
Chapter II

Diffusion Processes and their
Transformations

This chapter is devoted to a brief exposition on the theory of diffusion
processes in order to fix definitions and notations which will be necessary in
the following chapters.  Moreover, transformations of diffusion processes by
means of multiplicative functionals, a renormalization of Kac's semi-groups,
and Feller's one-dimensional diffusion processes will be explained.

2.1.  Time-Homogeneous Diffusion Processes

Let us denote by A an elliptic differential operator

(2.1) A = 1
2

 Δ + b(x).∇.

In this monograph Δ denotes the Laplace-Beltrami operator1 

(2.2) Δ = 1
σ2(x)

 ∂
∂x i

 ( σ2(x)  ( σTσ(x))ij
 

∂
∂x j

 ),

unless otherwise stated, where σTσ(x) is a positive definite diffusion matrix,
σ2(x) = | (σTσ(x))ij |, and b(x) denotes a drift coefficient. Moreover, let us
assume the existence of a unique fundamental solution pt(x, y), for t > 0 and
x, y ∈ Rd, of the diffusion equation 

(2.3) ∂p
∂t

 (t, x) = A p(t, x).

1 This is for convenience to discuss duality in the following chapters, but it is not absolutely
necessary
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14 Chapter II:  Diffusion Processes and their Transformations

It is well known that there exists such a fundamental solution pt(x, y) of
the diffusion equation (2.3) if ∂2(σTσ(x))i j/∂xk∂x h and ∂b i(x)/∂xk are locally
uniformly Hölder continuous.2  

In terms of the fundamental solution pt(x, y) we define a transition
probability Pt(x, B) through

                  Pt(x, B) = pt(x, y)1B(y)dy,   for  t > 0,

                              = δx(B),                    for  t = 0,

where δx(B) denotes a point measure at x, and pt(x, y) will be called the
transition probability density.  In this chapter we assume that a transition
probability density pt(x, y) is given.  The transition probability satisfies the
Chapman-Kolmogoroff equation

Ps + t(x, B) = Ps (x, dy)Pt(y, B),   for  s, t ≥ 0,

and the normality condition

P t(x, Rd) = 1.

For a given initial distribution μ and a transition probability Pt(x, B),
following Kolmogoroff (1931, 33), we can construct a probability measure
on the space Ω = C([0, ∞), Rd) of Rd-valued continuous functions by means of
finite dimensional distributions:

(2.4)     Pμ[ f(X0, Xt1, ... , Xtn - 1, Xtn 
)]

= μ(dx0)Pt1(x0, dx1)Pt2 - t1(x1, dx2) ... 

                                  ... Ptn - tn - 1(xn - 1, dxn ) f(x0, ... , xn),

in terms of transition probabilities Pt(x, dy), where 0 = t0 < t1 < ... < tn , and
f is any bounded measurable function on the product space (Rd)n + 1.3

2 Cf. e.g., S. Ito (1957), Friedman (1964), Dynkin (1965)
3 In general the diffusion coefficient may degenerate, in which case there is no transition 

density.  This happens when space-time processes will be considered
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For  ω ∈ Ω  we denote

(2.5) Xt(ω) = X(t, ω) = ω(t).

We call {Xt, Pμ} a diffusion process with the initial distribution  μ  and the
transition probability density pt(x, y).  The space Ω = C([0, ∞), Rd) is called
the "path space" and ω  (t) a (sample) path of the diffusion process.  

The probability measure  Pμ  is defined first on the product space
(Rd)[0, ∞) through the formula (2.4) and then Kolmogoroff's continuity
theorem is applied, in order to restrict it on Ω = C([0, ∞), Rd):

Kolmogoroff's continuity Theorem.  Let {Xt, P} be a stochastic
process.  If there are positive constants α, β, and c such that

P[ | Xt - Xs |α ] ≤ c | t - s |1 + β,   for any   s, t ∈ [a, b],

then there exists a continuous modification of the process Xt, t ∈ [a, b].4

By  P[ f ]  we denote the expectation of  f  with respect to a measure P
(we avoid the notation E[ f ] for the expectation), and by P[ f | F] the
conditional expectation of  f  under a condition of a σ-field  F. 

Since the fundamental solution satisfies

pt(x, y) ≤ κ t - d /2
 e-λ | x - y |2/t

in any finite time interval with positive constants κ and λ,5 we have

              Pμ[ | Xt - Xs |4 ]  ≤ κ x 4 (t - s)- d /2
 e-λ | x |2/(t - s) dx

                                    = c | t - s |2

with a positive constant c. 

Therefore, the probability measure Pμ can be defined on the space
Ω = C([0, ∞), Rd) by Kolmogoroff's continuity theorem.

4 Cf., e.g. Bauer (1981, 90, 91), Dynkin (1965), or any other standard textbooks on 
Markov and diffusion processes

5 Cf., e.g. Friedman (1964), Dynkin (1965)
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Formula (2.4) yields immediately the Markov property of the diffusion
process {Xt, Pμ} in the following practical form: with Px = Pδx

(2.6) Px[ G f(Xt + s) ] = Px[ G PXt[ f(Xs)]],

for a bounded measurable function  f  on Rd and G = fk(Xtk - 1)∏
k = 1

n
, where fk

are bounded measurable functions on  Rd, tk - 1 ≤ t, and k ≤ n.

With the help of the monotone class lemma it is easy to see that the
Markov property (2.6) holds for any bounded Ft measurable function G on
Ω, where Ft denotes the standard σ-field generated by {Xr: ∀ r ≤ t}.

The Markov property (2.6) is often written in a more general form in
terms of the conditional expectation

(2.6') Pμ[ F°θt | Ft ]  = PXt[ F ],    Pμ - a.e.,

where F is any bounded measurable function on Ω, and θt is the shift
operator defined by θtω(s) = ω(t + s) for ω ∈ Ω.  This can be shown easily
from (2.6) with the help of the monotone class lemma.

Formula (2.6) of the Markov property implies immediately the semi-
group property  

Ps + t f = Ps Pt f ,   s, t ≥ 0,

of the system of non-negative operators {Pt : t ≥ 0} defined through

Pt f(x) = Px[ f(Xt)].

The semi-group {Pt : t ≥ 0} is defined on the space of bounded measurable
functions.  In many cases it can be considered as a semi-group on the space
of bounded continuous functions.  The semi-group description of diffusion
processes will be needed in Chapter 3, when duality of diffusion equations
will be discussed in connection with time reversal of diffusion processes.  

If we are given a normalized semi-group  {Pt : t ≥ 0}  of non-negative
linear operators on the space of, say, bounded continuous functions, we can
get a transition probability Pt(x, B) with the help of the Riesz-Markov
theorem (cf. e.g., Yosida (1965)).  In terms of the transition probability a
Markov process can be constructed.  The method by means of semi-groups is
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a well known powerful analytic tool and often adopted to construct Markov
processes. However, this analytic semi-group method is really not well-
suitable to handle singular diffusion processes which will be treated in later
chapters, and hence we will not use it in this monograph to construct
(singular) diffusion processes.

The diffusion process such as {Xt, Pμ} explained above will be a basic
(unperturbed) stochastic motion, which is our starting point but not our main
interest.  There exist always such diffusion processes under mild regularity
conditions on diffusion and drift coefficients as explained (see also Section
2.4).  Therefore, it is harmless to assume the existence of the basic diffusion
process, relying on standard textbooks on diffusion equations and diffusion
processes and we will do so.  Then, we shall apply "perturbation" to the
basic diffusion processes.  Severely perturbed diffusion processes will be our
main concern in this monograph.  Since the perturbation which will be
treated is necessarily singular, as will be seen, the existence of perturbed
diffusion processes is no longer evident and cannot be found in standard
textbooks.  Chapters 5 and 6 will be devoted to the existence problem of such
singular diffusion processes.

2.2.  Time-Inhomogeneous Diffusion Processes  6

If time dependent diffusion and drift coefficients  (σTσ)ij(t, x)  and  b(t, x),
respectively, are given, we consider a time-inhomogeneous diffusion
equation 

(2.7) L p(t, x) = 0,   (t, x) ∈ (a, b) × Rd,

where - ∞ < a < b < ∞, and L  is a time-dependent parabolic differential
operator 

(2.8) L = ∂
∂t

 + 1
2

 ( σTσ(t, x))ij ∂
∂x i

 ∂
∂x j

 + b(t, x)i 
∂

∂x i
 ,

or as a special case

(2.8') L = ∂
∂t

 + 1
2

 Δ + b(t, x).∇,

where Δ denotes the Laplace-Beltrami operator.
6 Cf., e.g. Chapter 1 of Gihman-Skorohod (1975) , Vol. II
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If  ∂(σTσ(t, x))ij/ ∂t, ∂2(σTσ(t, x))ij/ ∂xk∂x h, and ∂b
i
(t, x)/ ∂xk are locally

uniformly Hölder continuous, then there exists a unique fundamental solution
p(s, x ; t, y) to the parabolic differential equation (2.7).7  We consider a
time-inhomogeneous diffusion process {Xt, t ∈ [a, b], Pμ} characterized by
the fundamental solution  p(s, x ; t, y)  in terms of the finite dimensional
distributions: 

(2.9)    Pμ[ f(Xa, Xt1, ... , Xtn - 1, Xb)] 

             = μ(dx0)p(a, x0;t1, x1)dx1p(t1, x1;t2, x2)dx2 ...

                                ... p(tn -1, xn -1;b, xn)dxn f(x0, x1, ... , xn),

where a < t1 < ... < tn - 1 < b,  f(x0, x1, . . .  ,  xn)  is any bounded measurable
function on the product space (Rd)n + 1, and  Pμ  is a probability measure on
the path space Ω = C([a, b], Rd).  Since the fundamental solution satisfies 

p(s, x;t, y) ≤ κ (t - s)- d /2
 e-λ | x - y |2/(t - s)

 in any finite time interval with positive constants κ and λ, 8 we have

Pμ[ | Xt - Xs |4 ] ≤ c | t - s |2,   for any   s, t ∈ [a, b],

with a positive constant c, and hence with the help of Kolmogoroff's
continuity theorem, one can define Pμ  on the path space Ω = C([a, b], Rd)
through formula (2.9).9  

It is clear by the definition that a time-homogeneous diffusion process is
a special case of time-inhomogeneous diffusion processes.  However, when
we treat a time-inhomogeneous diffusion process {Xt, t ∈ [a, b], Pμ}, we
employ a standard trick:  Instead of the process Xt on Rd we consider a
space-time diffusion process (t, Xt) on an enlarged (space-time) state space
[a, b] × Rd. 

It is well known that space-time diffusion processes are t ime-
homogeneous with transition probabilities

7 Cf., e.g. S. Ito (1957), Friedman (1964)
8 Cf., e.g. Friedman (1964), Dynkin (1965)
9 We can define a diffusion process in terms of solutions of a stochastic differential 

equation. See the following sections
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(2.10) Pr((s, x), d(t, y)) = p(s, x; t, y)δs + r(dt)dy,

where δr(dt) denotes the point measure at r, and hence we can apply the
theory of time-homogeneous processes to space-time processes. 

Let us denote by Fs
t
 the standard σ-field generated by the random

variables  {Xr: s ≤ ∀ r ≤ t}.  With the help of the monotone class lemma, we

define P(s, x)[F] for any bounded Fs
b
-measurable function F through (2.9),

replacing μ by δx, and a by s, and requiring s < t1 < ... < tn - 1 < b.

The time inhomogeneous Markov property : 

(2.11) Pμ[ F  | Fa
s
 ] = P(s, Xs)[ F ],  Pμ - a.e.,

follows from (2.9) with the help of the monotone class lemma, where F is

any bounded (or non-negative) Fs
b
-measurable function on Ω.  Formula

(2.11) can be regarded as a space-time version of the time-homogeneous
Markov property (2.6) or (2.6').  We apply the Markov property (2.11)
often in the following practical form

P(r, x)[ G f(t, Xt) ] = P(r, x)[ G P(s, Xs)[ f(t, Xt)]],

where a ≤ r ≤ s ≤ t ≤ b,  f is a bounded measurable function on [a, b] × Rd,
and G a bounded Fr

s
-measurable function on Ω.

The semi-group of a space-time process can be defined with

Pt - s f((s, x)) = P(s, x)[ f(t, Xt)],   if   t - s ≥ 0,

for any bounded measurable functions f on [a, b] × Rd.  The semi-group
property follows immediately from the Markov property (2.11).

2.3.  Brownian Motions

The most typical and fundamental time-homogeneous diffusion processes are
d-dimensional Brownian motions,10 which we can define, applying
(2.4), with the Brownian transition probability density

10 Cf. Einstein (1905, b)
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(2.12) pt(x, y) = (2π t)-d/2 exp(- 
|| x - y ||2

2t
),

which is the fundamental solution of the diffusion equation (2.3) with σ = δi j

and  b ≡  0. 

An explicit construction of one-dimensional Brownian motion is due to
P. Lévy :11  let {g0, gk, 2-n : odd k < 2-n} be a Gaussian family of random
variables on a probability space {W, F, P}, and by {f0, fk, 2-n : odd k < 2-n}
denote the family of Schauder functions

fk, 2-n(t) = hk, 2-n(s)
0

t

ds,

where the system of functions { hk, 2-n(s) } is defined by

hk, 2-n(s) = 2(n - 1)/2,    (k - 1)2-n ≤ s < k 2-n

               = - 2(n - 1)/2,    k 2-n ≤ s < (k + 1)2-n

                                = 0,    otherwise.

The family of Schauder functions gives a collection of little tents, though
superposition of which with independent Gaussian random coefficients g's,
we define

(2.13) B(t) = g0 f0(t) + ∑
n = 1

∞

∑
odd k < 2n

∞
gk, 2-n fk, 2-n(t).

It is not difficult to show12 that this converges uniformly in t ∈ [0, 1], and
has the distribution density

P[ B(t) ∈ dx ] = (2πt)-1/2 exp(- 
| x |2

2t
) dx.

Therefore, B(t) is a one-dimensional Brownian motion starting from the
origin.  It is routine to extend the time parameter from [0, 1] to [0, ∞) and
for arbitrary starting points.  

11 N. Wiener adopted another basis system and constructed Brownian motions (Wiener 
measure), cf. Itô-Nisio (1968)

12 Cf. McKean (1969)
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A d-dimensional Brownian motion can be obtained by 

B(t) = (B1(t), ... , Bd (t)),

where Bi(t)'s are independent copies of B(t).  This is a probabilists' favorite
construction of Brownian motions, since the continuity of the process is
evident by definition; formula (2.13) shows clearly that Brownian motions
are sums of independent random increments, and finally the method does not
depend too heavily on analysis.  

There is another method of constructing a Brownian motion as a limit of
Markov chains with an appropriate scaling.  This method plays an important
role in diffusion approximations, but we will not discuss it in this
monograph.

Remark. For Brownian motions there are many excellent textbooks and
monographs which have different characters.  One can refer to e.g. Revuz-
Yor (1991) and the references given there.

2.4.  Stochastic Differential Equations

If diffusion and drift coefficients are smooth or merely Lipschitz continuous,
we apply Itô's theory of stochastic differential equations.13  When we handle
the parabolic differential operator L with the Laplace-Beltrami operator Δ
given at (2.8'), we rewrite it as

(2.14) L = ∂
∂t

 + 1
2

 ( σTσ(x))ij ∂
∂x i

 ∂
∂x j

 + b(t, x)i 
∂

∂x i
 ,

as appears in Itô's formula, where

b(t, x) = b(t, x) + bσ(x),

bσ(x)i = 1
2

 1
σ2(x)

 ∂
∂x j

 (σTσ(x)ij
 σ2(x)).

By {Bt} we denote a d-dimensional Brownian motion defined on a
probability space {W, F, P}.  Then we consider the stochastic differential
equation (SDE)

13   For stochastic differential equations cf., e.g., McKean (1969), Ikeda-Watanabe 
(1981, 89), Chung-Williams (1983, 88)
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(2.15)  Xt = Xa + σ
a

t

(r, Xr)dBr + b
a

t

(r, Xr) dr.

Let us assume, for simplicity, that the initial value Xa is square integrable
and independent of the Brownian motion Br.  If σ(t, x) and b(t, x) are
Lipschitz continuous and satisfy a growth condition

|| σ(t, x) ||2 + || b(t, x) ||2 ≤ c1(1 + || x ||2),

then there exists a pathwise unique solution Xt which is square integrable. 

In terms of the solution we can define a diffusion process {Xt, Pμ}
corresponding to the parabolic differential operator L given in (2.14) or
more generally L  given in (2.8).  Solutions of the SDE (2.15) can be
obtained through the standard successive approximation as follows:  To
demonstrate the standard way we consider (2.15) simply in one-dimension
and assume σ(t, x) and b(t, x) are bounded in the following.

  By the assumption σ(t, x) and b(t, x) are Lipschitz continuous:

| σ(t, x) - σ(t, y) |,  | b(t, x) - b(t, y) | ≤ co| x - y |.

A solution can be obtained through successive approximation.  We set 

     Xt
(0) = Xa,

     Xt
(n) = Xa + σ

a

t

(r, Xr
(n - 1)) dBr + b

a

t

(r, Xr
(n - 1)) dr,  for  n ≥ 1.

First of all it is clear that

P[| Xt
(1) - Xt

(0)
 |2] ≤ c,  for  t ∈ [a, b].

For arbitrary n > 1, we have

(2.16) P[| Xt
(n) - Xt

(n - 1)
 |2]  ≤ cK n - 1 t n - 1

(n - 1)!
,

which can be verified through induction as follows:



2.4  Stochastic Differential Equations 23

P[| Xt
(n + 1) - Xt

(n)
 |2]  ≤ 2 P[ | {

a

t

σ(s, Xs
(n)) - σ(s, Xs

(n - 1))}dBs |2]

                                 + 2 P[ | {
a

t

b(s, Xs
(n)) - b(s, Xs

(n - 1))}ds |2],

where we have applied an inequality (a + b)2 ≤ 2(a2 + b 2).  The first integral
on the right-hand side is dominated by

 2(co)
2

 P[ |
a

t

 Xs
(n) - Xs

(n - 1) |2ds],

because of the Lipschitz continuity of σ(t, x), and the second one by

2 P[ |
a

t

 b(s, Xs
(n)) - b(s, Xs

(n - 1)) |2ds ds
a

t

]

    ≤ 2(co)
2(b - a)P[ |

a

t

 Xs
(n) - Xs

(n - 1) |2ds],

where we have applied Schwarz's inequality and the Lipschitz continuity of
b(t, x).  Thus we have shown, with a constant K > 0,

P[| Xt
(n + 1) - Xt

(n)
 |2]  ≤ KP[ |

a

t

 Xs
(n) - Xs

(n - 1) |2ds].

A substitution of (2.16) on the right hand side verifies (2.16) for any n.

Therefore, we have

P[ sup t ∈ [a, b] | Xt
(n) - Xt

(n - 1)
 |2 ]  ≤ const. 

(K(b - a))n - 1

(n - 1)!
,

and hence

P[ sup t ∈ [a, b] | Xt
(n) - Xt

(n - 1)
 |2 > 1

2n - 1
 ]  ≤ const. 

(K(b - a))n - 1

(n - 1)!
.
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With the help of the Borel-Cantelli lemma, Xt
(n) converges uniformly in

t ∈ [a, b], P-a.e. and also in L 2.  Moreover,

Xt = lim n →  ∞ Xt
(n)

satisfies the SDE (2.15).

The uniqueness of solutions follows immediately from

Gronwall's Lemma .  Let A(t) be a non-negative integrable function
on [a, b] satisfying

A(t) ≤ κ  A(s)ds
a

t

 + C(t),   κ > 0,

where C(t) is also integrable.  Then

A(t) ≤ κ  eκ (t - s)C(s)ds
a

t

 + C(t).

In particular if C(t) is non-negative and non-decreasing, then

A(t) ≤ eκ(t - a)C(t).

Proof is a good exercise (apply iteration).14

Now let Xt
1 and Xt

2 be solutions of equation (2.15) and set

Zt = | Xt
1 - Xt

2
 |2.

Then, P[Zt] < ∞ and

P[Zt] ≤ K P[Zs]
a

t

ds.

Therefore, by Gronwall's lemma P[Zt] = 0, for t ∈ [a, b], which proves the
uniqueness of solutions.

 Applying Itô's formula, we will show that the diffusion process {Xt, P}
is determined by the parabolic differential operator L : 

14 Cf. e.g., Gikhman-Skorokhod (1969), p. 393, or Revuz-Yor (1991), p. 499
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Let us denote the i-th component of Xt by Xt
i.  Then, the random

variable Yt = f(t, Xt
1, ... , Xt

d
 ), for any bounded  f ∈ C 2([a, b] × Rd), satisfies

(2.17) dYt = ∂t f dt + (∑
i = 1

d
∂i f ).dXt

i + 1
2

 (∑
i, j = 1

d
∂i ∂j f ).dXt

idXt
j,

which is called Itô's formula, where  ∂t = ∂/∂t, ∂i = ∂/∂xi,

dXt
i = σj

i dBt
j + b

i
 dt,

dBt
i
 dBt

j = δ i j
 dt ,   and    dt dBt

i = 0.

Therefore, we get

(2.18)     f(t, Xt) - f(s, Xs) - L f(r, Xr)dr
s

t

 = ∑
i, j = 1

d
(

s

t

σj
i ∂i f )(r, Xr)dBr

j
 ,

the right-hand side of which is a martingale as a sum of Itô's stochastic
integrals with respect to Brownian motions, the expectation of which
vanishes consequently.  Let t = b, s = a, and let  f  be any C ∞-function with
a compact support in (a, b) × Rd, and take the expectation of both sides of
(2.18).  Then, except for the third term on the left-hand side, all terms
vanish, and hence

P[L f(t, Xt)]dt
a

b

 = 0.

Therefore, denoting by  μt(x), the probability density of the diffusion
process  Xt, we have

(2.19) μt
(a, b) × Rd

(x)L f(t, x)dtdx = 0,

namely, μt(x) is a weak solution of

(2.20) L°μ = 0,

where L° is the formal adjoint of L .  When L of (2.14), which is the same
as (2.8') with the Laplace-Beltrami operator Δ, is handled, replace L° by
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(2.21) L°g = - 
∂g
∂t

 + 1
2

 Δg - 1
σ2

∇{ σ2  b(t, x)g}.

Let us denote by X the mapping from W to Ω = C([a, b], Rd) 

X  :  w → Xt(w),

and define a probability measure Pμ on Ω = C([a, b], Rd) by

Pμ = P°X -1.

In this way we get a diffusion process {Xt, Pμ} defined on the space of
continuous paths Ω = C([a, b], Rd).

Maruyama (1954) proved that the probability measure Pμ is absolutely
continuous with respect to the probability measure of a d-dimensional
Brownian motion defined on the space Ω = C([a, b], Rd), if the diffusion
coefficient is non-degenerate, 15 and hence the transition probability of the
diffusion process {Xt, Pμ} has a density function p(s, x;t, y).  This will be
called Maruyama's absolute continuity theorem.

Assume the diffusion coefficient is non-degenerate.  Then, the equation
(2.19) or (2.20) implies that the transition probability density p(s, x;t, y) of
the diffusion process Xt satisfies

(2.22) Lp = 0,

weakly, as we have wanted to show.

Remark. In later chapters, diffusion process with singular drift will be
treated. Truncating and approximating drift coefficients, we can apply the
SDE method even in such singular cases.  However, since this approximation
procedure makes things complicated, we will not do it.  Instead we will
construct singular diffusion process in other ways, cf. Chapters 5 and 6. In
some cases the truncation method is dangerous and must be handled with
great care; see examples in Section 7.9.

Remark.  Based on formula (2.18) a method of the so-called martingale
problem was developed by Stroock-Varadhan (1970), which allows diffusion

15 This is known as Girsanov's theorem (1960), being not aware of Maruyama's paper. 
See the next section
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and drift coefficients merely to be continuous.  This martingale method
combines SDE and semi-group methods and generalizes both.  For this we
refer to Stroock-Varadhan (1970).

Remark. For a detailed treatment of stochastic differential equations
one can refer to e.g. McKean (1969), Liptser-Shiryayev (1977) and Ikeda-
Watanabe (1981, 89).

2.5.  Transformation by a Multiplicative Functional

In the theory of diffusion processes a transformation of probability measures
in terms of multiplicative functionals is a strong tool in perturbing a given
diffusion process into a new one.

Let  {(t, Xt), P(s, x), (s, x) ∈ [a, b] × Rd}  be a space-time (unperturbed)
basic diffusion process.16  

A functional  Ms
t(ω), a ≤ s ≤ t ≤ b,  is a multiplicative functional, if it is

Fs
t
-measurable and satisfies the multiplicativity 

(2.23) Mr
t(ω) = Mr

s(ω)Ms
t(ω),   for  r ≤ s ≤ t.17

For simplicity we assume Ms
t(ω) is continuous in t for fixed s.  

If a multiplicative functional satisfies in addition the normality
condition

(2.24) P(s, x)[Ms
t] = 1,

then it will be called a normal multiplicative functional, or martingale
multiplicative functional, since it turns out to be a martingale; in fact 

               P(s, x)[Ms
t
 | Fs

r
]  = P(s, x)[Ms

rMr
t
 | Fs

r
] = Ms

rP(s, x)[Mr
t
 | Fs

r
]

                                   = Ms
rP(r, Xr)[Mr

t]

                                   = Ms
r,       P(s, x) - a.e.,

16 We consider a family of probability measures P(s, x) with arbitrary starting points (s, x)
17 In general the equality may have an exceptional set of measure zero, cf Meyer 

(1962, 63), Blumenthal-Getoor (1968), Sharpe (1988)
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for s < r < t, where we have applied at the third and fourth equalities the
Markov property (2.11) and normality condition (2.24), respectively.

Let us define a system of new probability measures  Q(s, x)  by

(2.25) Q(s, x)[ F ] =  P(s, x)[ Ms
b

 F ],

for any bounded Fs
b
-measurable function F, namely, Ms

b is a density of the
probability measure Q(s, x) with respect to the (unperturbed) probability
measure  P(s, x).  We will denote Q(s, x) = Ms

b
 P(s, x) (instead of the standard

notation dQ(s, x) = Ms
bdP(s, x)).

In this way we can obtain a new space-time diffusion process {(t, Xt),
Q(s, x), (s, x) ∈ [a, b] × Rd}.  This is the so-called transformation of a space-

time diffusion process {(t, Xt), P(s, x), (s, x) ∈ [a, b] × Rd} by a multiplicative
functional Ms

t.  The Markov property of the transformed process is
immediate: For any bounded Fs

r
-measurable G  on Ω and bounded

measurable  f  on  [a, b] × Rd,

(2.26)       Q(s, x)[G f(t, Xt)] = P(s, x)[Ms
b

 G f(t, Xt) ]

                = P(s, x)[Ms
rG P(s, x)[Mr

b f(t, Xt) | Fs
r
]]

             = P(s, x)[Ms
rG P(r, Xr)[Mr

b f(t, Xt) ]]

       = Q(s, x)[G Q(r, Xr)[ f(t, Xt) ]].

The transformed space-time process {(t, Xt), Q(s, x), (s, x) ∈ [a, b] × Rd} also
inherits the strong Markov property of the unperturbed space-time diffusion
process {(t, Xt), P(s, x), (s, x) ∈ [a, b] × Rd}, since one can apply the same
manipulation as in (2.26) for random stopping (or optional) times.18

Thus we have shown

T h e o r e m  2.1.  Let  {(t, Xt), P(s, x), (s, x) ∈ [a, b] × Rd} be a space-time
diffusion process.  If a continuous multiplicative functional  Ms

t(ω)
satisfies normality condition (2.24), then the system of transformed
probability measures Q(s, x) = Ms

b
 P(s, x) defines a new ( perturbed ) space-

time diffusion process {(t, Xt), Q(s, x), (s, x) ∈ [a, b] × Rd}.  
18 Cf. Meyer (1962, 63), Blumenthal-Getoor (1968), Sharpe (1988)
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A typical example of multiplicative functionals is Kac's multiplicative
functional

ms
t = exp( c

s

t

(r, Xr)dr),

where c(r, x) is a bounded measurable function.  The multiplicativity (2.23)
of the functional is immediate.  However, the Kac multiplicative functional
does not satisfy normality condition (2.24), and hence Theorem 2.1 cannot
be applied. To overcome the difficulty, we will renormalize Kac's
functionals in Section 2.7.  The renormalization of Kac's multiplicative
functionals will play an important role in this monograph (see Chapters 5
and 6).

Another well-known multiplicative functional for a d-dimensional
Brownian motion  Bt  is the Maruyama-Girsanov density

(2.27) Ms
t = exp( b

s

t

(r, Br).dBr - 1
2

 ||b
s

t

(r, Br)||
2dr),

(cf. Maruyama (1954), Girsanov (1960). See also Liptser-Shiryayev (1977),
Ikeda-Watanabe (1981, 89)).  If the vector function b(t, x) is bounded
measurable, then it is easy to see, applying Itô's formula, that the  Ms

t  in
(2.27) is well-defined and satisfies normality condition (2.24). 

The boundedness assumption on the drift coefficient  b(t, x)  is not
necessary, but for simplicity.  A well-known sufficient condition for the
normality is Novikov's condition19

(2.28) P(s, x)[exp( 1
2

 ||b
s

b

(r, Br)||
2dr)] < ∞.

This condition allows the drift vector b(t, x) to be singular to some extent.20

We will prove that the transformation in terms of the Maruyama-
Girsanov density (2.27) induces the drift term with b(t, x).  Therefore, it is
often called "drift transformation" or the "Maruyama-Girsanov
transformation".  Let us consider the case of one-dimensional Brownian
motion for simplicity, and assume normality condition (2.24).  

19 Cf., e.g. Liptser-Shiryayev (1977), Ikeda-Watanabe (1981, 89), Revuz-Yor (1991)
20 For interesting examples see Stummer (1990)
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For a proof we apply formulae of Itô's stochastic calculus:

(2.29) d(XtYt) = (dXt)Yt + Xt(dYt) +(dXt)(dYt),

(2.30) (dBt)
2 = dt    and    (dt)(dBt) = 0.

We apply formula (2.29) to 

Xt = f(t, Bt)   and   Yt = Ms
t = eα,

α = b
s

t

(r, Br)dBr - 1
2

 b
s

t

(r, Br)
2dr,

where  f  is any C ∞-function of compact support in (s, b) × R.

Since

dXt = ∂f
∂t

 dt + ∂f
∂x

 dBt + 1
2

 
∂2f
∂x2

 dt,    and    dYt = eα b(t, Bt)dBt,

we get

(2.31)    d(XtYt) = L f(t, Bt)eαdt + { f(t, Bt)b(t, Bt) + ∂f
∂x

(t, Bt)}eαdBt ,

because of Itô's formula (2.17) with (2.30), where 

L = ∂
∂t

  + 1
2

 
∂2

∂x2
 + b(t, x) 

∂
∂x

 .

Therefore, taking the expectation of both sides of (2.31) and integrating over
[s, b], since  f  is of compact support in (s, b) × R, we get

P(s, x)
s

b

[L f(t, Bt)Ms
t]dt = 0.

If we denote by  μt(x)  the probability density of  Bt, with respect to the
transformed probability measure  Q(s, x) = Ma

b
 P(s, x), then

(2.32) μt
(s, b) × R

(x) L f(t, x)dtdx = 0,
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namely, the diffusion process under the transformed probability measure
Q(s, x) = Ma

bP(s, x)  has an additional drift term b(t, x).

To extend the above arguments to higher dimensions is more or less
routine.21 

2.6.  Feynman-Kac Formula

Let {(t, Xt), P(s, x), (s, x) ∈ [a, b] × Rd} be the diffusion process determined by
the parabolic differential operator L  given in (2.8) and let c(t, x) be a
measurable function.  Then, the Feynman-Kac formula, which will be given
in (2.35), represents the solution u(s, x) of the diffusion equation 

(2.33) { ∂
∂s

 + 1
2

 ( σTσ(s, x))ij ∂
∂x i

 ∂
∂x j

 + b(s, x)i 
∂

∂x i
  + c(s, x)}u = 0,

with
u(t, x) = f(t, x), 

in terms of the diffusion process.  In (2.33), s ∈ (a, t) and t ∈ (a, b] is
arbitrary but fixed.  We assume in this section that c(s, x) and u(s, x) are
bounded.

If the function c(s, x) is bounded, there is no problem showing the
Feynman-Kac formula.  There are various ways of treating the formula:
purely analytically as perturbation, in terms of semi-group theory, or using
Itô's formula.  However, if c(s, x) is unbounded (or singular), there are
several points which must be carefully treated, and the advantage or
disadvantage of the three methods mentioned above will come out.  This will
be discussed later on.  

Let us assume the diffusion process Xr is given as a solution of the
stochastic differential equation

dXr = σ(r, Xr).dBr + b(r, Xr)dr,

where Br is a d-dimensional Brownian motion.22  Then, applying formulae
(2.29) and (2.30) of Itô's stochastic calculus to

21 Cf., e.g. Liptser-Shiryayev (1977), Ikeda-Watanabe (1981, 89)
22 If σ(t, x)  and  b(t, x) are bounded and Lipschitz continuous, then solutions exist



32 Chapter II:  Diffusion Processes and their Transformations

Zr = p (r, Xr),   Yr = eα,   α = c
s

r

(u, Xu)du,   for  r ∈ [s, t],

we have, after a routine manipulation using Itô's stochastic calculus,

(2.34) u(s, Xs) - f(t, Xt) exp( c
s

t

(r, Xr)dr) = a martingale,

because of (2.33), where the expectation of the right-hand side vanishes. 

Therefore, taking the expectation of both sides of (2.34), we get the
Feynman-Kac formula

(2.35) u(s, x) = P(s, x)[exp( c 

s

t

(r, Xr)dr) f(t, Xt)],   for  s ∈ (a, t).

Conversely, if we define a function u(s, x) by (2.35), it is easy to see that
u(s, x)  satisfies an integral equation

(2.36)   u(s, x) = Pt - s f(s, x) + P(s, x)
s

t

[c(r, Xr)u(r, Xr)]dr,   for  s ∈ (a, t),

where  Pt  denotes the semi-group of the unperturbed space-time diffusion
process {(t, Xt), P(s, x), (s, x) ∈ [a, b] × Rd}.  In fact, expanding Kac's
multiplicative functional in the right-hand side of (2.35) as

       exp( c
s

t

(r, Xr)dr) = 1 + ∑
k = 1

∞
1
k!

 ( c
s

t

(r, Xr)dr)k

                                 = 1 + c
s

t

(r, Xr)dr∑
k = 1

∞
1

(k - 1)!
 ( c

r

t

(u, Xu)du)k - 1;

taking the expectation and applying the Markov property, we have

P(s, x)[ c
s

t

(r, Xr)dr∑
k = 1

∞
1

(k - 1)!
 ( c

r

t

(τ, Xτ)dτ)k - 1 f(t, Xt)]

= P(s, x)
s

t

[c(r, Xr)u(r, Xr)]dr,
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and hence the right-hand side of (2.36). Therefore, the u(s, x) defined at
(2.35) satisfies equation (2.33) weakly.

If the function c(t, x) is not bounded, we shall see that the method of
applying Itô's formula explained above is not always best for the Feynman-
Kac formula.  This point will be discussed in Chapter 6.

Now let us adopt an analytic method: in this case we consider the integral
equation (2.36) instead of the diffusion equation (2.33).  A solution can be
constructed as follows:  Define successively

         u (0)(s, x) = Pt - s f(s, x) = P(s, x)[ f(t, Xt )],

         u (k)(s, x) = P(s, x)
s

t

[c(r, Xr)u (k - 1)(r, Xr)]dr,  for  k ≥ 1.

Then it is easy to see that

u(s, x) = u(k)∑
k = 0

∞
(s, x)

converges, is bounded, and satisfies equation (2.36).  Moreover we can show
easily by induction

u (k)(s, x) = P(s, x)[ 1
k!

 ( c
s

t

(r, Xr)dr)k f(t, Xt)].

Therefore, the solution u(s, x) has the expression of (2.35).  The uniqueness
of solutions of the integral equation (2.36) is easy to show, if c(t, x) is
bounded.  For uniqueness, see Lemma 6.1 and Section 6.5, in which the case
of singular c(t, x) will be treated.

2.7. Kac's Semi-Group and its Renormalization

Let {Xt, P(s, x); (s, x) ∈ [a, b] × Rd} be a basic (unperturbed) space-time
diffusion process and let c(t, x) be a bounded measurable function.23   

Kac's multiplicative functional is defined by
23 The boundedness assumption is just for simplicity, and will be removed in later 

sections
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(2.37) ms
t = exp( c

s

t

(r, Xr)dr),

which does not satisfy normality condition (2.24). 

In terms of Kac's multiplicative functional, we can define a new semi-
group  Pt - s

c
   by

(2.38) Pt - s
c

 f((s, x)) = P(s, x)[ms
t f(t, Xt)],

which is called Kac's semi-group.  

The semi-group property of {Pt - s
c

 } follows immediately from the
multiplicativity of Kac's functional and the Markov property of the basic
unperturbed process {Xt, P(s, x); (s, x) ∈ [a, b] × Rd}: 

Pr - s
c

 Pt - r
c

 f((s, x)) = P(s, x)[ms
r P(r, Xr)[mr

t f(t, Xt)]]

                                         = P(s, x)[ms
r mr

t f(t, Xt)]

                                         = Pt - s
c

 f((s, x)).

for a ≤ s ≤ r ≤ t ≤ b.

If the function c(t, x) is non-positive, then Pt - s
c

 1((s, x)) ≤ 1, and hence we
can construct a space-time diffusion process with killing on an extended
probability space such that its semi-group coincides with the semi-group
{Pt - s

c } defined by (2.38).  This is well known.24  However, if the function
c(t, x) takes both positive and negative values, one cannot construct a
diffusion process which has the semi-group {Pt - s

c }. 

In fact, when we define a probability measure applying the formula (2.9)
of finite dimensional distributions, we need a normalized, i.e., transition
probability.  The well-known problem with Kac's semi-group {Pt - s

c } is that
it is not normalized, i.e., it happens to be Pt - s

c 1 ≥ 1 (Pt - s
c 1 ≤ 1 causes no

trouble, as remarked above).  Therefore, one cannot apply formula (2.9) to
the transition function defined through the semi-group {Pt - s

c }.
Probabilistically the positive part of the function c(t, x) represents the
existence of "creation of particles", which is problematic.  We will encounter

24 Cf., e.g. Dynkin (1965), Blumenthal-Getoor (1968). However, the killed processes will 
not be employed in this monograph; instead, we will apply "renormalization"
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this problem later on in Chapters 3, 5 and 6.25

On the other hand, we can "comfortably" define measures  P(s, x)
c   with

creation and killing by

(2.39) P(s, x)
c [F] = P(s, x)[ms

b F],

where F  is any bounded Fs
b
-measurable function on Ω.  However, the

system of measures {P(s, x)
c , (s, x) ∈ [a, b] × Rd} does not define a Markov

process or a semi-group.  Nonetheless, through the renormalization of the
measure with creation and killing P(s, x)

c  we can get a Markov process as
follows.

Let us define

(2.40) ξ(s, x) = P(s, x)
c [1] = P(s, x)[ms

b].

Since c(t, x) is bounded, it is clear that

(2.41) 0 < ξ(s, x) < ∞.

With the function ξ(s, x) we define a system of renormal i zed
measures {P(s, x)} of {P(s, x)

c } by

(2.42) P(s, x)[F] = 1
ξ(s, x)

 P(s, x)
c [F].

Then, the renormalized measures define a new space-time diffusion
process {(t, Xt), P(s, x) : (s, x) ∈ [a, b] × Rd}, which will be called the
renormalized process.  Its semi-group  Pt - s f  as a space-time process is
given by

(2.43) Pt - s f((s, x)) = 1
ξ(s, x)

 P(s, x)[ e c
s
t (r, Xr) dr f(t, Xt)ξ(t, Xt)],

which is the ξ-transformation of Kac's semi-group Pt - s
c

  defined in (2.38),
namely,

Pt - s f((s, x)) = 1
ξ

 Pt - s
c

 ( f ξ )(s, x).

25 There are various ways to handle "creation of particles", introducing additional structures
and interpreting induced semi-groups, cf. Nagasawa (1969), Mitro (1979). See Chapter 
12 on branching processes
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Formula (2.43) can be shown easily applying the Markov property of the
basic unperturbed process:

               Pt - s f((s, x))  = 1
ξ(s, x)

 P(s, x)[ms
t f(t, Xt) mt

b ]

                                  = 1
ξ(s, x)

 P(s, x)[ms
t f(t, Xt)P(t, Xt)[ mt

b ]]

                                  = 1
ξ(s, x)

 P(s, x)[ ms
t f(t, Xt)ξ(t, Xt)],

where  P(t, x)[mt
b] = ξ(t, x) is substituted, and hence we have (2.43).26

Thus we have shown27

Theorem  2.2.   Let  P(s, x)  be the renormalization of  P(s, x)
c   defined

in (2.42) and let  {(t, Xt), P(s, x): (s, x) ∈ [a, b] × Rd}  be the renormalized
process.  Then, its semi-group  Pt - s  is the ξ-transformation of Kac's
semi-group  Pt - s

c
   defined by (2.38), namely,

(2.44) Pt - s f((s, x)) = 1
ξ

 Pt - s
c

 ( f ξ )(s, x).

We can formulate Theorem 2.2 as a corollary of Theorem 2.1 applied to
the renormalization of Kac's functional  ms

t  defined by

(2.45) ns
t = 1

 ξ(s, Xs)
 ms

t ξ(t, Xt).

In fact we have

Theorem  2.3.  The renormalized Kac functional  ns
t  defined in

(2.45) satisfies normality condition (2.24).

Proof.  Because of definition (2.40) and of the multiplicativity of ms
t,

we have

26 Therefore, the renormalized process is a conditional space-time diffusion process in 

terms of the survival condition ξ(s, x) = P(s, x)
c [1]

27 The case of unbounded or singular c(t, x) can be handled similarly under an integrability
condition, see Chapters 5 and 6
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P(s, x)[ns
t] = 1

 ξ(s, x)
 P(s, x)[ ms

t ξ(t, Xt)] = 1
 ξ(s, x)

 P(s, x)[ ms
t P(t, Xt)[mt

b]]

               = 1
 ξ(s, x)

 P(s, x)[ ms
t mt

b] = 1
 ξ(s, x)

 P(s, x)[ ms
b]

               = 1
 ξ(s, x)

 P(s, x)
c [1] = 1,

completing the proof.

Therefore, when one treats Kac's semi-group, it is better to consider the
renormalized process {(t, Xt), P(s, x): (s, x) ∈ [a, b] × Rd}, from which one can
always recover Kac's semi-group.  Namely, one uses the renormalized
process (it is a conservative diffusion process !) in computation, and when
one needs Kac's semi-group, one applies formula (2.44) the other way round

(2.46) Pt - s
c

 ( f  ) = ξ Pt - s( f 1
ξ

 ).

The crucial fact is this: Pt - s is the semi-group of a diffusion process but
Kac's one Pt - s

c  is not.

Remark.  The renormalized process will play an important role in
Chapter 5, in which we consider the case of creation and killing c(t, x) with
singularity.  If c(t, x) is singular, some additional conditions will be needed
to guarantee property (2.41) of the function ξ(s, x) defined in (2.40). 

2.8.  Time Change

In this and the following sections, we consider time-homogeneous diffusion
processes.  If we observe a diffusion process {Xt, Px} with a defective clock,
then the movement of the process looks slower or faster even though it stays
on the same path.  This is the so-called "time change".

Let c(x) be a positive continuous function and set

τ(t, ω) = c
0

t

(Xs(ω))ds,

and the time-change function
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τ  -1(s, ω) = sup {t: τ (t, ω) ≤ s}.

We define a new process by

                               Yt = Xτ  -1(t) ,   t < ζ,
(2.47)

                                   = Δ,           t ≥ ζ,

where ζ(ω) = τ (∞, ω) and Δ is an extra point.

Lemma 2.1. (Nagasawa-Sato (1963))   Let Gλ and Gλ
Y, λ > 0, be the

resolvent operators of {Xt, Px} and {Yt, ζ, Px}, respectively .  Then ,
they satisfy

(2.48)                  Gλ
Y

 f = Gλ(c f ) - λGλ{(c - 1)Gλ
Y

 f },

(2.49)                  Gλ f = Gλ
Y( f c -1 ) - λGλ

Y{(c-1 - 1)Gλ f }.28

Proof.   We set f(Δ) = 0.   By the definition of resolvent operators of
semi-groups

(2.50) Gλ
Y

 f(x) = Px[ f
0

∞
(Yt)e - λ t dt] = Px[ f

0

∞
(Xs)e - λ τ(s) dτ (s)].

Therefore, we have

λ Gλ{(c - 1)Gλ
Y

 f } = λ Px[ {
0

∞
c(Xt) - 1)Gλ

Y
 f(Xt)e - λ t dt]

    = λ dt
0

∞
 Px[e- λ t (c(Xt) - 1)PXt[ dτ (r)

0

∞
 f(Xr)e- λ τ(r) ]].

Because of the Markov property and τ (t + r, ω) = τ (t, ω) + τ (r, θtω), where
θt is the shift operator, Xr(θtω) = Xt + r(ω),

    = λ dt
0

∞
 Px[e- λ t(c(Xt) - 1)e  λ τ(t) dτ (s)

t

∞
 f(Xs)e - λ τ(s) ]

28 For a general form of the formulae, cf. Theorem 2.1 in Nagasawa-Sato (1963)
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    = Px[ dτ (s)
0

∞
e- λ τ(s) f(Xs) dt

0

s

 (λc(Xt) - λ)e- λ t + λ τ(t)]

    = Px[ dτ (s)
0

∞
e- λ τ(s) f(Xs)( e- λ s + λ τ(s) - 1)]

    = Px[ dτ (s)
0

∞
 e- λ s f(Xs)] - Px[ dτ (s)

0

∞
 e- λ τ(s) f(Xs)]

    = Gλ(c f ) - Gλ
Y( f ),

which proves formula (2.48).  Formula (2.49) can be shown in the same
way.

Then we have

Theorem  2.4.  The time changed process {Yt, ζ, Px} is a diffusion
process with the generator

(2.51) A Y = 1c
 A ,

where A  and A Y denote the generators of the diffusion process {Xt, Px}
and {Yt, ζ, Px} defined respectively through 

λ - A = Gλ
-1,

  λ - A Y = (Gλ
Y)

-1
.

Proof.  Apply (λ - A) to both sides of formula (2.48).  Then

                  (λ - A)Gλ
Y

 f = (λ - A)Gλ{c f - λ (c - 1)Gλ
Y

 f}

                                    = c f - λ(c - 1)Gλ
Y

 f,

since (λ - A) = Gλ
-1.  Therefore,

λ c Gλ
Y

 f - A Gλ
Y

 f = c f,
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from which follows

(λ  - 1
c

 A)  Gλ
Y

 f =   f,

which implies (2.51).

2.9.  Dirichlet Problem

Let {Xt, Px} be a diffusion process on Rd determined by an elliptic
differential operator A  given in (2.1).  Let D  be a compact connected
domain in Rd with a smooth boundary ∂D, and let T be the first hitting time
to the boundary ∂D.  Moreover, let g(x) be a continuous function on the
boundary ∂D.  Then

(2.52) u(x) = Px[e- λ T g(XT)]

solves the Dirichlet problem

                          (λ - A)u(x) = 0,    in   D,
(2.53)

                          u(x) = g(x),          on   ∂D.

This assertion is treated in standard textbooks on Markov processes and
potentials under more general problem setting,29 but we shall need no such
generality in this book.

Let U = Uε be the first leaving time from an ε-neighbourhood of a point
x ∈ D.  Then

(2.54)       Px[e- λ U u(XU)] =  Px[e- λ U PXU[e- λ T g(XT)]]

                                = Px[e- λ (U(ω) + T(θUω)) g(XU(ω) + T(θUω)(ω))]

                                = Px[e- λ T g(XT)]

                                = u(x),

where U(ω) + T(θUω) = T(ω) and the strong Markov property have been
applied.

29 Cf. Dynkin (1965), Blumenthal-Getoor (1968), Port-Stone (1978), Doob (1984), ...
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Let f(x) be a bounded continuous function on Rd.  Then

(2.55)   Px[ dt
0

U

 e- λ t f(Xt)] = Px[ dt
0

∞
 e- λ t f(Xt)] - Px[ dt

U

∞
e- λ t f(Xt)]

             = Gλ f(x) - Px[ e- λ U PXU[ dt
0

∞
 e- λ t f(Xt)]]

             = Gλ f(x) - Px[ e- λ U Gλ f(XU)].

Since (λ - A)u = f holds for u(x) = Gλ f(x), formula (2.55) yields 

(2.56)  1
Px[U]

 {Px[ e- λ U u(XU)] - u(x)} = 1
Px[U]

 Px[ dt
0

U

 e- λ t (A - λ)u(Xt)],

for any u in the domain of the generator A.

The generator A  is in the sense of the one in Theorem 2.4, which
coincides with Dynkin's one in our case, cf. Dynkin (1965).  Since various
generators are defined for a semi-group depending on purposes, when we
speak of "the generator" of a semi-group, we must be aware of its domain of
definition.  For detail see books mentioned at footnote 29.

Since the function u(x) defined at (2.52) is λ-harmonic, as is shown in
(2.54), if we define "λ-harmonic measure" by

HU(x, B) = Px[ e- λ U 1B(XU)],

then we have

u(x) = u
∂U

(ξ)HU(x, dξ),

where ∂U denotes the boundary of the ε-neighbourhood, and hence it is
differentiable.  

Letting ε tend to zero, formula (2.56), which is called Dynkin's
formula, yields the first equation of the Dirichlet problem (2.53) for the
function u(x) defined in (2.52).  Therefore, the second equality being clear,
the u(x) solves the Dirichlet problem.

2.9 irichlet Problem    D
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2.10.  Feller's One-Dimensional Diffusion Processes

Let us consider a second order differential operator 

(2.57) A = 1
2

 a(x) d 2

dx 2
 + b(x) d

dx
 ,   a(x) > 0,

in an open interval (α, β ), and define

(2.58) W(x) = dy
c

x

 
2b(y)
a(y)

,

where c ∈ (α, β ) is arbitrary but fixed.  Then, with the function W(x), the
operator A can be represented in a divergence form

(2.59) A = 1
2

 a(x) e- W(x) d
dx

 (eW(x) d
dx

 ).

As an example let us consider

A = 1
2

 d 2

dx 2
 + (d - 1

2
 1
x  - x) d

dx
,    d ≥ 2,

in (0, ∞).  Then, W(x) = (d - 1) log x - x2  and hence

A = 1
2

 x 1 - d ex 2
 d
dx

 (x d - 1 e- x2
 d
dx

 ).

This case will be treated in Section 7.9 as an example of diffusion processes
of Schrödinger equations with singular potentials.

In general, with a given continuous function W(x), we define Feller's
canonical scale S(x) by

(2.60) S(x) = dy
c

x

 e- W(y),

where c ∈ (α, β ) is arbitrary but fixed, and Feller's speed measure M ,
with a positive continuous function a(x), by

(2.61) dM
dx

 = 1
a(x)

 eW(x).
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In terms of the canonical scale S and the speed measure M, we define
Feller's canonical operator A by

(2.62) A = 1
2

 d
dM

 d
+

dS
 

on a subset

         D(A) = {f : f ∈ C([α, β ]), d +f << dS,

                            d(d
+f

dS
) << dM, and  d

dM
 (d

+f
dS

) ∈ C([α, β ]},30

where d +f/dS denotes the Radon-Nikodym derivative of the signed measure
induced by f  with respect to the measure induced by S . If f  is
differentiable, then d +f/dS = d f/dS.

The diffusion process determined by Feller's canonical operator A with
an appropriate boundary condition is called Feller's one-dimensional
diffusion process.31  Feller's diffusion process was constructed by Feller
with the help of Hille-Yosida's semi-group theory; and by Itô-McKean
(1965) using the transformation theory of diffusion processes; their method
will be explained in the following.

First we construct a diffusion process determined by 

(2.63) 1
2

 d
dS

 d
+

dS
.

Assume that S(x) is defined on DS = [α, β ], and let RS = the range of  S.  

Let {Bt, Px} be a one-dimensional Brownian motion, and set

(2.64) ζ(ω) = inf {t: Bt(ω) ∉ RS}.

Then we define a diffusion process on the transformed state space DS by

(2.65)                            Yt =   
S -1(Bt),        for   t < ζ,

Δ,                for   t ≥ ζ,

30 The interval may be half-open or open
31 Interesting phenomena of Feller's diffusion process are discussed in Brox (1986) when

W(x) is a Brownian path. Cf. also Tanaka (1987), Kawazu-Tamura-Tanaka (1992)
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                             Qx = PS(x),            for   x ∈ DS,

where Δ denotes an extra point.

Lemma  2.2.  The diffusion process {Yt, t <  ζ, Qx, x ∈ DS} defined
in (2.65) is determined by the second order differential operator 

1
2

 d
dS

 d
+

dS
.

Proof.  The (strong) Markov property of the transformed process is
easy to show and left as an exercise.  For f ∈ C 2(DS),  f(Δ) = 0,

          lim h ↓ 0 1
h

{Qx[ f(Yh)] - Qx[ f(Y0)]}

                 = lim h ↓ 0 1
h
{PS(x)[ f(S - 1(Bh))] - PS(x)[ f(S - 1(B0))]}

                 = 1
2

 d
dy

 d
dy

 f(S - 1(y)),   where  set  y = S(x),

                 = 1
2

 d
dS(x)

 d
dS(x)

 f(x),

which completes the proof.

Let us consider a simple example:

A = 1
2

 x 2 d
dx

 ( x2 d
dx

 ),

with

S(x) = - 1
x  + 1,

where DS = (0, ∞) and RS = (- ∞, 1).  Then

      T0(Y) = inf {t: Yt = 0} = inf {t: Bt = - ∞} = T- ∞(B) = ∞,

      T∞(Y) = inf {t: Yt = ∞} = inf {t: Bt = 1} = T1(B) < ∞.

Therefore, the origin {0} is an inaccessible point of the diffusion process Y t,
while {∞} is accessible.  Since  S - 1(y) = (1 - y)- 1,
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                      Yt =  1
1 - Bt

      for   t < ζ,

                      Qx = P1 - 1
x
       for   x ∈ DS = (0, ∞).

Now returning to the starting point, we consider the diffusion process
determined by Feller's canonical operator

                            A = 1
2

 d
dM

 d
+

dS
 

                                = 1
2

 a(x) e- 2W(x) d
dS

 d
+

dS
 ,

the expression of which suggests an application of time change.  Define
Kac's additive functional

(2.66) τ (t) = dr
0

t

 e
2W(Yr)

a(Yr)
,

with which we apply "time-change" to the diffusion process {Yt, t < ζ, Qx,
x ∈ DS} in Lemma 2.2.

Then we get

Theorem  2.5. (Itô-McKean (1965))  Feller's canonical diffusion
process {Zt, t < τ(ζ), Qx, x ∈ DS}32 determined by

                            A = 1
2

 d
dM

 d
+

dS
 

                                = 1
2

 a(x) e- W(x) d
dx

 ( eW(x) d
+

dx
 )

is given through time change of the diffusion process Y t in Lemma 2.2,
namely,

                        Zt  = Y(τ  - 1(t)) = S - 1(B(τ  - 1(t))),
(2.67)

                         Qx = PS(x),         for   x ∈ DS,

32 ζ is defined at (2.59)
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where τ  is defined at (2.66) and, with c ∈ (α, β ),

S(x) = dy
c

x

 e- W(y).

2.11.  Feller's Test33

Let {Xt, t <τ (ζ), Qx, x ∈ DS = (α, β)}34 be Feller's canonical diffusion
process.  We assume that the process is regular in (α, β ), namely,

Px[Ty < ∞] > 0,   for   ∀ x, y ∈ (α, β ),

where Ty is the first hitting time

(2.68) Ty = inf {t > 0: Xt = y}.

A classification of boundary points was given by Feller (1957) in terms
of the canonical scale S and the speed measure M.  Let us formulate it for
the left boundary point {α}.  Denote

                           S(α, x] = S(x) - lim y ↓ α S(y),
(2.69)

                          M(α, x] = M((α, x]).

Then, the boundary point {α} is classified as follows (Feller's Test):

{α} is  Regular    Exit Entrance Natural

  if

S(α, x]    < ∞     < ∞    = ∞      = ∞

  and

M(α, x]    < ∞     = ∞    < ∞      = ∞

33 At the first reading this section may be skipped until Section 7.9
34 We denote Feller's canonical diffusion process again by X t instead of Zt
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Theorem 2.6. (Feller (1957))   If the left boundary point {α} is

(i)   regular, then {α} is accessible from (α, β ), and (α, β ) is accessible 
 from {α},

(ii)  exit, then {α} is accessible from (α, β ), but (α, β ) is inaccessible 
  from {α},

(iii) entrance , then {α} is inaccessible from (α, β ), but (α, β ) is 
  accessible from {α},

(iv) natural , then {α} is inaccessible from (α, β ), and (α, β ) is 
  inaccessible from {α}.

Proof.  Let us define for  λ > 0  and  y ∈ (α, β )

Pα [ e- λ Ty ] = lim x ↓ α Px[ e- λ Ty ],
(2.70)

Py[ e- λ Tα ] = lim x ↓ α Py[ e- λ Tx ].

It is clear that {α} is accessible from y ∈ (α, β ) if Py[ e- λ Tα ] > 0, while
inaccessible if Py[ e- λ Tα ] = 0; and (α, β ) is accessible from {α}, if
Pα [ e- λ Ty ] > 0, but inaccessible if Pα [ e- λ Ty ] = 0.  Therefore, our proof is
reduced to the evaluation of

(2.71) uy(x) = Px[ e- λ Ty ]    or   w y(x) = 1
Py[ e- λ Tx ]

 .

Let  y ∈ (α, β ) be fixed.  We have shown in Section 2.9 that

(2.72) u(x) = Px[ e- λ Ty g(XTy)]

solves the Dirichlet problem

                        (λ - A)u = 0,   in   (α, β ) \ {y},
(2.73)

                               u(y) = g(y),

in one-dimension.  Therefore, u(x) = uy(x) = Px[ e- λ Ty ], for a fixed y ,
satisfies (2.73) with  g(y) = 1, namely it is λ-harmonic in (α, β ) \ {y}.
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Now let us define

σS [c, y] = S
c

y

[c, z]M(dz),

(2.74)

σM [c, y] = M
c

y

[c, z]dS(z),

and

σS(α, y] = lim c ↓ α σS[c, y],
(2.75)

σM(α, y] = lim c ↓ α σM[c, y].

Then, it is routine to check that the boundary point {α} can be classified
also in terms of σS(α, y] and σM(α, y] as follows (Feller's Test):

{α} is  Regular    Exit Entrance Natural

  if

σS(α, y]    < ∞      < ∞      = ∞      = ∞

  and

σM(α, y]    < ∞      = ∞      < ∞      = ∞

Lemma 2.3.  

(2.76) Py[ e- λ Tα ] > 0,  for y ∈ (α, β )   ⇔   σS(α, . ] < ∞,

(2.77) Py[ e- λ Tα ] = 0,  for y ∈ (α, β )   ⇔   σS(α, . ] = ∞;

namely the left boundary point {α} is accessible, if it is regular or exit,
while inaccessible if it is entrance or natural.

Proof.  Assume σS(α, .  ] < ∞.  Then S(α, .  ] < ∞.  Let w(x) be a non-
negative decreasing solution of
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(2.78) (λ - A)w = 0,  in (α, y),  with   w(y) = 1,

and hence

1
2

 d
dM

 dw
dS

  = λ w,  in (α, y).

Integrating twice with respect to dM and then dS, we have

 dw
dS

(y) S[x, y] - {w(y) - w(x)} = 2λ dS(ξ)
x

y

w(z)dM(z)
ξ

y

,

which yields, through the substitution w(y) = 1,

(2.79) w(x) = 1 + (- dw
dS

 ( y)) S[x, y] + 2λ  dS(ξ)
x

y

w(z)dM(z)
ξ

y

.

Since  w(x) ≥ w(z)  for x ≥ z  and

(2.80)   dS(ξ)
x

y

dM(z)
ξ

y

 = dS(ξ)M[ξ, y]
x

y

 = S[x, ξ]
x

y

dM(ξ) = σS[x, y]

by partial integration, we have

w(x) ≤ 1 + (- dw
dS

 ( y)) S[x, y] + 2λ w(x) σS[x, y].

Because of the assumption σS(α, . ] < ∞, there exists yo such that

2λ σS[x, yo] < 1
2

,

and hence

1
2

 w(x) ≤ 1 + (- dw
dS

 ( yo)) S[x, yo],

which yields

lim x ↓ α w(x) ≤ 2{1 +  (- dw
dS

 ( yo)) S(α, yo]} < ∞.
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Let α < c < x < y.  Then, by the strong Markov property, we have

(2.81) Py[ e- λ Tc ] = Py[ e- λ Tx ] Px[ e- λ Tc ].

Therefore, for a fixed y,

(2.82) w(x) = w y(x) = 1
Py[ e- λ Tx ]

 = Px[ e- λ Tc ]
Py[ e- λ Tc ]

 = const u(x),

where u(x) = Px[ e- λ Tc ] for a fixed c , and hence the w(x) is monotone
decreasing and satisfies w(y) = 1 and

(λ - A)w = 0,     in   (α, y),

since we can let c ↓ α, it consequently satisfies (2.78).  Therefore, we have

lim x ↓ α w y(x) = 1
Py[ e- λ Tα ]

 < ∞,

and hence

Py[ e- λ Tα ] > 0.

Conversely, assume σS(α, .  ] = ∞.  Since w(z) ≥ w(y) = 1 for z ≤ y,
formula (2.79) yields

w(x) ≥ 1 + (- dw
dS

 ( y )) S[x, y] + 2λ  dS(ξ)
x

y

dM(z)
ξ

y

,

and hence because of (2.80) we have

lim x ↓ α w(x) ≥ 1 + (- dw
dS

 ( y )) S(α, y] + 2λ σS(α, y] = ∞.

Since  w(x) = w y(x) = 1
Py[ e- λ Tx ]

   is a non-negative decreasing solution of

(2.78), we have

lim x ↓ α w y(x) = lim x ↓ α 1
Py[ e- λ Tx ]

 = ∞,

and hence
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Py[ e- λ Tα ] = 0,

which completes the proof of the lemma.

Lemma 2.4.  (i) If the left boundary point {α } is regular or entrance,
then 

Pα[ e- λ Tx ] > 0,    for   x ∈ (α, β );

namely (α, β ) is accessible from {α }.

(ii) If {α} is exit or natural, then

Pα[ e- λ Tx ] = 0,    for   x ∈ (α, β );

namely (α, β ) is inaccessible from {α }.

Proof.  Assume that the left boundary point {α } is regular or entrance.
Let  u(x)  be an increasing non-negative solution of the Dirichlet problem

(2.83) (λ - A)u = 0    in  (α, y),   with   u(y) = 1,

and hence
1
2

 d
dM

 du
dS

 = λ u,

from which we have

(2.84) du
dS

 (x) - du
dS

 (c) = 2λ u
c

x

(z)M(dz).

Since u(x) is increasing, du/dS ≥ 0.  On the other hand

d
dx

 ( du
dS

 ) = 2m A  u = 2m λ u > 0,

where m = eW/a, and hence  du/dS  is strictly increasing in the interval
(α, y).  Consequently, we have

(2.85) 1 ≥ u(y) - u(α) = dS
α

y

 du
dS

 > du
dS

 (α) S(α, y],
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which yields

(2.86) du
dS

 (α) S(α, y] ≤ γ {u(y) - u(α)},   with   γ < 1.

Therefore, (2.84) together with (2.86), implies

u(y) - u(α) = 2λ dS
α

y

(ξ) u(z)
α

ξ
 M(dz) + γ {u(y) -u(α)}.

Since  u(z) ≤ u(y)  for z ≤ y, we have

       (1 - γ ){u(y) - u(α)}

            ≤ 2λ u(y) dS
α

y

(ξ) M(dz)
α

ξ
  = 2λ u(y) σM(α, y] < ∞,

where σM(α, y] < ∞, because of the assumption that {α } is regular or
entrance.  Since σM(α, y] ↓ 0  (as y ↓ α), there exist yo ∈ (α, y) such that
2λσM(α, yo] < 1 - γ , and hence we have

u(yo) - u(α) < u(yo),

namely,
u(α) > 0.

Therefore, since the function 

u(x) = uy(x) = Px[ e- λ Ty ] 

is an increasing non-negative solution of the Dirichlet problem (2.83), we
have

uy(α) = Pα[ e- λ Ty ] > 0,

which proves the first assertion of the lemma.

Let us prove the second assertion.  Assume σM(α, . ] = ∞.  Integrating
both sides of (2.84) with respect to dS, we have 
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u(x) - u(c) - du
dS

 (c) S[c, x] = 2λ dS
c

x

(ξ) u(z)
c

ξ
 M(dz).

Since u(c) ≤ u(z) ≤ u(y) = 1,

1 ≥ u(x) - u(c) ≥ du
dS

 (c) S[c, x] + 2λ u(c) dS
c

x

(ξ) M[c, ξ],

and hence

1 ≥ 2λ lim c ↓ α u(c) σM(α, x],

which implies  lim c ↓ α u(c) = 0, since  σM(α, x] = ∞.  Applying this to u(x) =
uy(x) = Pα [ e- λ Ty ], we have

lim c ↓ α u(c) = Pα [ e- λ Ty ] = 0, 

which proves the second assertion of the lemma.

Lemma 2.3 and Lemma 2.4 complete the proof of Theorem 2.6.

As an example let us consider

(2.87) A = 1
2

 d 2

dx 2
 + ε 1

x
 d
dx

,

in (0, ∞), which includes the case of the radial part of the d-dimensional
Brownian motion, i.e., d-Bessel process with ε = (d - 1)/2.  Then, 

(2.88) W(x) = 2ε log x , 

and hence

(2.89)           M(c, x] = dy
c

x

 eW(y) = dy
c

x

  y 2ε 

                        =  

1
1 + 2ε

 (x 1 + 2ε - c1 + 2ε),       for   ε ≠ - 1/2,

log x - log c,                     for   ε = -  1/2.
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Therefore

(2.90) M(0, x]   
< ∞,        if   ε > - 1/2,

= ∞,        if   ε ≤ - 1/2.

On the other hand

(2.91)             S[c, x] = dy
c

x

 e - W(y) = dy
c

x

  y  - 2ε 

                        =  

1
1 - 2ε

 (x 1 - 2ε - c1 - 2ε),      for   ε ≠ 1/2,

log x - log c,                   for   ε = 1/2,

and hence

(2.92) S(0, x]   
< ∞,        if   ε < 1/2,

= ∞,        if   ε ≥ 1/2.

Consequently, the origin {0} is 

                       "exit",             if  ε ≤ - 1/2,

(2.93)                     "regular",      if  - 1/2 < ε < 1/2,

                        "entrance",    if  1/2 ≤ ε.

Another example which will be considered in Chapter 7 is

(2.94) A = 1
2

 d 2

dx 2
 + (ε 1

x  - x) d
dx

,    in  (0, ∞).

In this case 

(2.95) W(x) = 2ε log x  - x2.

Since the term - x2 vanishes near the origin, it does not contribute the
divergence or convergence of the integrals M(0, x] and S(0, x], and hence
(2.93) also holds for the diffusion process determined by (2.94).
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