
Chapter II

Observables and States in Tensor
Products of Hilbert Spaces

15 Positive definite kernels and tensor
products of Hilbert spaces

Suppose ���,���, 1 � � � � are sample spaces describing the elementary out-
comes and events concerning � different statistical systems in classical proba-
bility. To integrate them into a unified picture under the umbrella of a single
sample space one takes their cartesian product ��,�� where � � �1 � � � � ���,
� � �1 � � � � � ��, the smallest �-algebra containing all rectangles of the form
�1��2�� � ����, �� � �� for each �. Now we wish to search for an analogue of
this description in quantum probability when we have � systems where the events
concerning the �-th system are described by the set ����� of all projections in
a Hilbert space �� , � � 1, 2, � � � ,�. Such an attempt leads us to consider tensor
products of Hilbert spaces. We shall present a somewhat statistically oriented ap-
proach to the definition of tensor products which is at the same time coordinate
free in character. To this end we introduce the notion of a positive definite kernel.

Let  be any set and let � : � � � be a map satisfying the following:
�

�,�

��������,��� � 0

for all �� � �, �� � , � � 1, 2, � � � ,�. Such a map � is called a positive definite
kernel or simply a kernel on . We denote by ��� the set of all such kernels on
.

If  � 	1, 2, � � � ,�
, a kernel on  is just a positive (semi) definite matrix.
If � is a Hilbert space the scalar product ���, 	� � ��, 	� is a kernel on �. If 

is a group and � � �� is a homomorphism from 
 into the unitary group ����
of a Hilbert space � then ���,� � ��,���1��� is a kernel on 
 for every � in
�. If � is a state in � then ��� ,� � � tr ���� is a kernel on ����.

Proposition 15.1: Let �������, �������, 1 � �, � � � be two positive definite
matrices. Then ���������� is positive definite.

Proof: Let � � �������. Choose any matrix � of order � such that ��� � �. Let
�1, � � � ,��,�1, � � � ,�� be any 2� independent and identically distributed standard
Gaussian (normal) random variables. Write �� � 2�

1
2 ���� ����, � � �� where �

denotes the column vector with �-th entry �� . Then � is a complex valued Gaussian
random vector satisfying �� � 0, ���� � ��� � �.

Using the procedure described above select a pair of independent complex
Gaussian random vectors �, � such that ��� � ��� � 0, ����� � ��� , ����� � ���

,
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92 Chapter II: Observables and States in Tensor Products of Hilbert Spaces

for 1 � �, � � �. Let �� � ���� . Then ��� � 0, ����� � ������ . Thus ����������
is the covariance matrix of the complex random vector � and hence positive
definite.

Corollary 15.2: The space 	�� of all kernels on  is closed under pointwise
multiplication.

Proof: This follows immediately from Proposition 15.1 and the fact that 	 is
a kernel on  if and only if for any finite set �
1,
2, � � � ,
�� �  the matrix
������� where ��� � 	�
�,
�� is positive definite.

Corollary 15.3: Let �, 1 � � � � be sets and let 	� � 	��� for each �. Define
 � 1 � � � � � � and

	�
, �� � ��
��1	��
�, ���, 
 � �
1, � � � ,
��, � � ��1, � � � , ���

where 
�, �� � �. Then 	 � 	��.

Proof: Let 
��� � �
1�, 
2�, � � � ,
��� � , 1 � � � . Putting ���� �
	��
��,
��� we observe that

	�
���,
���� � ��
��1�

�
��.

Since ��������, 1 � �, � �  is positive definite for each fixed � the required result
follows from Proposition 15.1.

Proposition 15.4: Let  be any set and let 	 � 	��. Then there exists a
(not necessarily separable) Hilbert space � and a map � :  � � satisfying the
following: (i) the set ���
�,
 � � is total in �; (ii) 	�
, �� � 	��
�,����
 for
all 
, � in .

If �� is another Hilbert space and �� :  � �� is another map satisfy-
ing (i) and (ii) with �,� replaced by ��,�� respectively then there is a unitary
isomorphism � : � � �� such that ���
� � ���
� for all 
 in .

Proof: For any finite set � � �
1,
2, � � � ,
�� �  it follows from the argument
in the proof of Proposition 15.1 that there exists a complex Gaussian random
vector ���1 , ��2 , � � � , ��� � such that

���� �
�
� � 	�
�,
��, ���� � 0, 1 � �, � � �.

If� � �
1,
2, � � � ,
�,
��1� � � then the marginal distribution of ���1 , � � � , ��� �
derived from that of ���1 , � � � , ��� , ����1� is the same as the distribution of ���1 ,
� � � , ��� �. Hence by Kolmogorov’s Consistency Theorem there exists a Gaussian
family ���,
 � � of complex valued random variables on a probability space
��,�,� � such that

��� � 0, ����	 � 	�
, �� for all 
, � � .

If � is the closed linear span of ���,
 � � in �2�� � and ��
� � �� then the
first part of the proposition holds.
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To prove the second part consider � � ������� � �, �� � �������� � �
and the map � : ���� � ����� from � onto ��. Then � is scalar product
preserving and � and �� are total in � and �� respectively. By the obvious
generalisation of Proposition 7.2 for not necessarily separable Hilbert spaces, �
extends uniquely to a unitary isomorphism from � onto ��.

The pair ��,�� determined uniquely up to a unitary isomorphism by the
kernel � on  is called a Gelfand pair associated with �.

We are now ready to introduce the notion of tensor products of Hilbert
spaces using Proposition 15.4. Let ��, 1 � � � � be Hilbert spaces and let  �
�1,� � � � � �� be their cartesian product as a set. Then the function ����, 	� �
	�, 	
, �, 	 � �� is a kernel on �� for each �. By Corollary 15.3 the function

���, 	� � ��

��1	��, 	�
, � � ��1, � � � ,���, 	 � �	1, � � � , 	��

where ��, 	� � �� for each �, is a kernel on . Consider any Gelfand pair ��,��
associated with � and satisfying (i) and (ii) of Proposition 15.4. Then � is called
a tensor product of ��, � � 1, 2, � � � ,�. We write

� � �1 � �2 � � � � � �� �

��

��1

��, (15.1)

���� � �1 � �2 � � � � � �� �

��

��1

�� (15.2)

and call ���� the tensor product of the vectors ��, 1 � � � �. If �� � 
 for all �
then � is called the �-fold tensor product of 
 and denoted by 
�

�

. If, in addition,
�� � � for all � in (15.2) then ���� is denoted by ��

�

and called the �-th power
of �. (Since ��,�� is determined uniquely upto a Hilbert space isomorphism we
take the liberty of calling � the tensor product of ��, 1 � � � � in (15.1)).

Proposition 15.5: The map ��1,�2, � � � ,��� � �1 � �2 � � � � � �� from �1 �
�2�� � ���� into �1��2�� � ���� defined by (15.1) and (15.2) is multilinear:
for all scalars �,�

�1 � � � � � ���1 � ���� � �	��� ���1 � � � � � �� (15.3)

� ��1 � � � � � �� � ��1 � � � � � ���1 � 	� � ���1 � � � � � �� (15.4)

Furthermore

	

��

��1

��,
��

��1

	�
 � ��

��1	��, 	�
. �15.5�

The set �
�

�

��1����� � ��, � � 1, 2, � � � ,�� is total in
�

�

��1��.
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Proof: Only (15.3) remains to be proved. Straightforward computation using
(15.4) and the sesquilinearity of scalar products show that for each fixed �

��1 � � � � � ���1 � ���� � ����� ���1 � � � � � �� � �

��

��1

��

���1 � � � � � ���1 � �� � ���1 � � � � � ���
2

� �� �������
2����� � ����

2 � ���2����
2 � ���2����

2

�2Re����� � ���,����� ���� � ���,����� ����,�����	

� 0.

For any �� 
 ��, 1 � � � � the product vector
��

��1�� may be interpreted
as the multi-antilinear functional

�

��

��1

�����1, �2, � � � , ��� � ��
��1���,���.

Such multi-antilinear functionals generate a linear manifold � to which the scalar
product (15.4) can be extended by sesquilinearity to make it a pre-Hilbert space.
� is the usual algebraic tensor product of the vector spaces ��, 1 � � � � and��

��1�� is its completion.

Exercise 15.6: (i) Let � be a kernel on . A bijective map 	 :  �  is
said to leave � invariant if ��	�
�, 	���� � ��
, �� for all 
, � in . Let ��

denote the group of all such bijective transformations of  leaving � invariant
and let ��,� be a Gelfand pair associated with �. Then there exists a unique
homomorphism 	 � �� from �� into the unitary group ���� of � satisfying
the relation

���
� � �	�
�� for all 
 
 , 	 
 �� .

If ���,�� is another Gelfand pair associated with �, � : � � �� is the unitary
isomorphism satisfying � �
� � ��
� for all 
 and 	 � � �

� is the homomor-
phism from �� into ���� satisfying � �

�
��
� � ��	�
�� for all 
 
 , 	 
 ��

then � ��� �1 � � �
� for all 	.

(ii) In (i) let  be a separable metric space and let� be continuous on �.
Suppose �0 � �� is a subgroup which is a topological group acting continuously
on �. Then in any Gelfand pair ��,� the map  :  � � is continuous, �
is separable and the homomorphism 	 � �� restricted to �0 is continuous.

(Hint: Use Proposition 7.2 for (i) and examine ��
�� ���� for (ii)).

Exercise 15.7: (i) Let ��, 1 � � � � be Hilbert spaces and let �� � �� be a total
subset for each �. Then the set �

��

��1����� 
 �� for each �	 is total in
��

��1��.
� is separable if each �� is separable.
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(ii) There exist unitary isomorphisms

�12,3 : ��1 � �2�� �3 � �1 � �2 � �3,

�1,23 : �1 � ��2 � �3�� �1 � �2 � �3,

such that

�12,3��1 � �2�� �3 � �1,23�1 � ��2 � �3� � �1 � �2 � �3

for all � � ��, � � 1, 2, 3. (Hint: Use Proposition 7.2.)

Exercise 15.8: Let ���� �� � 1, 2, � � �� be an orthonormal basis in ��, � �
1, 2, � � � ,� respectively. Then the set

��1�1 � �2�2 � � � � � ���� ��1 � 1, 2, � � � , �2 � 1, 2, � � � , �� � 1, 2, � � ��

is an orthonormal basis for
��

��1��. (Note that when dim�� � �� � �, �� �
1, 2, � � � ,���. In particular,

��

��1

�� �
�

�1,�2,��� ,��

���
��1	���� ,��
�

��

��1

����

where the right hand side is a strongly convergent sum in
��

��1��. If dim�� �
�� �� for every � then

dim
��

��1

�� � �1�2 � � ���.

Exercise 15.9: Let �� � 	2���,��,
��, 1 � � � � where ���,��,
�� is a �-finite
measure space for each �. If ��,�,
� � ��

��1���,��,
�� is the cartesian product
of these measure spaces there exists a unitary isomorphism � :

��

��1�� �
	2��,�,
� such that

���1 � � � � � �����1, � � � ,��� � ��
��1������ a.e. 
.

Exercise 15.10: Let ��, � � 1, 2, � � � be a sequence of Hilbert spaces and let
��� be a sequence of unit vectors where � � �� for each �. Suppose

� � ���� � ��1,�2, � � ��, �� � �� , �� � � for all large ��.

Define
���, �� � ����1	�� , ��
, �, � �� .

Then � is a kernel on� . The Hilbert space � in a Gelfand pair ��,�� associated
with � is called the countable tensor product of the sequence ���� with respect
to the stabilizing sequence ���. We write

���� � �1 � �2 � � � � for � �� .

Suppose ���0, ��1, � � �� � �� is an orthonormal basis in �� such that ��0 � �
for each �. Then the set ������� � � , �� � �� for each �� is an orthonormal
basis in �.
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Exercise 15.11: Let �� � �2���,��,���, � � 1, 2, � � � , � � �2��,�,��
where ���,��,��� is a probability space for each � and ��,�,�� � ��

��1���,
��, ��� is the product probability space. Then � is the countable tensor product
of the sequence ���� with respect to the stabilising sequence ���� where �� is
the constant function 1 in �� for each �. This may be used to construct examples
where different stabilising sequences may lead to different countable tensor prod-
ucts. (Hint: If � and � are two distinct probability measures such that � � � then
�� �� � � � and � � � � � � � are singular with respect to each other.)

Exerecise 15.12: Let � � �2��0, 1�,�� be the Hilbert space defined in Section 2
where � is the Lebesgue measure in �0, 1�. Then any continuous map � : �0, 1�� �
is an element of �. For any such continuous map � define the element 	���� in
�� � ���� by

	���� � ��

��1�1� ��
1
2 ��




�
��.

Then
lim
���

		����, 	����
 � exp	� , �
.

Exercise 15.13: Let �1,�2 be Hilbert spaces and let ��1, �2, � � �� be an or-
thonormal basis in �2. Then there exists a unitary isomorphism � : �1 � �2 �
�1 � �1 � � � � satisfying �� � � �� 	��, �
 for all  � �1, � � �2.

Exercise 15.14: Let �2��,�� be as defined in Section 2. Then there exists a unique
unitary isomorphism � : �2������ �2��,�� satisfying �������� � ����.

Exercise 15.15: Let � be a Hilbert space and let �2��� be the Hilbert space of
all Hilbert-Schmidt operators in � with scalar product 	�1,�2
 � tr� �1 �2. For any
fixed conjugation � there exists a unique unitary isomorphism � : ��� � �2���
satisfying �� � � 
	�� for all , � in �. (See Section 9.)

Example 15.16: [20] Let � be any selfadjoint operator in a Hilbert space �
with pure point spectrum 	��� � �. Then � is a finite or countable subset of
�. Denote by � the countable additive group generated by � and endowed with
the discrete topology. Let 
� be its compact character group with the normalised
Haar measure. For any bounded operator � on � and � � � define the bounded
operator

�� �

�
��

���������������.

Let �, � � �, , � � �, � � �, �� � ��. Then

	,���
 � �

�
��

���� � � �����	,��
.

Hence

	,���
 �

�
	,��
 if � � �� �,

0 if � �� �� �.



16 Operators in tensor products of Hilbert spaces 97

Thus, for any non-zero bounded operator � there exists a � � � � � �
�� � ���, � � �� such that �� �� 0 and on the linear manifold � generated
by all the eigenvectors of �

�� , �� ,���� � �2��,

�� � �0��
�

��0
�����

��
�� �����, � � �.

If � is selfadjoint ����
� � ��� and � is a “superposition” of bounded “har-

monic” observables �0, ���� ����� � � � �,� 	 0� with respect to � . (See
Example 6.2.) Whenever � ,
 are Hilbert-Schmidt operators

tr��
 � tr��

0 
0 �
�

�����

��0

tr��

�
�

and
� � �0 �

�

�����

��0

��� �����

converges in Hilbert-Schmidt norm (i.e., the norm in �2����. See Example 6.2.

Notes
The presentation here is based on the notes of Parthasarathy and Schmidt [99].
Proposition 15.1 is known as Schur’s Lemma. Proposition 15.4 and Exercise 15.6
constitute what may be called a probability theorist’s translation of the famous
Gelfand-Neumark-Segal or G.N.S. Theorem. Its origin may be traced back to the
theory of second order stationary stochastic processes developed by A.N. Kol-
mogorov, N. Wiener, A.I. Khinchine and K. Karhunen [31]. Proposition 7.2, 15.4
and 19.4 more or less constitute the basic principles around which the fabric of
our exposition in this volume is woven.

It is an interesting idea of Journé and Meyer [88] that ������
�

in Exercise
15.12 may be looked upon as a toy Fock space where ���� may be imagined as
a toy exponential or coherent vector which in the limit becomes the boson Fock
space ���2�0, 1� 	 �� where ��� is the true exponential or coherent vector. See
Exercise 29.12, 29.13, Parthasarathy [107], Lindsay and Parthasarathy [78].

16 Operators in tensor products of Hilbert spaces
We shall now define tensor products of operators. To begin with let �� be a finite
dimensional Hilbert space of dimension ��, � � 1, 2, � � � ,� and � �

��

��1��.
Suppose �� is a selfadjoint operator in �� with eigenvalues ���� , 1 
 � 
 ���
and corresponding orthnormal set of eigenvectors ���� , 1 
 � 
 ��� so that

����� � ������ , 1 
 � 
 ��, � � 1, 2, � � � ,�.

Using Exercise 15.8 define a selfadjoint operator � on � by putting

�

��

��1

���� � 	�
��1����

��

��1

���� , 1 
 �� 
 ��
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and extending linearly on �. The operator � has eigenvalues ����1���� and satisfies

�

��

��1

�� �

��

��1

���� for all �� � ��, 1 � � � �.

Furthermore
��� � max ����

��1���� �, 1 � �� � ���

� ��
��1 max����� �, 1 � � � ��� � ��

��1����.

In particular, we have the identity

�
�

1��,���

��	��
�
��1���� ,������� � ��

��

��1

	�

��

��1

��� ,�
��

��1

	�

��

��1

�����

� ��
��1���� �

��

��1

	�

��

��1

����
2 (16.1)

for all scalars 	� , ��� � ��, 1 � � � 
 , 1 � � � �, 
 � 1, 2, � � � . We write
� �
��

��1�� � �1 � � � � � �� and call it the tensor product of operators ��,
1 � � � �. The next proposition extends this elementary notion to all bounded
operators on Hilbert spaces.

Proposition 16.1: Let ��, 1 � � � � be Hilbert spaces and let �� be a bounded
operator in �� for each �. Then there exists a unique bounded operator � in
� �
��

��1�� satisfying

�

��

��1

�� �

��

��1

���� for all �� � ��, 1 � � � �. �16.2�

Furthermore ��� � ������.

Proof: Let � � 	
��

��1����� � ��, 1 � � � �
. For all scalars 	� , 1 � � � 


and product vectors
��

��1��� � �, 1 � � � 
 we have

�

��

��1

	�

��

��1

������
2 �
�

1��,���

	�	��
�
��1���� ,�

�
� ������

�
�

1��,���

	�	��
�
��1���� ,���

�
� �������� (16.3)

where �� is the projection on the finite dimensional subspace � spanned by
	��� , 1 � � � 

 in �� for each �. Since ��� �� ���� is a positive operator in �,
it follows from (16.1) and (16.3) that

�

��

��1

	�

��

��1

������
2 � ��

��1����
�
� ����� �

��

��1

	�

��

��1

����
2

� ��
��1��

�
� ��� �

��

��1

	�

��

��1

����
2. (16.4)
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Define � on the set � by (16.2). Then (16.4) shows that � extends uniquely as a
linear map on the linear manifold generated by �. Since � is total in � this linear
extension can be closed to define a bounded operator � on � satisfying

��� � ����1��
�

� ���
1�2 � ��

��1����.

Let now 0 � � � 1 be arbitrary. Choose unit vectors �� � �� such that ������ �
�1� ������ for each �, assuming �� �� 0. Then

��
��1�� is a unit vector in � and

��

��

��1

��� � �

��

��1

����� � ��
��1������ � �1� �����

��1����.

Thus ��� � ��
��1����.

The operator � determined by Proposition 16.1 is called the tensor product
of the operators ��, 1 � � � �. We write � �

��
��1�� � �1�� � ����. If �� � �,

�� � � for all � � 1, 2, � � � ,� we write � � ��
�

and call it the �-th tensor power
of the operator �.

Proposition 16.2: Let ��, 1 � � � � be Hilbert spaces and let ��,�� be bounded
operators in �� for each �. Let � �

��
��1��, � �

��
��1��. Then the following

relations hold:

(i) The mapping ��1,�2, � � � ,���	 � is multilinear from 
��1��� � ��
����
into 
��1 � � � � � ���;

(ii) �� �
��

��1����, �
� �
��

��1�
�

� ;

(iii) If each �� has a bounded inverse then � has a bounded inverse and ��1 �
���

�1
� ;

(iv) � is a selfadjoint, unitary, normal or projection operator according to whether
each �� is a selfadjoint, unitary, normal or projection operator;

(v) � is positive if each �� is positive;

(vi) If �� � ����	�� where ��, 	� � �� for each � then

� � ��1 � �2 � � � � � ���	1 � 	2 � � � � � 	��.

Proof: This is straightforward from definitions and we omit the proof.

Proposition 16.3: Let �� be a compact operator in ��, � � 1, 2, � � � ,�, � ���
��1��, � �

��
��1��. If �� has the canonical decomposition in the sense of

Proposition 9.6

�� �
�

�


������	������ �, � � 1, 2, � � � ,� �16.5�

then � is a compact operator with canonical decomposition

� �
�

�1,�2,��� ,��


�1��1� � � � 
�������	1�1 � � � � � 	�����1�1 � � � � � ���� �. �16.6�
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If �� � �1���� for each � then � � �1��� and

���1 � ��
��1����1, tr� � ��

��1 tr��.

In particular, if each �� is a state so is � .

Proof: Since ���� , � � 1, 2, � � ��, ���� , � � 1, 2, � � �� are orthonormal sets in �� for
each � it follows that ��1�1�� � �������, ��1�1�� � ������� are orthonormal sets in
�. Equation (16.5), the second part of Proposition 16.1 and (vi) in Proposition 16.2
yield (16.6) as an operator norm convergent sum over the indices ��1, �2, � � � , ���.
If ����1 �

�
� �������� �	 for each � then we have

���1 �
�

�1,�2,��� ,��

���1��1� � � � �������� � ��
��1����1.

If ���� , � � 1, 2, � � �� is an orthonormal basis in �� for each � it follows that

��1�1 � � � � � �����

is an orthonormal basis in � and

tr� �
�

�1,��� ,��


�1�1 � � � � � ���� ,�1 � � � � � ���1�1 � � � � � �����

�
�

�1,��� ,��

��
��1
���� ,�������

� ��
��1

�

�


��� ,������

� ��
��1 tr��,

due to the absolute convergence of all the sums involved. Finally, if each �� is
positive so is � . If tr�� � 1 for each � then tr� � 1.

If ���,�����, 	�� is a quantum probability space for each � � 1, 2, � � � ,

then putting � �

��

��1��, 	 �
��

��1	� we obtain a new quantum probability
space ��,����, 	� called the product of the quantum probability spaces

���,�����, 	��, � � 1, 2, � � � ,
.

If �� is a bounded selfadjoint operator in �� or, equivalently, a bounded real
valued observable in �� then � � �1 � � � � � �� is a bounded real valued
observable in � and the expectation of � in the product state 	 is equal to
��

��1 tr 	���, the product of the expectations of �� in the state 	�, � � 1, 2, � � � ,
.

Now the stage is set for achieving our goal of combining the description of
events concerning several statistical experiments into those of a single experiment.
Suppose that the events of the �-th experiment are described by the elements of
����� where �� is a Hilbert space, � � 1, 2, � � � ,
. Let � � ����. If �� � �����
then we view the event �� as the element

��� � 1� � � � � 1� �� � � � � � 1,
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(called the ampliation of �� in �) in ���� and interpret � �
��

��1�� � ��
��1

��� �
���� (see Proposition 16.2) as the event signifying the simultaneous occurrence
of �� in the �-th experiment for � � 1, 2, � � � ,�. These are the quantum probabilis-
tic equivalents of measurable rectangles in products of sample spaces. The next
proposition indicates how ���� is “generated” by �����, � � 1, 2, � � � ,�.

Proposition 16.4: Every element � in ���� can be obtained as a strong limit
of linear combinations of projections of the form

��

��1��, �� � �����.

Proof: Choose an increasing sequence ����, � � 1, 2, � � �� of finite dimen-
sional projections so that s.lim������ � 1 in �� for each �. Then �� ���

��1��� increases to the identity strongly in � and for any bounded opera-
tor � in �, s.lim�������� � � . Thus it suffices to show that for fixed � the
operator ����� can be expressed as a linear combination of product projections
of the form

��

��1��, �� � �����. Replacing �� by the range of ��� if necessary
we may assume that each �� has dimension �� ��. Let �	��, 1 � 
 � ��� be
an orthonormal basis in �� and let ��

�� � �	���		���. Then every operator � on
� can be expressed as a linear combination of operators of the form

��

��1�
�
���� .

Each ��
�� can be expressed as a linear combination of selfadjoint operators:

��
�� �

1
2
���

�� � ���
��� � ��

1
2�
���

�� 
 ���

�� ��.

Since every selfadjoint operator in �� admits a spectral decomposition in terms
of eigen projections the proof is complete.

Proposition 16.5: Let ���,��� be measurable spaces and let �� : �� � �����
be an ��-valued observable in �� for � � 1, 2, � � � ,�. Let ��,�� � ��

��1���,���
be the product measurable space and � �

��

��1��. Then there exists a unique
�-valued observable � : � � ���� such that

��1  � � �  �� �

��

��1

����� for all � � ��, � � 1, 2, � � � ,�. �16.7�

Proof: By Proposition 7.4 there exists a finite or countable family of �-finite
measures ���� , � � 1, 2, � � � , � and a unitary isomorphism �� : �� �

�
��

2�����
such that

��������
�1
� �
�

�

���� ��� for all � � ��, 1 � � � �.

We have
��

��1

����
2������ �

�

�1,��� ,��

�2��1�1  �2�2  � � �  �����.

Define � � �1 � � � � � �� and

�� � � ��1�
�

�1,��� ,��

��1�1��������� � ��� , � �.

Then (16.7) is obtained.
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The unique observable � satisfying (16.7) in Proposition 16.5 is called the
tensor product of the observables ��, � � 1, 2, � � � ,�. We write � � �1 � � � � � ��.

Proposition 16.6: Let �1,�2 be Hilbert spaces and let � be a trace class operator
in � � �1 � �2. Then there exists a unique trace class operator �1 in �1 such
that

tr�1� � tr� �� � 1� for all � in ���1�. �16.8�

If � is a state in � then �1 is a state in �1.

Proof: For any compact operator � in �1 define ���� � tr� �� � 1�. By
Proposition 9.12, (iii) we have ������ � ���1���. In particular, � is a continuous
linear functional on ����1�. By Schatten’s Theorem (Theorem 9.17) there exists
a �1 in �1��1� such that tr�1� � tr� �� � 1� for all � in ����1�. Since the
maps � � tr�1� and � � tr� �� � 1� are strongly continuous in ���1� we
obtain (16.8). If � is positive we have

	�,�1�
 � tr�1��
	�� � tr� ���
	�� � 1� � 0

for all � in �1. Thus �1 � 0. Putting � � 1 in (16.8) we get tr�1 � tr� . This
proves that �1 is a state if � is a state.

The operator �1 in Proposition 16.6 is called the relative trace of � in �1.
If � is a state then the relative trace of �1 is the analogue of marginal distribution
in classical probability.

Exercise 16.7: Suppose �1,�2 are two real finite dimensional Hilbert spaces
of dimensions �1,�2 respectively and � � �1 � �2. Let ���1�,���2� and
���1 � �2� be the real linear spaces of all selfadjoint operators in �1,�2 and
�1 � �2 respectively. Then we have dim����� �

1
2����� � 1�, � � 1, 2 and

dim���1 � �2� �
1
2�1�2��1�2 � 1�. In particular,

dim���1 � �2� 	 dim���1� � dim���2� if �� 	 1, � � 1, 2, .

On the other hand, if �1,�2 are complex Hilbert spaces dim����� � �2
� and

dim���1 � �2� � dim���1� dim���2�.

(In the light of Proposition 16.4 this indicates the advantage of working with
complex Hilbert spaces in dealing with observables concerning several quantum
statistical experiments).

Exercise 16.8: (i) Let �� be (a not necessarily bounded) selfadjoint operator in
�� with spectral representation

�� �

�
�


����
�, � � 1, 2, � � � ,�,

�� being a real valued observable in �� for each �. Define the selfadjoint operator

�1 � � � � � �� �

�
��

1
2 � � �
��1 � �2 � � � � � ����
1�
2 � � � �
��
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by Proposition 12.1 and Theorem 12.2. If �� � ����� is a core for �� for each
� then the linear manifold � generated by ��1 � � � � � ����� � �� for each ��
is a core for �1 � � � � � �� and

�1 � � � � � �� �1 � � � � � �� � �1�1 � � � � � ����

for all �� � �����, 1 � � � �.

(ii) Let ��� � 1�� � ��1����1 � � � 1�1 (be the �-th ampliation of ��� where
�� is in the �-th position. Then ��1�� � �� ��� is essentially selfadjoint on� with its
closure being the selfadjoint operator

�
��
��1�� � ������1�� � �����	�1 � � � 	���.

(iii) If 
� is a state in �� and �� has finite expectation in the state 
� for each
� then �1 � � � � � �� has finite expectation in the product state 
 � 
1 � � � � � 
�
and

	�1 � � � � � ��
�1������� � ��
��1	��
��

in the notation of Proposition 13.6.

Exercise 16.9: Let � � �1��1 � �2� and let �1 be its relative trace in �1. If
���� is an orthonormal basis in �2 then

	�,�1�
 �
�

�

	�� �� ,�� � ��
 for all �, � in �1

where the right hand side converges absolutely.

Exercise 16.10: Let �1,�2 be Hilbert spaces and � � �1 � �2. Then the
*-algebra generated by �1 � 2�� � �����, � � 1, 2� is strongly dense in
����.

(ii) For any trace class operator 
 in �2 there exists a unique linear map
�� : ���� ���1� satisfying

	�, �����
 � tr���
	�� � 
� for all �, � � �1, � ����

where

������ � �
�1��.

(iii) If 
 is a state then �� is called the 
-conditional expectation map from
���� into ���1�. The 
 conditional expectation map satisfies the following prop-
erties:

(1) ��1 � 1, ��
� � �����, ���� � ��;

(2) ����� 1��� � 1� � ������, for all �,� � ���1�,  � ����;

(3)
�

1��,����
�
� ���

�
� ���� � 0 for all � � ����, �� � ���1�. In particu-

lar, �� � 0 whenever  � 0.
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Exercise 16.11: Let ���,� � 0� be a sequence of Hilbert spaces and ���,� � 1�
be unit vectors, �� � ��. Define ����1 � ���1 � ���2� � � � with respect to
the stabilising sequence ���1,���2, � � � and �

�� � �0 � �1 � � � � � ��. In the
Hilbert space

�� � �0 � ��1 � �
�� � ����1, � � 1, 2, � � �

consider the increasing sequence of *-algebras

�
�� � �� � 1���1�� � ���

����, � � 0, 1, 2 � � �

Define �� � ���
��� and 1

�� to be the identity in ��. There exists a unique linear
map �

�� : �� 	 �
�� satisfying


�, �
������� � 
�� ����1,�� � ����1� for all �, � � �

��, � � ��

where ����1 � ���1 � ���2 � � � � and �� � �� ���. Indeed,

�
����� � ������1������1����� 1���1.

The maps �������0 satisfy the following properties:

(i) ���1 � 1, ����
� � �������, ������  ���;

(ii) ������ � �������� whenever �,� � ���;

(iii) ������ � ������ � ��� whenever �  �;

(iv)
�

1��,���	
�
� �����

�
� ���	� � 0 for all 	� � ���, �� � ��. In particular

���� � 0 whenever � � 0;

(v) s.lim��� ���� � � for all � in ��.

Exercise 16.12: (i) In the notations of Exercise 16.11 a sequence ���� in ��
is said to be adapted if �� � ��� for every �. It is called a martingale if

��	1��� � ��	1 for all � � 1

Suppose � � ������1 is any sequence of operators where

�� � �����, 
��,����� � 0, � � 1, 2, � � �

Define
��� � 1�	1� ��� � 1���1,


���� �

�
0 if � � 0,
��1 � ��2 � � � �� ��� if � � 1.

Then �
�������0 is a martingale. For any two sequences �,� of operators
where ��,�� � �����, 
��,����� � 
��,����� � 0 for each �

����
�����
�������
�����
�����

�

��
����1


���� ,����� for all � � � � 0.
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(ii) For any sequence � � ��1,�2, � � �� of operators such that

�� � �
��1�, � � 1, 2, � � �

define

����,�� �

�
0 if � � 0,�

�

1 ������������1���� if � � 1.

Then �����,�����0 is a martingale. Furthermore

�
��1�����,�������,� � � ���1��,������1��,� �

� �����,������
�
�
��

for all � � 1.

Exercise 16.13: For any selfadjoint operator 	 in the Hilbert space � define
the operator 
�	� in �2 	 � by 
�	� � ��1 	 1� exp���2 	 	� where �� ,
1 
  
 3 are the Pauli spin matrices. Then 
�	� � 
�	��1 � 
�	�� and
1
2 �
�	� � 
��	�� � �1 	 cos 	 . Thus 
�	� and 
��	� are spin observables
with two-point spectrum ��1, 1� but their average can have arbitrary spectrum in
the interval ��1, 1�. (See also Exercise 4.4, 13.11.)

Notes
The role of tensor products of Hilbert spaces and operators in the construction of
observables concerning multiple quantum systems is explained in Mackey [84].
For a discussion of conditional expectation in non-commutative probability theory,
see Accardi and Cecchini [4]. Exercise 16.13 arose from discussions with B.V. R.
Bhat.

17 Symmetric and antisymmetric tensor products
There is a special feature of quantum mechanics which necessitates the introduction
of symmetric and antisymmetric tensor products of Hilbert spaces. Suppose that
a physical system consists of � identical particles which are indistinguishable
from one another. A transition may occur in the system resulting in merely the
interchange of particles regarding some physical characteristic (like position for
example) and it may not be possible to detect such a change by any observable
means. Suppose the statistical features of the dynamics of each particle in isolation
are described by states in some Hilbert space �. According to the procedure
outlined in Section 15, 16 the events concerning all the � particles are described
by the elements of ������. If �� � ����, 1 
 � 
 � then

��

��1�� signifies the
event that �� occurs for each �. If the particles � and  �� � � are interchanged and
a change cannot be detected then we should not distinguish between the events
�1	� � �	�� and �1	� � �	���1	��	���1	� � �	���1	��	���1	� � �	��, where
in the second product the positions of �� and �� are interchanged. This suggests
that the Hilbert space ��� is too large and therefore admits too many projections
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and does not qualify for the description of events concerning � identical particles.
In order to take into account this curtailment in the degrees of freedom, the desired
reduction of the Hilbert space may be achieved by restriction to a suitable subspace
of ��� which is “invariant under permutations”. We shall make this statement
more precise in the sequel.

Let �� denote the group of all permutations of the set �1, 2, � � � ,��. Thus
any � � �� is a one-to-one map of �1, 2, � � � ,�� onto itself. For each � � �� let
�� be defined on the product vectors in ��� by

���1 � � � � � �� � ���1�1� � � � � � ���1��� �17.1�

where ��1 is the inverse of �. Then �� is a scalar product preserving the map
of the total set of product vectors in ��� onto itself. Hence by Proposition 7.2,
�� extends uniquely to a unitary operator on ��� , which we shall denote by ��
itself. Clearly

����� � ���� for all �,�� � ��. �17.2�

Thus � � �� is a homomorphism from the finite group �� into ������. The
closed subspaces

� ���

� �� � ��� ���� � � for all � � ���, (17.3)

� ���

� �� � ��� ���� � ����� for all � � ���, (17.4)

where ���� � �1 according to whether the permutation � is even or odd are
called respectively the �-fold symmetric and antisymmetric tensor products of �.
They are left invariant by the unitary operators �� ,� � ��. There do exist other
such permutation invariant subspaces of ��� but it seems that they do not feature
frequently in a significant form in the physical description of � identical particles.
If the statistical features of the dynamics of a single particle are described by states
on ���� and the dynamics of � such identical particles is described by states in
��� ���

� for � � 2, 3, � � � then such a particle is called boson. Instead, if it is
described by states on ��� ���

� for every � then such a particle is called fermion.
(This nomenclature is in honour of the physicists S.N. Bose and E. Fermi who
pioneered the investigation of statistics of such particles).

We shall now present some of the basic properties of � ���

and � ���

in the
next few propositions.

Proposition 17.1: Let � and � be operators in ��� defined by

� �
1
�!

�

����

�� , (17.5)

� �
1
�!

�

����

������ , (17.6)
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where �� is the unitary operator satisfying (17.1) and ���� is the signature of the
permutation �. Then � and � are projections onto the subspaces � ��� and � ���

respectively. If � � �� is any subgroup

� � �
1
��

�

���

�� , (17.7)

� � �
1
��

�

���

������ (17.8)

where �� is the cardinality of �. Furthermore, for any ��, 	� � �, 1 � 
 � �

���1 � � � � � ��,�	1 � � � � � 	�� � ��1 � � � � � ��,�	1 � � � � � 	��

�
1
�!

�

����

��
��1���, 	�����, (17.9)

���1 � � � � � ��,�	1 � � � � � 	�� � ��1 � � � � � ��,�	1 � � � � � 	��

�
1
�!

�

����

������
��1���, 	�����

�
1
�!

det�����, 	����. (17.10)

Proof: From (17.2) we have

�
� �

1
�!

�

����

�
�
� �

1
�!

�

����

���1 � �,

��� � ��� � �
2, (17.11)

�
� �

1
�!

�

����

������� �
1
�!

�

����

����1����1 � � ,

��� � ��� � ����� ,� 2 � � .

Thus � and � are projections. Furthermore (17.3), (17.4) and (17.11) imply that
�� � � if and only if � � � ��� and �	 � 	 if and only if 	 � � ��� . This
proves the first part. Summing up over � � � and dividing by �� in the second
equation of (17.11) we obtain (17.7). Multiplying by ����, summing over � � �

and dividing by �� in the last equation of (17.11) we obtain (17.8).
The first part of (17.9) is a consequence of the fact that � is a projection.

By definition

��1 � � � � � ��,�	1 � � � � � 	�� �
1
�!

�

����

��1 � � � � � ��, 	��1� � � � � � 	�����

�
1
�!

�

����

�����, 	�����.

This proves (17.9). (17.10) follows exactly along the same lines.
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It may be mentioned here that the quantity
�

����
��
��1���, ������ occurring

on the right hand side of (17.9) is the permanent of the matrix �����, ����� in
contrast to the determinant occurring in (17.10).

Corollary 17.2: Let �� and �� denote respectively the projections � and �

defined on ��
�

by (17.5) and (17.6) for each � � 1, 2, � � �. Then for � � ��
�

,
� � ��

�

, � � ��
�

�������������� ��� �� � ��������� ������ � ���

� ��������� � � ��,

�������������� ��� �� � ��������� ������ � ���

� ��������� � � ��.

Proof: This is immediate from (17.7) and (17.8) if we consider the permutation
groups ���� and ���� as subgroups of ������ so that � � ���� leaves the
last � elements of �1, 2, � � � , 	�
��� fixed whereas � � ���� leaves the first
	 elements of �1, 2, � � � , 	�
� �� fixed.

Proposition 17.3: Let ���, � � 1, 2, � � �� be an orthonormal basis for �. For any
�� � �, � � 1, 2, � � � ,  and positive integers �1, �2, � � � , �� satisfying �1 � � � � �
�� � � denote by

��
��1�

���

� the element �1�� � ���1��2�� � ���2�� � �����
� � � ��� where �� is repeated �� times for each �. Let � and � be the projections
defined respectively by (17.5) and (17.6) in ��

�

. Then the sets

��
�!

�1! � � � ��!
�1	2 �

��
��1

��
��

��
��1 � �2 � � � � � ��,

�� 	 1 for each 1 
 � 
 , �1 � �2 � � � �� �� � �,  � 1, 2, � � � ,��,

���!�1	2� ��1 � ��2 � � � � � ��� ��1 � �2 � � � � � ���

are orthonormal bases in � 
��

and � ���

respectively. In particular, if dim� �
� �� then

dim� 
��

�

�
� � �� 1

�

�
,

dim� ���

�

��
�
�

�
if � 
 � ,

0 otherwise.

Proof: The first part follows from (17.9) and (17.10). The formula for dim� 
��

is immediate if we identify it as the number of ways in which � indistinguishable
balls can be thrown in � cells. Similarly the dimension of � ���

can be identified
with the number of ways in which � indistinguishable balls can be thrown in �
cells so that no cell has more than one ball.



17 Symmetric and antisymmetric tensor products 109

Using Proposition 17.3 it is possible to compare the different probability
distributions that arise in the “statistics of occupancy”. More precisely, let � be a
state in � with dim� � � � �. Let ��� , � � 1, 2, � � � ,�� be an orthonormal
basis of � such that � �

�
��� ������� �. Let ������� � signify the event “particle

occupies cell number �”. Now consider � distinguishable particles whose statis-
tics are described by the quantum probability space ���� ,������, ��

�

�. The
projection ���1 � � � �� �������1 � � � �� ��� � signifies the event “particle � occupies
cell �� for each � � 1, 2, � � � ,�”. Let 	 � �	1, � � � , 	� � where 	� is the number of
particles in cell � so that 	1 � � � �� 	� � �. Define


0
� �
�

���1 � � � � � �������1 � � � � � ��� � �17.12�

where the summation on the right hand side is over all ��1, � � � , ��� such that the
cardinality of ����� � �� is 	� for � � 1, 2, � � � ,� . 
0

� is a projection whose range

has dimension �!
�1!����� ! and it signifies the event that cell � has 	� particles for

each �. Then

tr ��
�


0
� �

�!
	1! � � � 	� !

��21 �
�2
1 � � � ���� . �17.13�

In this case we say that the particles obey the Maxwell-Boltzmann statistics and
the probability that there are 	� particles in cell � for each � in the state ��

�

is
given by (17.13).

Suppose that the � particles under consideration are � identical bosons.
Then the Hilbert space ���

is replaced by � ���

and correspondingly ��
�

by its
restricton to � ���

. To make this restriction a state we put

� ���

� ��
�

�� ��� .

� � tr � ���

� tr ��
�


 �
�

�1���������

��11 �
�2
2 � � � ����

and observe that ��1� ���

is a state, 
 being defined by (17.5). The quantum
probability space �� ���

,��� ���

�, ��1� ���

� describes the statistics of � identical
bosons. Denote by 
���

� the projection on the one dimensional subspace generated
by the vector

�� � 


��

��1

��
��

, 	 � �	1, � � � , 	� �, 	1 � � � �� 	� � �.

Then the probability of finding 	� particles in cell � for each � � 1, 2, � � � ,� is

tr ��1� ���



���
� �

��11 � � � �����
�1��������

��11 � � � ����
�17.14�

In this case we say that the particles obey the Bose-Einstein statistics.

When the particles are � identical fermions ���

is replaced by � ���

which
is non-trivial if and only if � 	 � , i.e., the number of particles does not exceed
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the number of cells. The state ��
�

is replaced by its restriction to � ���

. Once
again to make this restriction a state we have to divide it by

�� � tr ��
�

�� ��� �
�

1��1��2���������

��1��2 � � � ��� .

Then the quantum probability space describing the statistics of � identical fermions
is �� ���

,��� ���

�, ���1
� ���

� where

� ���

� ��
�

�� ���

If ����
� denotes the one dimensional projection on the subspace generated by the

vector

�� � ���1 � ��2 � � � � � ���

where 	 � �	1, � � � , 	� �, 	�� � 1, 
 � 1, 2, � � � ,� and the remaining 	� are 0 and
� is defined by (17.6) then the probability that cell �� is occupied by one particle
for each 
 � 1, 2, � � � ,� and the remaining cells are unoccupied is given by

tr ���1
� ���

�
���
� �

��1��2 � � � ����
1��1��2���������

��1��2 � � � ���
. �17.15�

In this case we say that the particles obey the Fermi-Dirac statistics.

For a comparison of the three distributions (17.13)–(17.15) consider the case
of two cells and � particles. Let the state � of a single particle be given by

��1 �
1
2
�1, ��2 �

1
2
�2

where ��1, �2� is an orthonormal basis in �. According to Maxwell-Boltzmann
statistics the number of particles in cell 1 has a binomial distribution given by

Pr (cell 1 has � particles) �

�
�

�

�
2��, 0 � � � �

whereas Bose-Einstein statistics yield

Pr (cell 1 has � particles) �
1

�� 1
, 0 � � � �.

According to the first distribution the probability that all the particles occupy
a particular cell is 2�� whereas the second distribution assigns the enhanced
probability 1

��1 to the same event.

In the case of fermions it is impossible to have more than two of them when
there are only two cells available and if a cell is occupied by one particle the
second one has to be occupied by the other. Bosons tend to crowd more than
particles obeying Maxwell-Boltzmann statistics and fermions tend to avoid each
other.
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Exercise 17.4: Let � be an irreducible unitary representation of �� and let
���� � tr���� be its character. Suppose ��1� � �� denotes the dimension of the
representation �. Define

�� �
��

�!

�

����

������

where �� is the unitary operator satisfying (17.1). Then �� is a projection for
each �, ���� � ���� for all � � ��,��1��2 � 0 if �1 �� �2 and

�
��� � 1.

(Hint: Use Schur orthogonality relations).

Example 17.5: [74] (i) The volume of the region

� � ��	1,	2, � � � ,	��1��	� � 0 for all 
, 0 � 	1 � � � �� 	��1 � 1�

in ���1 is ��� 	 1�!��1.

(ii) Let �1, � � � , �� be non-negative integers such that �1 � � � � � �� � �.
Then�

�

�!
�1! � � � �� !


�1
1 � � � ��� �� 	 1�!�1�2 � � � ���1 �

�
� � �	 1

�

��1

where � � �1	 1 	 2 	 � � � 	 ��1�.

This identity has the following interpretation. Suppose all the probability
distributions �1, 2, � � � , � � for the occupancy of the cells �1, 2, � � � ,�� by a
particle are equally likely and for any chosen prior distribution �1, 2, � � � , � � the
particle obeys Maxwell-Boltzmann statistics. Then one obtains the Bose-Einstein
distribution (17.4) with � � 1

�
, 
 � 1, 2, � � � ,� .

Notes
Regarding the role of symmetric and antisymmetric tensor products of Hilbert
spaces in the statistics of indistinguishable particles, see Dirac [29]. For an inter-
esting historical account of indistinguishable particles and Bose-Einstein statistics,
see Bach [11]. Example 17.5 linking Bose-Einstein and Maxwell-Boltzmann statis-
tics in the context of Bayesian inference is from Kunte [74].

18 Examples of discrete time quantum stochastic flows
Using the notion of a countable tensor product of a sequence of Hilbert spaces
with respect to a stabilising sequence of unit vectors and properties of conditional
expectation (see Exercise 16.10, 16.11) we shall now outline an elementary pro-
cedure of constructing a “quantum stochastic flow” in discrete time which is an
analogue of a classical Markov chain induced by a transition probability matrix.

For a Hilbert space � any subalgebra � 
 ���� which is closed under the
involution * and weak topology is called a� � algebra or a von Neumann algebra.
If ��, � � 1, 2 are Hilbert spaces, �� 
 �����, � � 1, 2 are von Neumann algebras
denote by �1��2 the smallest von Neumann algebra containing ��1��2��� �
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��, � � 1, 2� in ���1 � �2�. If � is a trace class operator in �2, following
Exercise 16.10, define the operator �����,� � ���1 ��2� by the relation

��,������� � tr� ������ � �, �, � � �1 �18.1�

in �1.

Proposition 18.1: ����� � �1 if � � �1 ��2.

Proof: If � � �1 ��2 then (18.1) implies that ����� � �tr ��2��1. Thus the
proposition holds for any finite linear combination of product operators in �1��2.
Suppose that � � ��� ������� � is a state where �� 	 0,��� � 1 and ���� is an
orthonormal set and w.lim��� �� � � in ���1 ��2�. Then by (18.1)

lim
���

��, �������� � lim
���

�

�

����� �� ,��� � ���

� ������ �� ,�� � ���

� ��, ������� for all �, � � �1.

In other words �� is weakly continuous if � is a state. Since �� is linear in �

the same property follows for any trace class operator. Now the required result is
immediate from the definition of �1 ��2.

Let �0,� be Hilbert spaces where dim� � 
 ��. Let ��0, �1, � � � , ���1�
be a fixed orthonormal basis in � and let �0 	 ���0� be a von Neumann algebra
with identity. Putting �� � �, �� � �0 for all  
 1 in Exercise 16.11 construct
the Hilbert spaces ���,����1 for each  
 0. Define the von Neumann algebras

��� � �� � 1���1�� � �0 ��������,  
 0,

� � �0 �����1�.

Property (v) in Exercise 16.11 implies that � is the smallest von Neumann algebra
containing all the ��, 
 0. ����� is increasing in . By Proposition 18.1 the
����1-conditional expectation ��� of Exercise 16.11 maps � onto ���.

Any algebra with identity and an involution * is called a *-unital algebra.
If �1,�2 are *-unital algebras and � : �1 � �2 is a mapping preserving * and
identity then � is called a *-unital map.

Proposition 18.2: Let � : �0 � �0����� be a *-unital homomorphism. Define
the linear maps ��� : �0 � �0 by

������ � ���������������, 0 � �, � � 
 1, � � �0 �18.2�

Then the following holds:

(i) ����1� � ��� , �
�
���

�� � �
�
� ����;

(ii) ������ � �
���1

��0�
�
������� �� � for all � ,� � �0.
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Proof: From (18.1) and (18.2) we have

��, �������� � ��� ��, ����� � ���.

If � � 1 the right hand side of this equation is ��, ����� . Furthermore

��, �����
���� � ��� ��, ���

��� � ��� � �� � �� , ������ ���

� ��, ��� ����� � ��, ��� ������.

This proves (i). To prove (ii) choose an orthonormal basis ���� in �� and observe
that

��, ������ ��� � ��� ��, ������� �� � ���

� �������� ��, ��� �� � ���

�
�

�,�

��� ��, ������ � ������ � ��, ��� �� � ���

�
�

�,�

��, ������������, �
�
� �� ���

�
�

�

���������, ��� �� ���

� ��,
�

�

��������� �� ���.

Proposition 18.3: Let �,�0,�1,�0 be as in Proposition 18.2. Define the maps
�� : �0 � ���, 	 � 0, 1, 2, � � � inductively by

�0��� � � � 1�1, �1��� � ����� 1�2,

����� �
�

0��,����1

���1��
�
�����1��1� � �������� � 1���1.

�18.3�

Then �� is a *-unital homomorphism for every 	. Furthermore

���1������ � ���1��
0
0���� for all 	 � 1, � 	 �0,

where ���1� is the 
��-conditional expectation map of Exercise 16.11.

Proof: We prove by induction. For 	 � 0, 1 it is immediate. Let 	 � 2. Then by
(i) in Proposition 18.2 and the induction hypothesis we have

���1� �
�

�,�

���1��
�
��1��1� � ������� � � 1���1

� 1��1� �
�

�

�������� � 1���1 � 1
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and

������ �
�

�,�

���1��
�
� ��

���1��1� � �������� � 1���1

� ����
��.

By (ii) in Proposition 18.2 and induction hypothesis we have

��������� � �
�

�,�,�,�

���1��
�
��������1��

�
� �� ��1��1� � ��� �������� � 1���1

�
�

�,�

���1

�

�

��������� �� ��1��1� � �������� � 1���1

�
�

�,�

���1��
�
���� ��1��1� � �������� � 1���1.

This proves the first part. By the definition of ��� in Exercise 16.11 and the fact
that ��0, ������� ��0� � ��0�

0
� , the second part follows from (18.3).

Corollary 18.4: Let ���,� � 0� be the *-unital homomorphisms of Proposition
18.3. Write � � �00. Then for 0 � �0 	 �1 	 	 	 	 	 �� 	
, �� � �0, 1 � 
 � �

��0���1��1���2��2� 	 	 	 ������� �

��0��
�1��0��1�

�2��1��2 	 	 	 ����1�
������1���� 	 	 	�

�18.4�

Proof: By Exercise 16.11 ��0� � ��0�����1�. Since ��1��1� 	 	 	 ����1����1� is
an element of ����1�

it follows from the same exercise that

��0���1��1� 	 	 	 �������

� ��0�
��1��1� 	 	 	 ����1����1�����1����������.

�18.5�

Since ����1� � ����1�
����1�1� 	 	 	 ����1� it follows from Proposition 18.3 that

����1�������� � ����1��
������1����.

Substituting this in (18.5), using the fact that ����1 is a homomorphism and re-
peating this argument successively we arrive at (18.4).

Proposition 18.5: The map � � �00 from �0 into itself satisfies the following:
(i) � is a *-unital linear map on ���0�; (ii) for any ��,�� � �0, 1 � 
 � �,�

1��,����
�
� � ��

�
� ����� � 0 for every �. In particular, � ��� � 0 whenever

� � 0.
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Proof: Since � is a *-unital homomorphism from �0 into �0 � ���� and
� ��� � ���0���0�������, (i) is immediate from Exercise 16.10. Using the same
exercise once again we have
�

�,�

� �
� � ���

� ������ �
�

�,�

� �
� ���0���0�������

���������

� ���0���0���
�

�

������� � 1���
�

�

������� � 1�� � 0.

Putting � � 1, �1 � 1, �1 � � in this relation we get the last part.

We may now compare the situation in Proposition 18.3, Corollary 18.4 and
Proposition 18.5 with the one that is obtained in the theory of classical Markov
chains. Consider a Markov chain with state space � � �1, 2, � � � ,�� and transition
probability matrix � � ��	����, 1 � 
, � � � . Denote by �� the *-unital
commutative algebra of all bounded complex valued measurable functions on the
space �� � �0��1�� � ������ � � where �� � � for every . Let ��� � �� be
the *-subalgebra of all functions which depend only on the first �1 coordinates.
Denote by ��� the conditional expectation map determined by

�������
0, 
1, � � � , 
�� � ���	�0 � 
0,�1 � 
1, � � � ,�� � 
��

where �0,�1, � � � is the Markov chain starting in the state �0 � 
0 with stationary
transition probability matrix � . For any function � on � define

������
� � ��
�� where 
 � �
0, 
1, � � � , 
�, � � �� 
 ��.

Then �� is a *-unital homomorphism from �0 into ��� and the Markov property
implies that

��0�
��1��1���2��2� � � � ������� �

��0��
�1��0��1��

�2��1�2�� � � ����1�
������1����� � � ��

�18.6�

where

�����
� �

��

��1

	������, � 
 �0 � �0�,

0 � 1 � � � � � � and �1, � � � , �� 
 �0. � is a *-unital positive linear map on
�0. Then (18.4) is the non-commutative or quantum probabilistic analogue of the
classical Markov property (18.6) expressed in the language of *-unital commuta-
tive algebras. For this reason we call the family ���, � 0� of homomorphisms in
Proposition 18.3 a quantum stochastic flow induced by the *-unital homomorphism
� : �0 � �0 �����.

Proposition 18.6: Suppose that the von Neumann algebra �0 in Proposition 18.3
is abelian. Then for any � ,� 
 �0, �, � 0

������, ���� �� � 0. �18.7�
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Proof: Since �� is a homomorphism we have ������, ���� �� � ����� ,� �� � 0.
Thus (18.7) is trivial if � � �. Suppose � � �. By induction on (18.3) we have

����� �
�

0��1,�2,��� ,
�1,�2,��� ,���1

������1�1
� � � ���������

����1�� � ���1����1 � � � � � � ������������� � � 1���1

from which it follows that

������, ���� �� �
�

�1,�2,���
�1,�2,���

������1�1
� � � ���������

���,� ��1�� � ���1����1 � � � � � � ������������� � � 1���1

� 0 for all � ,� � �0.

If �0 is abelian and �1,�2, � � � ,�� is any finite set of selfadjoint elements
in �0 then ��1��1�, ��2��2�, � � � , ������� is a commuting family of observables
and hence possesses a joint distribution in �� in any state 	 on the countable
tensor product �0 � �� � � � � � �� where the Hilbert space within the braces
� � is with respect to the constant stabilising sequence of unit vectors �0. For
any state 	0 in �0, the family �������� � �0,� 	 0� can be interpreted as a
classical Markov flow in the state 	0 � ��0 � �0 � � � ����0 � �0 � � � � �.

Example 18.7: Let �
,�,�� be any measure space and let �� : 
 
 
 be
measurable maps satisfying ���1

� � �, 0 � � �   1. Suppose �� : 
 

�0, 1�, 0 � � �   1 are measurable functions satisfying

�
������ � 1. Let

�0 � ����� � ���2���� when bounded measurable functions are considered
as bounded multiplication operators. We write �0 � �2���,� � �� and choose
��0, �1, � � � , ���1� to be the canonical orthonormal basis in �. Define the map
� : �0 
 �0 by

�� �

��1�

��0

������ �18.8�

where � denotes composition. The map � can be interpreted as the transition op-
erator of a Markov chain with state space 
 for which the state changes in one
step from � to one of the states �0���,�1���, � � � ,���1��� with respective proba-
bilities �0���, �1���, � � � , ���1���. However, it is possible that ����� � ����� for
some � �� �. If 
 is a finite set of cardinality � it can be shown that every Markov
transition operator is of the form (18.8) with � being counting measure. In many
practically interesting models of classical probability  is small.

Consider a unitary  �  matrix valued measurable function � on 
 for
which � � �������, 0 � �, � �   1,�0� �

�
�� for all �. For example one may
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choose the orthogonal matrix

� �

�
������

�
1�2
0 �

1�2
1 � � � � � � �

1�2
��1

��1�21
... 1��

��1�2��1

�
������

where � � �������, ��� � ������
1�2�1 � �

1�2
0 ��1, �, � � 1. Define the *-unital

homomorphism

� : � � ���������� � �

�
�
�	
0 0

�	
1

0
. . . �	
��1

�
��� �18.9�

from �0 into �0 ����� so that

������ �

��1�
��0

�������	
�,

�00��� � �� .

where � is defined by (18.8). Note that in (18.9) the right hand side is to be
interpreted as a matrix multiplication operator in the Hilbert space

2���� �� � 2���� � � � � 2���� 	
 �
��fold

and any element in the right hand side version of the Hilbert space is expressed as
a column vector of elements in 2���. By Proposition 18.3 and 18.6 there exists
a quantum stochastic flow ���,� � 0� of *-unital homomorphisms from �0 into
� induced by the *-unital homomorphism � of (18.9) satisfying

������, ������ � 0,

���1������ � ���1����

for all � , � 	 �0 � ����. If � is a countable or finite set and � is
the counting measure then for any � 	 �, in the quantum theoretical state
�� � �0 � �0 � � � � in 2�������� � � � the sequence of observables �0��� �
� , �1���, � � � , �����, � � � has the same probability distribution as the sequence of
random variables ���0��,���, ���1��,���, ������,���, � � � where �����,��� is a
discrete time classical Markov chain with state space �, �0��,�� � � and tran-
sition operator � , � is any element of �0. In other words ���� can be identified
with a classical Markovian stochastic flow with transition operator � .

It is interesting to note that in the quantized construction of the classical
Markov chain we get the following bonus. By confining ourselves to ���, 0 

� 
 �� for any finite time period in the Hilbert space �0 � ��

�

and defining



118 Chapter II: Observables and States in Tensor Products of Hilbert Spaces

the conditional expectations �
�

�� with respect to an arbitrary unit vector �, in �
replacing �0, we get a Markov flow with the property

�
�

�0�
��1��1� � � � ������� � ��0��

�1��0
� ��1�

�2��1
� ��2 � � � ����1�

������1

� ����� � � ��
for all 0 � �0 � �1 � � � � � �� � � where �� is the Markov transition operator

��� �

��1�

��0

���� ,	������2�
�� .

�� describes the chain where the state changes from � to one of the states
�0���,�1���, � � � ,���1��� with respective probabilities ���� ,	������2, � � 0, 1,
� � � , �1. Thus a quantum probabilistic description enables us to describe a whole
class of Markov chains with transition operators �� ,� � �, ��� � 1 within the
framework of a single Hilbert space �0 	 ��� if we confine ourselves to the
finite time period �0,� �.

Example 18.8: We examine Example 18.7 when  � 2. Denote the maps �0 and
�1 on � by � and � respectively. Write �0 � �, �1 � � so that �� � � 1. Then
the *-unital homomorphism � in (18.9) assumes the simple form

���� � ���������� �

�
��
�� ��
�



����
� � �
��


����
� � �
�� ��
�� ��
�

�
�18.10�

when

	 �

� 

�



�

�
� 

�

�
.

Define

�� � 1��1� 	 ��0���1� 	 1���1,

��� � 1��1� 	 ��1���0� 	 1���1, � � 1, 2, � � � ,

so that

���
�
� � 1��1� 	 ��0���0� 	 1���1,

����� � 1��1� 	 ��1���1� 	 1���1,

and ���
�
� � �

�
��� � 1 for all � � 1. Then the flow ���,� � 0 induced by � in

(18.3) assumes the form

����� � ���1���� � ���1������� � ���� � ���1��������� �18.11�

for all � � �����,� � 1 where

�� � ��
�� ��
�,

�� �


����
� � �
��, �� � ��� ����
� � �
�

�18.12�
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If �� � 0 for � � 0 and �1 � � � � � �� for � � 1 and �� � 0 for � � 0 and
�
�
1�1 � � � �� �

�
��� for � � 1 we may express (18.11) in the form

����� � ���1��������1�����������1��
�
�
���

��1�����1�����������1�
�18.13�

where ��,�
�
� and ��, � � 0 are three martingales with respect to the conditional

expectations �
�� (see Exercise 16.12). In Chapter III we shall treat continuous

time analogues of flows satisfying (18.13) where difference equations will become
differential equations.

Example 18.9: (Hypergeometric model) Consider an urn with � white balls and
	 black balls. Draw a ball at random successively without replacement. The state
of the Markov chain at any time is denoted �
, �� where 
 is the number of white
balls and � is the number of black balls. Then

� � ��
, ���0 � 
 � �, 0 � � � 	�

is the state space. Define maps ,� on � by

�
, �� �

��
�
�
� 1, �� if 
 � 0
�0, � � 1� if 
 � 0, � � 0,
�0, 0� if 
 � 0, � � 0,

��
, �� �

��
�
�
, � � 1� if � � 0,
�
� 1, 0� if � � 0, 
 � 0,
�0, 0� if 
 � � � 0.

Define

��
, �� �

� �

���
if 
 � 0,

1
2 if 
 � 0.

Then

�����
, �� �

�����
����





� �
��
� 1, �� �

�


� �
��
, � � 1� if 
 � 0, � � 0,

��
� 1, 0� if 
 � 0, � � 0,
��0, � � 1� if 
 � 0, � � 0,
��0, 0� if 
 � 0, � � 0.

We may call ���,� � 0� defined by the *-unital homomorphism � in (18.10)–
(18.12) the hypergeometric flow.

Example 18.10: (Ehrenfest’s model) There are two urns with � and 	 balls so
that �� 	 � �. One of the � balls is chosen at random and shifted from its urn to
the other. The state of the system is the number of balls in the first urn. Then

� � �0, 1, 2, � � � , ��.

Define the maps ,� on � by

�
� �

�

� 1 if 
 � 0,
1 if 
 � 0,

��
� �
�

� 1 if 
 � �,
�� 1 if 
 � �.
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Define

���� �

�
��1� if 0 � � � �,
1
2 if � � 0 or �.

We may call the corresponding ���,� � 0� the Ehrenfest flow.

Example 18.11: (Polya’s urn scheme) Consider an urn with � white balls and �
black balls where � 	 0, � 	 0. Draw a ball at random, replace it and add � balls
of its colour. The state of the system can be described by ��, 
� where � and 


are respectively the number of white and black balls. Thus � � � � � where
� � �1, 2, � � ��. Define

���, 
� � ��� �, 
�,��, 
� � ��, 
 � ��

���, 
� � ���� 
��1, ���, 
� � 
��� 
��1

Then
������, 
� � ��� 
��1������ �, 
� � 
���, 
 � ���.

We may call the corresponding ���,� � 0� the Polya flow.

Exercise 18.12: (i) Let �0 � �2��� where � is the counting measure in � �
�1, 2, � � � ,�� and let � be any Hilbert space. For any function � on � denote
by the same letter the operator of multiplication by � . Let �0 be the *-unital
abelian algebra of all complex valued functions viewed as an abelian von Neumann
subalgebra of ���0�. A map � : �0 � �0 ����� is a *-unital homomorphism
if and only if there exists a matrix �� � �������1��,��� of projections in �
satisfying the following:

(1) ��1 � � � �� ��� � 1,

(2) ������� �
�
�

���� � ��� for every �.

where ���� is the indicator function of the singleton ��� in �.

(ii) If ��, � � 1, 2 are Hilbert spaces, �� : �0 � �0 � ���0� are *-unital
homomorphisms and ��� � ���

���
�� �� are the corresponding matrices of projections

in (i) then
��1 � ��2 � �������,��� �

�
�

�
�1�
�� � �

�2�
��

is a matrix of projections in �1 � �2 satisfying property (1) of part (i). Thus
��1 � ��2 determines a *-unital homomorphism � : �0 � �0 � ���1�� ���2�
where

������� �
�
�,�

���� � �
�1�
�� � �

�2�
�� for every �.

(iii) Let �,�� be as in (i). Then the quantum stochastic flow ���,� � 0�
induced by � is given by

����� � ����0� � ��0�1 � ��1�2 � � � � � ����1�� � �����1���1.
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If � is the unit vector in � with respect to which the conditional expectation maps
�
��, � � 0 are defined then

�
��1������ � ���1���� where ������� �

�

�

�������, ��� � ��,�����.

Example 18.13: [115] Let � be a compact second countable group and let
	 � 
� denote its left regular representation in the complex Hilbert space 
2���
of all absolutely square integrable functions on � with respect to its normalised
Haar measure so that �
������ � ��	�1��, � � 
2���. Denote by �0 the von
Neumann algebra generated by �
��	 � �� and its centre by �0. Let ���� denote
the countable set of all characters of irreducible unitary representations of �. For
any  � ���� let �� be an irreducible unitary representation of � with character
 and dimension ���. If 1,2 � ���� the map 	 � �

�1
� 	 �

�2
� , 	 � �

defines a unitary representation which decomposes into a direct sum of irreducible
representations. Denote by ��1,2 ;� the multiplicity with which the type ��

appears in such a decomposition of ��1 	 ��2 . Define

���1,�2
�
��,2 ; 1���2�

�����1�
.

Then �

�2�����

���1,�2
� 1 for each ,1 � ����.

In other words, for every fixed  � ����, the matrix �� � �����1,�2�� is a
stochastic matrix over the state space ����. In each row of �� all but a finite
number of entries are 0 and each entry is rational. Thanks to the Peter-Weyl
Theorem 
2��� admits the Plancherel decomposition


2��� �
�

������

��

where dim�� � ���2,
� leaves each �� invariant and 
����
, 	 � � is a

direct sum of ��� copies of the representation ��. If �� denotes the orthogonal
projection onto the component �� then

�� � ���

�
�

�	�
��	.

Fix 0 � ����. Let ��0 act in the Hilbert space �. Denote by � the state
��0�

�1� in �. Fix a positive integer � and consider in ��
�

the increasing
sequence of von Neumann subalgebras

��� � �� 	 1���1,� ��� � ����
�

��,� � 1, 2, � � � ,�

where �� � � ����
�

� and 1��,	� denotes the identity in ��
����1

, the tensor

product of the �-th, ��1-th,� � � , �-th copies of � in ��
�

. Consider the conditional
expectation maps ��� : �� � � ��� defined by

���� � ��
������	 1���1,� �, 1 
 � 
 � � 1
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(see Exercise 16.10) so that

�
���1 � � � � ��� � �������1 tr ������1 � � � � ����� 1���1,� �

for all �� � ����. By the Peter-Weyl Theorem there exists a unique *-unital
homomorphism �

�0
� : �0 � ��� satisfying

(i) �
�0
� ���� � ���0

� ��
�

� 1���1,� �

(ii) ���1��
�0
� ��� � ���1�� ���� for all � � �0 where

� ���� � ���0�
�1�0�	��� , � �
�� �

�

�������

�
�0
��,�
�� .

(iii) The centre �0 of �0 is generated by �
��� � ���� and ���0
� ���, ��0

� ���� �
0 for all � � �0,� � �0,� � �. In particular, the family ���0

� ����1 �
� � � , � � �0� is commutative and hence ���0

� �	0 , 1 � � � �� induces
a classical Markov chain with state space ��� and transition probability
matrix ��0 for every �0 � ���.

(iv) When  � ���2� and �� denotes the character of the unique equivalence
class of an irreducible unitary representation of dimension � the Clebsch-
Gordan formula implies that

��2
��,��

�

����
���

�	 1
2�

if � � �	 1,

�� 1
2�

if � � �� 1,

0 otherwise.

Exercise 18.14: Let ��,�,�� be as in Example 18.7. Suppose that

�1� �


�1�
��0

������, �2� �


�1�
��0

������

are two Markov transition operators as described in (18.8) and

�1��� � �

�
���

���0 0
���1
. . .
0 ���
�1

	


���1,

�2��� � �

�
���

���0 0
���1
. . .
0 ���
�1

	


�� �1,
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are the *-unital homomorphisms corresponding to (18.9). Define

� �

�
� cos� � sin�
�� � sin� � ���� cos�

�
,

���� ��

�
��������

���0 0
. . .

�����1

��	0
. . .

0 ��	��1

�
��������
��1

where � is any fixed angle. Then � is a unitary matrix valued function and � is
a *-unital homomorphism for which �00 � 
1 cos2 �� 
2 sin

2 �. Thus the Markov
transition operator of the quantum stochastic flow induced by � is a superposition
(or convex combination) of the two transition operators 
�, � � 1, 2.

Notes
The idea of describing a general quantum stochastic process in terms of a time
indexed family ���� or ���� of *-unital homomorphisms from a *-unital initial or
system algebra �0 into a larger *-unital algebra �� made up of �0 and noise or heat
bath elements has its origin in Accardi, Frigerio and Lewis [6] modelled on the
description of classical processes by Nelson (J. Funct. Anal., 12 (1973) 97–112,
211–277) and Guerra, Rosen and Simon (Ann. Math., 101 (1975) 111–259).

For a detailed account of Markov chains (or discrete time flows) in *-algebras
of the form �0������ � � where �0 is the initial or system algebra and � is the
noise algebra see Kummerer [71,73]. The account given here is in anticipation of
Evans-Hudson flows which are discussed in Section 28. It is based on Parthasarathy
[112] and inspired by Meyer [91]. Example 18.9–18.11 are based on classical
probability theory as described in Feller [40]. Example 18.12 was suggested to
me by B.V.R. Bhat. Example 18.13 is based on the work of Biane [22], von
Waldenfels [138] and Parthasarathy [115].

19 The Fock Spaces
In Section 16–18 we saw how the notion of tensor products of Hilbert spaces
enables us to combine several quantum probability spaces into one. In this context
there is yet another basic construction leading to the combination of an “indefinite”
number of such systems. This idea is illustrated by first raising the following
question: if the events concerning the dynamics of a single particle are described
by the elements of ���� where � is a separable Hilbert space, how does one
construct the Hilbert space for an indefinite number of such particles in a system
where the indefiniteness is due to the fact that “births” and “deaths” of particles
take place or, equivalently, particles are being “created” and “annihilated” subject
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to certain laws of chance? We shall try to achieve this by pooling all the finite
order tensor products into a single direct sum. To this end we collect some of
the elementary properties of direct sums of operators in the form of a proposition
without proof.

Proposition 19.1: Let �� � �����,� � 1, 2, � � � where ���� is a sequence
of Hilbert spaces. Suppose sup

�
���� � �. Then there exists a unique operator

� � �� �� on � � �� �� satisfying

(i) ��� �� � �� ���; (ii) ��� � sup
�
����.

If ����, ���� are two sequences of operators such that ��,�� � �����
for each � and sup

�
������ ����� �� then their direct sums � � �� �� and

� � �� �� satisfy the following:

(a) ��� � �� ��� ����, �� � ������, �� � �� �
�

�
;

(b) If each �� has a bounded inverse and sup
�
���1

�
� � � then � has a

bounded inverse and ��1 �
�

�
��1
�

;

(c) � is a selfadjoint, normal, unitary, positive or projection operator according
to whether each �� has the same property;

(d) If � � 	���� and therefore has finite trace then each �� � 	�����,
� � 1, 2, � � � , and ���1 �

�
�
����1, tr� �

�
�
tr��;

(e) If � � � is a state in � then there exist states �� and scalars �� � 0,
� � 1, 2, � � � such that

�
�
�� � 1 and � � �� ����.

Proof: Omitted.

Let � be a Hilbert space and let ��
�

,� ��� and � ��� be the �-fold tensor
product, symmetric tensor product and antisymmetric tensor product of � respec-
tively, where the 0-fold product is the one dimensional complex plane and the
1-fold product is � itself in all the three cases. The Hilbert spaces

������ �

��

��0

��
�

,����� �

��

��0

� ��� ,����� �

��

��0

� ���

are respectively called the free (or Maxwell-Boltzman), the symmetric (or boson)
and the antisymmetric (or fermion) Fock space over �. The �-th direct summand
in each case is called the �-particle subspace. When � � 0 it is called the vacuum
subspace. Any element of the �-particle subspace is called an �-particle vector.
The vector 1� 0� 0� � � � is called the vacuum vector which we shall denote by
�. We denote by �0

�����,�0
���� and �0

���� the dense linear manifold generated
by all �-particle vectors, � � 0, 1, 2, � � � in the corresponding Fock space and call
any element in it a finite particle vector. For any � � � the element

���� � ����!�
�1�2��

�

�19.1�

(where 0! � 1, ��
0
� 1� belongs to ����� 	 ������ and is called the exponential

(or coherent) vector associated with �. For any �, 	 � �


����, ��	�� � exp
�, 	�. �19.2�
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The projections � and � from ������ onto the subspaces ����� and ����� can
be expressed as

� � �� ��,� � ���� �19.3�

where �� and �� are the projections from ��
�

onto � ��� and � ��� respectively
described by Proposition 17.1. If dim� � � �� then the direct sum in �����
terminates at the � -th stage and by the second part of Proposition 17.3

dim����� �

��

��0

�
�

�

�
� 2� .

Let ��� : ��
�

���
�

� ��
���

be the unique unitary isomorphism satisfying the
relations

�����1 � � � � � ���� ��1 � � � � � ��� � �1 � � � � � �� � �1 � � � � � ��

for all ��, �� � �, 1 � 	 � 
, 1 � � � �. Such an isomorphism is well-
defined in view of Proposition 7.2 and 15.5. We use this isomorphism to identify
��

�

���
�

with ��
���

. In each of the Fock spaces let � denote the projection
on the �-particle subspace for every �. If ���� is interpreted as the collection
of events concerning the dynamics of a single particle then ��������� can be
interpreted as the collection of events concerning an indefinite number of identical
but distinguishable particles obeying Maxwell-Boltzmann statistics (see (17.13)).
Similarly �������� and �������� may be considered as the collection of events
concerning an indefinite number of identical bosons and fermions respectively.
(See (17.14), (17.15) and the succeeding remarks.) In such a case the projection
� signifies the event that the number of particles in the system is �.

Proposition 19.2: Define multiplications ��, �� � � � �,��,� � � respectively
in the finite particle Fock spaces �0

�����,�0
����,�0

���� by

�� � � ��

�
�����

��� ��, �� � ��� �, � � � � ��� �

where 1 � � � � � 1 � � and �,� are defined by (19.3). Then the following
properties hold: (i) �0

����� is an associative algebra; (ii) �0
���� is a commutative

and associative algebra; (iii) �0
���� is an associative algebra in which

� � � � �	1�	�� � � for all � � � ��� , � � � ��� .

Proof: The associativity of the three multiplications is immediate from Exercise
15.7 and Corollary 17.2. (ii) is immediate from definitions. The last part follows
from the fact that the permutation from �1, 2, � � � ,���� to ���1,��2, � � � ,��
�, 1, 2, � � � ,�� can be achieved by �� successive elementary permutations which
are transpositions.

If we say that the degree or rank of any �-particle vector is equal to � then
the product of two vectors of degrees� and � leads to a vector of degree��� in
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all the three algebras �0
�����,�0

���� and �0
����. These are examples of “graded

algebras”. �0
����� is the tensor algebra over � whereas �0

���� and �0
���� are

the symmetric and exterior algebras over �. When dim� � � the products of
�-particle and �-particle vectors generate only a dense linear manifold in the
subspace of ���-particle vectors. In this sense the definitions here are different
from the corresponding notions in the algebraic appoach to tensor products over
a vector space.

If ������� and ������� denote the subspaces spanned by vectors of even
and odd degrees respectively then any element of ������� is called even and any
element of ������� is called odd. If �, � � �0

���� then � � � � � � � if either �
or � is even and �� � � �� � � if both �, � are odd. �� � is odd if one of them
is odd and the other is even. � � � is even if both are odd or both are even. In
other words �0

���� is a �2-graded algebra under the multiplication �.

Proposition 19.3: Suppose ��� , � � 1, 2, � � � , � is an orthonormal basis in �.
Then the three sets

��, ��1 � � � � � ��� 	�� � 1, 2, � � � ; � � 1, 2, � � � ,� ; � � 1, 2, � � � , �,

��,

�
�!

	1! � � � 	�!

�1�2

��1�1 �
�2
�2
� � � ����� 		1 � � � �� 	� � �,

1 
 �1 
 �2 
 � � � 
 ��, �,� � 1, 2, � � ��,

��, ��!�1�2��1 � ��2 � � � � � ��� 	1 
 �1 
 �2 
 � � � 
 �	, � � 1, 2, � � ��

are respectively orthonormal bases in the Fock spaces ������,����� and �����,
the multiplications being defined according to Proposition 19.2.

Proof: This is immediate from Exercise 15.8 and Proposition 17.3.

Proposition 19.4: The set �����	� � �� of all exponential vectors is linearly
independent and total in �����.

Proof: Let ��� 	1 
 � 
 �� be a finite subset of �. Since ��	��,��� � ��,����,
� � � are open and dense in � there exists a � in � such that the scalars
�� � ��,���, 1 
 � 
 � are distinct. Suppose � , 1 
 � 
 � are scalars such that�

������� � 0. Then for any scalar �

0 � ������,
�
�

������� �
�
�

��

�� .

Hence � � 0 for all �. This proves linear independence. To prove the second
part consider an orthonormal basis ���� in �. If � � �1��1 � � � �� ����� , �� being
scalars then the coefficient of ��11 �

�2
2 � � � ���� , 	1 � � � � � 	� � �, in ��

�

belongs
to � ���

. Suppose that � is the closed subspace spanned by all the exponential



19 The Fock Spaces 127

vectors. Then the vacuum vector ��0� � �. By (19.1)

�
���1

� ��� 1!�1�2 lim
��0

�
����1��������

��

��0

��!��
1
2 �

�
�
��

�.

Hence it follows by induction that �
��

� � for all � and � in �. Thus
� � �����.

Corollary 19.5: Let � be a dense set in �. Then the linear manifold ����
generated by �� � ������� � �� is dense in �����. If � : �� � ����� is any map
there exists a unique linear operator �� on ����� with domain ���� satisfying

������ � ����� for all � � �.

Proof: For any �, � � �

������ �����2 � �
���2 � �

���2 � 2Re ���,��.

Since the scalar product is continuous in its arguments this shows that the map
� � ���� from � into ����� is continuous and, in particular, ������� � �� �
������� � ��. The second part follows from the linear independence of the set
of all exponential vectors.

The next two propositions indicate how the correspondences � � �����
and � � ����� share a functorial property in the “category of Hilbert spaces”.

Proposition 19.6: Let �1,�2 be Hilbert spaces and � � �1 � �2. Then there
exists a unique unitary isomorphism 	 : ����� � ����1� 	 ����2� satisfying
the relation

	���� �� � ����	 ���� for all � � �1, � � �2. �19.4�

Proof: We may assume without loss of generality that �1,�2 are mutually orthog-
onal subspaces of �. By Proposition 19.4 the sets ������� � ��, ������� � �	�,

 � 1, 2 are respectively total in �����,����	�, 
 � 1, 2. By Proposition 15.6 the
set ����� 	 ������ � �1, � � �2� is total in ����1� 	 ����2�. By (19.2), for
�	, �	 in �	


���1 � �2�, ���1 � �2�� � exp
�1 � �2, �1 � �2�

� �
��1,�1��

��2,�2�

� 
���1�, ���1��
���2�, ���2��.

In other words the map 	 defined by (19.4) on the set ��������� � �1, � � �2�
is scalar product preserving. Hence by Proposition 7.2 	 extends uniquely to the
required unitary isomorphism.
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Proposition 19.7: Let �1,�2 be Hilbert spaces and let � � �1 � �2. Then
there exists a unique unitary isomorphism � : ����1��2� � ����1������2�
satisfying the relations:

� ���� ��!�1�2�1 � � � � � �� � �1 � � � � � ��

� ���!�1�2�1 � � � � � ��� � ���!�1�2�1 � � � � � ���
�19.5�

for all �� � �1, �� � �2, 1 	 � 	 �, 1 	 � 	 �, � � 1, 2, � � � , � � 1, 2, � � � and
�	 � 	1 � 	2,	,	1,	2 being the vacuum vectors in �����,����1�,����2�
respectively.

Proof: Once again, as in the proof of Proposition 19.6, we assume without loss
of generality that �1,�2 are orthogonal subspaces of �. Let

� � �	, ���� ��!�1�2�1 � � � � � �� � �1 � � � � � ��
�� � �1, �� � �2, �

1 	 � 	 �, 1 	 � 	 �,� � 1, 2, � � � ; � � 1, 2, � � ��,

�1 � �	1, ��!�1�2�1 � � � � � ��,�� � �1, 1 	 � 	 �, � � 1, 2, � � ��,

�2 � �	2, ��!�
1�2�1 � � � � � ��, �� � �1, 1 	 � 	 �, � � 1, 2, � � ��.

By Proposition 19.3, �,�1,�2 are total in �����,����1�,����2� respectively.
Furthermore, the set �� � �
� � �1, � � �2� is total in ����1� � ����2�. Thus
it suffices to show that the map � defined by (19.5) is scalar product preserving.
Let ��,��

� � �1, 1 	 � 	 �, 1 	 	 	 ��, �� , ��

� � �2, 1 	 � 	 �, 1 	 
 	 ��.
We now consider three different cases:

Case 1: �� � �� �� � ��.

Define �1�� � ���� � 	1, �1�� � ���� � 	2, �1�� � ������1�� � ���� � 	
when � � � � 0. Then we see that since �1 � � � � � �� � �1 � � � � � �� and
��

1 � � � � � �
�

�� � ��

1 � � � � � �
�

1 � � � � � �
�

�� are �� � and �� � ��-particle vectors,
they are orthogonal. Furthermore, either � �� �� or � �� �� and hence

��1 � � � � � ��,��

1 � � � � � ��

����1 � � � � � ��, �
�

1 � � � � � ��

�� � 0. �19.6�

Case 2: �� � � �� � ��, � �� ��.

Without loss of generality let � � ��, � � ��. Then (19.6) holds. On the
other hand, writing

��1, � � � ,��, �1, � � � , ��� � �1, � � � ,����,

���

1, � � � ,�
�

�� , ��

1, � � � , �
�

��� � ��

1, � � � ,
�

����

we observe that the matrix ����,�

���, 1 	 �, � 	 � � � has the partitioned
form �

�
���� ������

��� 0
0 0 ����

������

0 0 ���
���

�
�
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and hence has rank � ���� � ���. Thus its determinant vanishes. By (17.10)
and the definition of � we have

��1 � � � � � �� � �1 � � � � � ��,�
�

1 � � � � � �
�

�� � ��

1 � � � � � �
�

��� � 0.

Case 3: � � ��, � � ��.

Define ��1, � � � ,����� and ���

1, � � � ,�
�

���� as in case 2 and observe that
the matrix �����,��

���� has the partitioned form�
���� 0

0 ����

�

where � � �����,������,� � ����� , ������. By (17.10)

��1 � � � � � �� � �1 � � � � � ��,�
�

1 � � � � � �
�

� � ��1 � � � � � �
�

��

�
1

�� �!
det�����,�

�

���� �
1

�� �!
det� det�

�
�!�!
�� �!

��1 � � � � � �� � �1 � � � � � ��,�
�

1 � � � � � �
�

� � ��1 � � � � � �
�

��.

It is interesting to note that the correspondence

	�� � � ��

�
�����


��� 
��, � � �	���1�, � � �	���2�

can be extended by linearity and closure to an isometry from �	���1���	���2�
into �	���1 � �2� but not a unitary isomorphism. Thus the functorial property
established for the boson and fermion Fock spaces fails for the free Fock space.

The next few examples illustrate the connections between Fock spaces and
probability theory.

Example 19.8: Let � be the standard normal (or Gaussian) distribution on the
real line. Consider the Hilbert spaces �2��� and the boson Fock space �������
�	�����. Since ��

�

� � for all � we have

����� � � � �� � � � � 2.

For any � � � the associated exponential vector ���� is the sequence

���� � �1, �, �2!��
1
2 �2, � � � , ��!��

1
2 ��, � � ��.

In �2��� consider the generating function of the Hermite polynomials

�
��
1
2 


2

�

��
��0

��

�!
�����, �19.7�

�� being the �-th degree Hermite polynomial. There exists a unique unitary
isomorphism 	 : ����� 	 �2��� satisfying

�	�������� � �
��
1
2 


2

for all � � �. �19.8�
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Indeed, the set of functions �exp ���� � �� is total in �2��� and�
�

��1��
1
2 ��

2
1 � ��2��

1
2 �

2
2����� � ��1�2 � ����1�, ���2��.

By Proposition 19.4 and 7.2 the correspondence (19.8) extends uniquely to a
unitary isomorphism. Under this unitary isomorphism we have

��1, 0, 0, � � �� � 1,

��0, 0, � � � , 0, 1, 0, � � �� � ��!��
1
2	����

where, on the left hand side, 1 appears in the �-th position and � varies from 0 to
�. In particular the sequence ���!��

1
2	����,� � 0, 1, 2, � � �� is an orthonormal

basis in �2���.

In this example we may replace � by �� and the distribution � by its 
-fold
cartesian product ��

�

and replace (19.8) by

���������� � exp�� � �	
1
2

��
��1

�2� � �19.9�

where � � � �
�

����� . Then � is a unitary isomorphism between �2���
�

�

and ����
��. When 
 is the countably infinite cardinal and correspondingly ��

�

is the countable cartesian product of standard normal distributions we obtain a
unitary correspondence between the �2-space of an independent and identically
distributed sequence of standard Gaussian random variables and the boson Fock
space ����

2�, �2 denoting the Hilbert space of absolutely square summable se-
quences. This leads us to the connection between Brownian motion and the boson
Fock space.

Example 19.9: Let ����� 
 0� be the standard Brownian motion stochastic
process described by the Wiener probability measure � on the space of continuous
functions in �0,��. Then ��0� � 0 and for any 0 � 1 � 2 � � � � � � �

�,��1�,��2�	��1�, � � � ,����	����1� are independent Gaussian random
variables with mean 0 and ����� 	 �����2 �  	 �. For any complex valued
function � in �2���� where �� � �0,�� is equipped with Lebesgue measure, let��
0 ��� denote the stochastic integral (in the sense of Wiener) of � with respect to
the path � of the Brownian motion. Then the argument outlined in Example 19.1
shows that there exists a unique unitary isomorphism � : ����

2����� � �2�� �
satisfying

���������� � exp�
� �
0

��� 	
1
2

� �
0

���2��. �19.10�

For any  
 0, let ��� � ���0,�� which agrees with � in the interval �0, � and
vanishes in the interval �,��. Then

������������ � exp�
� �

0
��� 	

1
2

� �

0
����2���,  
 0 �19.11�
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where the right hand side as a stochastic process is the well-known exponential
martingale of classical stochastic calculus.

A multidimensional analogue of this example can be constructed as follows.
Suppose ����� � ��1���,�2���, � � � ,�������� � 0� is the �-dimensional standard
Brownian motion process whose probability measure in the space of continuous
sample paths with values in �� is ��

�

. Let ��� �1 � � � �� be the canonical
basis of column vectors in ��. Then there exists a unique unitary isomorphism
� : ����2����� ���� �2���

�

� satisfying

����

��

��1

	
���

�� � ������� � exp
��

��1

�
� �

0
	 ����
�����
�� 1

2

� �

0
	 ����
�2�
�

for all 	 ��� in �2����, � � 1, 2, � � � ,�.

Example 19.10: Let � be the Poisson distribution with mean value  in the space
�� of non-negative integers. In �2��� consider the generating function of the
Charlier-Poisson polynomials defined by

��
�
� ��1�

�	

�� �

��
��0

��

�!
���,��,� 
 ��. �19.12�

Then there exists a unique unitary isomorphism � : ������ �2��� satisfying

���������� � ��
�
� ��1�

�	

�� for all � 
 �. �19.13�

Under this isomorphism

��1, 0, 0, � � �� � 1,

��0, 0, � � � , 0, 1, 0, � � �� � ��!��
1
2���,��, � � 1, 2, � � �

where 1 appears in the �-th position and � � 0, 1, 2, � � � , and in particular,
���!�� 1

2���,���� � 0, 1, 2, � � �� is an orthonormal basis in �2���.

Example 19.11: Let ������� � 0� be the Poisson process with stationary inde-
pendent increments, right continuous trajectories and intensity parameter  and let
its distribution be described by the probability measure � . Then

���������
� � �� � �������
���� 
���

�!
, � � 0, 1, 2, � � �

and the conditional distribution of the jump points 0 � �1 � �2 � � � � � �� � �,
given the fact that the process has � jumps in �0, ��, is uniform in the simplex
�
�0 � 
1 � � � � � 
� � ��. This enables us to construct a natural unitary
isomorphism � between ����

2����� and �2�� � by putting for every � � 0

����	������� � �
�
�
�
�

�

0
����	�

	0�����1� ���
�����
���	


	�
�� �19.14�



132 Chapter II: Observables and States in Tensor Products of Hilbert Spaces

(where ��0�� � 0� for all � in �2���� and ��� is defined as in (19.11). Indeed,

��������,�������� �

�
�

�
�
�

�

0
�������������

��
��0

����
�����

	!
�

	!���
�
0��1���������

��
	�1�1�

��
	��
�

��1�
��
	��

�
��
1 � � � �
�

� exp��
�
�

� �

0
���
� � ��
���
� ��� �

� �

0
�1�

��
��
�
��1�

��
��
�
��
�

� exp
� �

0
��
���
��
 � �������, �������.

In �2�� � the totality of the set of random variables occurring on the right hand
side of (19.14) as � varies in �2���� and � in �� is an exercise for the reader.

Example 19.12: [51] Let �,�,�� be a non-atomic, �-finite and separable mea-
sure space. For any finite set � 	  denote by �� its cardinality. Let 	�� be the
space of all finite subsets of  and 	��� � ��
� 	 ,�� � 	�, 	0�� � ���
where � is the empty subset of . (Thus the empty subset of  is a point in 	��!�.
For any symmetric measurable function � on � define the function �� on 	��
by

����� �

��
�
��
1, 
 
 
 , 
�� if �� � 	,

� � �
1, 
 
 
 , 
��,
0 otherwise.

Let �� be the smallest �-algebra which makes all such functions �� measurable
for 	 � 1, 2, 
 
 
 . Define the measure �� on �� as follows. Let �� 	 � denote
the subset �
 � �
1, 
 
 
 , 
��


 �� 
	 for � �� ��. The non-atomicity of � implies
that ��

�

����� � 0. For any � � �� put

����� � ������
��
��1

1
	!

�
��

�� 
�������
1, 
 
 
 , 
������
1� � � ����
��. �19.15�

Then �� is a �-finite measure whose only atom is � with mass at � being unity.
�	��,��,��� is called the symmetric measure space over �,�,�� in the sense
of A. Guichardet [51]. We write �� � ������ when integration is with respect to
��.

For any function � on  let

�� ��� �

�
1 if � � �,
�����
� otherwise.

�19.16�
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Then ���� � ��� and �� � �
�
. If � is integrable with respect to � then (19.15)

implies
�
����

�� ����� � 1�
��
��1

1
�!

�
��
��
��1���������1� � � �������

� exp
�
�

���.

�19.17�

Now consider the Hilbert space �2����. It is an exercise for the reader to show
that ��� �� � �2���� is total in �2���. Equation (19.17) implies that

��� ,��� �
�

��������� �

�
�
��
����� � exp

�
�

�	 ��.

This at once enables us to see the unitary isomorphism 
 : ����2����� �2����
satisfying the relations

�
�������� � �� ��� for all � in �2���.

Exercise 19.13: Let � � �� or �2 according to whether � is the finite or countably
infinite cardinal. Suppose �� �� � 1, 2, 	 	 	� is an �-length sequence of independent
and identically distributed Bernoulli random variables assuming the values	1 with
equal probability. Choose and fix an orthonormal basis ��1, �2, 	 	 	� in �. Then
there exists a unique unitary isomorphism 
 : ������ �2�� � satisfying



 � 1,


��!�1�2��1 
 ��2 
 � � � 
 ��� � �1�2 � � � �� , �1 � �2 � � � � � �	,

� � 1 � dim� where 
 is the vacuum vector and � is the probability measure
of the sequence ���. (Hint: Use Proposition 19.3.)

Exercise 19.14: Let � be any (not necessarily non-atomic!) �-finite measure
in �� � �0,��. Define the measurable space ������,��� and the symmetric
measure �� on �� as in Example 19.12. Then there exists a unique unitary
isomorphism � : ����2����� �2���� satisfying

� 
 � ����,

�� �1 
 �2 
 � � � 
 ������ �

� 0 if �� �� �,
��!��

1
2 det���
������ if � � ��1, 	 	 	 , ���

and �1 � �2 � � � � � ��

for all �  1 and �1, �2, 	 	 	 , �� in �2���. (Hint: See Proposition 19.2 and (17.10).)

Exercise 19.15: [116] In Exercise 19.14 let � be Lebesgue measure. Then

�����
2����� � � �

��
��1

�2���
��.
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There exists a unique unitary isomorphism � : �����2������ �2���� satisfying

� � � ����,

�� ����� �

� 0 if �� �� �

���1, �2 � �1, � � � , �� � ���1� if � � ��1, �2, � � � , ���
and �1 	 �2 	 � � � 	 ��

for all � � 1 and � � �2���
��.

Notes
Fock spaces were introduced by Fock [43] in his investigations of quantum electro-
dynamics. For a mathematical account of this topic, see Cook [26]. The connection
between Gaussian processes and Fock space appears in Segal [122]. Example 19.12
is from Guichardet [51] and Maassen [83]. This identification of Fock space is the
key idea on which Maassen’s kernel approach to quantum stochastic calculus [83,
76] and Meyer’s investigations of chaos [88] are based. For further applications
of this idea of kernels, see Parthasarathy [110], Lindsay and Parthasarathy [79].

20 The Weyl Representation
In Section 13 we had already remarked that the route to construct observables
lies in looking at unitary representations of Lie groups and evaluating the Stone
generators of their restrictions to one parameter subgroups. Any Hilbert space �,
being a vector space, is an additive group. Thanks to the existence of a scalar
product in �, we have the group ���� of all unitary operators in �. A pair
�
,��, 
 � �, � � ���� acts on any element � as follows:

�
,��� � �� � 
,

first through a “rotation” by � and then a “translation” by 
. The map � � �
,���
is a homeomorphism of � with inverse being given by the action of the pair
����1
,��1�. Successive applications by the pairs �
2,�2� and �
1,�1� on �

leads to
�
1,�1���
2,�2��� � �
1,�1���2� � 
2�

� �1�2� � �1
2 � 
1

� ��
1 � �1
2�,�1�2��.

This suggests the following composition for the pairs �
� ,���,  � 1, 2.

�
1,�1��
2,�2� � �
1 � �1
2,�1�2�. �20.1�

The cartesian product � 	 ���� as a set becomes a group with multiplication
defined by (20.1), identity element �0, 1� and inverse �
,���1 � ����1
,��1�.
� inherits a topology from its norm and ���� the corresponding strong topology.
With the product topology and group operation (20.1), � 	 ���� becomes a
topological group which we denote by ���� and call the Euclidean group over
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�. The separability of � implies that ���� is, indeed, a complete and separable
metric group. If � � dim� �� then ���� is a connected Lie group of dimension
���� 2�. In any case ���� has a rich supply of one parameter subgroups. Since
��,����, 1���,���1 � ���, 1�,� is a normal subgroup of ���� if we identify
any element � � � as ��, 1� in ����. The quotient group ������ is isomorphic
to ����. Any element � in ���� can be identified with �0,�� in ����.

We shall now construct a certain canonical (projective) unitary representation
of ���� in the boson Fock space ����� over � and reap a rich harvest of
observables which constitute the building blocks of quantum stochastic calculus.

Let 	 � �
�����
 � �, � � ��. By Proposition 19.4 	 is total in �����.
Consider, for any fixed ��,�� � ����, the action induced on 	 by the map
����� ����� ��. This is not inner product preserving. Indeed, for any �1, �2 in
�

�����1 � ��, ����2 � ��� � ����1�, ���2�� exp�	�	
2 � ���1,��� ��,��2��.

This shows that the correspondence

����� �exp�

1
2
	�	2 
 ��,��������� � ��

yields an isometry of 	 onto itself. Hence by Proposition 7.2 there exists a unique
unitary opeator � ��,�� in ����� satisfying

� ��,������ � �exp�

1
2
	�	2 
 ��,��������� � �� for all � in �. �20.2�

� ��,�� is called the Weyl operator associated with the pair ��,�� in ����.

Proposition 20.1: The correspondence ��,�� � � ��,�� from ���� into
�������� is strongly continuous. Furthermore

� ��1,�1�� ��2,�2� � ��� Im��1,�1�2�� ���1,�1���2,�2��

for all ��� ,��� in ����,  � 1, 2.
�20.3�

Proof: Since the scalar product in � is continuous in its arguments and the map
� � ���� is also continuous (see the proof of Corollary 19.5) it follows from
(20.2) that ��,�� � � ��,������ is a continuous map from ���� into �����
for every fixed �. The totality of exponential vectors and the unitarity of Weyl
operators imply the first part. The second part of the proposition is immediate from
(20.2) on successive applications of � ��2,�2� and � ��1,�1� on an exponential
vector.

Proposition 20.1 shows that the correspondence ��,�� � � ��,�� is a
homomorphism from ���� into �������� modulo a phase-factor of modulus
unity. Such a correspondence is called a projective unitary representation [135].
As a special case of (20.3) we obtain the following relations by putting

� ��� �� ��, 1�, ���� �� �0,�� �20.4�
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for � in � and � in ����:

� ���� ��� � ��� Im��,��� ��� ��, (20.5)

� ���� ��� �� ���� ����exp�2� Im��, ���, (20.6)

������� � � ���� �, (20.7)

����� ��������1 �� ����, (20.8)

� ����� �	�� �� ��� 	��, �, 	 � �. (20.9)

It is fruitful to compare (20.6) with the Weyl commutation relations in (13.7) of
Example 13.3. Equation (20.9) shows that every element � in � yields a one
parameter unitary group �� �	���	 � �� and hence an observable 
��� through
its Stone generator so that

� �	�� � ���� ����, 	 � �,� � �. �20.10�

If � is any completely real subspace of � then ��, �� is real for all �, � in � and
the family �
����� � �� is commutative (or non-interfering) in the sense that all
their spectral projections commute with each other.

The operator ���� defined by (20.4) is called the second quantization of � .
Equation (20.7) shows that for every one parameter unitary group �� � ����� in
� there corresponds a one parameter unitary group �������	 � �� in �����. We
denote its Stone generator by ��� so that

�������� � ��������, 	 � �. �20.11�

The observable ��� is called the differential second quantization of  .
Through (20.10) and (20.11) we thus obtain the families �
����� � ��,

����� an observable in �� of observables in �����. The quantum stochastic
calculus that we develop in the sequel depends very much on the basic properties
of these observables. We shall now investigate the commutation relations obeyed
by them.

Proposition 20.2: For an arbitrary finite set ��1, �2, � � � , �	� � � the map � 	
���1�1 � 
 
 
� �	�	� from �	 into ����� is analytic.

Proof: Since
��

	�0���
	 �����

	!
� � it follows that the map � 	 ����� �

��
	�0�

	 ��
�

�
	!

is analytic so that the proposition holds for � � 1. When � �

1 choose an orthonormal basis ��1,�2, � � � ,�
� for the subspace spanned by
��1, �2, � � � , �	� and note that ������ � ��������� where ����� � ������� , ���
is linear in � for each �. Denote by �� the one dimensional subspace ��� for
1 � � � � and put �
�1 � ��1, � � � ,�
��. Since � �

�
�1
��1 �� we can, by

Proposition 19.6, identify ����� with the tensor product
�
�1

��1 ������ so that

��
�

�

����� � �


�

��1

�����������  ��0�

and the required analyticity follows from the case � � 1.
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Proposition 20.3: For any �1,�2, � � � ,��, �1, �2, � � � , ��, � in � the map ��, �� �
� ��1�1� � � �� ���������1�1 � �2�2 � � � � � ���� � �� from ���� into �����
is analytic.

Proof: By (20.2) and (20.5) we have

� ��1�1� � � �� ��������

��

��1

���� � �� � ���, ����
��

��1

���� �

��

��1

���� � ��

where ���, �� is the exponential of a second degree polynomial in the variables
��, �� , 1 � � � 	, 1 � 
 � �. The required result is immediate from Proposition
20.2.

For any set � � � recall (from Corollary 19.5) that ���� denotes the linear
manifold generated by ������� � ��. When � � � and there is no confusion we
write � � ����.

Proposition 20.4: For each � in � let ��� be the observable defined by (20.10).
Then the following holds:

(i) � � ����1���2� � � � ����� for all � and �1,�2, � � � ,�� � �;

(ii) � is a core for ��� for any � in �;

(iii) ����, �������� � �2� Im	�, �
�����. (20.12)

Proof: (i) is immediate from Proposition 20.3 by putting �1 � �2 � � � � � 0,
applying Stone’s Theorem (Theorem 13.1) and differentiating successively with
respect to ��, ���1, � � � , �1 at the origin. To prove (ii) first observe that for any real
� �� 0, ���� � ���� and hence we may assume without loss of generality that
��� � 1. Let �0 � ��, �1 � ��

0 . By Proposition 19.6 ����� � ����0� 
����1� and for any � � �

���� � ��	�, �
�� ��� � 	�, �
��,

� �������� � ��
1
2 �

2����,����� � ���

� ��0������	�, �
���  ��� � 	�, �
��

where �0 indicates Weyl operator in ����0�. The totality of exponential vectors
implies that

� ���� � �0���� 1,

1 denoting the identity operator in ����1�. Thus

��� � 0��� 1

where 0��� is the Stone generator of ��0������ � �� in ����0�. In other words
it suffices to prove (ii) when dim� � 1 or � � �. Let � denote multipliction by
��	 in �. Then �����0��������1 � �0��

�	�� and �������� � ����	��. Thus
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�����0�������
�1 � �0��

����. Hence it is enough to prove (ii) when � � � and
� � 1. Write �0 � �0�1�. We have

����� � � � � � � � �
where any element � can be expressed as

� � ��0, �1, � � � , ��, � � ��, �� � �,
�

�

��� �2 ��. �20.13�

Let � � ���0� be such that ��, �0�� is orthogonal to every vector ���	�, �0��	��,
	 � � in ������ �����. Then

��, ��	��� ��0�, �0��	�� � 0.

By (i), ��	� � ���20� and hence

��, �1� �20���	�� � 0 for all 	 � �, �20.14�

where

��	� � �1,	,
	2

�
2!
, � � � ,

	��

!

, � � ��.

Since by definition

�20��	� � 	 �2

��2
 �����	����0

� 	 �2

��2
��

1
2 �

2
�����	� ����0,

(20.13) and (20.14) yield

�2	 	2�

��

��0

���

!
	� � 2

��

��1


���

!
	� 	

��

��2


�
	 1��

!

��	
��2 � 0. �20.15�

Putting

��	� �

��

��0

���

!
	�

(20.15) becomes
�2	 	2���	� � 2	� ��	�	 � ���	� � 0

or
��	� � ���� � ������

1
2�

2

where �,� are scalars. This shows that

�� �
�� �	1����


!
��� � 1��

where � is a standard normal random variable. Now (20.13) implies
��

��0

��� �	1����2

!


��� � 1���2 ��. �20.16�
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Let � � 2�. Then

��� � 1�2� � ��2� � 1.3.5 � � � 2� � 1.

By Stirling’s formula

���2��2

2�!
�� ��

�
as � ��

where � � 0 is a constant and �� denotes asymptotic equality. Thus

��

��0

���� � 1�2�	2
2�!

��

and (20.16) is possible only if �� � � 0. Now consider � � 2� � 1. Then

��� � 1�2��1 � �2� � 1���2� � 1.3.5 � � � �2� � 1�

and

���� � 1�2��1	2
2� � 1!

� �2� � 1�
�1.3.5 � � � 2� � 1�2

2�!
�� �

�
� as � ��

for some � � 0. Thus (20.16) is possible only if � � � � 0. In other words
� � � � 0 and hence ��	� � 0. Thus 
 � 0 or ���0� 
 ���	�, �0�	���	 �
�	� � 0,���0� denoting the graph of �0. This proves (ii).

To prove (iii) we observe that for any �, �,�1,�2 in �

������1�, ������2�� �
�2

����
� ������1�,� ������2�������0

�
�2

����
exp��1

2
�2���2 � 1

2
�2���2 � ��,�1�

���1,�2�� �1 � ��,�2 � ���	�����0

� ��, ��� ��,�2� � �1,�����1, �� ��,�2��	��1,�2�.

�20.17�

Interchanging � and � in this equation, using (i) of the proposition and the totality
of exponential vectors we obtain

���������� ��������	��2� � ��, �� � �,�����2�.

Corollary 20.5: Let � � � be any dense set. Then ���� is essentially selfadjoint
in the domain ����.
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Proof: For any �,� in � define

���,�� � ������ �����2 � ����������� �����2

� ������ �����2

�
�2

���	
�
 ���������� �����,
 �	�������� �����������0

Then ���,�� is a continuous function of � and �. Thus any element of the form
�����, ��������� in ������� can be approximated by a sequence of the form
�������, ����������� when �� � �. The rest is immediate from (ii) in Proposition
20.4.

Corollary 20.6: The linear manifold of all finite particle vectors in ����� is a
core for every observable ����, � � �.

Proof: This follows easily from Proposition 20.3, 20.4.

Proposition 20.7: For any observable  in � let ��� denote its differential
second quantization in �����. Then the following holds;

(i) ������ 	 ������;

(ii) ����2�� is a core for ���;

(iii) For any two bounded observables 1,2 in � and any � in �

����1�,��2������ � ����1,2������.

Proof: Let � � ���. Stone’s Theorem implies that the map 	 
 ������ is
differentiable. By Proposition 20.2 the map 	 
 ������������ � ��������� is
differentiable. Hence ���� � ������. This proves (i).

If � � ��2� then 	
 ������ is twice differentiable and Proposition 20.2
implies that 	 
 ������������ is a twice differentiable map and hence ���� �
�����2�. Now we proceed as in the proof of (ii) in Proposition 20.4. Let � �
������ be such that ��,����� is orthogonal to �����,�������� for all � �
��2�. Then

��, ������ �����,�������� � 0.

Since ���� � �����2� we have

��, �1� ���2������ � 0 for all � � ��2�. �20.18�

Let ��� denote the �-particle subspace in ����� and let ��� be the projection
on ���. Then ��� �

��
��0���� where ���� is the generator of the �-fold

tensor product ����� � � � � � ����� restricted to ���. Since ��	�� �
��

��0	
� �

��

�
�!

we obtain by changing � to 	� in (20.18)

� ����, �1� ����2���
�

� � 0, � � 1, 2, 	 	 	 , � � ��2�.
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A polarisation argument yields

� ����, �1� �����2����1 � � � � � ��� � 0

for all �� � ���2�, 1 � � � �.
�20.19�

where �� denotes the symmetrization projection. Since the linear manifold gen-
erated by ����1 � � � � � ��	�� � ���2�, 1 � � � �� is a core for 1 � �����2,
(20.19) implies

� ����, �1� �����2�	� � 0 for all 	 � �������2�.

Since 1������2 has a bounded inverse (thanks to the spectral theorem) its range
is ���. Thus ���� � 0 for all �. In other words


������ 
 ������,���������	� � ���2��� � 0.

This proves (ii).

To prove (iii) we first observe by using (i)

�����,��������� � 
�

��
�����, ����������	��0

� 
�

��
exp��, �������	��0

� ��,������,��

�20.20�

for any observable � in � and � � ����. If �1,�2 are bounded observables
the map ��, �� � �����1�����2� is analytic for every � � � and, in particular, by
Proposition 20.2 the map ��, �� � �������1�����2�� is differentiable and

���1����2����� � �
�2

����
�������1�����2��	����0.

Thus for any �, � � �,

�����,���1����2������ �
��2

����
exp�����1�, �����2��	����0

� ���,�1�2��� ��,�1����,�2��� exp��, ��.

Now the totality of exponential vectors and (20.20) imply (iii).

Proposition 20.8: Let � be an observable in � and �, � � ���2�. Then

�����,��������� � ����������.
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Proof: Let �, �,� � ���2�, �� � ����� . Then the �-valued functions

������ �	������ � ��
1
2 �

2���2����,�������	�� ���, (20.21)

� �	������1
� ����� � ��

1
2 �

2���2������,������1
� � � 	��, (20.22)

������ �	������1
� ����� � � �	��������

� ��
1
2 �

2���2������,����� � 	���� (20.23)

are twice differentiable in �	, 
�. Hence by Stone’s Theorem and (20.23) we have

�2

�
�	
�����,������ �	������1

� �����������0

� ���,����� � �����,������,��.

�20.24�

On the other hand the left hand side of the above equation can be written as

�2

�	�

�����1

� �����,� �	������1
� �����������0

�
�

�	
����������,� �	�������� �����,� �	���������������0

� �����, ��������� �������������.

�20.25�

Furthermore, for any �, �,� in �

�����, ��������� � �
�

�

�����,� �
����������0

� �
�

�

exp��

1
2

2���2 � 
��,��� ��,� � 
������0

� ����,�� � ��,��� exp��,��.

�20.26�

Equating the right hand side expressions in (20.24) and (20.25) and using (20.26)
we obtain

������,�������� � �����������.

Proposition 20.9: Let � be any bounded operator in ����� such that �� ��� �
� ���� for all � in �. Then � is a scalar multiple of the identity.

Proof: Without loss of generality we assume that � � �2. The same proof will
go through when dim� � 	. Consider the unitary isomorphism � : ����� 

�2�� � discussed in Example 19.8 where � is the probability measure of an in-
dependent and identically distributed sequence of standard Guassian random vari-
ables � � ��1, �2, � � ��. Then

���������� � exp
�

	

��	�	 �
1
2
�2	 �.
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Elementary computation shows that the Weyl operators obey the following rela-
tions thanks to the totality of exponential vectors in ����� and the set

�exp
�

�

���� �� � �2� in �2�� � :

for any square summable real sequence �

��� �������1	���� � 

��
�

�
����

	��� (20.27)

��� ��
1
2
����1	���� � 


�

1
4���

2� 1
2

�
�
����

	�� � �� (20.28)

for all 	 � �2�� �. Let ����1 � �. Then � commutes with �� �������1

and �� �� 1
2���

�1 for all real square summable sequences �. Equation (20.27)
implies that � commutes with the operator of multiplication of ��� for every
bounded random variable ���. In particular, for any indicator random variable
�� we have

��� � ���1 � ���1.

If �1 � � then we conclude that ��	���� � ����	��� for every 	 in �2�� �. Now
using the commutativity of � with the operators defined by (20.28) we conclude
that

��� � ��	�� � �� � ����	�� � �� a.e. �

for each real square summable sequence � and 	 in �2�� �. Thus

��� � �� � ���� a.e. �

for each � of the form ��1, �2, � � � , ��, 0, 0, � � ��, �� � �. This means that ���� is
independent of �1, �2, � � � , �� for each �. An application of Kolmogorov’s 0-1 law
shows that � is a constant.

Suppose ����� � �� is a family of bounded operators in a Hilbert space
�, which is closed under the adjoint operation *. Such a family is said to be
irreducible if for any bounded operator � the identity ��� � ��� for all � � �

implies that � is a scalar multiple of the identity. For such an irreducible family
the only closed subspaces invariant under all the �� are either �0� or �. Indeed,
if � is an orthogonal projection on such an invariant subspace then ��� � ���

for all �. In this sense the family of Weyl operators �� ����� � �� is irreducible
in ����� according to Proposition 20.9. We now summarise our conclusions in
the form of a theorem.

Theorem 20.10: Let � be any complex separable Hilbert space and let ����� be
the boson Fock space over �. Let � ��,��, ��,�� � ���� be the Weyl operator
defined by (20.2). The mapping ��,�� � � ��,�� is a strongly continuous,
irreducible and unitary projective representation of the group ����. For any � in
� and any observable � on � there exist observables ���� and ���� satisfying

� ���� �� ���, 1� � 
��	
���

��
��	�� �� �0, 
��	�� � 
��	���
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for all � in �. The observables ���� and ���� obey the following commutation
relations:

(i) �����, ��������� � 2	 Im��, ������ for all �, �,� in �;

(ii) 	�����,��������� � ���	������� for all �, � � 
��2�;

(iii) for any two bounded observables �1,�2 in � and � � �

	����1�,���2������ � ��	��1,�2������.

Proof: This is contained in Proposition 20.4, 20.7–20.9.

We shall now introduce a family of operators in terms of which computations
involving the Weyl operators or, equivalently, the operators ���� and ���� become
considerably simplified. We write

���� � ���	��, ���� �
1
2
����� � 	�����, ����� �

1
2
������ 	����� �20.29�

for any � in �. For any bounded operator � in � we write

���� � ��
1
2
�� ����� � 	��

1
2	

�� �����,����� � �����. �20.30�

Proposition 20.11: Let  be any operator of the form  � 12 � � �� where
� � ����� or ����� for some �� � � or some bounded observable �� in �. Then
the linear manifold � generated by all the exponential vectors in ����� satisfies
the relation � � 
� �.

Proof: The proof is analogous to those of (i) and (iii) in Proposition 20.4, 20.7
and we leave it to the reader.

Proposition 20.12: Let ����, �����,����,����� be defined as in (20.29), (20.30)
for � � �, � � ����. For any operator of the form  � 12 � � �� where each
� is one of the operators �����, ������,�����,�� � �, �� � ����, 1 � � � �,
� � 1, 2, � � � , the relation � � 
� � holds. Furthermore, for any �,�1,�2 � �
the following relations hold:

(i) �������� � ��, ������;

(ii) �������1,�2� � ��1, �����2�;

(iii) �������1,�2� � ��1,�����2�;

(iv) The restrictions of ���� and ����� to � are respectively antilinear and linear
in the variable �. The restriction of ���� to � is linear in the variable �;

�����, ������ � ������, ������� � 0,

�����, ������� � ��, ���,

����1�,���2��� � ����1,�2����,

�����,������ � �������,

������,������ � ��������.
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Proof: From (20.29) and (20.26) we have

�����, ��������� � ��, �������, ����� for all � in �.

Since exponential vectors are total in ����� we obtain (i). For the remaining parts
we may assume without loss of generality that �,�1,�2 are exponential vectors.
Since � � ������� for any � in � and ���� is selfadjoint we have

����������, ����� � �
1
2
����	��� 	���������, �����

� �����,
1
2
����	�� � 	����������

� �����, ���������.

This proves (ii). When 
 � 
�, ���
� � ��
� and (iii) is trivial. Now (iii) is
immediate from (20.30). The antilinearity of ���� in the variable � follows from
(i). The linearity of ����� in � follows from (i) and (ii). When 
 is selfadjoint

�����,��
������ � 	�����,
�

�
������������0�

� 	
�

�
exp��, �������

� ��,
�� exp��, ��.

Thus the linearity of ��
� in
 follows from (20.30). This proves (iv). (v) follows
from Theorem 20.10 and definitions (20.29), (20.30).

Proposition 20.13: The operators �����,� � � and ��
�,
 � ���� obey the
following relations:

(i) �����,��
������ � ��,
�����,��;

(ii) �����1�����, ����2������ � ���1,����,�2�� ��1,�2���
��,��;

(iii) ����������,��
������ � ���,����,
��� ��,
������,��;

(iv) ���
1�����,��
2������ � ��
1�,����,
2��� �
1�,
2����
��,��.

Proof: (i) already occurs in the proof of Proposition 20.12. (ii) follows from
(i), (ii) and the second commutation relation in (v) of Proposition 20.12. (iii)
follows from the fourth commutation relation of (v) and (i) in Proposition 20.12
and property (i) of the present proposition. (iv) results from

���
1�����,��
2������ �
�2

���
exp������1�, �����2�������0

when 
1,
2 are selfadjoint and the general case from (20.30).

We now make a notational remark in the context of Dirac’s bra and ket
symbols. Write

���� � ������, ����� � �������.
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Then we have the suggestive relations:

���������� � ��, ������,
�������, �������� � ��, ��,
�������,����� � ������� � �����

���,
�����, �������� � �

��� ���� � �
�������

in the domain �. The remaining relations in Proposition 20.12 and 20.13 also
acquire a natural significance especially in the context of the quantum stochastic
calculus that will be developed later.

Proposition 20.14: The operators ����, �����,� � � and ����,� � ����
satisfy the following relations:
(i) �

�������� � �

��
��� � ������0;

(ii) the linear manifold of all finite particle vectors is contained in the domains
of ����, ����� and ����. Furthermore

������0� � 0, ������
�

�
�
���, ������1

if � � 1 (20.31)

�
������

�

� ��� 1��
1
2

��

��0

�
�� � �� �

����

, (20.32)

������
�

�

��1�

��0

�
� ��� � �

����1. (20.33)

Proof: (i) follows from the two relations

����������, ��	�� � �����, ������	�� � ��,	����,��,

� 


�
��� � ������0, ��	�� � 



�
�
�����,�����0 � ��,	����,��

and the totality of exponential vectors. The first part of (ii) is an easy conse-
quence of Stone’s Theorem and Proposition 20.2. By (i) in Proposition 20.12
��������� � ���, ������� for all � � �. Identifying coefficients of �� on both

sides of this equation we obtain (20.31). Expanding �������� as
��

��0
��������

�

�
�!

,
differentiating at � � 0 and using (i) we obtain (20.32). When � is selfadjoint

����	�
�� � �
�	���
�

���� �
��

��0
���������

�

�
�!

. Change � to �� and identify

the coefficients of ���0. Then we get (20.33). When � is not selfadjoint (20.33)
follows from (20.30).

Proposition 20.15: In the domain � the Weyl operator � ��,� admits the
factorisation:

� ��,� � �
� 1

2	�	2�
�����������

�1
�� �20.34�

for all � � �,  � ����.
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Proof: By (i) in Proposition 20.12 we have

�����
�1������ � ����

�1�,������ � ����,�������.

By (20.2) and (20.4)

���������
�1������ � ����,��������.

By (i) in Proposition 20.14 and (20.2) we get

��
�������������

�1������ � ����,������� � ��

� �
1
2���

2

� ��,������.

Proposition 20.14 shows that �������0� � 0 and ���� transforms an �-
particle vector into an �� � 1�-particle vector whereas ����� sends an �-particle
vector into an ��� 1�-particle vector. ��	� leaves the �-particle subspace invari-
ant. In view of these properties we call ���� the annihilation operator associated
with � and ����� the creation operator associated with �. ��	� is called the con-
servation operator associated with 	 . The quantum stochastic calculus that we
shall develop in the sequel will depend heavily on the properties of these operators
described in Proposition 20.12–20.15.

Exercise 20.16: (i) Let 
 be a connected Lie group with Lie algebra �. Suppose
� � �� is a unitary representation of 
 in �. For any � � � let ��� denote
the Stone generator of ��exp �� �� � ��. Let

� � �� � ��the map � � ��� from 
 into � is infinitely differentiable�.

Then
��������,���� ������� � ������ ,� �������

for all � � �,� ,� � �.

(ii) Let � : � � � be a linear map satisfying

������ �� �� ����� � ����� ,� �� for all � ,� � �. �20.35�

Define
���� � ��������� �������� �������.

Then
�����,��� �� � ���� ,� ��� 2� Im�����,��� ��

in the domain ����.

(iii) If � � � then ���� � ���� satisfies (20.35). If 	��� � ���� �
���,����� then

�	���,	�� �� � 	��� ,� �� for all � ,� � �.
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Exercise 20.17: Let � �
�
�

��1�� be a direct sum of Hilbert spaces ���� and let

� � ���� � �,� � ����,�� � 0 for all but a finite number of ����.
Suppose � is an operator on � with domain � such that � ��� is bounded for
every � and � ���� �

�
����

�� where �� �� as � ��. Then � is closable.
In particular, ���� and ����� restricted to the domain of finite particle vectors are
closable and ����� 	 �����.

Exercise 20.18: (a) Let �	� �
 � 1, 2, � � � , � be an orthonormal basis in �. Define
on the domain �0

���� of all finite particle vectors the operators �� and �
�
� as the

restrictions of ��	�� and ���	�� respectively for each 
 � 1, 2, � � � . Let

�� � 2�
1
2 ��� � ��� �, �� � 
2� 1

2 ��� 
 �
�
��.

Then �� , �� are essentially selfadjoint in �0
����. Furthermore

��� , ��� � ���� , �
�
�� � 0, ��� , �

�
�� � ���,

��� , ��� � ��� , ��� � 0, ��� , ��� � ���.

(b) When � � �, 	�
0

1 � 	, 	�
�

1 � �� , 
 � 1, 2, � � � then �	, �1, �2, � � �� is an
orthonormal basis for �����. If �1 � �, ��1 � �� then the matrices of � and ��

are respectively

� �

�
������

0 1 0 0 0 � � � � � � � � �
0 0

�
2 0 0 � � � � � � � � �

0 0 0
�
3 0 � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � �
0 0 0 0 0 � � �

�
� � � �

� � � � � � � � � � � � � � � � � � � � � � � �

�
������

,

�� �

�
��������

0 0 0 0 � � � � � � � � � � � �
1 0 0 0 � � � � � � � � � � � �
0

�
2 0 0 � � � � � � � � � � � �

0 0
�
3 0 � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � �
0 0 0 � � � � � �

�
� � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � �

�
��������

where �� is considered as a column vector with 1 in the 
-th position and 0
elsewhere and �0 � 	. This may be expressed in Dirac’s notation as

� �

��
��1

�

����1��� �, �� �

��
��1

�

�������1�.

The operator ��� � � is called the number operator because the 
-th par-
ticle vector with 1 in the 
-th position and 0 elsewhere is an eigenvector for the
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eigenvalue �, �0 denoting �. If � denotes the coisometry
�
�

��1����1���� � we can
express

� �
�
� � 1�, �� � ��

�
� � 1

on the domain of finite particle vectors. In the pure state � the observable 1
2 ����

��
has standard Wigner distribution whereas the closure of ���� has standard normal
distribution. (See Exercise 4.5, 6.3.)

Exercise 20.19: Let� be a selfadjoint operator in � with a complete orthonormal
eigenbasis ��� �� � 1, 2, � � �� satisfying��� � ���� for each �. Then its differential
second quantization ���� in ����� has the orthonormal eigenbasis

�
�
�	1 � � � �� 	��!

	1! � � � 	�!
�1�2

�
�1
1 �

�2
2 � � � ���� �	� � 0, � � 1, 2, � � � , 
, 
 � 1, 2, � � ��

�20.36�
(expressed in the notation of Proposition 19.3) with corresponding eigenvalues
�	1�1 � � � � � 	����. In the linear manifold generated by the set (20.36) ����

coincides with the (formal) sum
�

����
�
��� where �� , �

�
� are as in Exercise 20.18.

Exercise 20.20: (a) There exists a unique unitary isomorphism � : ����� 	
�2��� satisfying

��������� � �2���
1
4 exp
�

2

4

 ��

�2

2
� for all � � �;

(b) Let ��, � � 0 denote the unitary dilation operator �2��� defined by

������� � �1�2����, � � �2���

and let �� � ��� . Then the image under �� of the domain of all finite particle
vectors in ����� is the linear manifold

�� � �� ���� 1
4 �

2�2 �� a polynomial in the real variable �.
If � � 2�

1
2 ��� ���, � � 
2�

1
2 ���
 ��� where �, �� are as in Exercise 20.18 (b)

then for any � in �� the following holds:
(i) �����

�1
� ���� � 2�

1
2 ����;

(ii) �����
�1
� ���� � 
2�

1
2 ���1� ���;

(iii) for � �
�
2�

����2���
���

1
2
�� �1�

2�
���� � 
1

2
� ���� �

1
2
�22���.

(c) The functions

���� � �2���
1
4 ��!��

1
2���

�
2����

1
2�

2

, � � 0, 1, 2, � � � ,

where ���� is the sequence of Hermitian polynomials as defined by (19.7) satisfy


1
2
���� �� �

1
2
�22���� � ��� �

1
2
�����, � � 0, 1, 2, � � �

(Hint: Use the properties of the number operator ��� defined in Exercise
20.18 (b).)
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(d) ��������1 � �1�2� where ����� is the second quantization of multiplication
by �� in ����� and � is the unitary Fourier transform defined by (12.8);

(e) ��� � ���1�,��1��2 � ��1�2 and the Stone generator of the unitary group
���� �� � �� is the closure of 1

2����� �����1, �, � being as in (b) (i) and (ii).

Exercise 20.21: Let the Hilbert space � be a direct sum: � � �1 � �2. In the
factorisation ����� � ����1������2� determined by Proposition 19.6 the Weyl
operators � ��,�� and the observables ����,	�
� defined by (20.2), (20.10) and
(20.11) satisfy the following:

(i) � ��1 � �2,�1 � �2� � � ��1,�1� � � ��2,�2� for all �� � �� , �� �
�����, � � 1, 2;

(ii) ���1 � �2���1 � 2� � ����1���1�� � ��2� � ��1� � ����2���2�� for
all �� , � � �� , � � 1, 2;

(iii) for any two observables 
� in �� , � � 1, 2

	�
1 �
2���1 � 2� � �	�
1���1�� � ��2� � ��1�� �	�
2���2��

for all � � �� , � � 1, 2, � � � .

Exercise 20.22: (i) Let ���� � ���� be the set of all contraction operators.
Then ���� is a *-weakly closed convex set. In particular, ���� is strongly closed.
Under the strong topology ���� is a multiplicative topological semigroup. If
� � ���� and � leaves a subspace �0 invariant then � ��0 is a contraction.
Direct sums and tensor products of contractions are also contractions.

(ii) For any � � ���� the operator ����� � in the free Fock space ������
is defined by

����� � � 1� � � ��
2

� 	 	 	 � ��
�

� 	 	 	

Write
���� � � ����� �������,���� � � ����� �������

where ����� and ����� are respectively the boson and fermion Fock spaces over
�. Then the maps � 
 ����� �,���� �,���� � are strongly continuous *-unital ho-
momorphisms from the topological semigroup ���� into ���������, ��������,
�������� respectively. These are called second quantization homomorphisms.
Second quantization homomorphisms are positivity-preserving.

(iii) If � is a trace class operator in � such that ���1 � 1 then ����� � is also
a trace class operator and ������ ��1 � �1� ���1�

�1, tr����� � � �1� tr� ��1.

(iv) Let � be a positive operator of finite trace with eigenvalues �	� �� �
1, 2, � � �� inclusive of multiplicity and sup� �	� � � 1. Then

tr���� � � ���1� 	��
�1, tr���� � � ���1� 	��.

In particular, �tr���� ��
�1���� � and �tr���� ��

�1���� � are states in ����� and
����� respectively.
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(v) Let dim� � � and let � be any positive operator in � such
that ��� � 1. Then for any observable � in �, det�1 � �������1�1 � �� and
det�1� �������1� ���1 are characteristic functions of probability distributions.

(Hint: Use Proposition 19.3 for computing traces.)

Exercise 20.23: [83] Let ��,�,�� and �� be as in Example 19.12. Write �� for
������. Then for any 	 � 
2��� � �� �� � �� ���, where the product is �-fold,
the following holds:�

�����
	��1,�2, � � � ,�����1 � � � ��� �

�
����

�
�1��2���������

	��1, � � � ,�����

where � signifies disjoint union. (This is known as the sum-integral formula.)
Under the unitary isomorphism � : ���
2���� � 
2���� for any 	 � ����,
 � 
2���

��������1	���� �
�
���

���	��	��

�������1	���� �

�
�

���	�� � 
��������

and for any real valued � measurable function � on �

����������1	���� � 	��� exp �
�
���

���� for all 	 � 
2����

where ��� denotes the unitary operator of multiplication by ��� in 
2���.

Exercise 20.24: [136] For any  � � there exists a unique bounded operator
��� in the free Fock space �	
��� satisfying the relations:

���� � 0, ����1 � � � � � �� � , �1��2 � � � � � �� for all � � 1, �� � �

(where �2 � � � � � �� � � when � � 1�. The adjoint ���� of ��� satisfies the
relations:

����� � , �����1 � � � � � �� � � �1 � � � � � �� for all � � 1, �� � �.

If � is a bounded operator in � then there exists a unique bounded operator �0�� �
in �	
��� satisfying

�0�� �� � 0,�0�� ��1� � � � � �� � ���1�� �2� � � � � �� for all � � 1, �� � �.

The operators ���, ���� and �0�� � satisfy the following:

(i) �������� � , ��;

(ii) ����� � ������ � ��;

(iii) ��� is antilinear in  whereas ���� is linear in ;

(iv) ����0�� � � ��� ��,�0�� ��
��� � �����;

(v) �0�� �
� � �0��

��, ��0�� �� � ���;
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(vi) �0 is a *-(non-unital) homomorphism from ���� into ���������;

(vii) If ����� � 0 for all � � � then � is a scalar multiple of the vacuum vector
�. If � � ���� and � commutes with ���� for all � then �� � �� for
some scalar �. If, in addition, � commutes with ����� for all � then � � �.
In other words the family �����, ������� � �� is irreducible.

(It is instructive to compare the properties of ����, ����� and �0�� � in ������ with
the properties of ����, ����� and ��� � in �����. The operators ���� and ����� are
respectively called the free annihilation and creation operators associated with �.
�0�� � is called the free conservation operator associated with � . It is appropriate
to call ��� � the boson conservation operator associated with � ).

Exercise 20.25: [116] Consider the unitary isomorphism 	 : ����
2����� �

2���� where � is Lebesgue measure in �� and �� and 	 are as in Exercise
19.15. For any � � �����,  � �� define � �  � �� � �� � �� if � �� � and
� � if � � �; � �  � ��� �� � �� if � �� � and if every element in � exceeds
. Denote by min� the smallest element in �. Then

(i) �	 ����	 �1����� �
��
0 ������� � � 	 ����;

(ii) �	 �����	 �1����� � ��min�) ���
�min�� � min�� if � �� � and � 0 if
� � �;

(iii) For any bounded measurable function � on ��

�	 �0���	
�1���� � ��min������ if � �� �,

� 0 if � � �,

where, on the left hand side, � denotes the operator of multiplication by �.
(Compare (i), (ii) and (iii) with the properties of ����, ����� and ���� in
Exercise 20.23 after noting that ������ � �������.

Notes
For an extensive discussion of second quantization, CCR and CAR, see Cook
[26], Garding and Wightman [45], [46], Segal [120], [121], Berezin [19], Bratteli
and Robinson [23]. Exercise 20.23 is from Maassen [83]. Exercise 20.24 [136] is
the starting point of a free Fock space stochastic calculus developed by Speicher
[126,127]. Exercise 20.25 is from Parthasarathy and Sinha [116].

21 Weyl Representation and infinitely divisible distributions
Using the Weyl operators defined by (20.2) we constructed the observables
������ � � ��, ������� an observable in �� in ����� through (20.10) and
(20.11). We shall now analyse their probability distributions in every pure state of
the form

���� � ��
1
2���

2

����, � � �. �21.1�

Any state of the form (21.1) is called a coherent state (associated with �). Such
an analysis together with the factorisability property indicated in Exercise 20.21
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shows how one can realise every infinitely divisible probability distribution as the
distribution of an observable in ����� in the vacuum state. It may be recalled
that a probability distribution � on the real line (or ��� is called infinitely divis-
ible if for every positive integer � there exists a probability distribution �� such
that � � ���� , the �-fold convolution of ��. The investigation of such distribu-
tions in the present context leads us to the construction of stochastic processes
with independent increments as linear combinations of creation, conservation and
annihilation operators in �����.

Proposition 21.1: Let � � � be a completely real subspace such that � �
� � �� � ��� ���� � �, � � ��. Then the following holds:

(i) ������� � �� and ����� � �������� � �� are two commuting families of
observables with � as a common core in �����;

(ii) �����, �����	 � 2���, ��	 for all �, � � �, 	 � �;

(iii) For any � � �, �1, � � � ,�� � � the joint distribution of ���1�, � � � , �����
in the coherent state 	��� is Gaussian with mean vector �2�Im��, �1�,
Im��, �2�, � � � , Im��, ���� and covariance matrix �����,�����, 1 	 �, 
 	 �.
In the same state the joint distribution of ���1�, � � � , ����� is Gaussian with
mean vector 2�Re��, �1�, � � � , Re��, ���� and the same covariance matrix.

Proof: For any �, � � �, Im��, �� � 0 and (20.3) and (20.4) imply

� ���� ��� � � ��� �� � � ���� ���,

� ����� ���� � � ����� ��� � � ����� ����.

Now (20.10) implies that ������� � �� and ������� � �� are commuting families
of observables. That � is a core for each ���� and ���� is just (ii) in Proposition
20.4. This proves (i). Now (iii) in Proposition 20.4 implies that for �, � � �

�����, �����	 � �������, �����	

� �2� Im���, �� � 2���, ��	, 	 � �.

This proves (ii).

For any �, � � � we have from (21.1), (20.2) and (20.4)

�	���,� ���	���� � exp��
�
2 �
1
2

�
2 � ��, ��� ��,�� ���

� exp�2� Im��,�� �
1
2

�
2�.

Thus for any �� � �, � � �, 1 	 
 	 � and � � � we have

�	���, ����1���1� � � � ����������	���� � �	���,� �
�

�

����	����

� exp�2�
�

�

� Im��,��� �
1
2

�

�,�

�����,����
�21.2�
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and

�����, ����1���1� � � � ��������������� � �����,� ��
�

�

�����������

� exp��2�
�

�

�� Re��,��� �
1
2

�

�,�

�������,����.
�21.3�

Equations (21.2) and (21.3) express the characteristic functions of the joint distri-
butions of ���1�, � � � , ����� and 	��1�, � � � , 	���� respectively in the pure state
����.

In Proposition 21.1, 
 is a real Hilbert space and we have ����� ���� �
������ � ������, 	��� � ���� � �	���� � �	���� for � � �, �,� � �,
�, � � 
. In view of Property (iii) in Proposition 21.1, ���� and 	��� may be
looked upon as classical Gaussian random fields over the real Hilbert space 
 in
each coherent state.

Example 21.2: Let 
 � � be a completely real subspace and let ��	� � �� be
a one parameter unitary group in � leaving 
 invariant. Consider �� � �����
where � � 
 is fixed. Then ���	� � �� is a commuting family of observables
whose distribution in the vacuum state yields a stationary Gaussian stochastic
process with mean 0 and spectral distribution ��, ������ � ����, � 
 � being
a Borel set where � �

�
����������, � � �. As a special case we may consider

� � �2���, 
 � the subspace of all real valued functions in �, ������� �
���� ��, � � �. In this case the spectral density function is 	��	2 where �� is the
Fourier transform of �.

Example 21.3: Let 
 � � be a completely real subspace and let � be a spectral
measure on the real line for which 
 is invariant. For any fixed 
 let �� �
�������, ����, � ��� � ��, �����, �����. Then ���	� � �� is a commuting family
of observables (with common core �) whose distribution in the vacuum state is
a Gaussian process with independent increments, mean 0 and cov���,��� �
� �� � ��, � � � being the minimum of � and �.

One may interpret � as a time observable in �. This example is meaningful
when � is a spectral measure in any interval of the real line. When � is a spectral
measure in the unit interval and ��, ���0, ����� � � for all 0  �  1 then the
distribution of ���	0  �  1� is the same as that of standard Brownian motion.

Proposition 21.4: Let � be an observable in � with spectral resolution � ��
�
������ and let �	��� � ��, ������, � 
 � being a Borel set. The character-

istic function of the distribution of ���� in the coherent state ���� is equal to
exp��, ����
 � 1��� and the corresponding distribution � is given by

� � ���	�
2

��0 � �	 �
1
2!
��

2

	 � � � ��
1
�!
��

�

	 � � � �� �21.4�

where �0 is the Dirac measure at the origin and �� denotes �-fold convolution.
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Proof: From (21.1), (20.4) and (20.11) we have

�����, ������������� � �����,�������������

� exp�����2 � ��, ��������.

This proves the first part. On the other hand the last expression is equal to
exp

�
������ � 1������� which implies (21.4).

Example 21.5: Let ��,�� be any measurable space and let � be an �-valued
observable in �. For any � � �, ���� is a projection in � and 	��� � 
������
is an observable in �����. �	����� � �� is a commuting family of observables
and by Proposition 20.7 has a common core �. For any sequence ���� of disjoint
sets from �

	�	����� �
�

�

	�����, � � �.

In any coherent state ����, for any � � �,	��� has Poisson distribution with
mean ��, ������ and for any finite sequence �� , 1 
 � 
 � of disjoint sets from
�, the joint distribution of 	����, 1 
 � 
 � is the product of its marginal
distributions. In short, we have realised a Poisson point process over ��,�� with
intensity measure ��, ������ in terms of observables in the quantum probability
space ������,��������,�����.

Proposition 21.6: For any  � � and any observable � in � let


�� ,� �� ���
���� ��. �21.5�

The distribution of the observable 
�� ,� in the vacuum state is also the distri-
bution of 
��� in the coherent state ���. 
�� ,� is essentially selfadjoint on
the linear manifold generated by ���� � ��� � ���2��. When � is a bounded
observable, � is a core for 
�� ,� for every  and


�� ,��� � 
��� � ���� � ����� � �,����.

Proof: The first part is immediate from the identity

��,� ����������� ���� � ����, �����������.

The second part follows from Proposition 20.7 and also implies that � is a core
for 
�� ,� when � is bounded. For any � in � we have from Theorem 20.10
and (20.29)

� ���
���� ��� � ��	�
�
������	�
��

� 
���� � ������ � �,���

� �
��� � ���� � ����� � �,����.

In order to combine observables of the form 
�� ,� for varying � , the
next proposition is very useful.
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Proposition 21.7: Let �� be an observable in the Hilbert space �� , � � 1, 2, � � � ,
and let �� � �� , ���� � 1 for each �. Suppose � �

�
�

��1�� is the countable
tensor product with respect to the stabilising sequence ����. Let

����� � ��� , �
��������, � � 1, 2, � � � .

In order that there may exist a one parameter unitary group ����� � �� in �
satisfying the relation

��

��

��1

�� � lim
���

��

��1

�������� �

��

����1

�� �21.6�

for every sequence ���� where �� � �� for each � and �� � �� for all but a
finite number of ��s, it is necessary and sufficient that the infinite product ���� �
����1����� is defined as a continuous function of � in some open interval containing
0.

Proof: First we prove sufficiency. Let 	 	 � denote the set of all product vectors
of the form

�
�

��1�� , �� � �� , �� � �� for all but a finite number of �’s. Choose
any 
 �

�
�

��1�� in 	 and let �� � �� for all � � �0. For �, � �0 we have

�

��

��1

�������� �

��

����1

�� 


��

��1

�������� �

��

����1

���
2

� 2��0
��1����

2�1
 Re��
����1������

�21.7�

provided  � �. Each ����� is the characteristic function of a probability distri-
bution �� on the real line and by hypothesis ���� is the characteristic function of
the weakly convergent product � � �1 ��2�, � � � , � denoting convolution. If ����
is a sequence of independent random variables where �� has distribution �� then�

��� converges in distribution and hence converges almost surely (see Theorem
5.3.4 [24]). Thus lim�,���

��

����1�� � 0 almost surely and

lim
�,���

��
����1����� � 1 for all �.

Thus the right hand side of (21.7) converges to 0 as �, � . In other words
the limit on the right hand side of (21.6) exists and �� defined on 	 by (21.6)
is an isometry. By Proposition 7.2, �� extends uniquely to an isometry on �.
Denote ��

�
�

��1�� �
�
�

��1�
������� where

�
�

��1�� � 	 . It is clear that for any
fixed � the range of �� includes all vectors of the form 
 �

�
�

����1�
������� ,


 � �1 � � � � � ��. Choose


� � �1 � � � � � �� � ���1 � � � � � ��, � �

where �� � �� . Then

lim
���


� �

��

����1

�������� � �1 � � � � � �� �

��

����1

�� .
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This shows that ����� � � and �� is unitary for each �. By definition ����� � ��
is a unitary group. The strong continuity of the map �� �� is easily established.
This proves sufficiency.

Necessity is immediate from the relation

�

��
��1

�� ,��

��
��1

��� � ����1�����.

We shall denote the unitary group ���� defined by Proposition 21.7 by

�� �

��
��1

������ .

It may be noted that
�
�

��1�� need not be in the domain of the Stone generator
� of �� since �� need not be in the domain of �� . It is far from clear from this
analysis how a core for � can be constructed from the domains of the individual
operators �� .

Proposition 21.8: Let �� be an observable in �� with spectral resolution

�� �

�
�

	
���	�, � � 1, 2, � � � ,

and let � � �� for each � be such that

���� �

��
��1

�� , 
������, � � ��

is a �-finite measure satisfying the condition�
�

	2

1� 	2
���	� ��. �21.8�

Let �� be the observable in ������ defined by

�� � ���� ,��	 �� ,���1��2
� �
�1�� �21.9�

where ���� ,�� is given by (21.5). Denote by �� the vacuum vector in ������
for each �. Then there exists an observable � in the Hilbert space

���

��
��1

��� �

��
��1

������

defined with respect to the stabilising sequence ���� such that the following
conditions are fulfilled:

(i) ����� �
�
�

��1�
����� ;

(ii) If � �
�
�

��1�� denotes the vacuum vector in ���
�
�

��1��� then

��, ������� � exp
�

�

������ 	 1�
��	

1� 	2
����	�;
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(iii) the distribution of the observable � in the vacuum state � is infinitely
divisible and has characteristic function

exp
�

�

����� � 1�
���

1� �2
������.

Proof: By Proposition 21.4, 21.6 and (21.9) we have

��� , �
�������� � exp

�
������ � 1�

���

1� �2
�������

where ����� � �	� , 
����	��. Since ���� �
�

������ the integrability condi-
tion on � implies that

����1��� , �
�������� � exp

�
������ � 1�

���

1� �2
������

is a continuous function of �. By Proposition 21.7 the existence of the observable
� satisfying (i) and (ii) follows. (iii) is immediate from (ii).

Corollary 21.9: Let �0 be the observable in ����0� defined by

�0 � �� ��	0�

for some vector 	0 � �0 and real scalar �. If � is the observable defined
by Proposition 21.8 and  is the Stone generator of �����0 � ����� then the
distribution of  in the vacuum state of ���

�
�

��0��� has characteristic function

exp����� 1
2 �

2�	0�
2 �
�

�
����� � 1� ���

1��2 �������.

Proof: Immediate.

Corollary 21.10: Let �� ,�� ,	� , � � 1, 2, � � � ,� be as in Proposition 21.8 and
let �0,	0,� be as in Corollary 21.9. Define

��

� � �� � �2����,� �

��
��0

��

	����� � 	� � ��0,��, � � 0, 1, 2, � � �

� �

���� � �� � 
��	0, �
�, � � 1, 2, � � � ,

where 
� denotes the canonical spectral measure in �2���� with respect to the
Lebesgue measure. Let

� �

���� � ��� �

����,	
�

������ �	�����,�
�

����	1�� �

����
2
�1	������

for � � 1, 2, � � � . Then there exists a commuting family of observables � ���, � 	
0� in ���� � �2����� �

�
�

��0����
�

�� satisfying the following:

(i) ����	 ��� � ����
��������
�

0���� �
�

�

��1�
�����

���� for all � � �, � 	 0;
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(ii) If �� denotes the vacuum vector in ���� � �2����� then

���,��
��1�

����� ��������� ����1���� �

exp�
��

��1

��� � ���1��������
1
2
��0�

2�2�

�

�
������� � 1�

����

1� �2
	
���	�

for all 0 � �0 � �1 � � � � � ��, �1, 
 
 
 , �� 	 �, � � 1, 2, 
 
 


(iii) In the vacuum state �� the observables � ���
� � 0� form a classical stochas-
tic process with stationary independent increments where  ��� has charac-
teristic function exp ����� � 1

2��0�
2�2 �

�
�
����� � 1 � ���

1��2 �	
���� as a
function of � for each � � 0.

Proof: The existence of  ��� satisfying (i) is immediate from the fact that �� �

�����
and �������� satisfy the conditions of Proposition 21.8. (ii) is proved by straight-
forward calculations and (iii) is immediate from (ii). That  ��� and  ��� commute
for all � and � follows from (20.3).

Exercise 21.11: In Corollary 21.9 put

� �

��
��0

�� , � � 1�
��
��1

�� , �� � ����	 ,

���� � ��0 �

��
��1

�����	��� � ���,

�� �� �����, ����	� exp���
�
�sin ���

��

1� �2
�	
���	.

Then ���� 	 � for each � and

���� �� � ���� � ������ for all �, � 	 �.

The map � �� is strongly continuous and ���
� 	 �� is a one parameter unitary
group in ����� and

��,���� � exp��
1
2
�2��0�

2 �

�
�

������ � 1�
���

1� �2
�	
���	.

Exercise 21.12: Let 
 be a �-finite measure in �� satisfying�
��


�
2

1� 
�
2
	
��� ��.

Put � � �2�
�,

�������� � ����������, ������� �

�
�� if � � 0,

������ � 1 if � �� 0
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for each � � ��, where � is any � � � matrix with complex entries. Then
����� � ��� is an �-parameter unitary group, ���� � � and

���� �� � ���� � ������ for all �, � � ��.

If

�� �� �����,��� exp��	
�

��
�sin � � 
�

� � 


1� �
�2
����
��

then ����� � ��� is an �-parameter unitary group in ����� and

��,���	 � exp

�
�
1
2
���0��
��
2 �

�
��
������ � 1�

	� � 


1� �
�2
����
�

�
.

�21.10�
Thus ���� determines an ��-valued observable in ����� whose distribution in the
vacuum state � is the infinitely divisible distribution with characteristic function
given by (21.10).

Exercise 21.13: Let � be any group and let � � �� be any homomorphism from
� into the unitary group ���� of a Hilbert space �. Suppose � � ���� is a map
from � into � satisfying

����� � ���� � ������ for �,� � �. �21.11�

Let
�� �� �����,���, � � �.

Then
���� � �� Im�����,	��������� for all �,� � �.

In other words � � �� is a projective unitary representation of � with multiplier
���,�� � exp��	 Im�����,������	� � exp 	 Im�����1�, ����	. (See [135].) The
function ���,�� � �����1�, ����	 satisfies the identity

���1, �2� � ���1�2, �3� � ���1, �2�3� � ���2, �3� �21.12�

for all �1, �2, �3 � �. Equations (21.11) and (21.12) are known as first and second
order cocycle identities respectively. If there exists a real valued function ����,
� � � such that

Im�����1�, ����	 � ������ ����� ���� for all �,�

then the correspondence � � �
����� is a homomorphism from � into ��������.
In such a case

��, �
������	 � exp

�
	�����

1
2

����
2

�

is an infinitely divisible positive definite function on the group � in the sense that
exp�	� ���� � 1

2 �
����

2� is positive definite in � for each � � 0. Conversely,

every infinitely divisible positive definite function has this form. The example in
Exercise 21.12 is a special case when � � ��.
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Exercise 21.14: [100] Let � be any real Lie algebra and let � � ���� be a
representation of � in ���� so that � : � � ���� is a linear map satisfying
�����,��� �� � ���� ,� �� for all � ,� in �. Suppose �,� : � � � are linear
maps satisfying

������� �� ��� ����� � ���� ,� ��,

�������� �� ��� ������ � ���� ,���

for all � ,� . In ����� define the operators

���� � �������� � ������� � �������

with domain �. Then

�����,��� �� � ���� ,� �� � �����,��� �� � ���� �,�����

for all � ,� in �.
If ����� � �����, ���� � �����, ���� � ����� and 	��� �

���� � ��, ������ then 		��� is essentially selfadjoint on � and �	���,
	�� �� � 
��� ,� ��. Furthermore

���0�, exp 
������0�� � exp��, ������ � 1���,

� denoting closure. (See also Exercise 20.16.)

Exercise 21.15: Let � : ��� � ���� be an ��-valued observable in � satisfying
the condition ����� � 0 for every  	 0. Define

�� � ������0, �� � ���,
���,  	 0.

Then ���� 	 0� is a commuting family of selfadjoint operators satisfying the
following:
(i) �2

� � 1 for every ,�0 � 1;
(ii) For any � in � and 0 � 1 � 2 � � � � � 2��1 �


�
���,��1��2 � � ���2�
���� � ���1
��0��2��1���2��2�

�1

where ��� � exp 2��, ���0, ����;
(iii) Kolmogorov’s Consistency Theorem implies that, in the coherent state 
���,

the distribution of the observables ���� 	 0� is the same as that of a
Markov chain ������ 	 0� with initial value ��0� � 1, state space �1,�1�
and transition probability matrix

� ��, � �

� 1
2 �1� ��������1� 1

2 �1� ��������1�
1
2 �1� ��������1� 1

2 �1� ��������1�

�
.

Notes
The decisive role of the Weyl representation in the geometric approach to infinitely
divisble distributions can be traced to Streater [132], Araki [9], Parthasarathy and
Schmidt [98, 99]. For recent developments on infinitely divisible completely pos-
itive maps on groups, see Holevo [55], [56], Fannes and Quaegebeur [38], [39].
Exercise 21.14 is adapted from Parthasarathy and Schmidt [100]. For an introduc-
tion to the theory of infinitely divisible distributions in classical probability, see
Gnedenko and Kolmogorov [49].

21 Weyl Representation and infinitely divisible distributions
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22 The symplectic group of � and Shale’s Theorem
Let � be a complex separable Hilbert space and let � : � � � be any real linear
bijective map satisfying the following conditions: (i) � and ��1 are continuous;
(ii) Im���,��� � Im��, �� for all �, � � �. Then � is called a symplectic auto-
morphism of �. All such symplectic automorphisms constitute a group 
��� under
multiplication. Every unitary operator in � is also a symplectic automorphism of
�. Thus ���� is a subgroup of 
���. For any Weyl operator � ��� � � ��, 1�
define

����� �� ����. �22.1�

By (20.5) we have

���������� � ��� Im��,������� ��. �22.2�

In other words the correspondence � � ����� is another projective unitary
representation of the additive group � with multiplier ���, �� � exp��� Im��, ���.
Proposition 20.9 implies that this representation is even irreducible. The question
arises whether �� is a new representation or there exists a unitary operator ����
in ����� such that

����� ��������1 ������ for all � � �. �22.3�

When � � ���� its second quantization satisfies (22.3). We shall now investigate
how far we can deviate from a unitary operator within the symplectic group 
���
but preserving (22.3).

Let �0 � � be a completely real subspace such that � � �� � ����, � �
�0	 � �0� ��0. For any � � 
��� define operators ��� in the real Hilbert space
�0 for 1 
 �, � 
 2 by putting

���� ��� � �11�� ��21�� �12� � ��22� �22.4�

Express any vector in �0 � �0 as a column
�
�

�

�
,�, � � �0 and define

�0

�
�

�

�
�

�
�11 �12

�21 �22

��
�

�

�
. �22.5�

We have
Im��1 � ��1,�2 � ��2� � ��1, �2� � ��1,�2�

� �

�
�1

�1

�
,

�
0 1
�1 0

��
�2

�2

�
�

for all �� , �� � �0, 1 
 �, � 
 2. In �0 � �0 introduce the operator 	 by

	

�
�

�

�
�

�
�

��

�
.

The fact that � preserves the imaginary part of scalar product in � can be expressed
in terms of �0 in �0 � �0 by

��0

�
�1

�1

�
,	�0

�
�2

�2

�
� � �

�
�1

�1

�
, 	

�
�2

�2

�
�
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for all �� , �� � �0, � � 1, 2, i.e.,

��

0��0 � � . �22.6�

Conversely, if �0 is any bounded operator with a bounded inverse in �0 � �0

defined by operators ��� , 1 � �, � � 2 in �0 through (22.5) and if (22.6) holds
then the map � defined by (22.4) in � is a symplectic automorphism of �.

Proposition 22.1: Let �0 � � be any completely real subspace of � such
that � � �0 � ��0. Then every symplectic automorphism � of � admits a
factorisation � � �1��2 where �1,�2 are unitary operators in � and � is a
symplectic automorphism of the form

� ��� ��� � 	�� �	�1�, �, � � �0,

	 being a positive bounded operator with a bounded inverse in the real Hilbert
space �0.

Proof: Define the operator �0 in �0��0 through (22.4) and (22.5) so that (22.6)
holds. Let �0 � �0
0 be the polar decomposition of �0 so that �0 is unitary and

0 is a bounded positive operator with a bounded inverse in �0��0. Then (22.6)
can be expressed as

��0
0 � �0

�1
0 � � �0��

�1
�1
0 �

where ��0 and �0� are unitary and 
0 and ��1
�1
0 � are positive. Thus the

uniqueness of polar decomposition implies

��0 � �0� , 
0 � ��1
�1
0 � . �22.7�

In particular, there exist symplectic automorphisms � and 
 of � such that �0

is unitary and 
0 is positive in �0 � �0. Furthermore � is a unitary operator in
�. The second relation in (22.7) implies that 
0 and 


�1
0 are unitarily equivalent

through � . Let � denote the spectral measure of 
0 in �0,�� so that 
0 ��
�����. Let �1,�2,�3 be the ranges of the spectral projections ���0, 1��, ���1��

and ���1,��� respectively. Then �1 ��2 ��3 � �0 ��0. The second relation
in (22.7) implies that � maps �1 onto �3,�3 onto �1 and �2 onto itself. Since

�

�
�

�

�
, �

�
�

�

�
	 � 0 for all �, � � �0

we can and do select an orthonormal basis of the form �
�
��

��

�
, �

�
��

��

�

� � 1, 2,

� � � , � for the subspace �2. Let �21 and �22 be the closed subspaces spanned by
�
�
��

��

�

� � 1, 2, � � �� and ��

�
��

��

�

� � 1, 2, � � �� respectively so that �2 � �21��22.

Write �1 � �1 ��21, �2 � �22 ��3. Then �0 ��0 ��1 ��2,� maps �1

onto �2 and vice versa. Furthermore 
0 leaves �1 and �2 invariant. Choose
orthonormal bases ��1,�2, � � �� and ��1, �2, � � �� in �1 and �0 respectively.
Define a unitary operator �0 in �0 � �0 by putting

�0�� �

�
���
0

�
,�0��� �

�
0
��

�
, � � 1, 2, � � �
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Then �0 commutes with � and �0�0�
�1
0 leaves the subspaces �0 � �0� and

�0� � �0 invariant. Thus �0�0�
�1
0 has the form

�
� 0
0 �

�1

�
where � is a

bounded positive operator with bounded inverse in �0. Hence

�0 � �0�
�1
0

�
� 0
0 �

�1

�
�0.

If � and � are the unitary operators in � which determine the unitary operators
�0,�0 in �0 � �0 respectively and � is the symplectic automorphism for which

�0 �

�
� 0
0 �

�1

�
then � � �1��2 where �1 � ��

�1, �2 � � .

Proposition 22.2: For any �, 	,
 in �

���	�, �� 1
2����

2

��
�� � �1� ���2�� 1
2 exp��	,
�� ��	,�� � ��,
��2

2�1� ���2� �. �22.8�

Proof: The left hand side of (22.8) can be expressed as

1�
2�

�
�

���	�, ����������
���� 1
2�

2

� �
1�
2�

�
�

���	�,� ������
���� 1
2�

2

�

�
1�
2�

�
�

exp��1
2
�1� ���2��2 � ���	,�� � ��,
�� � ��,
���.

Now (22.8) follows by a straightforward evaluation of Gaussian integrals.

Corollary 22.3: Let �1,�2, � � � ,�� be mutually orthogonal vectors in �. Then

���	�,��
��1�

�

1
2�����

2

��
�� �
�
��
��1�1� ����2�� 1

2

�
exp

��
��	,
��

�	
��1

��	,��� � ��� ,
��2
2�1� ����2�


�
� .

�22.9�

Proof: Denote by � the projection on the subspace spanned by ��1, � � � ,���.
By Proposition 19.6 ����� can be identified with the tensor product

�
�

��1

��������


�����1, � � � ,�����

so that

��	� � �
�

��1

��
��� , 	�
����2 ���� 	 ���1� � �	� for all 	 
 �.

By Exercise 20.21

��
��1�

�
1
2�����

2

� �
�

��1

�
�

1
2�����

2� 	 1.
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Then the left hand side of (22.9) is equal to

���,�1�� �����
��1���

��� , ��
����2 ���, �

� 1
2�����

2

��
��� ,��
����2 ����.

Now the corollary is immediate from Proposition 22.2.

Proposition 22.4: Let ���� be a sequence of mutually orthogonal vectors in �
such that lim�������2 � �. Then

w.lim
���

��
��1�

� �
2������

2

� ���	
2 for all � � 0. �22.10�

Proof: For any �,� � � we have from (22.9)

�����,��
��1�

� �
2������

2

����� � �����,��
��1�

� 1
2��
�

�
�
�2
�������

� ���
��1�1�

�

�
����2�� 1

2 � exp���,��� �

�

��

��1

���,��� 	 ��� ,���2
2�1� 	

�
����2�

�.
�22.11�

By hypothesis

lim
���

��
��1�1�

�

�
����2� � ��	.

Since ���� are mutually orthogonal lim�����,��� � 0 for every �. Hence the
right hand side of (22.11) converges to exp�	 1

2�� � ��,��� as � 
 �. Since
exponential vectors are total in ����� and exp	 1

2����
2 is a contraction operator

for every � in � we obtain (22.10).

Proposition 22.5: Let �0 � � be a completely real subspace such that � �
�0� 	�0 and let 
 be a bounded positive operator in �0 with a bounded inverse.
Suppose there exists a unitary operator � in ����0� satisfying the relations

�� �����1 �� �
�� for all � � �0. �22.12�

Then every point � � 1 in the spectrum of 
 is an isolated eigenvalue of finite
multiplicity.

Proof: By hypothesis the spectrum of 
 is a closed bounded set contained in
the open interval �0,��. If � � 1 is an isolated eigenvalue of infinite multiplic-
ity then there exists an orthonormal sequence ���� such that 
�� � ��� and
�
���2 � �2 for � � 1, 2, � � � . If � � 1 is a limit point in the spectrum of 

then there exist sequences ����, ���� of positive numbers such that �� is in the
spectrum of 
,�� converges monotonically to �, �� 
 0 as � 
 � and the in-
tervals ���	�� ,������,  � 1, 2, � � � are disjoint. If 
 �

�
������ is the spectral

resolution of 
 we can choose a unit vector �� in the range of �����	�� ,�������
for each . This shows that if the proposition is not true we can construct an or-
thonormal sequence ���� such that �
��� is an orthogonal sequence of vectors
and

lim
���

�
���2 � �2. �22.13�
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From (22.12) we get

� ����1�
�

�

2������
2

��1 � ��
��1�

�

�
2�������

2

. �22.14�

By Proposition 22.4 and (22.13) the left hand side of (22.14) converges weakly to
��

1
2 � whereas the right hand side converges weakly to ��

1
2�

2� for each � � 0 and
� �� 1. This is a contradiction.

Proposition 22.6: Let dim� � �,� � �0 � ��0 where �0 is a completely
real subspace and let � denote the general linear group of all linear invertible
transformations of �0. For any � � � let 	� denote the symplectic automorphism
of � defined by 	��
� ��� � �
� ���

�1
� for all 
, � in �0. Then there exists

a unitary representation � � �� of � in �	��� satisfying

(i) �� �
�� �1
� � �	�
� for all � � �,
 � �; (22.15)

(ii) ��,���� � � det
1
2
�� � ��

�1

���1
2, (22.16)

where � is the vacuum state.

Proof: Let dim� � �. Choose and fix an orthonormal basis ��1, �2, � � � , ��	 in
�0. Consider the unitary isomorphism � : �	���� �2���� satisfying

	���
�
��� � �2���
�
4 exp

��

��1

�

1
4
�2� � ��� ,
��� 


1
2
��� ,
�

2	 �22.17�

for all 
 in �. Then (20.27) and (20.28) in the proof of Proposition 20.9 imply

	� �
���1� 
��� � ���
 2
�, (22.18)

	� ��
���1� 
��� � ��������� (22.19)

for any 
 � �0, � � �2���� and 
 � ���1,
�, � � � , ���,
��. Define the operators
�� in �2���� by

�������� � � det���
1
2 ����1��,� � �, � � �2����. �22.20�

Put �� � ��1��� . Then � � �� is a unitary representation of � and (22.17)–
(22.20) imply that for any 
 in �0

�� �
�� �1
� � ��
�,�� ��
�� �1

� � ���
�1


�.

Thus for any 
 in � we obtain (22.15). From (22.17) and (22.20) we have

��,���� � ����0�,�����0��

� � det���
1
2 �2���

�
2

�
��

�exp

1
4
��, ���

�1

��1 � 1���	��

� � det
1
2
�� � ��

�1

���
1
2 .
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We shall now try to extend Proposition 22.6 to the infinite dimensional
case. Choose � � �2 � � � � � � � � and denote by �� the subspace of all
sequences whose coordinates vanish from the � � 1-th stage. We have ����� �
������� ������ � � ������ ������ � � � where the countable tensor product is
with respect to the stabilising sequence of vacuum vectors. For any � � 0 let ��
be the unitary operator in ����� defined by Proposition 22.6 so that

��� ���� �1
� �� ���� 	��1
�, � � �� 	
, (22.21)

��,���� � �
�� ��1

2
�

1
2 . (22.22)

With these notations we have the following proposition.

Proposition 22.7: Let ���� be a sequence of scalars such that �� � 0 for each
� and lim����� � 1. Let

�� � ��1 � ��2 � � � � � ��� � 1���1 �22.23�

where 1���1 is the identity operator in ������ �. Then there exists a sequence ����
of scalars such that ���� converges strongly to a unitary operator � as ��	 if
and only if �� � � as ��	, 
�
 � 1 and

�
���� � 1�2 	.

Proof: First we prove necessity. In the course of the proof we shall view ����
for any � in �� as an element of ������ as well as �����. Then

������ � ���1 � � � � � ��������� �

��
����1

������ �� �� � � �

for any � in ��,� � � where � denotes the vacuum in �����. In particular,
�������� � ������ � 1. Since ���� converges to a unitary operator it follows
that 
��
 � 1 as ��	. From (22.22) and (22.23) we have for �  ��

��� �� � � � ,������ � lim
���

����� �� � � � ,�������

� ���
�

,��1 � � � � � �������� lim
���

��	
�
����1

�
�� � ��1

�

2

�� 1
2

.
�22.24�

The totality of all vectors of the form �����
�  ��, � � 1, 2, 
 
 
� in �����
implies that the left hand side of (22.24) is not equal to 0 for some � in �� for
some �. This can happen only if �� � � as ��	, 
�
 � 1 and�

�

�1� �
2

�� � ��1
�

�1�2� 	 �22.25�

which is equivalent to
�

���� � 1�2 	 since �� � 1 as ��	. This proves
necessity.
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Conversely, let (22.25) hold. Then for any � � � � �, we have

������1�� � � � � ������ �� �� � � �

������1�� � � � � ������ �� �� � � � �2

� 2�1���
����1�

�� � ��1
�

2
��

1
2 �

which converges to 0 as �,���. Thus for any fixed � and any � in ��

lim
���

	����� � ���1 � ��2 � � � � � ���������

��

����1

����

exists. Furthermore �	����� � ������ � 1. Thus 	 extends to an isometry on
	����. By the same argument, for any � 	 ��

lim
���

��
�
�1
1
� � � � � �

�
�1
�

������

��

����1

�
�
�1
�

�� �� �� � � � � 	�����

exists and 	� extends to an isometry on 	����. Clearly 	� � 	� and 	 is a unitary
operator.

Proposition 22.8: Let � � 	 � � be the tensor product of two Hilbert spaces
	, �. Suppose 
 is a bounded operator in � satisfying the relation


�� � 1� � �� � 1�
 for all � 	 ��	�,

1 being the identity in �. Then there exists a � 	 ���� such that 
 � 1 � �

where 1 denotes the identity in 	.

Proof: Choose and fix a unit vector �0 in 	. For any  in � we have

��1� 
�0���0
�� 1�
�0 �  � 
�1� 
�0���0
��0 �  � 0.

Thus 
�0 �  	 ��
�0���0
 � 1�. In other words there exists a � in � such that

�0� � �0�

�. The correspondence  � � yields a linear operator � 	 ����
such that 
�0� � �0��. Let now � be any element in 	. Choose an operator
� 	 ��	� such that ��0 � �. Then


��  � 
�� � 1��0 �  � �� � 1��0 � � � �� �.

i.e., 
 � 1� �.

Proposition 22.9: (von Neumann’s Double Commutant Theorem [133]): For any
von Neumann algebra �  ���� let �� � �


 	 ����,
� � �
 for every
� 	 ��. Then �� is also a von Neumann algebra and ��� � �.

Proof: We omit the proof and refer to [133].

Proposition 22.10: Let � be any Hilbert space. Then the smallest weakly closed
algebra containing �� ���
� 	 �� is ��	�����.
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Proof: Since� ���� �� ���� it follows that the smallest weakly closed algebra
� containing �� ����� � �� is closed under * and hence a von Neumann algebra.
By Proposition 20.9 �� � � and ��� � ��������. An application of Proposition
22.9 completes the proof.

Theorem 22.11: (Shale’s Theorem [123]): Let � � �0 � ��0 where �0 is a
completely real subspace. For any symplectic automorphism � of � let �0 be
the operator in �0 ��0 defined by (22.4) and (22.5). Then there exists a unitary
operator ���� in ����� such that

����� ��������1 �� ���� for all � � � �22.26�

if and only if ��0�0 � 1 is a Hilbert-Schmidt operator in �0 ��0. In such a case
���� is determined uniquely up to a scalar multiple of modulus unity.

Proof: Let � be any symplectic automorphism of �. By Proposition 22.1 we can
express

� � �1��2,� ��� ��� � ��� ���1�, �, � � �0 �22.27�

where � is a bounded positive operator with positive inverse in �0 and �1,�2 �
����. If ����� is the second quantization of �� we have

������ ��������
�1 �� �����,� � �, 	 � 1, 2.

Thus a unitary operator ���� satisfying (22.16) exists if and only if a unitary
operator ��� � satisfying

��� �� ������ ��1 �� ����,� � � �22.28�

exists when � is of the form described in (22.27). Suppose dim� 
 �. Then
the condition that ��0�0 � 1 is Hilbert-Schmidt is superfluous. Put ��� � � ��
where �� is determined by Proposition 22.6. Then (22.28) obtains and the proof
is complete in this case.

Let now dim� ��. First we prove sufficiency. The condition that ��0�0�1
is Hilbert-Schmidt implies that �2 � 1 and ��2 � 1 are Hilbert-Schmidt in �0.
Hence there exists an orthonormal basis ���� in �0 such that ��� � ��� , � � 0
for each 	 and

�
��� � 1�2 
 �. Now identify �0 with real �2 via the basis

����, use Proposition 22.7 and define

��� � � s.lim
���

��

where �� is defined by (22.23). Then ��� � satisfies (22.28) and the proof of
sufficiency is complete.

To prove necessity suppose that a unitary ��� � satisfying (22.28) exists.
Then ��� �� ������ ��1 � � ���� for all � in �0. By Proposition 22.5 there
exists an orthonormal basis ���� in �0 such that ��� � ��� , � � 0 for each 	
and lim���� � 1. Once again identify � with �2 via the basis ���� and define
the unitary operators �� by (22.23). Then

��� �����1
� �� ���� for all � � ��, � � 1, 2, � � �



170 Chapter II: Observables and States in Tensor Products of Hilbert Spaces

This together with (22.28) implies that

��1
�

��� �� ��� �� �����1
�

��� � for all � � ��.

By Proposition 22.10, the von Neumann algebra generated by �� ����� � ���
consists of all operators of the form � � 1 where � � ���������, 1 denotes
the identity operator in �����

� � and ����� � ������������
� �. By Proposition

22.8 there exists a unitary operator ��� in �����
� � such that

��� � � ��1 � ��2 � � � � � ��� � ���

for every �. Let ��� denote the vacuum vector in �����
� � and let

�� � 1� �������
�

��

where 1 is the identity in ������. Then for any � � �� and � � 	

����� �
��� � �����1 � � � � � ���
�����

��

����1

����� �� �� � � �

where
�� � ����,�

�

��
�

��.

Since lim��� ����� �
��� � ��� �
��� for every � � ��, 	 � 1, 2, � � � , ����
converges strongly to a unitary operator where �� is defined by (22.23). By Propo-
sition 22.7, �� 	 � as �	
, ��� � 1 and

�
���� � 1�2 
. This implies that

��0�0 � 1 is Hilbert-Schmidt.

We now turn to the uniqueness of ���� in (22.26). Suppose there is another
unitary operator ����� satisfying (22.26) when ���� is replaced by �����. Then
����������1 commutes with all the operators � ���, � � �. By Proposition 20.9
there exists a scalar � of modulus unity such that ����� � �����.

Let �0 � � be a completely real subspace such that � � �0	 ��0. Define


0��� � ���� � 
���,��0�0 � 1 is Hilbert-Schmidt in �0  �0�

where 
��� is the group of all symplectic automorphisms of � and �0 is defined
by (22.4) and (22.5). For each � � 
0��� select a unitary operator ���� according
to Shale’s Theorem so that

����� ��������1 �� ���� for all � � �. �22.29�

Then

���1����2� � ���1,�2����1�2� for all �1,�2 � 
0���, �22.30�

where ���1,�2� is a scalar of modulus unity depending on �1,�2. It is not clear
whether one can choose ���� in such a way that ���1,�2� � 1. If dim �  

it is clear from Proposition 22.6 that the answer is in the affirmative.

Define
	
0��� � ���,���� � �,� � 
0����.
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Under the multiplication

��1,�1���2,�2� � ��1 � �1�2,�1�2�

	
0��� is a group. If � ��,�� � � ������� where ���� satisfies (22.29) and
(22.30) then ��,�� �� ��,�� is a projective unitary representation of 	
0���.
It is natural to raise the question of an appropriate topology for 	
0��� and
explore the continuity of the map ��,�� �� ��,��.

Exercise 22.12: Let � � �� � �� � ���, � � ����,�� the general linear
group of all real non-singular matrices of order � and let �1, �2, � � � , �� be the
canonical basis of ��. Write

	� � 	�
1
2
���, 
� � 	������, 1 � � � �

where 	��� is defined by (20.10). Suppose � � � is the unitary representation
of � in ����� described in the proof of Proposition 22.6. For any real � � �

matrix � � ������� define the observable �� as the Stone generator of the one
parameter unitary group �exp ���� � �	. Then the following holds:

(i) the family �
� , 	� �� � 1, 2, � � �	 obeys the canonical commutation relations
in the domain of finite particle vectors in �����;

(ii) �� is the closure of the essentially selfadjoint operator 1
2

�
� ����
�	� �

	�
�� �
�

�������	�
� on the domain of all finite particle vectors;

(iii) In the coherent state ��� � ���,�,� � �� the distribution of �� has the
characteristic function
���,	��� �

� det
1
2
���� � ����

�

���
1
2 exp�����1� �����1� ���

�

�����1�1� ���
�

�� 2��

����1� �����1� ���
�

�����1�1� ���
�

��

�2����1� �����1� ���
�

�����1�1� ���
�

��	

where the prime � denotes transpose. In particular, the characteristic function
of �� in the vacuum state is

��0,0��� � � det
1
2
���� � ����

�

���
1
2 ;

(iv) When � is symmetric

��
,0��� � � det sech ���1�2 exp���sech ��� 1��

is the characteristic function of an absolutely continuous, symmetric and
infinitely divisible distribution;

(v) When � is skew symmetric

��
,	��� � exp����
��� � ����

2
� 1��� ���

��� � ����

2
� 1��

�� ������ � ������	



172 Chapter II: Observables and States in Tensor Products of Hilbert Spaces

is the characteristic function of a discrete infinitely divisible distribution. For
suitable values of �,�,�,�� has Poisson distribution.

(vi) When � � 2, � �

�
0 1
0 0

�

��0,0��� � �1�
�2

4
��

1
2

is an infinitely divisible characteristic function. (It is not clear, in general,
when ���,� is an infinitely divisible characteristic function.)

Exercise 22.13: Let �1,�2 be bounded operators in a Hilbert space � and let 	
be an antiunitary operator in �. Define the unitary operators � �
 ����� � �� in
���� � �� � ������ ����� by

�
 ��� �
 ��1�� 	�2��.

If ��1�1 � ��2�2 � 1 then

�
 ��� �
 ��� � �� Im��,�� �
 ��� �� for all �, � � �.

and

��� �, �
 ����� �	 � exp��
1
2
��, ���1�1 � ��2�2��		

where � is the vacuum vector in �����.

Notes
The proof of Shale’s Theorem is adapted from Shale [123].

23 Creation, conservation and annihilation operators in �����

There does not seem to exist a natural analogue of the Weyl representation in the
fermion Fock space ����� even though the second quantization homomorphism
� 
 ����� from ���� into �������� is well-defined by Exercise 20.22. We
shall drop the suffix � from ����� when there is no confusion. The projective
unitary representation �
 
 ��� of the additive group � in ����� is described
equivalently through the family ������� � �� of its Stone generators obeying the
commutation relations �����, ����	 � 2� Im��, �	. These can as well be described
by the creation and annihilation operators �����, ����,� � � which obey the com-
mutation relations of Proposition 20.14, ����� maps � ���

into � ����1
, whereas

���� maps � ���

into � ����1
for each �. We shall now introduce analogues of

����� and ���� by exploiting the multiplication � (defined by Proposition 19.2)
for increasing the rank of antisymmetric tensors.
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Proposition 23.1: For any � in � let ����� : � ��� � � ����1
denote the linear

map defined by

������1 � �2 � � � � � �� � � � �1 � � � � � ��

for all �� in �, 1 � � � �. Then the adjoint �����
� of ����� is defined by

��
�����1 � � � � � ���1 �

1
�� 1

��1�

��1

��1���1��, ����1 � � � � � ��� � � � � � ���1

where the hat�over �� indicates its omission.

Proof: For any �� , 1 � � � �� 1 we have from (17.10) and Proposition 19.2

��1 � � � � � ���1,� � �1 � � � � � ��� �

1
�� 1!

�������

��1,�� ��1, �1� � � � ��1, ���
��2,�� ��2, �1� � � � ��2, �2�
� � � � � � � � � � � �

����1,�� ����1, �1� � � � ����1, ���

�������

�
1

��� 1�!

��1�

��1

��1���1��� ,��

�����������

��1, �1� � � � ��1, ���
� � � � � � � � �

����1, �1� � � � ����1, ���
����1, �1� � � � ����1, ���

� � � � � � � � �
����1, �1� � � � ����1, ���

�����������

�
1

�� 1

��1�

��1

��1���1��� ,����1 � � � � � ��� � � � � � ���1, �1 � � � � � ���.

Proposition 23.2: For every � in � define the linear operators ���� and �����
on the domain of all finite particle vectors in ����� by putting

����� � 0, ������ ��� �
	
���

��1���,

������ � �, ������� ��� �
	
�� 1�����, � � 1, 2, � � �

where ����� and �����
� are as in Proposition 23.1. Then


��������� � ����������� � ��, ���

for every finite particle vector � in �����.
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Proof: By definitions and Proposition 23.1

������1 � � � � � �� �
�
�� 1� � �1 � � � � � ��,

����������1 � � � � � �� � ��, ���1 � � � � � ��

�

��

��1

��1����,���� � �1 � � � � � ��� � � � � � ��,

�23.1�

�����1 � � � � � �� � ��
1
2

��

��1

��1���1��,����1 � � � � � ��� � � � � � ��,

����������1 � � � � � �� �

��

��1

��1���1��,���� � �1 � � � � � ��� � � � � � ��.

�23.2�
Adding (23.1) and (23.2) we obtain the required result.

Proposition 23.3: In the fermion Fock space ����� there exists a unique family
�����, ������� 	 �
 of bounded operators satisfying the following conditions:

(i) ����� � 0, ������ � �,� being the vacuum and � a 1-particle vector;

(ii) �����1�� � ���� � ��
1
2
��

��1��1���1��, ����1�� � ������� � ����, ������1�
� � ���� � ���1�1�2���1�� � ���� for all �� 	 �, 1 � � � �, � � 1, 2, � � � ;

(iii) ����� � ����� for all � in �.

Proof: First define ���� and ����� on the dense linear manifold �0
���� of all

finite particle vectors in ����� through Proposition 23.2. By Proposition 23.1,
���� and ����� are adjoint to each other on �0

����. From Proposition 23.2 we
have for any � 	 �0

����

�������2 � ��������2 � ��, ��������� � �����������
� ���2���2.

In particular,

������� � ��� ���, �������� � ��� ���,� 	 �0
����.

Hence we can and do extend ���� and ����� uniquely to bounded operators on
����� and denote them by the same symbols so that ������ � ���, ������� �
���. The rest is immediate.

Proposition 23.4: The operators ���� and ����� defined by Proposition 25.3
satisfy the following:

(i) �������� � �������� � 0, ���������� � ���������� � 0,
��������� � ��������� � ��, �� for all �, � 	 �;

(ii) For any � 	 ���� its second quantization ���� in ����� satisfies
�������������1 � ����� for all � 	 �;
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(iii) The set ��, ����1� � � � �
��������� � �, 1 � � � �,� � 1, 2, � � �� is total in

�����;

(iv) If � � ��������, ����� � ����� , ������ � ������ for all � in � then
� is a scalar multiple of the identity.

Proof: By (i) and (ii) in Proposition 23.3 the vectors ������������������������
and ����������� � ������������1 � � � � ��� are respectively scalar multiples of
� � � � � � � and �� � � � � � �� � �1 � � � � � �� which vanish. The density
of finite particle vectors and the boundedness of the operators ����� imply the
second relation in (i). The first relation in (i) follows from the second by taking
adjoints. The third relation in (i) follows from Proposition 23.2. Since ����� � �
and �����1 � � � � � �� � ��1 � � � � � ��� for � in ���� we obtain (ii) from
Proposition 23.3. (iii) is just a restatement of the fact that finite particle vectors
are dense in �����. We now prove (iv). For any �1, � � � ,�� in � we have

�����1� � � � �
������,��	 � �����2� � � � �

������, ���1���	

� �����2� � � � �
������,����1��	 � 0.

In other words �� is orthogonal to every �-particle vector for � 
 1. Hence there
exists a scalar 	 such that �� � 	�. Now

�����1� � � � �
������ � ����1� � � � �

�������

� 	����1� � � � �
������

and (iv) follows from (iii).

The operators �����, ���� defined by Proposition 23.3 are respectively called
the fermion creation and annihilation operators associated with �. The relations (i)
in Proposition 23.4 are called the canonical anticommutation relations or CAR. It
is instructive to compare CCR, CAR and the relations satisfied by the free creation
and annihilation operators described in Exercise 20.24 and explore the connections
between them. (See Example 25.18, Exercise 25.35.)

Exercise 23.5: Suppose 
���, 
����,� � � are bounded operators in a Hilbert
space �� such that 
���� � 
���� and the map � � 
���� is linear. Let the
following conditions be fulfilled.

(i) 
���
��� � 
���
��� � 0,

(ii) There exists a unit vector �� � �� such that 
����� � 0 for all � and the set
���, 
���1� � � � 


���������� � �, 1 � � � �,� � 1, 2, � � �� is total in ��.

Then there exists a unitary isomorphism � : �� � ����� such that � �� �
�, � 
���1� � � � 


������� � ����1� � � � �
������ for all �� � �, 1 � � � �,

� � 1, 2, � � � and � 
���� �1 � ���� for all � � �. (Hint: Use Proposition 7.2.)
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Exercise 23.6: Let ���� � ������� � �����, ���� � ���� � ����� in �����.
Then ���� and ���� are selfadjoint operators satisfying the relations:

�������� � �������� � 2Re��, ��,

�������� � �������� � 2Re��, ��,

�������� � �������� � 2 Im��, ��,

�������������1 � ���� for all �, � � �.

In particular, ����2 � ����2 � ���2. In the vacuum state as well as any pure
�-particle state of the form ��1 � 	 	 	 ����

�1��1 � 	 	 	 ���� the observables ����
and ���� assume the values 
��� with equal probability.

Exercise 23.7: Let �� � ����, 0 �� �� � � for each 	 � � be such that

� 2
�
� 1, ���� � ���� for all 
, 	

and

���� �

�
�� � 2�� if 
 � 	,
��� if 
 � 	.

Then ���,�� � ��� � 0 and ���� is a non-decreasing function of 	. Define

�� � �����������

where ���� is as in Exercise 23.6. Then ��� 	 � �� is a commuting family of
observables satisfying the relations:

�2
�
� ����

2,

��,��1��2 	 	 	��2��� � ���1�
2���3�

2 	 	 	 ���2��1�
2,

��,��1��2 	 	 	��2��1�� � 0

for all 	1  	2  	 	 	  	2��1, � � 0, 1, 2, � � �
The distribution of the family �����

�1��	 � �� in the vacuum state � is the
same as that of a Markov process ���	 � �� with state space �1,�1�,� ��� �
1� � � ��� � �1� � 1

2 for all 	 and the transition probability matrix

� �
, 	� �
1
2

�
1� ���� ����

�1 1� ���� ����
�1

1� ���� ����
�1 1� ���� ����

�1

�
, 
  	.

We can realise the process ��� 	 � �� as

�� �

�
1 if �� is even,

�1 if �� is odd

where ���	 � �� is a Poisson process with �0 � 0 or 1 with probability 1
2 each

and �� � �� has Poisson distribution with mean log ���� � log ���� for all 
  	.
(Compare with Exercise 21.15.)

As a special case one has the following example: Choose � : ��� � ����,
an �� valued observable satisfying the condition ���	�� � 0 for every 	. Let � �
� be such that �� � ���0, 		�� �� 0 for each 	. Define �� � ����0, 		�� ���	,���.
Then the required conditions of the exercise are fulfilled.
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Example 23.8: Let � be any set and let ���, ��, �, � � � be a positive
definite kernel with ���,�� � 1 for all �. Using Proposition 15.4 choose a map
� : � � � when � is a Hilbert space and ���, �� � �����, ����� for all �, �.
Choose �� � ������� where ���� is as in Exercise 23.6. Since ���� is a unit vector
�2
� � 1 and hence �� is a spin observable, i.e., �� assumes only the values �1. In

the vacuum state � of �����, �� assumes the values �1 with equal probability
and the covariance between �� and �� is ���, ��. Thus an arbitrary correlation
kernel ���, �� in any set � can be realised as the correlation kernel of a family
of spin observables. See Section 5, Proposition 5.3, 5.5.

Exercise 23.9: Suppose ��	�,���	�, 	 � � are bounded operators in a Hilbert
space �� such that ���	� � ��	�� and the following conditions are fulfilled:

(i) The map 	� ���	� is linear;

(ii) ��	������ � �	, �� for all 	, � � �;

(iii) There exists a unit vector �� � �� such that ��	��� � 0 for all 	 and the set
���,���	1� � � ��

��	�����	� � �, 1 	 
 	 �,� � 1, 2, � � �
 is total in ��.

Then there exists a unitary isomorphism � : �� � ������ such that � �� �

�,����	1� � � ��
��	���� � ��	1� � � � 

��	��� for all 	� � �, 1 	 
 	 �,
� � 1, 2, � � � where ������ and ���� are as in Exercise 20.24.

Notes
This is a small part of the theory of second quantization and the literature cited at
the end of Section 20 covers it.
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