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Let P D �h2�CV.x/, V 2 C1
0 .R

n/. We are interested in semiclassical resolvent
estimates of the form

k�.P � E � i0/�1�kL2.Rn/!L2.Rn/ � a.h/

h
; h 2 .0; h0�; (1)

forE > 0, � 2 C1.Rn/ with j�.x/j � hxi�s , s > 1=2. We ask: how is the function
a.h/ for which (1) holds affected by the relationship between the support of � and
the trapped set at energy E , defined by

KE D f˛ 2 T �
R
nW 9C > 0;8t > 0; j exp.tHp/˛j � C g‹

Here p D j�j2 C V.x/ andHp D 2� � rx � rV � r� .
We have (1) with �.x/ D hxi�s and a.h/ D C for all E in a neighborhood of

E0 > 0 if and only if KE0 D ; ([6, 7]). For general V and �, the optimal bound is
a.h/ D exp.C=h/, but Burq [1] and Cardoso-Vodev [2] prove that for any given V ,
if � vanishes on a sufficiently large compact set, for any E > 0 there exists C such
that (1) holds with a.h/ D C . In our main theorem we improve the condition on �
and obtain a shorter proof at the expense of an a priori assumption.

Theorem 1 ([3]). Fix E > 0. Suppose that (1) holds for �.x/ D hxi�s with s >
1=2 and with a.h/ D h�N for some N 2 N. Then if we take instead � such that
KE \ T � supp� D ;, we have (1) with a.h/ D C .
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In fact our result holds for more general operators, and the cutoff � can be
replaced by a cutoff in phase space whose microsupport is disjoint from KE . In
certain situations it is even possible to take a cutoff whose support overlapsKE : see
[3] for more details and references.

The a priori assumption that (1) holds for �.x/ D hxi�s with a.h/ D h�N is
not present in [1, 2] and is not always satisfied, but there are many examples of
hyperbolic trapping where it holds: see e.g. [5, 8].

To indicate the comparative simplicity of our method, we prove a special case
of the Theorem, under the additional assumption that suppV � fjxj < R0g and
supp� � fR0 < jxj < R0 C 1g. In other words, suppose .P � �/u D f , with
Re� D E , and suppf � fR0 < jxj < R0 C 1g, kf k � 1. We must prove that
k�uk � Ch�1, uniformly as Im� ! 0C. Here and below all norms are L2 norms.

Let S denote functions in C1.T �
R
n/ which are bounded together with all

derivatives, and for a 2 S define

Op.a/u.x/ D .2�h/�n
Z

exp.i.x � y/ � �=h/a.x; �/u.y/dyd�:

Because P � � has a semiclassical elliptic inverse away from p�1.E/ (see for
example [4, Chap. 4]), we have k Op.a/uk � C whenever supp a \ p�1.E/D ;.
Consequently it is enough to show that k Op.a/uk � Ch�1 for some a 2 S

with a nowhere vanishing on T � supp� \ p�1.E/. We will prove this inductively:
we will show that if there is a1 with this nowhere vanishing property such that
k Op.a1/uk � Chk, then there is a2 with the same nowhere vanishing property such
that k Op.a2/uk � ChkC1=2, provided k � �3=2. The base case follows from the a
priori assumption that kuk � h�N�1, so it suffices to prove the inductive step.

Take ' D '.jxj/ � 0 a smooth function such that ' D 1 when jxj � R0, ' D 0

when jxj � R0C1, ' 0 D � 2 with smooth. We require further that T � supp be
contained in the set where a1 is nonvanishing, and in the end we will take a2 D  .
We will now use a positive commutator argument with ' as the commutant:

ihŒP; '�u; ui D ihu; 'f i � ih'f; ui � 2 Im�kuk2 � �Ck ukkf k; (2)

where we used first .P � �/u D f and then Im� � 0 and suppf � f ¤ 0g. The
semiclassical principal symbol of i ŒP; '� is

hHp' D 2h�' 0 D �2h� 2;

where � is the dual variable to jxj in T �
R
n.

We now define an open cover and partition of unity of T � supp� according to
the regions where this commutator does and does not have a favorable sign (the
favorable sign is Hp' < 0, because of the direction of the inequality in (2)). Take
c > 0 small enough that for � < 2c, jxj > R0, t < 0 we have x C 2�t 62
suppV . Let K be a neighborhood of p�1.E/ \ T � supp� with compact closure in
T �fR0 < jxj < R0 C 1g, and let O be a neighborhood of K with compact closure
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in T �fR0 < jxj < R0 C 1g, and let

UC D f˛ 2 O W � > cg; U� D f˛ 2 O W � < 2cg [ .T �
R
n nK/:

Take 	˙ 2 C1
0 .O/ with 	2C C 	2� D 1 on T � supp� and with supp	˙ � U˙.

Then
Hp' D �b2 � 2� 2	2�; where b D p

2� 	C;

and if B D Op.b/ and ˆ� D Op.	�/

i ŒP; '� D �hB�B C hˆ�R1ˆ� C h2R2 CO.h1/;

where R1;2 D Op.r1;2/ for r1;2 2 S with supp r1;2 � supp . Combining with (2),
and using L2 boundedness of R1, we obtain

hkBuk2 � Chkˆ�uk2 C h2hR2u; ui C Ck ukkf k CO.h1/:

Since hR2u; ui � Ch2k by inductive hypothesis, we have

kBuk2 � C.kˆ�uk2 C h2kC1 C h�1k ukkf k/
� C.kˆ�uk2 C h2kC1 C ı�1h�2 C ık uk2/;

where we used kf k � 1, and where ı > 0 will be specified presently. Since at least
one of B and ˆ� is elliptic at each point in the interior of T � supp , we have

k uk2 � C.kˆ�uk2 C kBuk2/; (3)

from which we conclude that, if ı is sufficiently small,

kBuk2 � Cı.kˆ�uk2 C h�2 C h2kC1/: (4)

Because c was chosen small enough that all backward bicharacteristics through
supp	� stay in T �fjxj > R0g, where P D �h2�, we have

kˆ�uk � Ch�1;

by standard nontrapping estimates (see, for example, [3, Sect. 6]). This, combined
with (3) and (4), gives

k uk2 � Cı.h
�2 C h2kC1/;

after which taking a2 D  completes the proof of the inductive step.
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