain Ω1 ⊆

Ω2, dist (∂Ω2,Ω1) > ε2.
Repeating this procedure, we find by induction a sequence (Ωj)∞j=1 of Lip-

schitz subdomains of Ω and a sequence (εj)∞j=1 with 0 < εj < 1
j , j ∈ N. The

properties a), b) and c) are satisfied. In order to prove d) we consider any x ∈ Ω.
Since Ω is a domain, we can choose some j0 ∈ N and some subdomain Ω0 ⊆ Ω
such that

x ∈ Ω0 ⊆ Ω ∩ Bj0(x0) , x0 ∈ Ω0.

Let d := dist (∂Ω0, x) and choose j1 > j0 with εj1 < d. Then the above
construction shows that x ∈ Ωj1 . This proves the lemma. �

1.4.2 Remark The construction above yields the following additional property:
To each bounded subdomain Ω′ ⊆ Ω with Ω′ ⊆ Ω there exists some j ∈ N such
that Ω′ ⊆ Ωj .

1.5 Compact embeddings

Such embedding properties are needed later on in the proofs for technical rea-
sons.

Consider a bounded domain Ω ⊆ R
n with n ≥ 1, and let 1 < q < ∞. Then

the natural embedding
u �→ u , u ∈ W 1,q

0 (Ω) (1.5.1)
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defines a bounded linear operator from W 1,q
0 (Ω) into Lq(Ω) since

‖u‖Lq(Ω) ≤ ‖u‖W 1,q(Ω) , u ∈ W 1,q
0 (Ω). (1.5.2)

Hence the embedding W 1,q
0 (Ω) ⊆ Lq(Ω) is continuous. The following lemma

shows that the embedding operator (1.5.1) is even a compact operator. This
means that each sequence (uj)∞j=1 in W 1,q

0 (Ω), which is bounded in the norm of
W 1,q(Ω), contains a subsequence which converges in the norm of Lq(Ω) to some
element u ∈ Lq(Ω). Since supj∈N ‖uj‖1,q < ∞, it even holds that u ∈ W 1,q

0 (Ω).

1.5.1 Lemma Let Ω ⊆ R
n, n ≥ 1, be any bounded domain, and let 1 < q < ∞.

Then the embedding operator u �→ u from W 1,q
0 (Ω) into Lq(Ω) is compact.

Therefore, each bounded sequence in W 1,q
0 (Ω) contains a subsequence which con-

verges in the norm of Lq(Ω) to some element of W 1,q
0 (Ω).

Proof. This is a special case of Rellich’s theorem [Ada75, VI, Theorem 6.2, Part
IV]. See also [Agm65, Sec. 8, Theorem 8.3] or [Tem77, Chap. II, Theorem 1.1].

�
Next we consider the dual space Lq(Ω)′ of Lq(Ω), 1 < q < ∞, consisting of

all linear functionals defined on Lq(Ω) which are continuous in the norm ‖ · ‖q.
We know, see [Nec67, Chap. 2, Proposition 2.5], each such functional has the
form

u �→< f, u > =
∫

Ω

fu dx , u ∈ Lq(Ω) (1.5.3)

with some f ∈ Lq′
(Ω), q′ = q

q−1 . Thus we get

Lq′
(Ω) = Lq(Ω)′ (1.5.4)

if we identify each f ∈ Lq′
(Ω) with the functional

< f, · > : u �→< f, u > , u ∈ Lq(Ω).

Since 1 < q′ < ∞ we get in the same way that

Lq(Ω)′′ = Lq′
(Ω)′ = Lq(Ω). (1.5.5)

Here u ∈ Lq(Ω) is identified with the functional

< ·, u >: f �→< f, u > , f ∈ Lq′
(Ω).

Thus Lq(Ω) is a reflexive Banach space for 1 < q < ∞. See Section 3.1 for some
explanations.

If u ∈ W 1,q
0 (Ω) we can use the Poincaré inequality (1.1.1) and see that

|< f, u > | ≤ ‖f‖q′‖u‖q ≤ C ‖f‖q′‖∇u‖q (1.5.6)

for all f ∈ Lq′
(Ω) with C = C(q,Ω) > 0.
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Consider now the dual space W−1,q′
(Ω) = W 1,q

0 (Ω)′ of W 1,q
0 (Ω), see

(3.6.5), I. By (1.5.6) we know that each f ∈ Lq′
(Ω) defines the continuous

functional

< f, · > : u �→< f, u > , u ∈ W 1,q
0 (Ω).

Thus, identifying each f with < f, · > we obtain the natural continuous embed-
ding

Lq′
(Ω) ⊆ W−1,q′

(Ω). (1.5.7)

The embedding operator from Lq′
(Ω) into W−1,q′

(Ω) can be understood
as the dual operator of the embedding operator from W 1,q

0 (Ω) into Lq(Ω). See
[Yos80, VII, 1] concerning dual operators. We know, see Schauder’s theorem
[Yos80, X, 4], that the dual operator of a compact linear operator is again
compact. Therefore, (1.5.7) is a compact embedding. Replacing q′ by q we thus
obtain the following result.

1.5.2 Lemma Let Ω ⊆ R
n, n ≥ 1, be any bounded domain, and let 1 < q < ∞.

Then the embedding
Lq(Ω) ⊆ W−1,q(Ω) (1.5.8)

is compact. Therefore, each bounded sequence in Lq(Ω) contains a subsequence
which converges in the norm of W−1,q(Ω) to some element of Lq(Ω).

Proof. Use Lemma 1.5.1 and apply [Yos80, X, 4]. �
If Ω is a bounded Lipschitz domain, a similar compactness result also holds

for the embedding W 1,q(Ω) ⊆ Lq(Ω).

1.5.3 Lemma Let Ω ⊆ R
n, n ≥ 1, be a bounded Lipschitz domain, and let

1 < q < ∞. Then the embedding

W 1,q(Ω) ⊆ Lq(Ω) (1.5.9)

is compact. Therefore, each bounded sequence in W 1,q(Ω) contains a subsequence
which converges in the norm of Lq(Ω) to some element of W 1,q(Ω).

Proof. See [Nec67, Chap. 2, Theorem 6.3] �
The compactness of the embedding (1.5.7) can be used to improve the

estimate (1.1.6) in Lemma 1.1.3. We can “remove” the second term on the right
side of (1.1.6) under an additional condition on u. This leads to the following
result.

1.5.4 Lemma Let Ω ⊆ R
n, n ≥ 2, be a bounded Lipschitz domain, let Ω0 ⊆ Ω,

Ω0 �= ∅, be any subdomain, and let 1 < q < ∞. Then

‖u‖Lq(Ω) ≤ C1‖∇u‖W−1,q(Ω)n ≤ C1C2 ‖u‖Lq(Ω) (1.5.10)
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for all u ∈ Lq(Ω) satisfying ∫
Ω0

u dx = 0 ; (1.5.11)

C1 = C1(q,Ω,Ω0) > 0 and C2 = C2(n) > 0 are constants.

Proof. Recall that ∇u ∈ W−1,q(Ω)n with u ∈ Lq(Ω) means the functional

[∇u, · ] : v �→ [∇u, v] = − < u,div v >= −
∫

Ω

u div v dx,

v ∈ W 1,q′
0 (Ω)n, q′ = q

q−1 , see the proof of Lemma 1.1.3.
The estimate

|[∇u, v]| = |< u, div v > | ≤ ‖u‖q ‖div v‖q′ (1.5.12)

≤ C ‖u‖q ‖v‖W 1,q′ (Ω)n

for all v ∈ W 1,q′
0 (Ω)n, with C = C(n) > 0, proves the second inequality in

(1.5.10).
Thus it remains to prove the first inequality in (1.5.10). To prove it we use

a contradiction argument. Assume there does not exist a constant C > 0 such
that

‖u‖q ≤ C ‖∇u‖−1,q

holds for all u ∈ Lq(Ω) with
∫
Ω0

u dx = 0. Then for each j ∈ N there is some
uj ∈ Lq(Ω) with ‖uj‖q > j‖∇uj‖−1,q,

∫
Ω0

uj dx = 0. Setting

ũj := ‖uj‖−1
q uj , j ∈ N

we obtain a sequence (ũj)∞j=1 in Lq(Ω) satisfying

‖ũj‖q = 1 ,

∫
Ω0

ũj dx = 0 , ‖∇ũj‖−1,q <
1
j

for all j ∈ N.
Since Lq(Ω) is reflexive and the sequence (ũj)∞j=1 is bounded, there exists

a subsequence which converges weakly in Lq(Ω) to some element u ∈ Lq(Ω), see
Section 3.1. For simplicity we may assume that (ũj)∞j=1 itself has this property.
This means that

< u, v > = lim
j→∞

< ũj , v >
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for all v ∈ Lq′
(Ω). In particular, it follows that

∫
Ω0

u dx = 0. Using

limj→∞ ‖∇ũj‖−1,q = 0 ,

|[∇ũj, v]| = |< ũj ,div v > | ≤ ‖∇ũj‖−1,q ‖v‖1,q′ ,

and

|[∇u, v]| = |< u, div v > | = | lim
j→∞

< ũj, div v > |
= lim

j→∞
| < ũj, div v > | = lim

j→∞
inf | < ũj, div v > |

≤ lim
j→∞

inf(‖∇ũj‖−1,q ‖v‖1,q′)

= ( lim
j→∞

inf ‖∇ũj‖−1,q) ‖v‖1,q′

= ( lim
j→∞

‖∇ũj‖−1,q) ‖v‖1,q′ = 0,

v ∈ W 1,q′
0 (Ω), we see that ‖∇u‖−1,q = 0. Therefore, it holds that ∇u = 0 in the

sense of distributions and therefore, u is a constant. The mollification method
in Section 1.7 will give a proof of this property, see (1.7.18). Since

∫
Ω0

u dx = 0
we conclude that u = 0.

On the other hand, applying inequality (1.1.6) to ũj yields

‖ũj‖q = 1 ≤ C(‖∇ũj‖−1,q + ‖ũj‖−1,q) (1.5.13)

for all j ∈ N, where C > 0 is the constant in (1.1.6). Since (ũj)∞j=1 is bounded
in Lq(Ω) and since the embedding Lq(Ω) ⊆ W−1,q(Ω) is compact, see Lemma
1.5.2, there is a subsequence of (ũj)∞j=1 which converges in W−1,q(Ω) to some
ũ ∈ Lq(Ω). It also converges weakly to ũ ∈ Lq(Ω), and therefore we get ũ =
u = 0. We may assume that the sequence (ũj)∞j=1 itself converges in W−1,q(Ω)
to u = 0. Therefore,

lim
j→∞

‖ũj‖−1,q = 0.

However, from (1.5.13) we get that

1 ≤ lim
j→∞

C (‖∇ũj‖−1,q + ‖ũj‖−1,q) = 0.

This is a contradiction and the lemma is proved. The argument used here is
well known, see Peetre’s lemma [LiMa72, Chap. 2, Lemma 5.1]. �
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1.6 Representation of functionals

In the theory of the Navier-Stokes equations we are interested in the case that
the external force f = (f1, . . . , fn) has the special form

f = div F (1.6.1)

in the sense of distributions. Here F = (Fjl)n
j,l=1 means a matrix and (1.6.1)

means by definition that

fl = div (F1l, . . . , Fnl) =
n∑

j=1

DjFjl,

l = 1, . . . , n. Thus the operation div applies to the columns of the matrix F .

Below we consider some conditions which are sufficient for the representa-
tion (1.6.1). If Ω is bounded, we may use the Poincaré inequality and get the
following easy fact.

1.6.1 Lemma Let Ω ⊆ R
n be any bounded domain with n ≥ 2, and let f ∈

W−1,2(Ω)n.
Then there exists at least one matrix F ∈ L2(Ω)n2

satisfying

f = div F

in the sense of distributions, and

‖f‖W−1,2(Ω)n ≤ ‖F‖L2(Ω)n2 ≤ C‖f‖W−1,2(Ω)n (1.6.2)

with C = C(Ω) > 0.

Proof. Consider the closed subspace

D := {∇v ∈ L2(Ω)n2
; v ∈ W 1,2

0 (Ω)n} ⊆ L2(Ω)n2
(1.6.3)

of all gradients ∇v = (Djvl)n
j,l=1 of functions v = (v1, . . . , vn) ∈ W 1,2

0 (Ω)n. Let
the functional

f̃ : ∇v �→ [f̃ ,∇v] , ∇v ∈ D

be defined by [f̃ ,∇v] := [f, v] for all v ∈ W 1,2
0 (Ω)n. Then the Poincaré in-

equality (1.1.1) yields some C = C(Ω) > 0 such that

|[f̃ ,∇v]| = |[f, v]| ≤ ‖f‖−1,2 ‖v‖1,2 ≤ C‖f‖−1,2 ‖∇v‖2

for all ∇v ∈ D. Therefore, f̃ is a continuous functional defined on the subspace
D ⊆ L2(Ω)n2

.
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The Hahn-Banach theorem, see [Yos80, IV, 1], yields a linear extension of
f̃ from D to L2(Ω)n2

with the same functional norm. Then we may use the Riesz
representation theorem, see [Yos80, III, 6], and obtain a matrix F ∈ L2(Ω)n2

satisfying

< F,∇v > =
n∑

j,l=1

∫
Ω

Fjl(Djvl) dx =
∫

Ω

F · ∇v dx = [f̃ ,∇v] = [f, v] ,

v = (v1, . . . , vn) ∈ W 1,2
0 (Ω)n, and

‖F‖L2(Ω)n2 ≤ C ‖f‖−1,2 .

Further we get

|[f, v]| = |< F,∇v > | ≤ ‖F‖2 ‖∇v‖2 ≤ ‖F‖2(‖v‖2
2 + ‖∇v‖2

2)
1
2

for all v ∈ W 1,2
0 (Ω)n which shows that

‖f‖W−1,2(Ω) ≤ ‖F‖2.

If v ∈ C∞
0 (Ω)n we see that

< F,∇v > =
n∑

j,l=1

< Fjl,Djvl > = −
n∑

j,l=1

< DjFjl, vl >

= − [ div F, v] = [f, v]

holds in the sense of distributions. This yields the representation div(−F ) = f
and (1.6.1) holds with F replaced by −F . This proves the lemma. �

Consider the bounded domain Ω as in Lemma 1.6.1 and let f ∈ L2(Ω)n.
Then we identify f with the functional < f, · > and get

f ∈ W−1,2(Ω)n , ‖f‖−1,2 ≤ C ‖f‖2, (1.6.4)

with C from (1.1.1). This yields the continuous embedding

L2(Ω)n ⊆ W−1,2(Ω)n. (1.6.5)

Using the above lemma we see that for each f ∈ L2(Ω)n there exists some
F ∈ L2(Ω)n2

satisfying

f = div F (1.6.6)
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in the sense of distributions, and

‖F‖L2(Ω)n2 ≤ C ‖f‖L2(Ω)n (1.6.7)

where C = C(Ω) > 0 is a constant.

If Ω is not bounded, then, in general, ‖∇v‖L2(Ω)n2 and ‖v‖W 1,2(Ω)n are

not equivalent norms in W 1,2
0 (Ω)n. Therefore, we cannot expect that each f ∈

W−1,2(Ω)n has a representation f = div F with F ∈ L2(Ω)n2
. The following

lemma yields a criterion for this property. We have to distinguish the cases
n ≥ 3 and n = 2. If n = 2 we need an open ball BR(x0) with center x0 and
radius R.

1.6.2 Lemma
a) Let Ω ⊆ R

n be any unbounded domain with n ≥ 3 and let f ∈ Lq(Ω)n with
q = 2n

n+2 . Then there exists a matrix function F ∈ L2(Ω)n2
satisfying

f = div F (1.6.8)

in the sense of distributions, and

‖f‖W−1,2(Ω)n ≤ ‖F‖L2(Ω)n2 ≤ C‖f‖Lq(Ω)n (1.6.9)

with some constant C = C(n) > 0.
b) Let Ω ⊆ R

2 be any unbounded domain with Ω �= R
2 , let x0 /∈ Ω,

R > 0, BR(x0) ∩ Ω = ∅, f ∈ L2
loc(Ω)2, and suppose that

‖f‖2
∧ :=

∫
Ω

|f(x)|2 |x − x0|2 (ln |x − x0|/R)2 dx < ∞. (1.6.10)

Then there exists a matrix function F ∈ L2(Ω)4 satisfying

f = div F (1.6.11)

in the sense of distributions, and

‖f‖W−1,2(Ω)n ≤ ‖F‖L2(Ω)n2 ≤ C ‖f‖∧ (1.6.12)

with some constant C = C(Ω) > 0.

Proof. To prove a) we use Sobolev’s inequality (1.3.5) with q′ = q
q−1 = 2n

n−2 ,
1
n + 1

q′ = 1
2 . This yields

‖v‖q′ ≤ C‖∇v‖2 , v ∈ C∞
0 (Ω)n, (1.6.13)

with C = C(n, q) > 0.
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Since 1
q + 1

q′ = n+2
2n + n−2

2n = 1, we get the estimate

|< f, v > | ≤ ‖f‖q ‖v‖q′ ≤ C ‖f‖q ‖∇v‖2. (1.6.14)

This shows that the functional defined by ∇v �→< f, v > is continuous on
the subspace D ⊆ L2(Ω)n2

, see (1.6.3), and the same argument as in the proof
of Lemma 1.6.1 yields some F satisfying (1.6.8) and (1.6.9).

To prove b) we may assume that R = 1. Then we use the embedding
inequality (1.3.12) and obtain(∫

Ω

( |v(x)|
|x − x0|ln|x − x0|

)2

dx

) 1
2

≤ C ‖∇v‖L2(Ω)4

for all v ∈ C∞
0 (Ω)n with C = C(Ω) > 0. This leads to

| < f, v > |
=

∣∣ ∫
Ω

(f(x)|x − x0| ln|x − x0|) · (v(x)|x − x0|−1(ln|x − x0|)−1)
∣∣ dx

≤ C‖f‖∧‖∇v‖2,

and the assertion in b) follows in the same way as before. �

1.7 Mollification method

This method enables us to approximate Lq-functions by C∞-functions. It will be
used later on in the proofs. See [Ada75, II, 2.17], [Nec67, Chap. 2, 1.3], [Yos80, I,
Prop. 8], [Fri69, Part 1, (6.3)], [Miz73, Chap. 1, end of 7, and Chap. 2, Prop. 2.4,
(3)], [Agm65, Sec. 1, Def. 1.7].

Let Ω ⊆ R
n be a domain with n ≥ 1 and let Ω0 ⊆ Ω, Ω0 �= ∅, be a bounded

subdomain with Ω0 ⊆ Ω. Let

Br(x) := {y ∈ R
n; |x − y| < r} (1.7.1)

be the open ball with center x and radius r > 0, and let the function F ∈
C∞

0 (R)n satisfy the following properties:

supp F ⊆ B1(0) , 0 ≤ F ≤ 1 ,

∫
B1(0)

Fdx = 1, (1.7.2)

F(x) = F(−x) for all x ∈ R
n.

Let Fε ∈ C∞
0 (Rn), ε > 0, be defined by

Fε(x) := ε−nF(ε−1x) , x ∈ R
n. (1.7.3)
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Then supp Fε ⊆ Bε(0) and the transformation formula for integrals, see [Apo74,
Theorem 15.11], yields ∫

Rn

Fε(x) dx =
∫

Rn

F(y) dy = 1 (1.7.4)

with y = 1
εx, dy = ε−n dx.

Consider any function u ∈ L1
loc(Ω) and set u(x) := 0 for all x /∈ Ω. Then

we get u ∈ L1
loc(R

n). Let uε = Fε � u be defined by

uε(x) = (Fε � u)(x) :=
∫

Rn

Fε(x − y)u(y) dy , x ∈ R
n. (1.7.5)

Using again the transformation formula for integrals we see that

uε(x) =
∫

Rn

Fε(x − y)u(y) dy =
∫

Rn

Fε(z)u(x − z) dz (1.7.6)

with x − y = z, dy = dz, and that

uε(x) =
∫

Rn

Fε(x − y)u(y) dy =
∫

Rn

F(z)u(x − εz) dz (1.7.7)

with ε−1(x − y) = z, y = x − εz, dy = εndz.

If u is continuous in Ω, then

lim
ε→0

uε(x) = u(x) uniformly for all x ∈ Ω0. (1.7.8)

The proof of this fact rests on the representation

uε(x) − u(x) =
∫

Rn

F(z)(u(x − εz) − u(x)) dz , x ∈ Ω0.

Let u ∈ Lq(Ω), 1 < q < ∞, and q′ = q
q−1 . Then by Hölder’s inequality

and Fubini’s theorem, see [Apo74], we get

‖Fε � u‖Lq(Ω) =

(∫
Ω

∣∣∣ ∫
|z|≤1

F(z)
1
q′ F(z)

1
q u(x − εz) dz

∣∣∣q dx

) 1
q

≤
(∫

|z|≤1

F(z) dz

) 1
q′
(∫

|z|≤1

F(z)
(∫

Rn

|u(x − εz)|q dx

)
dz

) 1
q

≤
(∫

|z|≤1

F dz

) 1
q′
(∫

|z|≤1

F dz

) 1
q

‖u‖Lq(Ω)

= ‖u‖Lq(Ω).
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This estimate

‖Fε � u‖Lq(Ω) ≤ ‖u‖Lq(Ω)

also holds if q = 1.

This shows,
Fε� : u �→ Fε � u , u ∈ Lq(Ω) (1.7.9)

is a bounded linear operator from Lq(Ω) to Lq(Ω) with operator norm

‖Fε � ‖ ≤ 1 , ε > 0. (1.7.10)

Next we use the density

C∞
0 (Ω)

‖·‖Lq(Ω) = Lq(Ω) , 1 ≤ q < ∞, (1.7.11)

the property (1.7.8), which holds for each u ∈ C∞
0 (Ω), and the uniform bound-

edness (1.7.10). This leads by an elementary calculation to

lim
ε→0

‖(Fε � u) − u‖Lq(Ω) = 0

for all u ∈ Lq(Ω), 1 ≤ q < ∞.

Collecting these facts yields the following result:

1.7.1 Lemma Let Ω ⊆ R
n, n ≥ 1, be any domain, and let 1 ≤ q < ∞, ε > σ.

Then for all u ∈ Lq(Ω) we get

‖(Fε � u)‖Lq(Ω) ≤ ‖u‖Lq(Ω) (1.7.12)

and
lim
ε→0

(Fε � u) = u (1.7.13)

with respect to the norm ‖ · ‖Lq(Ω).

Proof. See [Ada75, II, Lemma 2.18]. �
We mention some further properties of the operator Fε� , see [Ada75, II,

2.17–2.19]. Let Ω and Ω0 ⊆ Ω be as above. Let x ∈ Ω0 and

0 < ε < dist (∂Ω,Ω0) := inf
x∈∂Ω,y∈Ω0

|x − y| (1.7.14)

with 0 < ε < ∞ if ∂Ω = ∅.
Consider any distribution u ∈ C∞

0 (Ω)′ in Ω, for example u ∈ L1
loc(Ω).

Then for each fixed x ∈ Ω0, we let Fε(x − · ) be the test function

Fε(x − · ) : y �→ Fε(x − y) , y ∈ Ω,
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and we see,

uε(x) = (Fε � u)(x) =
∫

Ω

Fε(x − y)u(y) dy := [u,Fε(x − · )] (1.7.15)

is well defined in the sense of distributions. In this case, the “integral”
∫
Ω
· · · dy

is only used formally as a notation. An easy calculation yields the properties

uε = Fε � u ∈ C∞(Ω0) (1.7.16)

and
(Dαuε)(x) = (Fε � (Dαu))(x) = ((DαFε) � u)(x) (1.7.17)

for all x ∈ Ω0, where Dα = Dα1
1 . . . Dαn

n , α = (α1, . . . , αn) ∈ N
n
0 . Thus if

x ∈ Ω0, and ε satisfies (1.7.14), Dα commutes with the operator Fε�.

As an application of this method we prove the following property:

If u ∈ L1
loc(Ω) and ∇u = 0 in the sense of

distributions, then u is a constant.

}
(1.7.18)

Indeed, we see that ∇uε(x) = (∇u)ε(x) = 0 for all x ∈ Ω0 and all ε as in
(1.7.14). Since uε is smooth, see (1.7.16), an elementary argument shows that
uε = Cε holds in Ω0 with a constant Cε depending on ε. Letting ε → 0 and
using (1.7.13) we see that Cε converges to some constant C. Replacing Ω0 by
the subdomains Ωj , j ∈ N, in Lemma 1.4.1, we conclude that u is constant on
the whole domain Ω.

The results of this subsection can also be used if u is replaced by a vector
field u = (u1, . . . , um), m ∈ N. If n = 1, Ω ⊆ R means any open interval.

2 The operators ∇ and div

2.1 Solvability of div v = g and ∇p = f

The investigation of these operators is the first important step in the theory of
the Navier-Stokes system. The construction of the pressure p rests on properties
of ∇ and div. Both operators div and ∇ are connected by a duality principle,
see the proof of the lemma below. Therefore, it is sufficient to know the basic
properties of one of these operators. The approach which we use here is based on
the estimates of gradients in Lemma 1.5.4. There are several other approaches
to these operators, see [Bog79], [Bog80], [Gal94a, III, Lemma 3.1], [vWa88], and
[Pil80].
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2.1.1 Lemma Let Ω ⊆ R
n, n ≥ 2, be a bounded Lipschitz domain, let Ω0 ⊆ Ω,

Ω0 �= ∅, be any subdomain, and let 1 < q < ∞, q′ = q
q−1 . Then we have:

a) For each g ∈ Lq(Ω) with
∫
Ω

gdx = 0, there exists at least one v ∈ W 1,q
0 (Ω)n

satisfying
div v = g , ‖∇v‖Lq(Ω)n ≤ C‖g‖Lq(Ω) , (2.1.1)

where C = C(q,Ω) > 0 is a constant.
b) For each f ∈ W−1,q(Ω)n so that

[f, v] = 0 for all v ∈ W 1,q′
0 (Ω)n with div v = 0,

there exists a unique p ∈ Lq(Ω) satisfying

∇p = f ,

∫
Ω0

p dx = 0 , ‖p‖Lq(Ω) ≤ C ‖f‖W−1,q(Ω)n , (2.1.2)

where C = C(q,Ω,Ω0) > 0 is a constant.

Proof. First let Ω0 = Ω. We set

< p, g > :=
∫

Ω

pg dx , p ∈ Lq(Ω) , g ∈ Lq′
(Ω) .

Since 1 < q < ∞, Lq(Ω) and Lq′
(Ω) are reflexive Banach spaces. There-

fore, Lq(Ω) is the dual space of Lq′
(Ω) if we identify each p ∈ Lq(Ω) with

the functional < p, · >, and Lq ′(Ω) is the dual space of Lq(Ω) if we identify
each g ∈ Lq′

(Ω) with the functional < ·, g >. See [Yos80, IV, 9, (3)] for these
notions.

Consider now the closed subspaces

Lq
0(Ω) :=

{
p ∈ Lq(Ω);

∫
Ω

p dx = 0
} ⊆ Lq(Ω),

Lq′
0 (Ω) :=

{
g ∈ Lq′

(Ω);
∫

Ω

g dx = 0
} ⊆ Lq′

(Ω) .

As before we set

< p, g > =
∫

Ω

pg dx , p ∈ Lq
0(Ω) , g ∈ Lq′

0 (Ω).

Each continuous linear functional defined on Lq′
0 (Ω) has a continuous lin-

ear extension to Lq′
(Ω), see the Hahn-Banach theorem [Yos80, IV, 1], see also

Section 3.1. Therefore, each such functional has the form

g �→< p, g > , g ∈ Lq′
0 (Ω),
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with some p ∈ Lq(Ω). We choose p0 ∈ R in such a way that
∫
Ω
(p − p0) dx = 0.

Then < p, g > = < p− p0, g > for g ∈ Lq′
0 (Ω) and it holds that p− p0 ∈ Lq

0(Ω).
This shows that Lq

0(Ω) is the dual space of Lq′
0 (Ω) if each p ∈ Lq

0(Ω) is
identified with the functional < p, · >. Correspondingly, Lq′

0 (Ω) is the dual space
of Lq

0(Ω). Thus we get

Lq
0(Ω) = Lq′

0 (Ω)′ , Lq′
0 (Ω) = Lq

0(Ω)′ . (2.1.3)

Next we consider the space W 1,q′
0 (Ω)n and its dual space

W−1,q(Ω)n = W 1,q′
0 (Ω)n′ ,

see (3.6.5), I. Let [f, v] denote the value of f ∈ W−1,q(Ω)n at v ∈ W 1,q′
0 (Ω)n.

Then W 1,q′
0 (Ω)n is the dual space of W−1,q(Ω)n if each v ∈ W 1,q′

0 (Ω)n is iden-
tified with the functional [ · , v] : f �→ [f, v].

Let v ∈ W 1,q′
0 (Ω)n. Then from (1.2.5) we see that v|∂Ω = 0 holds in the

sense of traces, and Green’s formula (1.2.12), applied with u = 1 in Ω, shows
that ∫

Ω

div v dx = 0 , div v ∈ Lq′
0 (Ω) .

The linear operator

div : v �→ div v , v ∈ W 1,q′
0 (Ω)n (2.1.4)

from W 1,q′
0 (Ω)n to Lq′

0 (Ω) is bounded since

‖div v‖q′ ≤ C1 ‖v‖W 1,q′ (Ω)n (2.1.5)

with C1 = C1(n) > 0. Let

R(div) := {div v ∈ Lq′
0 (Ω) ; v ∈ W 1,q′

0 (Ω)n}

denote the range space and let

N(div) := {v ∈ W 1,q′
0 (Ω)n ; div v = 0}

be the null space of div.
Further we consider the operator

∇ : p �→ ∇p , p ∈ Lq
0(Ω) (2.1.6)
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from Lq
0(Ω) to W−1,q(Ω)n, defined by the relation

[∇p, v] := − < p,div v > , v ∈ W 1,q′
0 (Ω)n , p ∈ Lq

0(Ω), (2.1.7)

with range
R(∇) := {∇p ∈ W−1,q(Ω)n ; p ∈ Lq

0(Ω)}. (2.1.8)

If ∇p = 0 we see that p is a constant, see (1.7.18), and therefore p = 0 since∫
Ω

p dx = 0. Thus

N(∇) := {p ∈ Lq
0(Ω) ; ∇p = 0} = {0}. (2.1.9)

From the estimate

|[∇p, v]| = |< p,div v > | ≤ ‖p‖q ‖div v‖q′

≤ C1 ‖p‖q ‖v‖1,q′ ,

with C1 as in (2.1.5), we see that ∇ is a bounded operator from Lq
0(Ω) to

W−1,q(Ω)n. It holds that

‖∇p‖−1,q ≤ C1‖p‖q , p ∈ Lq
0(Ω). (2.1.10)

Next we use a functional analytic argument. The relation (2.1.7) means
that −∇ is the dual operator of div, we write

−∇ = div ′ , (2.1.11)

see [Yos80, VII, 1] for this notion.
From Lemma 1.5.4, see (1.5.10), we obtain the estimate

‖p‖q ≤ C2‖∇p‖−1,q , p ∈ Lq
0(Ω) (2.1.12)

with some constant C2 = C2(q,Ω) > 0. This shows that the range R(−∇) =
R(∇) of −∇ is a closed subspace of W−1,q(Ω)n. Therefore we conclude that the
inverse

∇−1 : ∇p �→ p , ∇p ∈ R(∇)

from R(∇) onto Lq
0(Ω) is a bounded operator, see [Yos80, II, 6, Theorem 1].

The closed range theorem, see [Yos80, VII, 5], yields now the following
result:
R(div) is a closed subspace of Lq′

0 (Ω), we have

R(div) = {g ∈ Lq′
0 (Ω); < p, g > = 0 for all p ∈ N(∇)}, (2.1.13)
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and

R(∇) = {f ∈ W−1,q(Ω)n; [f, v] = 0 for all v ∈ N(div)}. (2.1.14)

Since N(∇) = {0} we conclude that

R(div) = Lq′
0 (Ω). (2.1.15)

Let
W 1,q′

0 (Ω)n/N(div) := {[v]; v ∈ W 1,q′
0 (Ω)n} (2.1.16)

denote the quotient space (see [Yos80, I, 11]) of all classes [v] := v+N(div), v ∈
W 1,q′

0 (Ω)n, equipped with the norm

‖[v]‖
W 1,q′

0 (Ω)n/N(div)
:= inf

w∈[v]
‖∇(v + w)‖q′ . (2.1.17)

Recall that ‖∇v‖q′ is an equivalent norm of W 1,q′
0 (Ω)n since Ω is bounded, see

(1.1.1).
We see that there exists the well defined inverse operator

div−1 : div v �→ [v] (2.1.18)

from R(div) = Lq′
0 (Ω) onto W 1,q′

0 (Ω)n/N(div). The operator div in (2.1.4) is
bounded and therefore closed, which means its graph is closed. From the closed
graph theorem, see [Yos80, II, 6, Theorem 1], we can now conclude that the
operator div−1 in (2.1.18) is bounded. This means that

‖ [v] ‖
W 1,q′

0 (Ω)/N(div)
≤ C3 ‖div v‖q′ (2.1.19)

for all v ∈ W 1,q′
0 (Ω)n with some constant C3 = C3(q,Ω) > 0.

Therefore, for each g∈Lq′
0 (Ω) we can select a representative v∈W 1,q′

0 (Ω)n

such that div v = g and

‖∇v‖q′ ≤ C3 ‖g‖q′ .

Note that this mapping g �→ v need not be linear. This proves assertion a) with
q replaced by q′.

To prove b) we use (2.1.14). If f ∈ W−1,q(Ω)n satisfies [f, v] = 0 for all
v ∈ N(div), then from (2.1.14) we see that f ∈ R(∇), and therefore there exists
some p ∈ Lq

0(Ω) with f = ∇p ; p is unique since N(∇) = 0, and the estimate in
(2.1.2) follows from (2.1.12) with C := C2.
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This proves b) in the case Ω0 = Ω. If Ω0 ⊆ Ω is any subdomain, then for
given f ∈ R(∇) we first choose p ∈ Lq

0(Ω) as above, and then we set p̃ := p− p0

so that
p0 := |Ω0|−1

∫
Ω0

p dx, (2.1.20)

where |Ω0| means the Lebesgue measure of Ω0. Then
∫
Ω0

p̃ dx = 0, and using
Hölder’s inequality we get

‖p̃‖q ≤ ‖p‖q + ‖p0‖q

≤ ‖p‖q + |Ω0|−1|
∫

Ω0

p dx| |Ω| 1q

≤ ‖p‖q(1 + |Ω0|− 1
q |Ω| 1q )

≤ C ‖f‖W−1,q(Ω)n

with C = C(q,Ω,Ω0) > 0. The proof is complete. �

2.2 A criterion for gradients

Lemma 2.1.1 contains in particular a criterion for the property that

f ∈ W−1,q(Ω)n

is a gradient of the form f = ∇p with p ∈ Lq(Ω). A sufficient condition is that

[f, v] = 0 for all v ∈ N(div) := {v ∈ W 1,q′
0 (Ω)n; div v = 0}

where [f, v] means the value of the functional f at v.
Our aim is to improve this criterion and to show that it is sufficient to

require [f, v] = 0 only for all

v ∈ C∞
0,σ(Ω) = {v ∈ C∞

0 (Ω)n; div v = 0}.
This is important since C∞

0,σ(Ω) is the appropriate space of test functions
in the theory of Navier-Stokes equations.

There are several approaches to such criterions. They are based on de
Rham’s theory [dRh60], see [Tem77, Chap. I, Prop. 1.1], on Bogovski’s theory,
see [Bog80], or on an elementary argument in [SiSo92]. Here we essentially follow
[SiSo92], see also [Gal94a, III, proof of Lemma 1.1].

Further we will admit a general domain Ω ⊆ R
n, n ≥ 2, in the next result.

Recall that by definition, see (3.6.13), I, the following holds:

f ∈ W−1,q
loc (Ω)n iff f ∈ W−1,q(Ω0)n

for all bounded subdomains Ω0 ⊆ Ω with Ω0 ⊆ Ω.
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2.2.1 Lemma Let Ω ⊆ R
n, n ≥ 2, be an arbitrary domain, let Ω0 ⊆ Ω be

a bounded subdomain with Ω0 ⊆ Ω, Ω0 �= ∅, and let 1 < q < ∞. Suppose
f ∈ W−1,q

loc (Ω)n satisfies

[f, v] = 0 for all v ∈ C∞
0,σ(Ω). (2.2.1)

Then there exists a unique p ∈ Lq
loc(Ω) satisfying ∇p = f in the sense of

distributions and ∫
Ω0

p dx = 0. (2.2.2)

Proof. The lemma is proved if we show the following property:
For any bounded Lipschitz subdomain Ω1 ⊆ Ω with Ω0 ⊆ Ω1, Ω1 ⊆ Ω, there
exists a unique p ∈ Lq(Ω1) with ∇p = f in the sense of distributions in Ω1, and
with

∫
Ω0

p dx = 0.
Indeed, using a representation of Ω as a union of bounded Lipschitz do-

mains, see Lemma 1.4.1, and the uniqueness of p in Ω1, we will see that p can
be extended to a well defined function defined on Ω with the desired properties.

Let Ω1 be such a subdomain. Then we choose, using a similar construction
as in the proof of Lemma 1.4.1, another bounded Lipschitz subdomain Ω2 ⊆ Ω
satisfying

Ω1 ⊆ Ω2 , Ω2 ⊆ Ω.

From f ∈ W−1,q
loc (Ω)n we see that f ∈ W−1,q(Ω2)n, and since Ω2 is

bounded we get by Lemma 1.6.1 a representation of the form

f = div F with F = (Fjl)n
j,l=1 ∈ Lq(Ω2)n2

.

This was shown in Lemma 1.6.1 only for q = 2, however the same proof holds
for 1 < q < ∞.

Next we use the mollification method, see Section 1.7, and set F ε := Fε �

F = (Fε � Fjl)n
j,l=1 with 0 < ε < dist (∂Ω2,Ω1). This yields F ε ∈ C∞(Ω1)n2

.
Our purpose is to prove the representation

div F ε = ∇Uε (2.2.3)

with some function Uε ∈ C∞(Ω1). To prove this we use the following elementary
procedure from [SiSo92].

Let w : τ �→ w(τ), 0 ≤ τ ≤ 1, be a continuous mapping from [0, 1] to
Ω1. We assume that the derivative w′ exists and is piecewise continuous on
[0, 1]. Such a function w is called a curve in Ω1; w is called a closed curve if
w(0) = w(1).
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Further we consider a vector field g = (g1, . . . , gn) ∈ C∞(Ω1)n, and define
the curve integral∫ 1

0

g(w(τ)) · w′(τ) dτ :=
∫ 1

0

n∑
j=1

gj(w(τ))w′
j(τ) dτ

with w(τ) = (w1(τ), . . . , wn(τ)), w′(τ) = (w′
1(τ), . . . , w′

n(τ)).
An elementary classical argument shows that if this integral is zero for

each closed curve in Ω1, then g has the form g = ∇U with U ∈ C∞(Ω1).
To apply this argument for the proof of (2.2.3), we have to show that∫ 1

0

( div F ε)(w(τ)) · w′(τ) dτ = 0 (2.2.4)

for each closed curve w in Ω1. To prove this we set

Vw,ε(x) :=
∫ 1

0

Fε(x − w(τ))w′(τ) dτ , x ∈ Ω2,

and get Vw,ε ∈ C∞
0 (Ω2)n,

div Vw,ε(x) =
∫ 1

0

n∑
j=1

(DjFε)(x − w(τ))w′
j(τ) dτ

= −
∫ 1

0

d

dτ
Fε(x − w(τ)) dτ

= Fε(x − w(0)) − Fε(x − w(1)) = 0

if w is a closed curve in Ω1. This leads to Vw,ε ∈ C∞
0,σ(Ω2)n, and using the

assumption (2.2.1) and Fubini’s theorem we obtain

0 = [f, Vw,ε] = [ div F, Vw,ε]

=
n∑

j,l=1

∫
Ω2

Dj Fjl(x)
(∫ 1

0

Fε(x − w(τ))w′
l(τ) dτ

)
dx

=
∫ 1

0

⎛⎝ n∑
j,l=1

∫
Ω2

Fε(w(τ) − x)Dj Fjl(x)dx

⎞⎠w′
l(τ) dτ

=
∫ 1

0

⎛⎝ n∑
j,l=1

∫
Ω2

(Dj Fε)(w(τ) − x)Fjl(x))dx

⎞⎠w′
l(τ) dτ

=
∫ 1

0

( div F ε(w(τ)) · w′(τ) dτ.

This proves (2.2.4).
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Thus we get the representation (2.2.3) with some Uε ∈ C∞(Ω1) which is
determined up to a constant. Choosing this constant in an appropriate way we
can conclude that

∫
Ω0

Uεdx = 0. Using Lemma 1.5.4, (1.5.10), we obtain

‖Uε‖Lq(Ω1) ≤ C ‖∇Uε‖W−1,q(Ω1)

= C sup
0	=v∈C∞

0 (Ω1)n

(|[∇Uε, v]| / ‖∇v‖q′)

= C sup
0	=v∈C∞

0 (Ω1)n

(| < F ε,∇v > | / ‖∇v‖q′)

≤ C‖F ε‖Lq(Ω1)

with C = C(q,Ω0,Ω1) > 0 independent of ε.
Since ‖F − F ε‖Lq(Ω1) → 0 as ε → 0, see Lemma 1.7.1, we obtain, letting

ε → 0, some U ∈ Lq(Ω1) satisfying∫
Ω0

U dx = 0 , lim
ε→0

‖U − Uε‖Lq(Ω1) = 0 , f = div F = ∇U

in Ω1. To prove this, we choose 0 < η < ε and replace F ε by F ε − F η, Uε by
Uε − Uη in the last estimate. U is uniquely determined.

Consider now all possible Lipschitz subdomains Ω1 as defined above with
Ω0 ⊆ Ω1. Each bounded subdomain Ω′ ⊆ Ω with Ω′ ⊆ Ω is contained in such a
domain Ω1, see Remark 1.4.2.

Defining p by U constructed above in each such Ω1, the uniqueness of
U because of

∫
Ω0

U dx = 0 yields in this way a uniquely determined function
p ∈ Lq

loc(Ω) with f = ∇p in the whole domain Ω. This proves the lemma. �
If in particular Ω is a bounded Lipschitz domain, we can improve the above

result, see the next lemma, and show that even p ∈ Lq(Ω). Moreover p satisfies
the important estimate (1.5.10). For the proof we use the scaling argument, see,
e.g., the proof of [Tem77, Chap. I, Theorem 1.1].

2.2.2 Lemma Let Ω ⊆ R
n, n ≥ 2, be a bounded Lipschitz domain, let Ω0 ⊆ Ω,

Ω0 �= ∅, be any subdomain, and let 1 < q < ∞. Suppose f ∈ W−1,q(Ω)n satisfies

[f, v] = 0 for all v ∈ C∞
0,σ(Ω). (2.2.5)

Then there exists a unique p ∈ Lq(Ω) satisfying∫
Ω0

p dx = 0 , f = ∇p

in the sense of distributions. The estimate

‖p‖Lq(Ω) ≤ C1 ‖f‖W−1,q(Ω)n ≤ C1C2 ‖p‖Lq(Ω) (2.2.6)

holds with constants C1 = C1(q,Ω0,Ω) > 0 and C2 = C2(n) > 0.
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Proof. First we assume additionally that Ω is starlike with respect to some
x0 ∈ Ω. This means that the line {x0 + te; t ∈ R} intersects the boundary ∂Ω
in exactly two points for each vector e ∈ R

n. We may assume, for simplicity,
that x0 = 0. This property enables us to apply the following scaling argument.

Let 0 < ε < 1,

Ωε := {x ∈ R
n; εx ∈ Ω}

and let the functional fε ∈ W−1,q(Ωε)n be defined by [fε, v] := [f, vε], v ∈
W 1,q′

0 (Ωε)n, where vε ∈ W 1,q′
0 (Ω)n is defined by vε(x) := v(ε−1x), x ∈ Ω.

Let v ∈ C∞
0,σ(Ωε). Then vε ∈ C∞

0,σ(Ω), and from (2.2.5) we get that [fε, v] =
0 for all v ∈ C∞

0,σ(Ωε). Applying Lemma 2.2.1 yields a unique pε ∈ Lq
loc(Ωε)

satisfying
∫
Ω0

pεdx = 0 and fε = ∇pε in Ωε. Note that Ω ⊆ Ωε and therefore
Ω0 ⊆ Ωε

Since Ω ⊆ Ωε we get pε ∈ Lq(Ω), 0 < ε < 1. Therefore we may apply
Lemma 1.5.4 and estimate (1.5.10). This yields

‖pε‖Lq(Ω) ≤ C ‖∇pε‖W−1,q(Ω)n = C ‖fε‖W−1,q(Ω)n

with C = C(q,Ω) > 0 not depending on ε.
Let now 1

2 ≤ ε < 1 and v ∈ C∞
0,σ(Ω). Extending v by zero we get v ∈

C∞
0,σ(Ωε). Then a calculation shows that

‖∇vε‖Lq′ (Ω)n2 ≤ 2 ‖∇v‖Lq′ (Ω)n2 , q′ =
q

q − 1
,

and

|[fε, v]| = |[f, vε]| ≤ ‖f‖W−1,q(Ω)n‖∇vε‖Lq′ (Ω)n2

≤ 2 ‖f‖W−1,q(Ω)n‖∇v‖Lq′ (Ω)n2 .

This yields

‖pε‖Lq(Ω) ≤ C ‖fε‖W−1,q(Ω)n ≤ 2C ‖f‖W−1,q(Ω)n (2.2.7)

for 1
2 ≤ ε < 1.
Since C does not depend on ε, we are able to let ε → 1. Choose 1

2 ≤
εj < 1, j ∈ N, with limj→∞ εj = 1, and set pj := pεj , j ∈ N. The uniform
boundedness in (2.2.7) shows the existence of a subsequence of (pj)∞j=1 which
converges weakly in Lq(Ω) to some p ∈ Lq(Ω). We may assume that the sequence
itself has this property. With fj := fεj we get

< p, div v >Ω = lim
j→∞

< pj ,div v >Ω = lim
j→∞

[−∇pj , v]Ω

= lim
j→∞

[−fj , v]Ω = lim
j→∞

[−f, vj ]Ω

= [−f, v]Ω
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for all v ∈ C∞
0 (Ω)n, where vj := vεj is defined as above by vεj (x) := v(ε−1

j x),
x ∈ Ω. This shows that f = ∇p in the sense of distributions. The weak conver-
gence of pj to p yields that

∫
Ω0

p dx = 0. This proves the uniqueness property
of p.

The weak convergence property shows, see Section 3.1 or the proof of
Lemma 1.5.4, that

‖p‖Lq(Ω) ≤ lim
j→∞

inf ‖pj‖Lq(Ω) ≤ 2C ‖f‖W−1,q(Ω)n .

This proves the lemma for starlike domains.
The case of a general bounded Lipschitz domain Ω can be reduced to the

case above by the following localization argument. Using the definition of a
Lipschitz domain, we easily find bounded starlike subdomains Ω1, . . . ,Ωm ⊆ Ω
such that

Ω = Ω1 ∪ · · · ∪ Ωm.

For j = 1, . . . ,m let fj ∈ W−1,q(Ωj)n be the restriction of f to W 1,q′
0 (Ωj)n.

Consider first the case that Ω0 ⊆ Ω. Then from Lemma 2.2.1 we obtain
a unique p ∈ Lq

loc(Ω) satisfying f = ∇p,
∫
Ω0

p dx = 0. Since Ωj ⊆ Ω we get
in particular that ∇p = fj , j = 1, . . . ,m, in the sense of distributions in Ωj .
On the other hand, the result above yields some pj ∈ Lq(Ωj) with ∇pj = fj ,
j ∈ N, which is uniquely determined up to a constant. Therefore we get p+Cj =
pj , j = 1, . . . ,m, where Cj is a constant. This proves that p ∈ Lq(Ω). If Ω0 ⊆ Ω
is any subdomain, we choose a subdomain Ω′

0 ⊆ Ω with Ω′
0 ⊆ Ω. This yields as

above some p̃ ∈ Lq(Ω) with ∇p̃ = f and
∫
Ω′

0
p̃ dx = 0. Subtracting a constant

from p̃ yields the desired p ∈ Lq(Ω) with ∇p = f and
∫
Ω0

p dx = 0. Since
p ∈ Lq(Ω), the estimate (2.2.6) now follows from Lemma 1.5.4, (1.5.10). This
completes the proof. �

The following density property is an important consequence of Lemma
2.2.2. Note that this property need not hold in unbounded domains, see [Hey76]
for counter examples.

2.2.3 Lemma Let Ω ⊆ R
n, n ≥ 2, be a bounded Lipschitz domain, and let

1 < q < ∞. Then C∞
0,σ(Ω) = {v ∈ C∞

0 (Ω)n; div v = 0} is dense in the space
N(div) = {v ∈ W 1,q

0 (Ω)n; div v = 0} with respect to the norm ‖ · ‖W 1,q(Ω)n =
‖ · ‖1,q. Thus

C∞
0,σ(Ω)

‖·‖1,q = N(div). (2.2.8)

Proof. We use a functional analytic argument. To prove (2.2.8), it suffices to
show that each functional f ∈ W−1,q′

(Ω)n, q′ = q
q−1 , from the dual space
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W−1,q′
(Ω)n of W 1,q

0 (Ω)n which vanishes on C∞
0,σ(Ω) even vanishes on N(div).

Then (2.2.8) must be valid, otherwise we would find by the Hahn-Banach theo-
rem some f ∈ W−1,q′

(Ω)n with [f, v] = 0 for all v ∈ C∞
0,σ(Ω) and [f, v0] �= 0 for

some v0 ∈ N(div).
Thus let f ∈ W−1,q′

(Ω)n be given with [f, v] = 0, v ∈ C∞
0,σ(Ω). From

Lemma 2.2.2 we see that f = ∇p with some p ∈ Lq′
(Ω). It follows that

[f, v] = [∇p, v] = − < p, div v > (2.2.9)

for all v ∈ C∞
0 (Ω)n. Since f is continuous in ‖∇v‖q, and since p ∈ Lq′

(Ω), we
conclude that (2.2.9) even holds for all v ∈ W 1,q

0 (Ω)n. It follows that

[f, v] = − < p,div v > = 0 , v ∈ N(div).

This proves the lemma. �

2.3 Regularity results on div v = g

Lemma 2.1.1 yields a solution v ∈ W 1,q
0 (Ω)n of the system

div v = g , v|∂Ω = 0 (2.3.1)

for each given g ∈ Lq(Ω) with
∫
Ω

g dx = 0. In the regularity theory of the
Navier-Stokes equations we need solutions v of (2.3.1) with higher regularity
properties if g is sufficiently smooth. The next lemma yields such a result. See
[Bog80] or [Gal94a, III, 3] for a different approach to the regularity theory of
(2.3.1).

2.3.1 Lemma Let Ω ⊆ R
n, n ≥ 2, be a bounded Lipschitz domain, and let

1 < q < ∞, k ∈ N. Then for each g ∈ W k,q
0 (Ω) with

∫
Ω

g dx = 0, there exists at
least one v ∈ W k+1,q

0 (Ω)n satisfying

div v = g , ‖v‖W k+1,q(Ω)n ≤ C ‖g‖W k,q(Ω) (2.3.2)

with some constant C = C(q, k,Ω) > 0.

Proof. See [Gal94a, III, Theorem 3.2] for another proof. The result also holds
for k = 0 and is contained in this case in Lemma 2.1.1, a). We use the same
argument as for k = 0, now for k ≥ 1. For k = 0 the proof rests on inequality
(1.5.10) which follows from (1.1.6) by a compactness argument, see the proof
of Lemma 1.5.4. The same argument can be used in the case k ≥ 1. Instead of
(1.1.6) we now use the corresponding inequality (1.1.8) for k ≥ 1. The analogous
compactness argument as in the proof of Lemma 1.5.4 yields instead of (1.5.10)
the inequality

‖u‖W−k,q(Ω)/N(∇) ≤ C1‖∇u‖W−k−1,q(Ω)n ≤ C1C2‖u‖W−k,q(Ω) (2.3.3)
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for all u ∈ W−k,q(Ω) with constants C1 = C1(q, k,Ω) > 0, C2 = C2(n, k) > 0.
W−k,q(Ω)/N(∇) means the quotient space modulo the null space N(∇), which
consists of the constants. If k = 0, W−k,q(Ω)/N(∇) = Lq(Ω)/N(∇) can be
identified with Lq

0(Ω) = {u ∈ Lq(Ω);
∫
Ω

u dx = 0}.
The proof of Lemma 2.3.1 follows from (2.3.3) with q replaced by q′ = q

q−1

by the same duality principle as in the proof of Lemma 2.1.1. It follows that the
bounded linear operator

div : v �→ div v

from W k+1,q
0 (Ω)n to W k,q

0 (Ω) has the closed range W k,q
0 (Ω) ∩ Lq

0(Ω). There-
fore, the inverse operator div−1 from W k,q

0 (Ω) ∩ Lq
0(Ω) onto the quotient space

W k+1,q
0 (Ω)n/N(div), N(div) := {v ∈ W k+1,q

0 (Ω)n; div v = 0}, is bounded.
This proves the existence of some v ∈ W k+1,q

0 (Ω)n satisfying (2.3.2). The proof
is complete. �

2.4 Further results on the equation div v = g

Modifying the duality argument in the proof of Lemma 2.1.1 we find some other
solution classes of this equation. Here we need the traces, see Section 1.2, II,
and the exterior normal vector field N at the boundary ∂Ω, see (3.4.7), I.

2.4.1 Lemma Let Ω ⊆ R
n, n ≥ 2, be a bounded Lipschitz domain with boundary

∂Ω, and let 1 < q < ∞. Then we have:
a) For each g ∈ W−1,q(Ω) there exists at least one v ∈ Lq(Ω)n satisfying

div v = g

in the sense of distributions, and

‖v‖Lq(Ω)n ≤ C ‖g‖W−1,q(Ω) (2.4.1)

with some constant C = C(q,Ω) > 0.
b) For each g ∈ Lq(Ω) with

∫
Ω

g dx = 0, there exists at least one v ∈ Lq(Ω)n

satisfying

div v = g

in the sense of distributions, N ·v|∂Ω = 0 in the sense of generalized traces
(1.2.24), and

‖v‖Lq(Ω)n ≤ C ‖g‖Lq(Ω) (2.4.2)

with some constant C = C(q,Ω) > 0.
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Proof. To prove a) we consider the operator

div : v �→ div v

from Lq(Ω)n to W−1,q(Ω), and its dual operator div′ = −∇,

−∇ : p �→ ∇p,

from W 1,q′
0 (Ω) to Lq′

(Ω)n, q′ = q
q−1 . We get

[p, div v] = < −∇p, v >

for all p ∈ W 1,q′
0 (Ω) and v ∈ Lq(Ω)n. From Poincaré’s inequality (1.1.1) we see

that −∇ has a closed range. Therefore, div has also a closed range which is the
whole space W−1,q(Ω), since {0} is the null space of −∇; see the closed range
theorem [Yos80].

The inverse operator div−1 from W−1,q(Ω) to the quotient space Lq(Ω)n/
N(div), N(div) := {v ∈ Lq(Ω)n; div v = 0}, is therefore bounded. This yields
a).
To prove b) we define the operator

div : v �→ div v

with domain

D(div) := {v ∈ Lq(Ω)n; div v ∈ Lq(Ω), N · v|∂Ω = 0} ⊆ Lq(Ω)n

and range R(div) ⊆ Lq(Ω). From Green’s formula (1.2.25) we conclude that∫
Ω

div v dx = 0 for v ∈ D(div). To see this we set u ≡ 1 in (1.2.25). This yields
R(div) ⊆ Lq

0(Ω) = {g ∈ Lq(Ω);
∫
Ω

g dx = 0}. The trace N · v|∂Ω is well defined
since D(div) ⊆ Eq(Ω), see Lemma 1.2.2.

D(div) is dense in Lq(Ω)n since C∞
0 (Ω)n ⊆ D(div). We consider div as an

operator from D(div) to R(div) ⊆ Lq
0(Ω).

Lq′
0 (Ω) is the dual space of Lq

0(Ω), see (2.1.3). Next we define the operator

∇ : p �→ ∇p

with domain D(∇) := {p ∈ Lq′
0 (Ω); ∇p ∈ Lq′

(Ω)n} ⊆ W 1,q′
(Ω) and range

R(∇) ⊆ Lq′
(Ω)n. It holds that N(∇) = {p ∈ Lq′

0 (Ω); ∇p = 0} = {0} since

∇p = 0 ,

∫
Ω

p dx = 0

implies p = 0, see (1.7.18). Green’s formula (1.2.25) yields

< p,div v > = − < ∇p, v >
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for all p ∈ D(∇) and v ∈ D(div). This means, −∇ is the dual operator of div.
Poincaré’s inequality (1.1.2) implies that R(−∇) is closed in Lq′

(Ω)n. There-
fore, R(div) ⊆ Lq

0(Ω) is closed too, and since N(−∇) = {0}, we conclude that
R(div) = Lq

0(Ω) and that

inf
vo∈N(div)

‖v + v0‖q ≤ C ‖div v‖q

with N(div) := {v ∈ D(div); div v = 0}, C = C(q,Ω) > 0. Thus we may
choose v in such a way that (2.4.2) is satisfied. This proves b). �

2.5 Helmholtz decomposition in L2-spaces

In this subsection Ω ⊆ R
n is an arbitrary domain with n ≥ 2. We consider the

Hilbert space L2(Ω)n with scalar product

< f, g >Ω = < f, g > =
∫

Ω

f · g dx,

the subspace

L2
σ(Ω) := C∞

0,σ(Ω)
‖·‖2

, C∞
0,σ(Ω) := {f ∈ C∞

0 (Ω)n; div f = 0}, (2.5.1)

and the space

G(Ω) := {f ∈ L2(Ω)n; ∃ p ∈ L2
loc(Ω) : f = ∇p}. (2.5.2)

In other words, L2
σ(Ω) is the closure of C∞

0,σ(Ω) in the norm ‖ · ‖2 =
‖ · ‖L2(Ω)n , and G(Ω) is the space of those f ∈ L2(Ω)n for which there is some
p ∈ L2

loc(Ω) satisfying f = ∇p in the sense of distributions. “∃” means “there
exists”.

The next lemma shows that G(Ω) is orthogonal to L2
σ(Ω), we write

G(Ω) = L2
σ(Ω)⊥

for this property. This leads to the unique decomposition (2.5.4) of each f ∈
L2(Ω)n which is called the Helmholtz decomposition of f . In particular we see
that G(Ω) is a closed subspace of L2(Ω)n. See [Gal94a, III, 1], [FuM77], [SiZ98]
concerning the Helmholtz decomposition in Lq-spaces with 1 < q < ∞.

2.5.1 Lemma Let Ω ⊆ R
n, n ≥ 2, be any domain. Then

G(Ω) = {f ∈ L2(Ω)n; < f, v >= 0 for all v ∈ L2
σ(Ω)}, (2.5.3)

and each f ∈ L2(Ω)n has a unique decomposition

f = f0 + ∇p (2.5.4)
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with f0 ∈ L2
σ(Ω), ∇p ∈ G(Ω), < f0,∇p > = 0,

‖f‖2
2 = ‖f0‖2

2 + ‖∇p‖2
2. (2.5.5)

Remark As a consequence of this lemma we obtain a bounded linear operator
P : f �→ Pf from L2(Ω)n onto L2

σ(Ω) defined by Pf := f0 with f0 as in (2.5.4).
P is called the Helmholtz projection of L2(Ω)n onto L2

σ(Ω) .

2.5.2 Lemma Let Ω ⊆ R
n, n ≥ 2, be any domain, and let f = f0 + ∇p be the

Helmholtz decomposition of f ∈ L2(Ω)n. Then

P : L2(Ω)n → L2
σ(Ω) , (2.5.6)

defined by Pf := f0 for all f ∈ L2(Ω)n, is a bounded linear operator with
operator norm ‖P‖ ≤ 1. Thus

‖Pf‖2 ≤ ‖f‖2 , f ∈ L2(Ω)n. (2.5.7)

P has the following properties:

P (∇p) = 0 , (I − P )f = ∇p , P 2f = Pf ,

(I − P )2f = (I − P )f, < Pf, g >=< f,Pg >, ‖f‖2
2 = ‖Pf‖2

2 + ‖(I − P )f‖2
2

for all f, g ∈ L2(Ω)n.

From these properties we easily conclude that P is a selfadjoint operator,
and that P ′ = P , where P ′ means the dual operator of P , see Section 3.2 for
this notion.
Proof of Lemma 2.5.1. First we prove the characterization (2.5.3) of the sub-
space G(Ω) in (2.5.2). The space on the right side of (2.5.3) is by definition the
orthogonal subspace of L2

σ(Ω). Thus we have to show that

G(Ω) = L2
σ(Ω)⊥ . (2.5.8)

To prove (2.5.8) let f ∈ L2
σ(Ω)⊥. Then for any bounded subdomain Ω0 ⊆ Ω

with Ω0 ⊆ Ω we get, using Poincaré’s inequality (1.1.1), that

|< f, v > | ≤ ‖f‖2 ‖v‖L2(Ω0)n ≤ C ‖f‖2 ‖∇v‖L2(Ω0)n2

for all v ∈ C∞
0 (Ω0)n with C = C(Ω0) > 0. This shows that

f ∈ W−1,2
loc (Ω)n.

Next we observe that [f, v] =< f, v >= 0 for all v ∈ C∞
0,σ(Ω). Lemma 2.2.1

yields some p ∈ L2
loc(Ω), uniquely determined up to a constant, which satisfies

f = ∇p in the sense of distributions. This shows that f ∈ G(Ω).
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Conversely, let f ∈ G(Ω) with f = ∇p, p ∈ L2
loc(Ω). Then < ∇p, v > =

− < p, div v >= 0 for all v ∈ C∞
0,σ(Ω), and since ∇p ∈ L2(Ω)n, this even holds

for all v ∈ L2
σ(Ω). This proves (2.5.8).

Using some elementary Hilbert space properties, see Section 3.2, we get
the unique orthogonal decomposition f = f0 + ∇p for each f ∈ L2(Ω)n with
f ∈ L2

σ(Ω), ∇p ∈ L2
σ(Ω)⊥ = G(Ω); (2.5.5) is obvious. This proves the Lemma.

�
Proof of Lemma 2.5.2. The Hilbert space theory yields a uniquely determined
projection operator P from L2(Ω)n onto the subspace L2

σ(Ω); the properties of
P are obvious. This yields the lemma. �

For special domains we can improve the properties of the Helmholtz de-
composition f = f0 + ∇p. In particular we are interested in bounded Lipschitz
domains and in the case Ω = R

n. In these cases we can give special important
characterizations of L2

σ(Ω) and G(Ω).

In the following lemma, N · f |∂Ω means the generalized trace, see (1.2.24),
and N the exterior normal field at ∂Ω, see (3.4.7), I. Note that the trace N ·f |∂Ω

in (2.5.9) is well defined since f ∈ E2(Ω), see (1.2.20).

2.5.3 Lemma Let Ω ⊆ R
n, n ≥ 2, be a bounded Lipschitz domain with boundary

∂Ω. Then
L2

σ(Ω) = {f ∈ L2(Ω)n; div f = 0, N · f |∂Ω = 0} (2.5.9)

and

G(Ω) := {f ∈ L2(Ω)n; ∃ p ∈ L2(Ω) : f = ∇p}. (2.5.10)

Proof. In other words, G(Ω) is the space of all f ∈ L2(Ω)n for which there is
some p ∈ L2(Ω) with f = ∇p in the sense of distributions.

To prove (2.5.10), it suffices to show the following property:

p ∈ L2
loc(Ω), ∇p ∈ L2(Ω)n implies p ∈ L2(Ω).

This is a consequence of Lemma 1.1.5, b). Thus we obtain (2.5.10).
To prove (2.5.9), let L be the space on the right side of (2.5.9). From

G(Ω) = L2
σ(Ω)⊥ we get by an elementary Hilbert space argument that G(Ω)⊥

= L2
σ(Ω)⊥⊥ = L2

σ(Ω). Thus it remains to show that L = G(Ω)⊥.
To prove this let f ∈ G(Ω)⊥. By definition

G(Ω)⊥ := {f ∈ L2(Ω)n; < f,∇p > = 0 for all ∇p ∈ G(Ω)},
and therefore we obtain in particular < f,∇p > = 0 for all p ∈ C∞

0 (Ω). This
means that div f = 0 in the sense of distributions. It follows that f ∈ E2(Ω),
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see Lemma 1.2.2. Using (2.5.10) we get < f,∇p > = 0 for all p ∈ W 1,2(Ω).
Green’s formula (1.2.25) now yields that

0 = < p, div f >Ω = < p,N · f >∂Ω − < ∇p, f >Ω = < p,N · f >∂Ω

for all p ∈ W 1,2(Ω). This shows that N · f |∂Ω = 0 and therefore that f ∈ L.
Thus we have G(Ω)⊥ ⊆ L.

Conversely let f ∈ L. Then f ∈ E2(Ω) and Green’s formula (1.2.25) yields
< f,∇p >Ω = < divf, p >Ω = 0 for all ∇p ∈ G(Ω). This shows that f ∈ G(Ω)⊥.
Therefore we get L = G(Ω)⊥ and (2.5.9) holds. The proof is complete. �

In the case Ω = R
n we can prove the following characterization of the

spaces L2
σ(Ω) and G(Ω).

2.5.4 Lemma Let n ∈ N, n ≥ 2. Then

L2
σ(Rn) = {f ∈ L2(Rn)n; div f = 0}, (2.5.11)

and G(Rn) is the closure of the space

∇C∞
0 (Rn) := {∇p ; p ∈ C∞

0 (Rn)} (2.5.12)

with respect to the norm ‖ · ‖L2(Rn)n . Thus

G(Rn) = ∇C∞
0 (Rn)

‖·‖2
. (2.5.13)

Proof. First we prove (2.5.13). For this purpose we use the scaling method and
the mollification method, see Section 1.7.

To prepare the scaling argument we consider a function ϕ ∈ C∞
0 (Rn) with

the properties

0 ≤ ϕ ≤ 1 , ϕ(x) = 1 if |x| ≤ 1 , ϕ(x) = 0 if |x| ≥ 2, (2.5.14)

and define the functions

ϕj ∈ C∞
0 (Rn) , ϕj(x) := ϕ(j−1x) , x ∈ R

n, j ∈ N. (2.5.15)

It follows that limj→∞ ϕj(x) = 1 for all x ∈ R
n, and setting

Bj := {x ∈ R
n; |x| < j} , Gj := B2j\Bj , (2.5.16)

we get supp ∇ϕj ⊆ Gj , supp ϕj ⊆ B2j , j ∈ N. See [SiSo96] for the method
concerning ϕ.
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To show (2.5.13) we consider any ∇p ∈ G(Rn) = {∇p ∈ L2(Rn)n; p ∈
L2

loc(R
n)} and choose constants Kj , j ∈ N, such that∫

Gj

(p − Kj) dx = 0 , j ∈ N.

Applying Poincaré’s inequality (1.1.2) to G1, we get

‖p − K1‖L2(G1) ≤ C ‖∇p‖L2(G1)n (2.5.17)

with some constant C > 0. Using the transformation formula for integrals with
x = jy, dx = jndy, we obtain

‖p − Kj‖L2(Gj) =
( ∫

Gj

|p(x) − Kj |2dx
) 1

2 =
( ∫

G1

|p(jy) − Kj |2dy
) 1

2 j
n
2

≤ Cj
n
2
( ∫

G1

|∇yp(jy)|2dy
) 1

2

= Cj
n
2 j−

n
2 j
( ∫

Gj

|∇p(x)|2dx
) 1

2

= Cj ‖∇p‖L2(Gj)n

with C as in (2.5.17) since∫
G1

(p(jy) − Kj) dy = j−n

∫
Gj

(p(x) − Kj) dx = 0.

Thus we get

‖p − Kj‖L2(Gj) ≤ jC ‖∇p‖L2(Gj)n , j ∈ N. (2.5.18)

Setting pj := ϕj(p−Kj) and using ∇pj = (∇ϕj)(p−Kj)+ϕj∇(p−Kj) =
(∇ϕj)(p − Kj) + ϕj∇p, we obtain

‖∇p −∇pj‖L2(Rn)n ≤ ‖∇p − ϕj∇p‖L2(Rn)n + ‖(∇ϕj)(p − Kj)‖L2(Rn)n

≤ ‖∇p − ϕj∇p‖L2(Rn)n +
C ′

j
‖p − Kj‖L2(Gj)n

with ∇ϕj(x) = ∇ϕ(j−1x) = j−1(∇ϕ)(j−1x) and C ′ := supx |∇ϕ(x)|.
Lebesgue’s dominated convergence lemma, see [Apo74], yields

lim
j→∞

‖∇p − ϕj∇p‖L2(Rn)n (2.5.19)

= (
∫

Rn

( lim
j→∞

|1 − ϕj(x)|2) |∇p(x)|2 dx)
1
2 = 0,
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since |1 − ϕj(x)| = |1 − ϕ(j−1x)| ≤ 2 and limj→∞ |1 − ϕ(j−1x)| = 0 for each
x ∈ R

n. Using (2.5.18) we get

‖∇p −∇pj‖L2(Rn)n ≤ ‖∇p − ϕj∇p‖L2(Rn)n + C ′C‖∇p‖L2(Gj)n .

Together with

lim
j→∞

‖∇p‖L2(Gj)n = lim
j→∞

(
∫

Gj

|∇p(x)|22 dx)
1
2 = 0

and (2.5.19) we conclude that

lim
j→∞

‖∇p −∇pj‖L2(Rn)n = 0. (2.5.20)

Next we use the mollification method, see Lemma 1.7.1. Since supp pj ⊆
B2j we can approximate each pj by C∞

0 -functions in the gradient norm. Using
the operator Fε�, ε > 0, see (1.7.5), we find for each j ∈ N some εj > 0 such
that

‖∇pj −Fεj � ∇pj‖L2(Rn)n ≤ 1
j
.

With ∇(Fεj � pj) = Fεj � (∇pj), see (1.7.17), we get

‖∇pj −∇(Fεj � pj)‖L2(Rn)n ≤ 1
j

(2.5.21)

for all j ∈ N.
Setting p̃j := Fεj � pj we see that p̃j ∈ C∞

0 (Rn), j ∈ N, and combining
(2.5.20) with (2.5.21) leads to

lim
j→∞

‖∇p −∇p̃j‖L2(Rn)n = 0.

This proves (2.5.13).
To prove (2.5.11), let L be the space on the right side of (2.5.11). Recall,

div f = 0 is understood in the sense of distributions. Since

L2
σ(Rn) = C∞

0,σ(Rn)
‖·‖2 ⊆ L ,

we only have to show that L ⊆ L2
σ(Rn). For this purpose let f ∈ L. Then

< f,∇p > = −[ div f, p] = − < div f, p > = 0 (2.5.22)

for all p ∈ C∞
0 (Rn). Since f ∈ L2(Rn)n and since the space of all ∇p with

p ∈ C∞
0 (Rn) is dense in G(Rn) in the norm ‖ · ‖2, see (2.5.13), we see that
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< f,∇p >= 0 holds as well for all ∇p ∈ G(Rn). This means that f ∈ G(Rn)⊥,
and we see that

f ∈ G(Rn)⊥ = L2
σ(Rn)⊥⊥ = L2

σ(Rn).

Thus we get f ∈ L2
σ(Rn) and L ⊆ L2

σ(Rn) which proves (2.5.11). The proof of
the lemma is complete. �

Finally we mention an important density property which follows by the
same approximation argument as above.

2.5.5 Lemma Let n ∈ N, n ≥ 2. Then

C∞
0,σ(Rn)

‖·‖W1,2(Rn)n
= {v ∈ W 1,2(Rn)n; div v = 0}, (2.5.23)

Thus C∞
0,σ(Rn) = {v ∈ C∞

0 (Rn)n; div v = 0} is dense in the space on the right
side of (2.5.23) with respect to the norm of W 1,2(Rn)n.

Proof. Recall that

W 1,2(Rn)n = W 1,2
0 (Rn)n = C∞

0 (Rn)n
‖·‖W1,2(Rn)n

, (2.5.24)

see (3.6.17), I.
To prove (2.5.23), let v ∈ W 1,2

0 (Rn)n = W 1,2(Rn)n with div v = 0. Then
we have to construct some vj ∈ C∞

0,σ(Rn), j ∈ N, such that

lim
i→∞

‖v − vj‖W 1,2(Rn)n = 0. (2.5.25)

For this purpose we use the same approximation method as in the last
proof, and consider ϕj , Bj , Gj , j ∈ N, as in (2.5.15), (2.5.16), Fεj as in (2.5.21).
Then we construct some wj ∈ W 1,2

0 (Gj)n, j ∈ N, such that

div wj = div (ϕjv) = (∇ϕj) · v (2.5.26)

and
lim

j→∞
‖wj‖W 1,2(Gj) = 0. (2.5.27)

Assume for a moment that we already have such a sequence (wj)∞j=1. Then
a similar argument as in (2.5.19) shows that

lim
j→∞

‖v − ϕjv‖W 1,2(Rn) = 0 ,

and setting ṽj := ϕjv − wj , j ∈ N, we get div ṽj = 0 and

lim
j→∞

‖v − ṽj‖W 1,2(Rn) = 0.
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A similar argument as in (2.5.21) leads to

lim
j→∞

‖ṽj −Fεj � ṽj‖W 1,2(Rn) = 0.

Then we set vj := Fεj � ṽj and obtain

vj ∈ C∞
0 (Rn)n , div vj = Fεj � div ṽj = 0 , j ∈ N ,

see (1.7.17), and (2.5.25) follows.
Thus it remains to construct the above sequence (wj)∞j=1. For this purpose

we use Lemma 2.1.1, a). First we observe that∫
B2j

div (ϕjv) dx =
∫

Gj

(∇ϕj) · v dx = 0. (2.5.28)

This follows from Green’s formula (1.2.12) with u ≡ 1. Then we use the trans-
formation x = jy, x ∈ Gj , y ∈ G1, and setting w̃j(y) = wj(jy) = wj(x), we
get from (2.5.26) the transformed equations

div w̃j(y) = j(∇ϕj)(jy) · v(jy) , (2.5.29)

now in G1 for all j ∈ N. Using (2.5.28) we see that∫
G1

(div w̃j)(y) dy = j

∫
G1

(∇ϕj)(jy) · v(jy) dy

= jj−n

∫
Gj

(∇ϕj)(x) · v(x) dx = 0 ,

and Lemma 2.1.1, a), yields a solution w̃j ∈ W 1,2
0 (G1)n satisfying

‖∇w̃j‖L2(G1) ≤ C (
∫

G1

|j(∇ϕj)(jy) · v(jy)|2 dy)
1
2

for all j ∈ N with some fixed C = C(G1) > 0. Then wj ∈ W 1,2
0 (Gj)n defined by

wj(x) = w̃j(y), x = jy, is a solution of (2.5.26), and we get

‖∇wj‖L2(Gj) =

(∫
Gj

|∇wj(x)|2 dx

) 1
2

= j−1j
n
2

(∫
G1

|(∇w̃j)(y)|2 dy

) 1
2

= j−1j
n
2 ‖∇w̃j‖L2(G1) ≤ C j

n
2

(∫
G1

|(∇ϕj)(jy) · v(jy)|2 dy

) 1
2

= C

(∫
Gj

|(∇ϕj)(x) · v(x)|2 dx

) 1
2
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= j−1C

(∫
Gj

|(∇ϕ)(j−1x) · v(x)|2 dx

) 1
2

≤ j−1C1‖v‖L2(Gj)

for all j ∈ N, with some C1 = C1(G1) > 0 not depending on j.
Then with Poincaré’s inequality for G1 we obtain

‖wj‖L2(Gj) =

(∫
Gj

|wj(x)|2 dx

) 1
2

= j
n
2

(∫
G1

|w̃j(y)|2 dy

) 1
2

≤ C2 j
n
2

(∫
G1

|∇yw̃j(y)|2 dy

) 1
2

= C2 j

(∫
Gj

|∇wj(x)|2 dx

) 1
2

= C2 j ‖∇wj‖L2(Gj)

≤ C2 C1 ‖v‖L2(Gj)

with some C2 = C2(G1) > 0 and C1 as above.
Since obviously

lim
j→∞

‖v‖L2(Gj)n = 0 ,

we conclude from these estimates that (2.5.27) is satisfied. This completes the
proof. �

3 Elementary functional analytic properties

3.1 Basic facts on Banach spaces

For the convenience of the reader, and in order to fix notations, we collect some
elementary facts on Banach spaces and in particular on Hilbert spaces. We
mainly refer to [Yos80], [HiPh57], [Heu75].

Let X be a (real) Banach space with norm ‖v‖X = ‖v‖ , v ∈ X. By
definition, the dual space X ′ of X is the Banach space of all linear continuous
functionals

f : v �→ [f, v] , v ∈ X

with norm

‖f‖X′ := sup
0	=v∈X

(|[f, v]|/‖v‖X).



90 II.3 Elementary functional analytic properties

Sometimes we write f = [f, · ]; [f, v] always means the value of the functional
f at v.

A linear functional f : v �→ [f, v], v ∈ X, is continuous iff there is a
constant C = C(f) > 0 such that

|[f, v]| ≤ C‖v‖X for all v ∈ X. (3.1.1)

It holds that ‖f‖X′ = inf C(f), which is the infimum over all such con-
stants C(f) for fixed f . Therefore, if (3.1.1) holds with any C = C(f), then

‖f‖X′ ≤ C. (3.1.2)

A sequence (vj)∞j=1 in X converges strongly to some v ∈ X iff

lim
j→∞

‖v − vj‖ = 0;

we write v = s − limj→∞ vj in this case. The sequence (vj)∞j=1 in X converges
weakly to v ∈ X iff

lim
j→∞

[f, vj ] = [f, v]

for all f ∈ X ′; we write v = w − limj→∞ vj in this case.

X is reflexive iff each linear continuous functional on X ′ has the form
f �→ [f, v], f ∈ X ′, with some fixed v ∈ X. We write [ ·, v] for this functional.
Usually we identify each v ∈ X with the functional [ ·, v]. Then X can be
identified with (X ′)′ = X ′′ and we write X ′′ = X if X is reflexive.

If X is reflexive, each bounded sequence (vj)∞j=1 in X contains a subse-
quence which converges weakly to some v ∈ X. For simplicity we will always
assume that the sequence itself has this property. In this case

‖v‖ ≤ lim
j→∞

inf ‖vj‖ ≤ sup
j

‖vj‖. (3.1.3)

Let D ⊆ X be any subspace of X and let D denote the closure of D in the
norm ‖ · ‖. D is called dense in X iff D = X. We also write D

‖·‖
= X in this

case.

Consider two Banach spaces X and Y with norms ‖·‖X , ‖·‖Y , respectively.
Let

B : v �→ Bv , v ∈ D(B)

be any linear operator with domain D(B) ⊆ X and range R(B) := {Bv; v ∈
D(B)} ⊆ Y. N(B) := {v ∈ D(B); Bv = 0} means the null space of B, and
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G(B) := {(v,Bv); v ∈ D(B)} ⊆ X×Y means the graph of B. If D(B) = X, B
is called densely defined. The norm

‖v‖D(B) := ‖v‖X + ‖Bv‖Y , v ∈ D(B) (3.1.4)

is called the graph norm of D(B). B is called closed if the graph G(B) is closed
in X×Y with respect to the norm ‖v‖X +‖w‖Y , (v,w) ∈ X×Y. If B is closed,
D(B) is a Banach space in the graph norm ‖ · ‖D(B).

Let N(B) = {0}. Then B is injective and

‖v‖
D̂(B)

:= ‖Bv‖Y , v ∈ D(B) (3.1.5)

is called the homogeneous graph norm of D(B). Even if B is closed, D(B) need
not be a Banach space in this norm. The completion D̂(B) of D(B) consists of
all (classes of) Cauchy sequences (vj)∞j=1 in D(B) with respect to this norm.

Let v = (vj)∞j=1 be any element of D̂(B). Then, by definition, (Bv)∞j=1 is
a Cauchy sequence in R(B) ⊆ Y. Setting

Bv := s − lim
j→∞

Bvj , v ∈ D̂(B) (3.1.6)

we get a (well defined) linear operator from D̂(B) to Y which is an extension
of the given operator v �→ Bv, v ∈ D(B). This extension is called the closure

extension of B from D(B) to D̂(B), we simply use the same notation B for this
extension. Note that D̂(B) ⊇ D(B) ⊆ X, but D̂(B) need not be a subspace
of X.

Let B : D(B) → Y, D(B) ⊆ X, be a densely defined closed operator.
Then the dual operator B′ : f �→ B′f with domain D(B′) ⊆ Y ′ and range
R(B′) ⊆ X ′ is well defined by the following property:

It holds that [f,Bv] = [B′f, v] for all f ∈ D(B′), v ∈ D(B), and B′ is
maximal with this property (that is, D(B′) is the totality of all f ∈ Y ′ such
that v �→ [f,Bv], v ∈ D(B), is continuous in ‖v‖X).

If one of the spaces R(B), R(B′) is closed, then both are closed and
R(B) = {w ∈ Y; [f,w] = 0 for all f ∈ N(B′)}, R(B′) = {g ∈ X ′; [g, v] = 0 for
all v ∈ N(B)}; see the closed range theorem [Yos80, VII, 5]. If R(B) is closed,
then there is a constant C > 0 with

‖Bv‖Y ≥ C ‖ [v] ‖X/N(B) (3.1.7)

for all v ∈ D(B), where

‖ [v] ‖X/N(B) := inf
v0∈N(B)

‖v + v0‖X

means the quotient norm of [v] = v + N(B); see [Yos80, I, 11] and the closed
graph theorem [Yos80, II, 6, Theorem 1].
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Let X and Y be reflexive Banach spaces and let B : v �→ Bv, v ∈ D(B),
be a closed linear operator with dense domain D(B) ⊆ X and range R(B) ⊆ Y.
Suppose (vj)∞j=1 is a sequence in D(B) with the following property:

(vj)∞j=1 converges weakly in X to some v ∈ X, (3.1.8)

and sup
j

‖Bvj‖Y < ∞.

Then v ∈ D(B) and we get the estimate

‖Bv‖Y ≤ lim
j→∞

inf ‖Bvj‖Y ≤ sup
j

‖Bvj‖Y . (3.1.9)

The proof of (3.1.9) rests on the following facts, see [Yos80, V, 1]. The pairs
(vj , Bvj), j ∈ N, yield a bounded sequence with respect to the graph norm
(3.1.4), and the graph G(B) is a reflexive Banach space with this norm. There-
fore we get a subsequence which converges weakly in G(B) to some element
(ṽ, Bṽ) ∈ G(B), and we may assume that the sequence itself has this property.
Since (vj)∞j=1 converges to v ∈ X weakly, we get ṽ = v, Bṽ = Bv and v ∈ D(B);
(3.1.9) now follows from (3.1.3).

Let B : v �→ Bv be any closed linear operator with dense domain D(B) ⊆
X and range R(B) ⊆ Y, and suppose that N(B) = {0}. This means that
B is injective. Then the inverse operator B−1 : D(B−1) → X with domain
D(B−1) = R(B) ⊆ Y and range R(B−1) = D(B) ⊆ X, is well defined by
B−1Bv = v for all v ∈ D(B). B−1 is a closed operator.

Suppose B : v �→ Bv is a bounded linear operator from X to Y. Thus
D(B) = X, and

‖B‖ := sup
0	=v∈X

(‖Bv‖Y/‖v‖X) < ∞.

Then ‖B‖ is called the norm of B. B is called compact iff for each bounded
sequence (vj)∞j=1 in X, the sequence (Bvj)∞j=1 contains a subsequence
which converges strongly in Y to some element of Y.

Finally we consider an operator B : X → X which is only a mapping and
need not be linear. B is called completely continuous iff

B is continuous and for each bounded sequence (vj)∞j=1 in X,
the sequence (Bvj)∞j=1 contains a subsequence which
converges strongly to some element of X.

⎫⎬⎭ (3.1.10)

We need the following result.
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3.1.1 Lemma (Leray-Schauder principle) Let X be a Banach space and let
B : X → X be a completely continuous operator. Assume there exists some
r > 0 with the following property:

If v ∈ X , 0 ≤ λ ≤ 1 , v = λBv, then ‖v‖X ≤ r. (3.1.11)

Then there exists at least one v ∈ X with v = Bv, ‖v‖X ≤ r.

Proof. See [LeSch34], [Lad69, Chap. 1, Sec. 3], [Zei76, 6.5, Theorem 6.1]. �

3.2 Basic facts on Hilbert spaces

Here we mainly refer to [Yos80], [Kat66], [ReSi75], [Heu75] and [Wei76]. Let H
be a (real) Hilbert space with scalar product < u, v >H =< u, v > and norm
‖u‖H = ‖u‖ =< u, u >

1
2 , u, v ∈ H. Then H ′ denotes the dual space of all

continuous linear functionals defined on H.
The Riesz representation theorem, see [Yos80, III, 6], shows that each

element of H ′ has the form

v �→< u, v > , v ∈ H

with some fixed u ∈ H. As usual, this functional < u, · > will be identified with
u, and we therefore obtain that H ′ = H.

Let B : v �→ Bv be a closed linear operator with dense domain D(B) ⊆ H
and range R(B) ⊆ H. Then the dual (adjoint) operator B′ with (dense) domain
D(B′) ⊆ H and range R(B′) ⊆ H is determined by the property

< u,Bv >=< B′u, v > for all v ∈ D(B) , u ∈ D(B′), (3.2.1)

and D(B′) is the totality of all u ∈ H such that the functional v �→< u,Bv >,
v ∈ D(B), is continuous in ‖v‖H .

If B = B′, that is if D(B) = D(B′) and Bv = B′v for all v ∈ D(B), B
is called a selfadjoint operator. A selfadjoint operator B is called positive if
< v,Bv > ≥ 0 for all v ∈ D(B).

If N(B) = {v ∈ D(B); Bv = 0} = {0}, B is injective and we define
the inverse operator B−1 : D(B−1) → H by D(B−1) = R(B), R(B−1) =
D(B), B−1Bv = v for all v ∈ D(B). If B is positive selfadjoint, B−1 is also
positive selfadjoint. See [Yos80, VII, 3] concerning these facts.

B is bounded iff D(B) = H and there exists some C = C(B) > 0 such
that

‖Bv‖ ≤ C ‖v‖ for all v ∈ H. (3.2.2)

The operator norm ‖B‖ is the infimum of all C(B) with (3.2.2). Thus

‖B‖ ≤ C (3.2.3)

for all C = C(B) > 0 with (3.2.2).
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Let D ⊆ H be any closed subspace of H. Then

D⊥ := {u ∈ H; < u, v >= 0 for all v ∈ D} (3.2.4)

is called the orthogonal subspace of D. Each u ∈ H has a unique decomposition
u = u1 + u2 with u1 ∈ D, u2 ∈ D⊥.

The operator P : u �→ Pu, defined by Pu := u1 for all u ∈ H, is called the
projection of H onto D. P is a positive selfadjoint operator with P 2 = P and
operator norm ‖P‖ ≤ 1.

Let I denote the identity. If P is the projection of H onto D, then I − P
is the projection onto D⊥, and

‖u‖2 = ‖Pu‖2 + ‖(I − P )u‖2 for all u ∈ H. (3.2.5)

Let D ⊆ H be a dense subspace, and let S(u, v) ∈ R be defined for all
u, v ∈ D with the following properties:

v �→ S(u, v), v ∈ D, is a linear functional for each u ∈ D
S(u, v) = S(v, u) and S(u, u) ≥ 0 for all u, v ∈ D.

Then S : (u, v) �→ S(u, v) is called a positive symmetric bilinear form with
dense domain D = D(S) ⊆ H.

By
< u, v > +S(u, v) , u, v ∈ D, (3.2.6)

we obtain a scalar product and by

(‖u‖2 + S(u, u))
1
2 , u ∈ D, (3.2.7)

we get the corresponding norm in D. S is called closed if D is complete with
respect to this norm. This means that D is a Hilbert space with the scalar
product (3.2.6). We need the following result:

3.2.1 Lemma Let H be a Hilbert space with scalar product < ·, · > and norm
‖ · ‖, and let S : (u, v) �→ S(u, v) be a closed positive symmetric bilinear form
with dense domain D = D(S) ⊆ H.

Then there exists a uniquely determined positive selfadjoint operator B :
D(B) → H with dense domain D(B) ⊆ D, satisfying:

D(B) is the totality of all u ∈ D such that the
functional v �→ S(u, v), v ∈ D, is continuous in ‖v‖,
and S(u, v) =< Bu, v > for all u ∈ D(B), v ∈ D.

⎫⎬⎭ (3.2.8)

Proof. See [Kat84, VI, Theorem 2.6] or [Wei76, Satz 5.37]. The proof rests on
the Riesz representation theorem, applied to the scalar product (3.2.6). �
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We need this lemma in order to define the Stokes operator A for arbitrary
domains Ω ⊆ R

n, n ≥ 2.

Next we mention some facts on the spectral representation of selfadjoint
operators, see [Yos80, XI, 5-7 and 12], [Kat84, Chap.V], [Wei76, 7.2]. Here we
only need the special case of positive selfadjoint operators.

For each λ ∈ [0,∞), let Eλ be a projection operator which projects H
onto a subspace Dλ ⊆ H. We call {Eλ; λ ≥ 0} a family of projections. Let
0 ≤ λ0 ≤ ∞. Then we write

Eλ0 = s − lim
λ→λ0

Eλ (3.2.9)

iff Eλ0v = s − limλ→λ0 Eλv holds for all v ∈ H (strong convergence of opera-
tors).

Suppose {Eλ; λ ≥ 0} has the following properties:
a) EλEμ = EμEλ = Eλ , 0 ≤ λ ≤ μ < ∞
b) Eλ = s − limμ→λ Eμ , 0 < μ < λ < ∞
c) E0 = 0 , s − limλ→∞ Eλ = I.

Then {Eλ;λ ≥ 0} is called a resolution of the identity I on [0,∞). Condi-
tion a) means that Eλ and Eμ commute and that Dλ ⊆ Dμ for λ ≤ μ. It follows
that Eμ − Eλ, λ ≤ μ, is again a projection operator, and that λ �→ ‖Eλv‖2 is
monotonously increasing for each v ∈ H. Condition b) means that λ �→ Eλ is
left continuous in the interval (0,∞) with respect to the strong convergence of
operators. E0 = 0 means zero as an operator, and the last condition means that
limλ→∞ ‖v − Eλv‖ = 0 for all v ∈ H.

For each continuous function g : λ �→ g(λ), λ ≥ 0, we can define the usual
Stieltjes integral ∫ b

0

g(λ) d‖Eλv‖2 , v ∈ H , 0 < b < ∞

as a limit of Riemann-Stieltjes sums of the form

m∑
j=1

g(λj) (‖Eλj v‖2 − ‖Eλj−1v‖2) =
m∑

j=1

g(λj) ‖(Eλj − Eλj−1)v‖2

where 0 = λ0 < λ1 < · · · < λm = b, max |λj − λj−1| → 0, see [Apo74, 7.3].
If g(λ) ≥ 0 for all λ ≥ 0, and if∫ ∞

0

g(λ) d‖Eλv‖2 = lim
b→∞

∫ b

0

g(λ) d‖Eλv‖2

exists for some v ∈ H, we simply write
∫∞
0

g(λ) d‖Eλv‖2 < ∞.
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Let g : λ �→ g(λ), λ ≥ 0, be a continuous real function. Then the integral∫ b

0

g(λ) dEλv ∈ H , 0 < b < ∞ , v ∈ H

is well defined as the strong limit of the usual Riemann sums of the form∑m
j=1 g(λj) (Eλj − Eλj−1)v, 0 = λ0 < λ1 < · · · < λm = b, and

‖
∫ b

0

g(λ) dEλv‖2 =
∫ b

0

g2(λ) d‖Eλv‖2.

If
∫∞
0

g2(λ) d‖Eλv‖2 < ∞ for some v ∈ H, then the integral∫ ∞

0

g(λ) dEλv := s − lim
b→∞

∫ b

0

g(λ) dEλv

exists. We thus obtain a well defined operator∫ ∞

0

g(λ) dEλ : v �→
∫ ∞

0

g(λ) dEλv (3.2.10)

which is selfadjoint and has the dense domain

D

(∫ ∞

0

g(λ) dEλ

)
:= {v ∈ H;

∫ ∞

0

g2(λ)d‖Eλv‖2 < ∞}. (3.2.11)

We see that ∥∥∫ ∞

0

g(λ) dEλv
∥∥2 =

∫ ∞

0

g2(λ)d‖Eλv‖2 (3.2.12)

and that

<

(∫ ∞

0

g(λ) dEλ

)
v, v > =

∫ ∞

0

g(λ)d‖Eλv‖2 (3.2.13)

for all v ∈ D(
∫∞
0

g(λ) dEλ). In particular for all v ∈ H we get

v =
∫ ∞

0

dEλv , ‖v‖2 =
∫ ∞

0

d‖Eλv‖2. (3.2.14)

If g(λ) ≥ 0 for all λ ≥ 0, then with (3.2.13) we see that
∫∞
0

g(λ) dEλ is
positive selfadjoint, and if

sup
λ≥0

|g(λ)| < ∞ ,
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we conclude from (3.2.11) and (3.2.12), that
∫∞
0

g(λ)dEλ is a bounded operator
with D(

∫∞
0

g(λ) dEλ) = H and operator norm

‖
∫ ∞

0

g(λ) dEλ‖ ≤ sup
λ≥0

|g(λ)|. (3.2.15)

In particular,∫ ∞

0

λdEλ with D

(∫ ∞

0

λdEλ

)
= {v ∈ H;

∫ ∞

0

λ2 d‖Eλv‖2 < ∞} (3.2.16)

is a positive selfadjoint operator.

Let now B : D(B) → H be any positive selfadjoint operator with (dense)
domain D(B) ⊆ H. Then there exists a uniquely determined resolution

{Eλ; λ ≥ 0}
of identity such that

B =
∫ ∞

0

λdEλ , D(B) = {v ∈ H;
∫ ∞

0

λ2 d‖Eλv‖2 < ∞}. (3.2.17)

This is called the spectral representation of B; see [Yos80, XI, 5], [Kat66, VI,
5.1].

For each continuous real function g : [0,∞) → R, we define as above the
selfadjoint operator

g(B) :=
∫ ∞

0

g(λ) dEλ (3.2.18)

with domain

D(g(B)) = {v ∈ H;
∫ ∞

0

g2(λ) d‖Eλv‖2 < ∞}.

If supλ≥0 |g(λ)| < ∞, g(B) is bounded with D(g(B)) = H, and we see that

v ∈ D(B) implies g(B)v ∈ D(B) and Bg(B)v = g(B)Bv. (3.2.19)

This property means that g(B) commutes with B; see [Yos80, XI, 12]. Then

Bg(B)v =
∫ ∞

0

λg(λ) dEλv for all v ∈ D(B). (3.2.20)

In particular we define the fractional powers

Bα :=
∫ ∞

0

λα dEλ , D(Bα) := {v ∈ H;
∫ ∞

0

λ2αd‖Eλv‖2 < ∞} (3.2.21)

for all α ≥ 0. It holds that Bα = I for α = 0.
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For all μ > 0, we consider the resolvent

(μI + B)−1 =
∫ ∞

0

(μ + λ)−1 dEλ, (3.2.22)

which is the inverse of μI + B. This operator is bounded with norm

‖(μI + B)−1‖ ≤ sup
λ≥0

(μ + λ)−1 ≤ μ−1. (3.2.23)

If there is a δ > 0 with Eλ = 0 for 0 ≤ λ ≤ δ, then B is obviously
invertible and has the bounded inverse operator

B−1 =
∫ ∞

δ

λ−1 dEλ (3.2.24)

with ‖B−1‖ ≤ supλ≥δ λ−1.

Let N(B) = {v ∈ D(B);Bv = 0} be the null space of B and let P0 be
the projection operator from H onto N(B). Then we conclude that

P0 = s − lim
λ→0

Eλ , λ > 0, (3.2.25)

holds in the strong sense. This means that N(B) =
⋂

λ>0 Dλ.
Therefore, the jump of λ �→ Eλ at λ = 0 determines the null space N(B) of
B. B is injective, i.e., N(B) = {0}, iff λ �→ Eλ is right continuous at λ = 0
with respect to the strong convergence.

Let now N(B) = {0}. Then for each v ∈ H the function λ �→ ‖Eλv‖2, λ ≥
0, is right continuous at λ = 0. This enables us to obtain an integral represen-
tation of the inverse operator

B−1 : D(B−1) → H , D(B−1) = R(B),

although λ �→ λ−1 is not a continuous function defined on the whole interval
[0,∞) as in (3.2.18). We obtain (with δ > 0) the representation

B−1v =
∫ ∞

0

λ−1 dEλv = s − lim
δ→0

∫ ∞

δ

λ−1 dEλv , v ∈ D(B−1), (3.2.26)

B−1 is positive selfadjoint, and

D(B−1) = {v ∈ H; ‖B−1v‖2 =
∫ ∞

0

λ−2 d‖Eλv‖2 < ∞}. (3.2.27)

More generally, in the case N(B) = {0} we can define the operator B−α :
D(B−α) → H for α ≥ 0 by

B−αv =
∫ ∞

0

λ−α dEλv := s − lim
δ→0

∫ ∞

δ

λ−α dEλv , v ∈ D(B−α) (3.2.28)
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with domain

D(B−α) = {v ∈ H; ‖B−αv‖2 =
∫ ∞

0

λ−2αd‖Eλv‖2 < ∞}. (3.2.29)

Then N(B) = {0} implies N(Bα) = {0}, D(B−α) ⊆ H is dense, B−α is
positive selfadjoint, and

B−α = (B−1)α = (Bα)−1.

Thus B−α is the inverse operator of Bα, and therefore we get D(Bα) = R(B−α)
and D(B−α) = R(Bα). If 0 ≤ α ≤ 1 we obtain

D(B) ⊆ D(Bα) , D(B−1) ⊆ D(B−α). (3.2.30)

These properties follow from the integral representations above.

Next we assume that the given positive selfadjoint operator B is defined
by the form S with domain D(S) as in Lemma 3.2.1. In this case we get

S(u, u) = < Bu, u > = < B
1
2 u,B

1
2 u > = ‖B 1

2 u‖2

=
∫ ∞

0

λd‖Eλu‖2

for all u ∈ D(B). Then a closure argument shows that

D(B
1
2 ) = D(S) , S(u, u) = ‖B 1

2 u‖2 for all u ∈ D(S). (3.2.31)

We conclude from the spectral representation B =
∫∞
0

λdEλ that Bu = 0
holds for u ∈ D(B) iff S(u, u) = 0. Therefore,

N(B) = {0} iff {u ∈ D(S); S(u, u) = 0} = {0} . (3.2.32)

This means that B is injective iff S(u, u) = 0 implies that u = 0.

The next lemma yields the interpolation inequality for fractional powers.

3.2.2 Lemma Let B : D(B) → H, D(B) ⊆ H, be a positive selfadjoint operator
in the Hilbert space H, and let 0 ≤ α ≤ 1. Then

‖Bαv‖ ≤ ‖Bv‖α‖v‖1−α ≤ α‖Bv‖ + (1 − α)‖v‖ (3.2.33)

for all v ∈ D(B).
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Proof. Using the spectral representation and Hölder’s inequality, see [Yos80, I,
3, (5)], we obtain

‖Bαv‖2 =
∫ ∞

0

λ2α d‖Eλv‖2

≤ (∫ ∞

0

λ2 d‖Eλv‖2
)α (∫ ∞

0

d‖Eλv‖2
)1−α

= ‖Bv‖2α ‖v‖2(1−α),

and apply Young’s inequality (3.3.8), I. This proves the lemma. �
Finally we need a special result on fractional powers which is due to Heinz

[Hei51].

3.2.3 Lemma (Heinz) Let H1,H2 be two Hilbert spaces with norms ‖ · ‖1, ‖ · ‖2,
respectively. Let B : H1 → H2 be a bounded linear operator from H1 into H2

with operator norm ‖B‖, and let

A1 : D(A1) → H1 , A2 : D(A2) → H2

be positive selfadjoint injective operators with domains D(A1) ⊆ H1, D(A2) ⊆
H2. Suppose B maps D(A1) into D(A2) and

‖A2Bv‖2 ≤ C ‖A1v‖1 for all v ∈ D(A1) (3.2.34)

with some constant C > 0.
Then for 0 ≤ α ≤ 1, B maps D(Aα

1 ) into D(Aα
2 ), and the inequality

‖Aα
2 Bv‖2 ≤ Cα ‖B‖1−α‖Aα

1 v‖1 (3.2.35)

holds for all v ∈ D(Aα
1 ).

Proof. See [Hei51] or [Tan79, Theorem 2.3.3], [Kre71, Chap. I, Theorem 7.1].
Inequality (3.2.35) is called the Heinz inequality. �

3.3 The Laplace operator Δ

After discussing the operators div and ∇, see Section 2, the Laplacian

Δ = div ∇ = D2
1 + · · · + D2

n

is the next important operator which occurs in the Navier-Stokes equations
(1.1.1), I. The purpose of this subsection is to consider some basic facts on Δ
mainly for the whole space R

n, n ≥ 1. These are potential theoretic properties.
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We need the Riesz potential and the Bessel potential. For the proofs we refer
to [Ste70], [Tri78], [Ada75], [SiSo96].

First let Ω ⊆ R
n, n ≥ 1, be an arbitrary domain. We consider the Hilbert

space L2(Ω) with scalar product

< u, v > = < u, v >Ω :=
∫

Ω

uv dx ,

norm ‖u‖L2(Ω) = ‖u‖2 = ‖u‖2,Ω =< u, u >
1
2 , and define the bilinear form S

with domain D(S) ⊆ L2(Ω) by setting

D(S) := W 1,2
0 (Ω) , S(u, v) :=< ∇u,∇v > :=

∫
Ω

(∇u) · (∇v) dx (3.3.1)

for u, v ∈ D(S). Recall that < ∇u,∇v >=
∑n

j=1

∫
Ω
(Dju)(Djv) dx. Since

W 1,2
0 (Ω) is complete with respect to the norm

(‖u‖2
2 + S(u, u))

1
2 = (‖u‖2

2 + ‖∇u‖2
2)

1
2 , (3.3.2)

the form S is closed. S is obviously symmetric and positive. Therefore, by
Lemma 3.2.1 we obtain a positive selfadjoint operator B : D(B) → L2(Ω)
with dense domain D(B) ⊆ W 1,2

0 (Ω) satisfying the relation

< ∇u,∇v >=< Bu, v > for all u ∈ D(B) , v ∈ W 1,2
0 (Ω).

Setting v ∈ C∞
0 (Ω), we see that

Bu = −Δu = − div ∇u

holds in the sense of distributions. Therefore we set B = −Δ. Thus the operator

−Δ : D(−Δ) → L2(Ω)

is defined by

D(−Δ) = {u ∈ W 1,2
0 (Ω); v �→< ∇u,∇v > is continuous in ‖v‖2} (3.3.3)

and by

< (−Δ)u, v >=< ∇u,∇v > for u ∈ D(−Δ) , v ∈ W 1,2
0 (Ω). (3.3.4)

Obviously ∇u = 0 implies u = 0 for all u ∈ W 1,2
0 (Ω). Therefore, see

(3.2.21) and (3.2.28), the fractional powers

(−Δ)
α
2 =

∫ ∞

0

λ
α
2 dEλ , (3.3.5)
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with domain

D((−Δ)
α
2 ) = {v ∈ L2(Ω);

∫ ∞

0

λα d‖Eλv‖2
2 < ∞},

are well defined for all α ∈ R. Here {Eλ;λ ≥ 0} denotes the resolution of identity
for −Δ, see Section 3.2.

An equivalent characterization is

D(−Δ) = D(Δ) = {u ∈ W 1,2
0 (Ω); Δu ∈ L2(Ω)} (3.3.6)

with Δu ∈ L2(Ω) in the sense of distributions.

Consider now the case Ω = R
n, n ≥ 1. Then we have W 1,2

0 (Rn) =
W 1,2(Rn), see (3.6.17), I. In this case there exists an explicit characterization
of the spectral representation (3.3.5) which is obtained by using the Fourier
transform F . F is defined by

(Fu)(y) :=
∫

Rn

e−2πix·y u(x) dx , y ∈ R
n,

in the sense of distributions, see [Yos80, VI, 1], [Ste70, III, 1.2], [Tri78, 2.2.1].
For this purpose we have to work for the moment in the corresponding complex
function spaces. This requires us to use complexifications of the real function
spaces.

Then a calculation shows, see [Ste70, Chap.V, 1.1, (4)], that u and (−Δ)
α
2 u

satisfy the integral equation

u(x) =
1

γ(α, n)

∫
Rn

|x − y|−n+α(−Δ)
α
2 u(y) dy , x ∈ R

n (3.3.7)

for 0 < α < n, where γ(α, n) := π
n
2 2α Γ(α

2 )/Γ(n
2 − α

2 ). Γ means the Gamma
function. The expression (3.3.7) is called the Riesz potential; it can be directly
estimated by the Hardy-Littlewood theorem, see [Tri78, 1.18.8, Theorem 3]. The
result is the following lemma.

3.3.1 Lemma Let n ∈ N, 0 < α < n, 2 ≤ q < ∞,

α +
n

q
=

n

2
, (3.3.8)

and suppose that u ∈ D((−Δ)
α
2 ). Then u ∈ Lq(Rn) and

‖u‖Lq(Rn) ≤ C ‖(−Δ)
α
2 u‖L2(Rn) (3.3.9)

with some constant C = C(α, n) > 0.

Proof. See [Ste70, Chap.V, 1.2, Theorem 1]. It is shown that in this case the
integral (3.3.7) converges absolutely for almost all x ∈ R

n, the Hardy-Littlewood
theorem, see also [Tri78, 1.18.8], yields the result. �
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The following lemma concerns the special case n = 1. In this case, we write
(−Δ)

α
2 u = f, u = (−Δ)−

α
2 f, and we are mainly interested in the estimate

(3.3.9). Now we admit that f ∈ Lr(R) with 1 < r < ∞. The following result
rests again on the Hardy-Littlewood theorem.

3.3.2 Lemma Let 0 < α < 1, 1 < r < q < ∞ with

α +
1
q

=
1
r

, (3.3.10)

and suppose f ∈ Lr(R). Then the integral

u(t) :=
∫

R

|t − τ |α−1f(τ) dτ

converges absolutely for almost all t ∈ R, and

‖u‖Lq(R) ≤ C ‖f‖Lr(R) (3.3.11)

with some constant C = C(α, q) > 0.

Proof. See [Ste70, Chap.V, 1.2] or [Tri78, 1.18.9, Theorem 3]. �
Next we consider the positive selfadjoint operator I − Δ with domain

D(I − Δ) = D(Δ). We can define I − Δ also directly by using the form

< u, v > + < ∇u,∇v > (3.3.12)

instead of (3.3.1), see Lemma 3.2.1.
In this case u and (I − Δ)

α
2 u satisfy for α ≥ 0 the integral equation

u(x) =
∫

Rn

Gα(x − y)((I − Δ)
α
2 u)(y) dy , x ∈ R

n, (3.3.13)

where Gα is defined by

Gα(z) := (4π)−
α
2 Γ(α/2)−1

∫ ∞

0

e−π|z|2/t e−t/4π t−1+(−n+α)/2 dt, (3.3.14)

z ∈ R
n, see [Ste70, Chap.V, 3, (26)]. The expression (3.3.13) is called the Bessel

potential. There are similar estimates as for the Riesz potential (3.3.7). We only
need the following special case.

3.3.3 Lemma Let n ∈ N, 1 ≤ α ≤ 2, 2 ≤ q < ∞, with

α +
n

q
= 1 +

n

2
, (3.3.15)

and suppose that u ∈ D((I − Δ)
α
2 ). Then u ∈ W 1,q(Rn) and

‖u‖W 1,q(Rn) ≤ C ‖(I − Δ)
α
2 u‖L2(Rn) (3.3.16)

with some constant C = C(α, n) > 0.
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Proof. A direct proof follows using [Ste70, Chap.V, (29), (30)] and the Hardy-
Littlewood estimate [Tri78, 1.18.8, Theorem 3] in the same way as before. It
is based on the estimate of the potential (3.3.13). Another proof rests on the
following argument. First we use [Ste70, V, 3, Theorem 3] or [Tri78, 2.3.3, (2)],
[Ada75, Theorem 7.63, (f)] in order to show that the norms

‖u‖W 1,q(Rn) and ‖(I − Δ)
α
2 u‖Lq(Rn) (3.3.17)

are equivalent. Then we use the embedding inequality

‖(I − Δ)
1
2 u‖Lq(Rn) ≤ C ‖(I − Δ)

α
2 u‖L2(Rn) (3.3.18)

with q, α as in (3.3.15); this follows from [Ada75, Theorem 7.63, (d)] or [Tri78,
2.8.1, Remark 2]. See also [Tri78, 2.8.1, (15)]. This yields the result. �

3.4 Resolvent and Yosida approximation

In the theory of the Navier-Stokes equations the Yosida approximation is used
for technical reasons as a “smoothing” procedure which approximates L2- func-
tions by more regular functions. See [Ama95, II.6.1] concerning general proper-
ties, and see [Soh83], [Soh84], [MiSo88] concerning applications to the Navier-
Stokes equations.

Let H be a Hilbert space and let B : D(B) → H be a positive selfadjoint
operator as in (3.2.17). Then we consider the resolvent

(μI + B)−1 =
∫ ∞

0

(μ + λ)−1 dEλ , μ > 0 (3.4.1)

as defined in (3.2.22). The relation

(μI + B)−1(μI + B)v = (μI + B)(μI + B)−1v

=
∫ ∞

0

(μ + λ)(μ + λ)−1 dEλv

=
∫ ∞

0

dEλv = v

holds for all v ∈ D(B). For each k ∈ N we define the operator

Jk = Jk,B := (I + k−1B)−1 = k(kI + B)−1 =
∫ ∞

0

(1 + k−1λ)−1dEλ . (3.4.2)

This representation shows that

Jkv ∈ D(B) for all v ∈ H , k ∈ N, (3.4.3)
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and that
BJk =

∫ ∞

0

λ(1 + k−1λ)−1 dEλ (3.4.4)

is a bounded operator with operator norm

‖BJk‖ ≤ sup
λ≥0

|λ(1 + k−1λ)−1| ≤ k, (3.4.5)

see (3.2.15). In the same way we get

‖Jk‖ ≤ sup
λ≥0

|(1 + k−1λ)−1| ≤ 1. (3.4.6)

The operators Jk, k ∈ N, are called the Yosida approximation of the identity I.
We have the following result; see [Yos80, IX, 9 and 12] or (in a slightly modified
formulation) the proof of [Fri69, Part 2, Theorem 1.2] for more details.

3.4.1 Lemma Let H be a Hilbert space and let B : D(B) → H be a positive
selfadjoint operator with (dense) domain D(B) ⊆ H. Let Jk, k ∈ N, be defined
by (3.4.2).

Then we have:

Jkv ∈ D(B) for all v ∈ H, BJk is bounded with (3.4.5),
BJkv = JkBv for all v ∈ D(B), Jk is bounded with (3.4.6),

}
(3.4.7)

and

v = s − lim
k→∞

Jkv for all v ∈ H, (3.4.8)

Bv = s − lim
k→∞

BJkv for all v ∈ D(B). (3.4.9)

Proof. The properties (3.4.7) immediately follow from the spectral representa-
tion (3.4.1), see Section 3.2.

The property (3.4.8) means that limk→∞ ‖v − Jkv‖ = 0. To prove this we
use (3.2.12), get

‖v − Jkv‖2 = ‖(I − Jk)v‖2 = ‖
∫ ∞

0

(1 − (1 + k−1λ)−1) dEλv‖2

=
∫ ∞

0

(1 − (1 + k−1λ)−1)2 d‖Eλv‖2,

(1 − (1 + k−1λ)−1)2 ≤ 1, and obtain

lim
k→∞

(1 − (1 + k−1λ)−1)2 = lim
k→∞

(
λ

k + λ
)2 = 0
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for all λ ≥ 0. Then we use Lebesgue’s dominated convergence theorem [Apo74],
and see that

lim
k→∞

‖v − Jkv‖2 =
∫ ∞

0

lim
k→∞

(
λ

k + λ

)2

d‖Eλv‖2 = 0.

Let v ∈ D(B). Then BJkv = JkBv, and from above we get

lim
k→∞

‖Bv − BJkv‖2 = lim
k→∞

‖(I − Jk)Bv‖2 = 0.

This proves the lemma. �
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