

DORLING KINDERSLEY

London, New York, Melbourne, München und Delhi

Programmleitung Jonathan Metcalf
Programmmanager Liz Wheeler
Cheflektorat Julie Ferris
Projektbetreuung Nicola Hodgson, Scarlett O'Hara
Redaktion Shaila Brown, Jenny Finch,
Wendy Horobin, Ashwin Khurana
Fachberatung David Rothery

Bildredaktion Owen Peyton Jones,
Owen Peyton Jones, Mandy Earey,
Richard Horsford, Clare Marshall
Gestaltung und Satz Daniela Boraschi, Vicky Short
Art Director Phil Ormerod
Bildrecherche Myriam Megharbi,
Roland und Sarah Smithies
Illustrationen Peter Bull Art Studio,
Berry Croucer/The Art Agency, Mike Garland,
Mick Posen/The Art Agency
Kartografie Encompass Graphics Ltd, Simon Mumford
Herstellung John Goldsmid, Erica Pepe

DK Delhi

Cheflektorat Rohan Sinha
Lektorat Kingshuk Ghoshal, Garima Sharma
Redaktion Megha Gupta,
Shatarupa Chaudhuri, Samira Sood
Gestaltung und Satz Shefali Upadhyay,
Arunesh Talapatra, Sudakshina Basu,
Arijit Ganguly, Amit Malhotra, Nidhi Mehra,
Kavita Dutta, Zaurin Thoidingjam
DTP Leitung Balwant Singh
DTP-Design Nand Kishor Acharya, Bimlesh Tiwary
Herstellung Pankaj Sharma

Für die deutsche Ausgabe:
Programmleitung Monika Schlitzer
Projektbetreuung Manuela Stern
Herstellungsleitung Dorothee Whittaker
Herstellung Kim Weghorn

Bibliografische Information der Deutschen Bibliothek Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.ddb.de

> Titel der englischen Originalausgabe: Violent Earth

© Dorling Kindersley Limited, London, 2011 Ein Unternehmen der Penguin-Gruppe

© der deutschsprachigen Ausgabe by Dorling Kindersley Verlag GmbH, München, 2012 Alle deutschsprachigen Rechte vorbehalten

Übersetzung

Dr. Andrea Kamphuis, Dr. Stephan Matthiesen Lektorat Ellen Astor

ISBN 978-3-8310-2231-1

Printed and bound in China by LEO

Besuchen Sie uns im Internet www.dorlingkindersley.de

Hinweis

Die Informationen und Ratschläge in diesem Buch sind von den Autoren und vom Verlag sorgfältig erwogen und geprüft, dennoch kann eine Garantie nicht übernommen werden. Eine Haftung der Autoren bzw. des Verlags und seiner Beauftragten für Personen-, Sach- und Vermögensschäden ist ausgeschlossen.

INHALT

1 DYNAMISCHER PLANET

Geburt der Erde	8
rstes Land und Meere	10
Aufbau der Erde	12
Kern und Mantel	14
Die äußerste Schale	16
ektonische Platten	20
Entstehung der Landmassen	22
leutige Platten	26
Plattengrenzen	28
łotspots	32
Geothermik & Erdwärme	34
dessung der Plattenbewegung	36
)ie geologische Zeitskala	40

GEBIRGSBILDUNG

Gebirge der Welt	44
Die Wurzeln der Berge	46
Wie Berge entstehen	48
Berge in Bewegung	50
Lebenszyklus der Berge	52
Himalaja	56
Neuseeländische Alpen	58
Die Anden	60
Transverse Ranges	62
Basin and Range	66
Rocky Mountains	68
Ostafrikanischer Graben	70
Die Alpen	74

Der Ural	76	
Transantarktisches Gebirge	80	

84

7 VULKANE

Was ist ein Vulkan?

Vulkane der Welt	86
Vulkanausbrüche	88
Eruptionstypen	90
Vulkantypen	94
Lava	96
Auswurfmaterial	100
Pyroklastische Ströme	102
Schlammströme	106
Kontinentale Vulkanbögen	108
Vulkanische Inselbögen	110
Vulkanische Inselketten	112
Schildvulkane	114
Schlackenkegel	116
Schichtvulkane	120
Ätna	122
Ausbruch des Merapi 2010	124
Calderen	126
Supervulkane	128
Maare	130
Explodierende Seen	132
Tuffringe und -kegel	134
Staukuppen und Lavanadeln	136
Vulkanfelder	138
Vulkankomplexe	140
Spalteneruptionen	142
Hawaiianische Eruptionen	144

Strombolianische Eruptionen	148	Sichuan 2008	220	Niederschläge	280
Vulkanianische Eruptionen	150	Blattverschiebungen	224	El Niño und La Niña	284
Peleanische Eruptionen	152	Izmit 1999	226	Queensland-Hochwasser 2010/2011	28
Plinianische Eruptionen	154	Christchurch 2011	228	Monsun	288
Vesuv	156	Erdbebenschäden	232	Pakistan 2010	290
Novarupta 1912	158	Bam 2003	234	Tropische Wirbelstürme	292
Mount St. Helens	160	Erdrutsche durch Beben	236	Zyklon Nargis 2008	296
Phreatische Eruptionen	164	Mit Erdbeben leben	238	Hurrikan Katrina 2005	298
Subglaziale Vulkane	166			Außertropische Tiefs	302
Eyjafjallajökull	168			Der »perfekte Sturm« 1991	304
Vulkane in der Antarktis	172	— DUBLIEL 000		Schnee und Schneetreiben	306
Afrikanische Riftvulkane	174	5 RUHELOSE MEERE		Lawinenkatastrophe von Galtür 1999	308
Nyiragongo-Katastrophe	176	• WILLINE		Eisstürme	310
Intrusivkörper	178	Wie ein Meer entsteht	242	Gewitter	312
Überwachung von Vulkanen	180	Der Meeresboden	244	Tornados	318
Leben mit Vulkanen	182	Tektonik des Meeresbodens	246	Oklahoma 1999	320
Thermalquellen	186	Hydrothermalquellen	250	Sandstürme und Staubstürme	324
Fumarolen	188	Submarine Vulkane	252	Staubsturm in China 2010	326
Geysire	192	Kurzlebige Inseln	254	Flächenbrände	328
Schlammvulkane	196	Surtsey 1963	256	Buschfeuer in Victoria 2009	330
Lusi-Katastrophe	198	Atolle, Seamounts und Guyots	258	Klimawandel	332
		Monsterwellen & extremer Tidenhub	260		
		Tsunamis	262		
4 [0000000]		Tsunami im Indischen Ozean 2004	264		
4 ERDBEBEN		Tsunami in Japan 2011	266	7 ANHANG	
Was ist ein Erdbeben?	202			Die Erde	336
Erdbebenzonen	204			Berge	338
Ursachen von Erdbeben	206	6 WETTEREXTREME		Meere	339
Haiti 2010	208			Vulkane	340
Bewegungen und Verwerfungen	210	Was ist Wetter?	272	Erdbeben	342
Messung von Erdbeben	212	Luftdrucksysteme	274	Wetter	344
Erdbeben durch Subduktion	216	Winde der Welt	276	Glossar	346
Concepción 2010	218	Fronten und Jetstreams	278	Register	349

DIE GEOLOGISCHE ZEITSKALA

Ein System zur Gliederung der Erdgeschichte – eine geologische Zeitskala - und Methoden, das Alter der Erde zu bestimmen, wurden seit Jahrhunderten gesucht. Doch die intensive wissenschaftliche Arbeit an diesen Problemen begann vor etwa 200 Jahren.

GLIEDERUNG DER ERDGESCHICHTE

Im späten 18. Jh. hatten Wissenschaftler bereits erkannt, dass Schichten von Sedimentgestein zu verschiedenen Zeiten abgelagert worden waren, wobei ältere Schichten unter jüngeren liegen. Indem man Gesteinsabfolgen, oder Formationen, an verschiedenen Orten miteinander verglich, konnte man langsam verstehen, in welcher Reihenfolge die verschiedenen Formationen in größeren Gebieten der Erde entstanden waren. Dabei halfen auch Fossilien, mit denen man oft belegen konnte, dass Schichten an verschiedenen Orten gleich alt sind, sodass man überlappende Abfolgen identifizieren konnte. Beispielsweise zeigt ein Vergleich der Schichtfolgen in drei Canyons im Westen der USA, dass bestimmte Formationen des Zion Canyons auch im Grand Canyon auftreten, andere aber im Bryce Canyon. So ließ sich eine Abfolge rekonstruieren, die alle drei Stellen umfasste.

ZION CANYON In diesem Canyon sind Gesteinsschichten aufgeschlossen, die vom Perm bis zum Jura reichen.

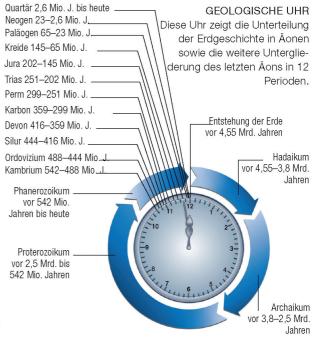
Als das Wissen über die gesamte Schichtabfolge zunahm, begannen Geologen, einzelnen Abschnitten Namen zu geben. So nannten sie eine recht weit unten auftretende Abfolge »Devon«, da sie einige Formationen umfasste, die in der Grafschaft Devon (England) auftraten. Eine höher liegende Abfolge, die im Schweizer Jura auftritt, wurde »Jura« genannt, und eine noch jüngere, kreidereiche Schicht wurde »Kreide« genannt. Die Forscher, die diese Namen vergaben, hatten jedoch nur eine vage Vorstellung von dem wahren Alter der Schichten.

GEOLOGISCHE FORMATIONEN UND PERIODEN				
Paläogen	Grand Canyon	Zion Canyon	Bryce Canyon	
Kreide				
Jura		Navajo- Sands <mark>tein</mark>	Navajo- Sandstein	
Trias			ältere Gesteine, nicht sichtbar	
Perm	Kaibab- Formation	Kaibab- Formation ältere Gesteine,		
Karbon		nicht sichtbar		
Devon				
Kambrium				
Proterozoikum (Präkambrium)	Vishnu-Schiefer			

ÜBERLAPPENDE GESTEINSABFOLGEN

Die überlappenden Abfolgen im Grand Canyon, Zion Canyon und Bryce Canyon erstrecken sich über viele geologische Perioden, wobei es einige Schichtlücken gibt (so fehlt etwa die Periode des Silur) – in diesen Zeiten wurden keine neuen Gesteine abgelagert, oder sie haben sich nicht erhalten.

DAS ALTER DER ERDE


Mitte des 19. Jhs. verstanden Geologen zwar die relativen Altersbeziehungen zwischen verschiedenen Gesteinen, doch ihr absolutes Alter oder das Alter der Erde selbst waren unbekannt. Doch im frühen 20. Jh. wurde eine Methode zur Datierung von Gestein entwickelt, die auf dem Zerfall radioaktiver Substanzen im Gestein beruht. Mit dieser sog. radiometrischen Datierung konnte man bald die geologischen Perioden mit genauen Altersangaben versehen. Das Alter der Erde selbst zu bestimmen, war jedoch schwieriger, da aus ihrer Entstehungszeit keine Gesteine erhalten sind. In den 1920er-Jahren berechnete Arthur Holmes, ein Pionier der radiometrischen Datierung, das Erdalter auf 3,0 Mrd. Jahre. Schließlich konnte man in den 1950er-Jahren Meteoriten datieren also Gesteine, die bei der Bildung des Sonnensystems entstanden waren und später zur Erde fielen. Nimmt man an, dass sie gleich alt wie die Erde sind, ergibt sich ein Alter von 4,55 Mrd. Jahren, ein Wert, der auch heute noch gültig ist.

METEORIT »CANYON DIABLO«

Das Alter unseres Planeten wurde schließlich ermittelt, indem man das Alter von Meteoriten und damit das Alter des Sonnensystems bestimmte, etwa des Meteoriten »Canyon Diablo«, von dem hier ein Fragment gezeigt ist.

GEOLOGISCHE PERIODEN

Als immer mehr Sedimentabschnitte benannt waren, begannen Geologen, formale Regeln für die Gliederung der geologischen Zeitskala aufzustellen. Wesentliche Abschnitte der Schichtfolge nannte man Perioden. Sie wurden später in Epochen unterteilt. Andererseits wurden einige Perioden zu längeren Intervallen, den Ären, und diese wiederum zu Äonen zusammengefasst. Heute sind vier Äonen der Erdgeschichte offiziell anerkannt – das Hadaikum, das Archaikum, das Proterozoikum und das Phanerozoikum. Die drei Äonen vor dem Phanerozoikum nennt man auch Präkambrium.

BRYCE CANYON

Die in den Wänden des Bryce Canyon (Utah) aufgeschlossenen Gesteinsschichten reichen von der Trias bis ins Paläogen.

LEBEN MIT VULKANEN

Etwa 8 Prozent der Weltbevölkerung leben in Vulkannähe, was angesichts der Gefahren überrascht. Doch Millionen von Menschen nehmen das Risiko hin. vor allem aus wirtschaftlichen Gründen.

GEFAHREN

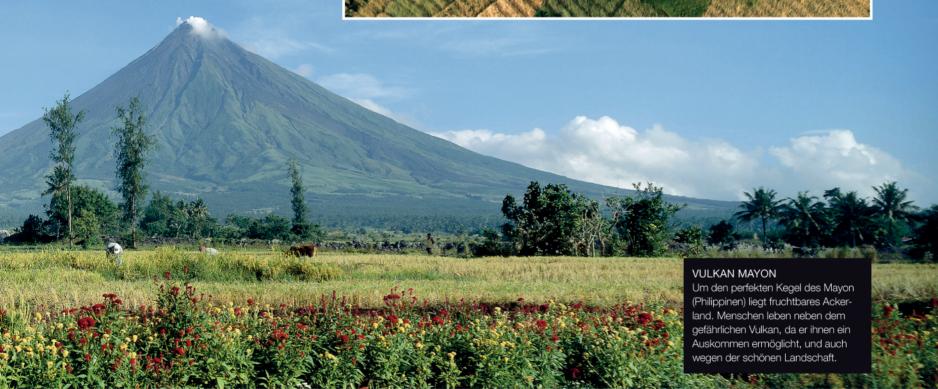
Eine Analyse der Todesursachen durch Vulkane zeigt, dass die größte Gefahr von pyroklastischen Strömen (siehe S. 102-103) und bei einigen Vulkanen von Schlammströmen (siehe S. 106-107) ausgeht. Manchmal kommt es zu Gasvergiftungen, große Ausbrüche in Küstennähe können Tsunamis auslösen. Auch Ascheregen kann gefährlich sein. Lavaströme verursachen oft sehr große wirtschaftliche Schäden.

WIEDERAUFBAU AUS DEN TRÜMMERN Ein Mann birgt ein Stück Zinkdach drei Tage nach dem Ausbruch des Nyiraaonao (siehe S. 176-177), der große Verwüstungen verursachte.

POSITIVE EFFEKTE

Den Gefahren durch Vulkane steht oft ein wirtschaftlicher Nutzen gegenüber. In Vulkanregionen ist der Wärmestrom aus dem Erdinneren sehr hoch (geothermische Energie), was als (kohlendioxidfreie) Energiequelle genutzt werden kann (siehe S. 34-35). Einige Vulkane liefern Rohstoffe wie Schwefel oder Diamanten. Vulkane können auch als Touristenattraktion wirtschaftlich wichtig sein. Die Schönheit und der Nervenkitzel von aktiven Vulkanen ziehen Tausende Schaulustige an.

SCHWEFELABBAU Am lien auf Java (Indonesien) entstand eine Industrie, die Schwefeldämpfe sammelt und abkühlen lässt, wobei Schwefel ausfällt. Dieser kann per Hand am Krater abgebaut werden. Dies schafft Arbeitsplätze, doch die Arbeit ist mühsam und gesundheitsschädlich.


LANDWIRTSCHAFT

Ein Vulkanausbruch erzeugt meist große Mengen an Asche und Lava oder beides. Kurzzeitig kann dies die Umgebung schädigen, doch langfristig verwittern sie zu sehr fruchtbaren Böden, die reich an wichtigen Mineralstoffen sind. Um aktive Vulkane leben oft erstaunlich viele Menschen, die den Boden bebauen. Selbst nach großen und todbringenden Ausbrüchen kehren sie zurück und richten ihr Leben wieder neu ein. Dies erklärt die hohe Bevölkerungsdichte auf Vulkaninseln wie Java und die Siedlungen um gefährliche Vulkane wie den Merapi in Indonesien.

FRUCHTBARER VULKAN

Terrassen mit Weizenfeldern schmücken die Hänge eines kleinen, vermutlich erloschenen Vulkankegels in Ruanda. Dass jedes Stück der Oberfläche genutzt wird, zeigt deutlich, wie fruchtbar der Boden ist.

BEOBACHTUNG EINES AUSBRUCHS

Touristen bewundern und fotografieren den Ausbruch des Eyjafjallajökull (Island) im April 2010. Über 100 000 Menschen, viele aus anderen Ländern, besuchten den Vulkan. Der Touristenstrom gab der Wirtschaft Islands Aufschwung.

PIONIERPFLANZEN AUF ASCHE UND LAVA

Trotz der Zerstörungen werden Lavaströme und Aschefelder gewöhnlich sehr schnell wieder von Pflanzen besiedelt. Die Wiederbesiedlung beginnt meist innerhalb von 10 Jahren bei Lavaströmen und 3-4 Jahren bei Asche, was deren Fruchtbarkeit zeigt.

Farne in der Lava

Der Riss in der Pahoehoe-Lava, in dem sich Farnpflanzen ansiedeln, wurde an der Küste von Puna auf der Hauptinsel Hawaiis aufgenommen.

EISSTÜRME

Eisstürme können vor allem in den mittleren Breiten großflächig ein Chaos verursachen. Wenn bei Minusgraden Regen fällt, bildet sich über allem, worauf er fällt, ein Überzug aus Eis. Das dicke Eis kann Stromleitungen zerstören und Straßen unpassierbar machen.

ENTSTEHUNG

Eisstürme gehen normalerweise mit großflächigem Niederschlag aus Tiefdruckgebieten einher. Der gefrierende Regen setzt in großer Höhe (meist über 2km) zunächst als Schnee ein. Die Flocken passieren eine etwa 1 km mächtige Luftschicht, die mehr als 0°C warm ist, und schmelzen. Unter dieser Warmluftschicht befindet sich eine dünne Oberflächenschicht, in der Temperaturen

unter dem Gefrierpunkt herrschen, sodass die Tröpfchen wieder unterkühlt werden und sofort gefrieren, sobald sie irgendetwas berühren. Ist der Niederschlag stark und anhaltend, so bilden sich dicke Eisschichten, die alles überziehen. Dieser Vorgang führt zu gefährlichen Verhältnissen, die etliche Tage andauern können – bis das Wetter mildere Luft heranführt.

KATASTROPHALE EISSTÜRME					
BEZEICHNUNG UND JAHR	ZEITRAUM	REGION	KOSTEN IN US-\$		
Großer Eissturm von 1998	410. Januar	Atlantische Provinzen Kanadas, Quebec, Osten von Ontario, New York und Neuengland, USA	5–7 Mrd.		
Nordamerikanischer Eissturm im Januar 2007	11.–24. Januar	Kanada, östliche und mittlere USA	380 Mio.		
Eissturm vom Dezember 2008	1112. Dezember	Neuengland und Bundesstaat New York, USA	2,5-4 Mrd.		
Eissturm in den Central Plains und im Mittleren Westen, 2009	25.–30. Januar	Oklahoma, Arkansas, Missouri, Illinois, Indiana und Kentucky, USA	125 Mio.		

AUSWIRKUNGEN

Glatteisablagerungen auf Gehwegen und Straßen werden manchmal »schwarzes Eis« genannt, weil sie nahezu unsichtbar sind. Sie sind extrem reibungsarm und bringen Fußgänger und Fahrzeuge ins Rutschen. Sehr dicke Eisschichten können auch Pflanzen schwer

beschädigen: Das Gewicht des Eises lässt Äste brechen und schneidet Ackerpflanzen vom lebensnotwendigen Kohlendioxid und Wasser ab. Einige Eisstürme, die in den letzten Jahrzehnten über Nordamerika fegten, haben zu großflächigen Stromausfällen geführt, weil

> Masten und Leitungen unter dem Eisgewicht zusammenbrachen. Millionen saßen tagelang im Kalten und Dunkeln. Das etwa 5cm dicke Eis verursachte Milliardenschäden. Auch für Flugzeuge ist Eisregen gefährlich: Flügel und Rumpf müssen regelmäßig enteist werden. Eisablagerungen verändern die Flügelform und damit die Aerodynamik des Flugzeugs.

FROSTIGE WINDE

Eiskalte Nordostwinde wehten im Januar 2005 über den Genfer See. Die frostigen Windstöße formten auf Bäumen und Gebäuden skurrile Überzüge aus Eis.

Erdbeben, Vulkanausbrüche, Orkane, Flutwellen sowie andere extreme Wetterbedingungen – das Buch zeigt und erklärt die unglaubliche und verheerende Wirkung dramatischer Naturereignisse.

Eine spektakuläre Dokumentation mit
Hintergrundinformationen, Augenzeugenberichten,
Expertenmeinungen – auf dem neuesten Stand der Forschung

Mehr als 1000 beeindruckende Farbfotografien,
Illustrationen und Karten

