Propagation Through Trapped Sets and Semiclassical Resolvent Estimates

Kiril Datchev and András Vasy

Let $P = -h^2 \Delta + V(x)$, $V \in C_0^{\infty}(\mathbb{R}^n)$. We are interested in semiclassical resolvent estimates of the form

$$\|\chi(P - E - i0)^{-1}\chi\|_{L^2(\mathbb{R}^n) \to L^2(\mathbb{R}^n)} \le \frac{a(h)}{h}, \qquad h \in (0, h_0], \tag{1}$$

for E > 0, $\chi \in C^{\infty}(\mathbb{R}^n)$ with $|\chi(x)| \le \langle x \rangle^{-s}$, s > 1/2. We ask: how is the function a(h) for which (1) holds affected by the relationship between the support of χ and the trapped set at energy *E*, defined by

$$K_E = \{ \alpha \in T^* \mathbb{R}^n : \exists C > 0, \forall t > 0, |\exp(tH_p)\alpha| \le C \}$$
?

Here $p = |\xi|^2 + V(x)$ and $H_p = 2\xi \cdot \nabla_x - \nabla V \cdot \nabla_{\xi}$.

We have (1) with $\chi(x) = \langle x \rangle^{-s}$ and a(h) = C for all E in a neighborhood of $E_0 > 0$ if and only if $K_{E_0} = \emptyset$ ([6, 7]). For general V and χ , the optimal bound is $a(h) = \exp(C/h)$, but Burq [1] and Cardoso-Vodev [2] prove that for any given V, if χ vanishes on a sufficiently large compact set, for any E > 0 there exists C such that (1) holds with a(h) = C. In our main theorem we improve the condition on χ and obtain a shorter proof at the expense of an a priori assumption.

Theorem 1 ([3]). Fix E > 0. Suppose that (1) holds for $\chi(x) = \langle x \rangle^{-s}$ with s > 1/2 and with $a(h) = h^{-N}$ for some $N \in \mathbb{N}$. Then if we take instead χ such that $K_E \cap T^*$ supp $\chi = \emptyset$, we have (1) with a(h) = C.

K. Datchev (⊠)

Mathematics Department, MIT, Cambridge, MA, 02139-4307, USA e-mail: datchev@math.mit.edu

A. Vasy

Mathematics Department, Stanford University, Stanford, CA, 94305-2125, USA e-mail: andras@math.stanford.edu

In fact our result holds for more general operators, and the cutoff χ can be replaced by a cutoff in phase space whose microsupport is disjoint from K_E . In certain situations it is even possible to take a cutoff whose support overlaps K_E : see [3] for more details and references.

The a priori assumption that (1) holds for $\chi(x) = \langle x \rangle^{-s}$ with $a(h) = h^{-N}$ is not present in [1, 2] and is not always satisfied, but there are many examples of hyperbolic trapping where it holds: see e.g. [5, 8].

To indicate the comparative simplicity of our method, we prove a special case of the Theorem, under the additional assumption that supp $V \subset \{|x| < R_0\}$ and supp $\chi \subset \{R_0 < |x| < R_0 + 1\}$. In other words, suppose $(P - \lambda)u = f$, with $\operatorname{Re} \lambda = E$, and supp $f \subset \{R_0 < |x| < R_0 + 1\}$, $\|f\| \leq 1$. We must prove that $\|\chi u\| \leq Ch^{-1}$, uniformly as $\operatorname{Im} \lambda \to 0^+$. Here and below all norms are L^2 norms.

Let *S* denote functions in $C^{\infty}(T^*\mathbb{R}^n)$ which are bounded together with all derivatives, and for $a \in S$ define

$$Op(a)u(x) = (2\pi h)^{-n} \int \exp(i(x-y) \cdot \xi/h) a(x,\xi) u(y) dy d\xi.$$

Because $P - \lambda$ has a semiclassical elliptic inverse away from $p^{-1}(E)$ (see for example [4, Chap. 4]), we have $||\operatorname{Op}(a)u|| \leq C$ whenever $\operatorname{supp} a \cap p^{-1}(E) = \emptyset$. Consequently it is enough to show that $||\operatorname{Op}(a)u|| \leq Ch^{-1}$ for some $a \in S$ with *a* nowhere vanishing on $T^* \operatorname{supp} \chi \cap p^{-1}(E)$. We will prove this inductively: we will show that if there is a_1 with this nowhere vanishing property such that $||\operatorname{Op}(a_1)u|| \leq Ch^k$, then there is a_2 with the same nowhere vanishing property such that $||\operatorname{Op}(a_2)u|| \leq Ch^{k+1/2}$, provided $k \leq -3/2$. The base case follows from the a priori assumption that $||u|| \leq h^{-N-1}$, so it suffices to prove the inductive step.

Take $\varphi = \varphi(|x|) \ge 0$ a smooth function such that $\varphi = 1$ when $|x| \le R_0$, $\varphi = 0$ when $|x| \ge R_0 + 1$, $\varphi' = -\psi^2$ with ψ smooth. We require further that T^* supp ψ be contained in the set where a_1 is nonvanishing, and in the end we will take $a_2 = \psi$. We will now use a positive commutator argument with φ as the commutant:

$$i\langle [P,\varphi]u,u\rangle = i\langle u,\varphi f\rangle - i\langle \varphi f,u\rangle - 2\operatorname{Im}\lambda \|u\|^2 \ge -C \|\psi u\| \|f\|,$$
(2)

where we used first $(P - \lambda)u = f$ and then Im $\lambda \ge 0$ and supp $f \subset \{\psi \ne 0\}$. The semiclassical principal symbol of $i[P, \varphi]$ is

$$hH_p\varphi = 2h\rho\varphi' = -2h\rho\psi^2,$$

where ρ is the dual variable to |x| in $T^* \mathbb{R}^n$.

We now define an open cover and partition of unity of $T^* \operatorname{supp} \chi$ according to the regions where this commutator does and does not have a favorable sign (the favorable sign is $H_p \varphi < 0$, because of the direction of the inequality in (2)). Take c > 0 small enough that for $\rho < 2c$, $|x| > R_0$, t < 0 we have $x + 2\rho t \notin$ supp V. Let K be a neighborhood of $p^{-1}(E) \cap T^*$ supp χ with compact closure in $T^*\{R_0 < |x| < R_0 + 1\}$, and let O be a neighborhood of K with compact closure in $T^* \{ R_0 < |x| < R_0 + 1 \}$, and let

$$U_+ = \{ \alpha \in O : \rho > c \}, \qquad U_- = \{ \alpha \in O : \rho < 2c \} \cup (T^* \mathbb{R}^n \setminus K).$$

Take $\phi_{\pm} \in C_0^{\infty}(O)$ with $\phi_{\pm}^2 + \phi_{\pm}^2 = 1$ on $T^* \operatorname{supp} \chi$ and with $\operatorname{supp} \phi_{\pm} \subset U_{\pm}$. Then

$$H_p \varphi = -b^2 - 2\rho \psi^2 \phi_-^2$$
, where $b = \sqrt{2\rho} \psi \phi_+$,

and if B = Op(b) and $\Phi_{-} = Op(\phi_{-})$

$$i[P,\varphi] = -hB^*B + h\Phi_-R_1\Phi_- + h^2R_2 + O(h^{\infty}),$$

where $R_{1,2} = Op(r_{1,2})$ for $r_{1,2} \in S$ with supp $r_{1,2} \subset supp \psi$. Combining with (2), and using L^2 boundedness of R_1 , we obtain

$$h\|Bu\|^{2} \leq Ch\|\Phi_{-}u\|^{2} + h^{2}\langle R_{2}u, u\rangle + C\|\psi u\|\|f\| + O(h^{\infty}).$$

Since $\langle R_2 u, u \rangle \leq C h^{2k}$ by inductive hypothesis, we have

$$||Bu||^{2} \leq C(||\Phi_{-}u||^{2} + h^{2k+1} + h^{-1}||\psi u|| ||f||)$$

$$\leq C(||\Phi_{-}u||^{2} + h^{2k+1} + \delta^{-1}h^{-2} + \delta||\psi u||^{2})$$

where we used $||f|| \le 1$, and where $\delta > 0$ will be specified presently. Since at least one of *B* and Φ_{-} is elliptic at each point in the interior of T^* supp ψ , we have

$$\|\psi u\|^{2} \le C(\|\Phi_{-}u\|^{2} + \|Bu\|^{2}), \tag{3}$$

from which we conclude that, if δ is sufficiently small,

$$\|Bu\|^{2} \le C_{\delta}(\|\Phi_{-}u\|^{2} + h^{-2} + h^{2k+1}).$$
(4)

Because *c* was chosen small enough that all backward bicharacteristics through supp ϕ_{-} stay in $T^*\{|x| > R_0\}$, where $P = -h^2 \Delta$, we have

$$\|\Phi_{-}u\| \le Ch^{-1},$$

by standard nontrapping estimates (see, for example, [3, Sect. 6]). This, combined with (3) and (4), gives

$$\|\psi u\|^2 \le C_{\delta}(h^{-2} + h^{2k+1}),$$

after which taking $a_2 = \psi$ completes the proof of the inductive step.

Acknowledgements The first author is partially supported by a National Science Foundation postdoctoral fellowship, and the second author is partially supported by the NSF under grant DMS-0801226, and a Chambers Fellowship from Stanford University. The authors are grateful for the hospitality of the Mathematical Sciences Research Institute, where part of this research was carried out.

References

- 1. Nicolas Burq. Lower bounds for shape resonances widths of long range Schrödinger operators. *Amer. J. Math.*, 124:4, 677–735, 2002.
- Fernando Cardoso and Georgi Vodev. Uniform estimates of the resolvent of the Laplace-Beltrami operator on infinite volume Riemannian manifolds II. Ann. Henri Poincaré, 3:4, 673–691, 2002.
- 3. Kiril Datchev and András Vasy. Propagation through trapped sets and semiclassical resolvent estimates. To appear in *Ann. Inst. Fourier*. Preprint available at arXiv:1010.2190.
- Lawrence C. Evans and Maciej Zworski. Lecture notes on semiclassical analysis. Available online at http://math.berkeley.edu/~zworski/semiclassical.pdf.
- Stéphane Nonnenmacher and Maciej Zworski. Quantum decay rates in chaotic scattering. Acta Math. 203:2, 149–233, 2009.
- Didier Robert and Hideo Tamura. Semiclassical estimates for resolvents and asymptotics for total scattering cross-sections. Ann. Inst. H. Poincaré Phys. Théor. 46:4, 415–442, 1987.
- 7. Xue Ping Wang. Semiclassical resolvent estimates for *N*-body Schrödinger operators. *J. Funct. Anal.* 97:2, 466–483, 1991.
- 8. Jared Wunsch and Maciej Zworski. Resolvent estimates for normally hyperbolic trapped sets. To appear in *Ann. Inst. Henri Poincaré (A).* Preprint available at arXiv:1003.4640.

http://www.springer.com/978-3-0348-0465-3

Microlocal Methods in Mathematical Physics and Global Analysis Grieser, D.; Teufel, S.; Vasy, A. (Eds.) 2013, IX, 148 p. 2 illus. in color., Softcover ISBN: 978-3-0348-0465-3 A product of Birkhäuser Basel