
Chapter 2
The different languages of q-calculus

The study of q is often considered to be one of the most difficult subjects to engage
in mathematics. This is partly because of the many formulas involved, partly due
to the wide range of different notations used. Below is an outline of how and why
this wide and confusing variety of notations came into being, a situation which is
closely connected to the 300-year old history of q . The history of the study of q may
be illustrated by a tree.

This q-tree has 13 distinct roots:

1. the study of elliptic functions from the nineteenth century
2. the development of theta functions
3. additive analytic numbers theory, or theory of partitions
4. the field of hypergeometric functions
5. gamma function theory
6. Bernoulli and Euler polynomials
7. umbral calculus
8. theory of finite differences
9. combinatorics + q-binomial coefficient identities

10. theory of finite fields + primitive roots
11. Mock theta functions
12. multiple hypergeometric functions
13. elliptic integrals and Dedekind eta function

The main trunk of the tree is the subject q . The trunk is divided into two main
branches, the two principal Schools in q-analysis: Watson and Austrian. Each of
the two main branches bears several smaller twigs, smaller Schools which have
sprouted—and still do—somewhat later from one of the principal branches.

Now, the following pages may remind the reader more of a study in languages
and their interconnections than an exposition in mathematics. So be it for a while.
To fully understand the development and current state of q-analysis, the pitfalls and
the problems to be dealt with, it is imperative to establish a ‘frame’ within which
to get a proper general view of the vast area and its many different and connected
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branches. We may indeed use the language metaphor to grasp q at its present, some-
what confusing state:

The various Schools of q to be outlined below have developed over a period
of roughly 300 years since the Bernoullis and Euler. These Schools today use and
communicate in such different languages, that they have problems understanding
each other. The big School of Watson speaks—both literally and metaphorically—
English. It has little exact consciousness of, indeed may not find it necessary, to
study and know the roots of the vernacular. Still metaphorically speaking, the Wat-
son School does not understand the development of old Icelandic—which was the
beginnings of q—into a modern Scandinavian language. Thus, it is difficult for the
Watson School practitioners to understand and indeed to communicate with Schools
where completely different dialects have evolved. And we have in the q-area, in re-
lation to other areas, a tendency to develop specific, new languages (e.g. notations),
which surpasses this tendency in other fields of mathematics. This is either because
practitioners find these more easy to speak, because they find them more beautiful
or simply because they do not know and cannot pronounce the older forms.

2.1 Schools—traditions

It is today possible, indeed clarifying, to divide q-analysis/calculus into several
Schools or traditions. What distinguishes these Schools is first and foremost

1. Their history (their roots).
2. Which specific modern language they write in.
3. Their different notations.

These Schools or traditions should not be seen as iron-fence surrounded exclusive
units, but more as blocks with rather fluid and sometimes overlapping boundaries. It
is thus sometimes convenient to place a q-scholar in two traditions or Schools. If we
take Harold Exton as an example, it is possible to say that he was firmly rooted in the
historic tradition of the Austrian School, but he nevertheless used (partly) the nota-
tion from the Watson School. He—to use a metaphor again—spoke Watsonian but
with a strong Austrian accent. The result was, as is too often the case, a mishmash.

The two main Schools are, as already stated, the Austrian School and the Wat-
son School. In this context, it might be of interest to tell something about the
early development of the combinatorics in the German territory. The predecessor
of the Austrian School was the combinatorial School of Karl-Friedrich Hindenburg
(1741–1808) and Christoph Gudermann. The goal of the combinatorial School was
to develop functions in power series by Taylor’s formula.

The Austrian School is named in honour of one of its main figures, the Berliner
Wolfgang Hahn (1911–98), who held a professorship in Graz, Austria, from 1964.
Hahn was strongly influenced by Heine. The Austrian School is a continuation of the
Heine q-umbral calculus from the mid nineteenth century, which at the time how-
ever met with little attention except for Rogers, who introduced the first q-Hermite
polynomials and first proved the Rogers-Ramanujan identities.
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The Watson School takes its name from the English mathematician George
Neville Watson (1886–1965), who wrote the famous essay Treatise on the Theory of
Bessel Functions, and furnished a rigorous proof for the Rogers-Ramanujan identi-
ties.

Both Schools or traditions recognize the early legacies of Gauß and Euler. Only
the Austrian School, however, represents and incorporates the entire historical back-
ground which includes the pre-q mathematics, namely the Bernoulli and Euler num-
bers, the theta functions and the elliptic functions. The vast area of theta functions
and elliptic functions, which will be dealt with in Sections 3.8 and 6.13, is in fact
q-analysis before q was really introduced. Pre-q or q-analysis in disguise could
perhaps be an appropriate term for this period and its practitioners. The Austrian
School takes the development of q all the way from Jacob Bernoulli, Gauß and
Euler in the 17th and 18th century, through the central European mathematicians
of the nineteenth century: Heine, Thomae, Jacobi, and from the twentieth century:
Pringsheim, Lindemann, Hahn, Lesky and Cigler, the Englishman Jackson, the Aus-
trians Peter Paule, Hofbauer, Axel Riese and the Frenchman Appell. The present
(Swedish) author of this book confesses to be firmly rooted in the Austrian School.

The Austrian School is little known in the English speaking world, e.g. the USA
and the Commonwealth, for two main reasons: Immediately after the first world war,
ca. 1920 until 1925, the German and Austrian mathematicians were barred from par-
ticipation in the big mathematical conferences; they were simply deemed political
pariahs by the French, unwanted, and the communications with the English speak-
ing q-analysts were for a period limited, as was the exchange of ideas. The second
and more important reason has to do with languages. Most of the mathematicians
of the Austrian School wrote in either German or French and, as regards the oldest,
namely Euler, Gauß and Jacobi, in Latin. Only few English-speaking mathemati-
cians today master these languages (it is simply not part of the common American
curriculum), and few are therefore familiar with the works of these early European
scientists.

The Watson School is today the most widespread and influential of the two prin-
cipal Schools/traditions. But again this is mainly due the language. If English—as
is the case today for many mathematicians—is your primary and perhaps only ap-
proach to the study of mathematics, then adherence to the Watson School is almost
automatic. The Watson School is nowadays the main highway to the study of q .
Not necessarily, though, the best, the most correct or even the smoothest or most
beautiful route to choose.

The Watson School, in this author’s opinion—I hope and I will convince the
reader as the book progresses—does not take the full and necessary steps to under-
stand and incorporate the work early q and pre-q analysts into modern q-calculus.

Before Ramanujan, Cambridge had enjoyed quite a strong Austrian School rep-
resentation with names such as James Glaisher (1848–1928) and Arthur Cayley
(1821–95), from the nineteenth century.

F. H. Jackson (1870–1960), James Rogers (1862–1933) and Andrew Russell
Forsyth (1858–1942) from the twentieth century represent a kind of transition to
the Watson School.
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The Watson School may be said to start in earnest with the Indian Cambridge
mathematician Srinivasa Ramanujan’s discoveries, namely the mock theta func-
tions and the Rogers-Ramanujan identities. The Watson School goes, in a man-
ner of speaking, straight from Gauß to the twentieth century Srinivasa Ramanujan
(1887–1920) and thus skips and misses out a 150-years period of fruitful Euro-
pean studies. The early Watson School adherents and practitioners were the math-
ematicians at Cambridge who Ramanujan’s short stay inspired, e.g. Eric Harold
Neville (1889–1961) and Wilfrid Norman Bailey (1893–1961). Bailey devoted a
lot of time to administration and sports during his academic career. He was an ex-
cellent teacher and among his students were L. J. Slater, Jackson, F. Dyson and
Ernest Barnes (1874–1953). Interestingly enough, all of these turned into special
functions. Barnes became a bishop and wrote a long series of papers on special
functions and difference calculus. In a way, Barnes was a predecessor of Nørlund,
but they studied different problems. Although Barnes was an excellent mathemati-
cian, far better than Jackson, he never returned to the academia after a few years
as a teacher. In his youth, Bailey met Jackson in the Navy and they certainly dis-
cussed q-calculus already then. In a couple of papers around 1947 Bailey intended
to simplify some of Rogers’s proofs of generalizations of the Rogers-Ramanujan
identities. He then invented a new notation and gave Dyson credit to some of the
formulas. The famous Bailey’s lemma comes from this time; there are several vari-
ations of this, and Wengchang Chu claims that Bailey’s lemma is a special case
of a generalization of the Carlitz q-Gould-Hsu inversion formula. In the author’s
opinion, the wisest way is to go back to Rogers’s original proofs. After his retire-
ment, in 1958, Bailey intended to write a major work on q-series. For some rea-
sons this failed, although he moved to Eastbourne, where Jackson spent his last
years.

2.2 Ramifications and minor Schools

The explanations in Sections 2.2, 12.7–12.9 are written for convenience and give a
good account of the current state of affairs. These explanations are not in standard
terms and cannot be cited. The study of q can be further divided into sub-groups,
traditions or Schools. Some of these, e.g. the Chinese or Japanese ones, can hardly
be said to form Schools as such; what they have in common however, is a cul-
tural and linguistic background, which in a certain sense shapes their mathematical
work.

The Carlitz, Gould and Vandiver tradition is perhaps better termed the American-
Austrian School as its practitioners all tend to work in the European Watson School
tradition. This School can be traced back to the 1930s.

Isaac Joachim Schwatt (1867–1934), Leonard Carlitz (1907–1999) and Harry
Schultz Vandiver (1882–1973) were descendants of European immigrants to the
USA and therefore read and worked in the pre-q , or q-in-disguise tradition. Henry
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W. Gould (1928–) on the other hand simply enjoyed reading European mathemat-
ical literature. This group had a strong interest in Bernoulli numbers, finite differ-
ences and combinatorial identities. However, not all practitioners of the American-
Austrian School wrote books on their subject—the largest part of their contribution
is contained in their lectures and articles. Vandiver and Gould collected card-files
on articles about Bernoulli numbers; this work was continued by Karl Dilcher and
made available on the Web.

It is also possible that Carlitz was a student of Schwatt at University of Penn-
sylvania, Philadelphia. Carlitz was born in Philadelphia, and the two have worked
on similar mathematical topics. Schwatt, who became PhD in 1893 in Philadelphia,
remained in this city during his whole career (1897–1928). We will come back to
the q-analogues of the Schwatt formulas in Chapter 5, where q-Stirling numbers are
discussed. Carlitz spent a post-doc year 1930–31 with E. T. Bell in Pasadena, and
we have come to the next School.

The so-called E. T. Bell, Riordan, Rota-School started in 1906 in San Francisco
(the year of the big earthquake), when Eric Temple Bell (1883–1960) read some
books on number theory [430, p. 109]. The first one was by Paul Bachmann (1837–
1920) who enriched the whole theory with detailed proofs. Bachmann had a doctor-
ate from Berlin 1862; his instructors were Ernst Kummer (1810–1893) and Martin
Ohm (1792–1872) (Bachmann himself had no doctoral students). The second book
Bell read was Théorie des Nombres [363] by E. Lucas (1842–1891) [363]; here
Bell was initiated into the so-called umbral calculus. Morgan Ward (1901–1963)
also belonged to this School; his supervisor was Bell. John Daum recognized the
connection between q-series and hypergeometric functions; Daum belonged to the
second mathematical generation after Bell.

John Riordan (1903–1988) and Gian-Carlo Rota (1932–1999) were also mem-
bers of this group. In 1963, Riordan and Rota met in Boston and went to a restau-
rant where they discussed Riordan’s new book An Introduction to Combinatorial
Analysis; Riordan’s book is actually dedicated to E. T. Bell. After 31 years, in the
footsteps of Bell, Rota and his student Brian Taylor attempted a rigorous founda-
tion for the umbral calculus in the excellent treatise The Classical Umbral Cal-
culus [439]. Unfortunately, Rota learned late of Bell’s combinatorial work [430,
p. 227], so he could not find the q-analogue of [439], which is presented in this
book.

Special functions have always been a major research topic in India, an inheritance
from the old nineteenth century Austrian Cambridge School under Glaisher and
Forsythe. The Indian School is made up of many different branches and can for
convenience be divided into at least three different areas of interest: Srivastava, Hahn
and Ramanujan. The Srivastavan branch was originally founded in the 1960s by
Hari M. Srivastava in the footsteps of Shanti Saran. The city of Lucknow is a centre
for experts, and will be of interest in the following. Saran got his PhD in 1955 in
Lucknow on a treatise on hypergeometric functions of three variables; his supervisor
was R. P. Agarwal (1925–2008). Srivastava received his PhD in 1965 in Jai Narain
Vyas on a similar topic. The mathematical journal Ganita is printed in Lucknow
since 1950; since the sixties, almost every issue contains an article about special
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functions. In the 1952 issue, there is a report on hypergeometric functions by H. M.
Srivastava and A. M. Chak. In the 1956 issue there is a report on the hypergeometric
functions of three variables by Krishna Ji Srivastava, which refers to Saran. These
two mathematicians were probably unaware of the articles by Horn.

H. M. Srivastava was born in India, settled in Canada in the early seventies, but
travelled frequently to India until 1985. He was a good friend of and therefore also
inspired by Gould of the American–Austrian School. Srivastava left India perma-
nently in the 1980s and without its founder the School quickly dwindled. The mem-
bers of the Srivastava School were especially interested and produced works on hy-
pergeometric functions of many variables, on generating functions and on different
polynomials, e.g. Laguerre and/or differential operators. Recently (2009), Srivas-
tava again visited Vijay Gupta in India and perhaps something interesting will arise
from this cooperation.

H. L. Manocha (Polytechnic Institute of New York University) has written a book
about generating functions [484]; one of his graduate students was Vivek Sahai.

Srinivasa Rao, who was earlier in Chennai, is since 2004 at the Ramanujan Center
of Sastra University in Kumbakonam, one of his students was V. Rajeswari.

Subuhi Khan, Aligarh University, has done basic studies on connections between
Lie algebras and special functions, which she has presented at conferences in Hong
Kong and Decin.

Wolfgang Hahn of the Austrian School spent a year in India before taking up as
professor at Graz and his Indian pupils, following in his footsteps, are especially
interested in q-Laplace transformations and Hahn q-additions.

The Ramanujan branch was and is still a very active and productive group. They
are inspired by the great Indian master Ramanujan and his mock theta functions.
Brilliant works appear from time to time from this otherwise uneven group of Indian
mathematicians.

The Hungarian School is yet another European branch with a strong affinity and
connection to the Austrian School. This is also a q-School without the q, . . . i.e. the
work is done primarily on q-related topics such as the theory of orthogonal poly-
nomials and recurrence relations. The Hungarian School emerged in the post WW1
years, the prominent figure being the Hungarian-born Gabor Szegő (1895–1985).
Szegő is the father of the so-called Rogers-Szegő polynomials—q-polynomials with
many similarities to Hermite polynomials. He later took up work at Stanford and
wrote thence in the Watson tradition. One of his successors is Richard Askey; the
Askey tableau of orthogonal polynomials stems from him. There is also a q-version
of this. Another major contribution is the book Calculus of Finite Differences by
Charles Jordan [320]. Other strong representatives of this School are Eugene Wigner
(1902–1995) and John von Neumann (1903–1957), who also worked without q , but
strongly influenced the development of quantum groups. Their works are of high
quality, but rather difficult. Wigner introduced the 3-j coefficients, but his formulas
could have been greatly improved by using hypergeometric functions in his formu-
las. This came only in our time, when Joris Van der Jeugt used multiple hypergeo-
metric functions for 9-j coefficients.

The Danish School: This School is closely linked with the Austrian School by the
close linguistic relationship with German and French. There are two branches: one
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deals with Stirling numbers and finite difference calculus, the other with multiple
hypergeometric functions and gamma functions. In 1909 Thorvald N. Thiele (1838–
1910) wrote a book about interpolation theory, containing a table of Stirling num-
bers. Johan Ludwig Jensen (1859–1925) wrote about gamma functions and thereby
influenced Niels Nielsen (1865–1931) in the same area. Nielsen had a strong interest
in special functions, in his own way, and introduced Stirling numbers in a paper in
French. He has also written biographies on ancient French mathematicians. Nielsen
has developed Fakultätenreihen by Bessel functions in his 1904 book on cylinder
functions [396]. Here one can also find an excellent bibliography. In the footsteps
of Nielsen, Niels Erik Nørlund (1885–1981) in the remarkable work [403] gave the
first rigorous treatment of finite differences from the perspective of the mathemati-
cian. Nørlund gave lectures on hypergeometric series in Copenhagen until 1955.
Nørlund also knew q-calculus; F. Ryde published a thesis on this subject under his
supervision in Lund. The next link in the chain is perhaps Per Karlsson (1936–), the
expert on multiple hypergeometric functions and friend, among other things, collab-
orator and model of the author. One can mention also Christian Berg, who works on
moment problems and real analysis.

Russian School: Russian mathematicians have greatly influenced the above men-
tioned Hungarian School through studies of polynomials.

Russia has, in general, a strong tradition in mathematics, which dates back to
Euler and the 18th century mathematicians who took up this heritage. Euler has
very much contributed to the Proceedings of the St. Petersburg Academy. After his
death, his successors could not keep the high level from before.

Euler himself died in St. Petersburg, and it is a well-established fact that both
his direct influence and also his unpublished papers and work remained in Russia,
which explains in part the high level of mathematics in Russia. Many Russian math-
ematicians from the nineteenth century did excellent work in the area of Bernoulli
numbers and umbral calculus, among them Grigoriew, Chistiakov and Imchenetsky.

According to Grigoriew [247, p. 147], the generalized Bernoulli numbers, which
Nørlund used in [403], were also used by Blissard (1803–1875) [75] and Imch-
enetsky [289]. L. Geronimus (1898–1984) wrote about certain Appell polynomi-
als. Leading figures in the tradition of orthogonal polynomials and Bessel functions
were P. L. Chebyschew (1821–1894) and Nikolay Yakovlevich Sonine (1849–1915).
Their articles are, unfortunately, less accessible, being written in Russian, though
some are translated into English. Sonine was one of the last representatives of this
School, who could read Euler in the original language.

There is a connection to theoretical physics:
Valentine Bargmann (1908–1989) was born in Berlin to Russian parents. After

studying in Berlin and Zurich, he went to Princeton, where he joined Einstein and
Wigner. He is famous for the unitary irreducible representations of SL2(R) and the
Lorentz group (1947) and for the Bargmann-Fock space. Russian mathematicians
strive to develop, among other things, the theory of Heisenberg ferromagnetic equa-
tions and are also actively studying the connection between 3-j coefficients and
hypergeometric functions.

The Italian School is quite strong. It started when Giuseppe Lauricella (1867–
1913) studied hypergeometric functions of many variables in the nineteenth century.
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Like Paul Appell (1855–1930), Lauricella focused on symmetric functions, because
these provide the most beautiful formulas.

Pia Nalli (1886–1964), who made a highly interesting study of the so-called
q-addition, was influenced by the Italian literature about elliptic functions. Nalli
was the first one who used the NWA q-addition in her only article on q-calculus.

Letterio Toscano (Messina) (1905–1977), who at the beginning wrote only in
Italian, published many interesting articles about Bernoulli, Euler and Stirling num-
bers in connection with the operator xD.

Due to his friendship with Francesco Tricomi (1897–1978) (Torino), Toscano
could write in publications of the Italian academy; the two belonged to the same
generation. Tricomi published books on confluent hypergeometric functions and el-
liptic functions before joining the Bateman project.

In 2005, Donato Trigiante, a student of Tricomi, published elegant matrix repre-
sentation for the Bernoulli and Euler polynomials.

In 2007, the author presented q-analogues of Trigiante’s matrix formulas at the
OPSFA Conference in Marseille.

Another Italian mathematician, who, among other things, published on Laguerre
polynomials, was Giuseppe Palama (1888–1959) from Milano. In the last decades,
Rota and Brini have published works on umbral calculus. We find a q-analogue of
Rota’s infinite alphabet in this book, that the author introduced (2005).

The Scottish School consisted of Thomas Murray MacRobert (1884–1962), who
introduced the MacRobert E-function. In this context, MacRobert together with
Meijer introduced the �(l;λ)-operator of Srivastava [475]. Under his leadership
began the Proceedings of the Glasgow Mathematical Association in 1951, in which
many publications on special functions appeared. MacRobert had no doctoral stu-
dents, but he helped many authors to write on special functions in British journals.
After his death, many mathematicians, e.g. from Egypt or India, have followed in
his footsteps.

2.2.1 Different notations

This large number of different Schools and their branches or off-springs has also
resulted in a profusion of different notations. The scheme below is an attempt to
bring some sort of order into the profusion and confusion of notations in the different
areas.

The different notations:
1. q-hypergeometric functions
Watson: The q-shifted factorial is denoted by (a;q)n, (1.31).

Austrian:

1. The q-shifted factorial is denoted by 〈a;q〉n, (1.30).
2. Cigler only uses the Gaussian q-binomial coefficients, which are nearly equiva-

lent to (1.30) above.
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3. Yves André [22, p. 685] uses a notation that is equivalent to 〈a;q〉n. André [22,
p. 692] also denotes Dq by δσ .

Indian:
V. Rajeswari and K. Srinivasa Rao in 1991 [426] and in 1993 [470, p. 72] use my

umbral notation in connection with the q-analogues of the 3-j and 6-j coefficients.

Russian:

1. Also Gelfand has used a similar notation in one of his few papers [228, p. 38]
on q-calculus. His comment is the following: Let us assume that at first we use
Watson’s notation (1.31) for the q-hypergeometric series.

If all αi and βi are non-zero, it is convenient to pass to the new parameters ai ,
bi , where αi = qai , βi = qbi .

2. Igor Frenkel (MIT) uses none of the above notations. He simply writes the defini-
tions. In the book [186] the symbol {a} is used instead of our {a}q . In [186] there
is a special notation for (z;q)a , but no notation for Dq . Instead of q-factorials,
Theta functions are used [186, p. 172].

3. Naum Vilenkin (1920–1991), and Anatoly Klimyk (1939–2008) [523] in their
three volumes on representation theory for Lie groups use their own Watson-like
notation, as does Boris Kupershmidt.

2.3 Finite differences and Bernoulli numbers

Finite differences and Bernoulli numbers are closely related to q-Analysis. The
Bernoulli numbers were first used by Jacob Bernoulli (1654–1705) [70], who cal-
culated the sum:

sm(n) ≡
n−1∑

k=0

km = 1

m + 1

m∑

k=0

(
m + 1

k

)
nm+1−kBk, (2.1)

where the Bernoulli numbers Bn are defined by:

z

ez − 1
= 1 − z

2
+

∞∑

n=1

B2nz
2n

(2n)! . (2.2)

The Bernoulli polynomials are defined by:

Bn(x) ≡ (B + x)n =
n∑

k=0

(
n

k

)
Bkx

n−k, (2.3)

where Bn must be replaced by Bn on expansion.
In 1738 Euler used the generating functions to study the Bernoulli polynomials.

The Bernoulli polynomials were also studied by J.-L. Raabe (1801–1859) [422] and
Oskar Xaver Schlömilch (1823–1901) [453, p. 211].
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We now write down the basic equations for finite differences where, E is the shift
operator and � ≡ E − I.

Theorem 2.3.1 [525, p. 200], [138, p. 26], [458, p. 9]. Faulhaber-Newton-Gregory-
Taylor series

f (x) =
∞∑

k=0

(
x

k

)(�kf
)
(0). (2.4)

Theorem 2.3.2

�nf (x) =
n∑

k=0

(−1)k
(

n

k

)
En−kf (x). (2.5)

This formula can be inverted.

Theorem 2.3.3 [460, p. 15, 3.1]

Enf (x) =
n∑

i=0

(
n

i

)
�if (x). (2.6)

The Leibniz rule goes as follows:

Theorem 2.3.4 [320, p. 97, 10], [138, p. 27, 2.13], [385, p. 35, 2], [411, p. 19].

�n(fg) =
n∑

i=0

(
n

i

)
�if

(�n−iEi
)
g. (2.7)

In Chapter 4, we will retain the binomial coefficients in the corresponding q-
formulas, whereas in Chapter 5, q-binomial coefficients for the corresponding for-
mulas will be used.

Karl Weierstraß said that the calculus of finite differences will once play a leading
role in mathematics. Two important elements of the calculus of finite differences
are the Bernoulli numbers and the � function. Nørlund says in a letter to Mittag-
Leffler 1919 [183] “Someone who is not an expert in these fields cannot be an expert
on calculus of finite differences.” We will show that the � function can always be
transferred to the Pochhammer-Symbol. The q-factorial and the �q function are the
corresponding q-terms. We infer that the (q-)hypergeometric function is also part of
the calculus of finite differences. This is no accident, as Douglas Barker Sears and
Hjalmar Mellin (1854–1933) have shown.
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2.4 Umbral calculus, interpolation theory

The interpolation theory, which was often used by astronomers of the nineteenth
century, like Gauß, Bessel, W. Herschel (1738–1822), J. Herschel (1792–1871), is
essentially equivalent to the theory of finite differences.

Herschel [277] wrote: “The want of a regular treatise, on the calculus of finite
differences in English, has long been a serious obstacle to the progress of the en-
quiring student. The Appendix annexed to the translation of Lacroix’s Differential
and integral calculus, although from the necessity of studying compression it is not
so complete as its author could have wished. . . ”

Computations on elliptic functions with finite differences were made by Jacobi,
Weierstraß and Louis Melville Milne-Thomson (1891–1974).

In 1706, John Bernoulli (1667–1748) invented the difference symbol �. Fifty
years later, in 1755, Leonhard Euler used its inverse, the

∑
operator [189, Chap-

ter 1]. Euler was John Bernoulli’s student together with Bernoulli’s two sons, Nico-
laus II and Daniel. Even though John Bernoulli used the symbol � already in 1706,
he had in mind not finite differences thereby, but differential quotients. Hence, Euler
stands out as the one who devised the designation that has remained in use. Euler’s
proofs were however not entirely satisfactory from a modern point of view [277,
p. 87].

The two symbols, sometimes also called the difference and sum calculus, corre-
spond respectively to differentiation and integration in the continuous calculus. We
will find 2 different q-analogues of the inverse operators � and

∑
in Sections 4.3

and 5.3.
Euler [189] and Joseph-Louis Lagrange (1736–1813) have introduced the umbral

calculus, where operators like (4.126) were used. In 1812, in the footsteps of L. Ar-
bogast (1759–1803), another Frenchman, Jacques-Frédéric Français, wrote E for the
forward shift operator [345, p. 163] and reproved the Lagrange formula from 1772,

E = eD. (2.8)

A decade later, Augustin Cauchy (1789–1857) in his Exercices de mathématiques
[345, p. 163] for the first time found operational formulas like

D
(
erxf (x)

) = erx(r + x)f (x). (2.9)

Arbogast and Fourier regarded this umbral method as an elegant way of discover-
ing, expressing, or verifying theorems, rather than as a valid method of proof [345,
p. 172]. Cauchy had similar opinions. We will see that this sometimes also obtains
for the method of the author.

Textbooks on the subject were written by Andreas von Ettingshausen (1796–
1878), J. Herschel, J. Pearson and Augustus De Morgan (1806–1871).

Robert Murphy (1806–1843) was a forerunner of George Boole (1815–1864) and
Heaviside, who among other things found nice formulas for derivatives in the spirit
of Carlitz.

In 1854 Arthur Cayley introduced the concept of Cayley table in his article On
the theory of groups. Cayley defined a group as a set of objects with a multiplication
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and a symbolic equation θn = 1. Blissard was obviously influenced by Cayley’s
work, at least in what concerns his notation.

Another French entry came from E. Lucas, who invented a modern notation for
umbral calculus. The Lucas umbral calculus was widespread in Russia, for example
one finds the defining formula for the Bernoulli numbers in Chistiakov 1895 [127,
p. 105]. The Blissard umbral calculus has attracted attention in Russia; in [127,
p. 113] one finds the Blissard Bernoulli number formulas with sine and cosine.

By 1860 two textbooks on finite differences were published in England, one of
them by Boole, which covered almost all the theorems that we know now. Heav-
iside was able to greatly simplify Maxwell’s 20 equations in 20 variables to four
equations in two variables. This and other articles about electricity problems, which
appeared in 1892–98, were severely criticized for their lack of rigour by contempo-
rary mathematicians.

It seems that Heaviside’s contribution to mathematics was underestimated by
his contemporaries, since in fact he both discussed formal power series and the
rudiments of umbral calculus, which we present in this book.

Angelo Genocchi (1817–1889) and Salvatore Pincherle (1853–1936) contributed
to the early Italian development of the subject. Alfred Clebsch (1833–1872) and
Paul Gordan (1837–1912) continued the theory of invariants that had started with
Sylvester and Cayley.

The Heine q-umbral calculus reached its peak in the thesis by Edwin Smith
(1879–) [467] 1911, which was supervised by Pringsheim.

F. H. Jackson followed this path in the early twentieth century, and fully under-
stood the symbolic nature of the subject in his first investigations of q-functions.
Like Blissard, Jackson worked as a priest his whole life; both of them had studied
in Cambridge. To honour Jackson, we will use his notation for Eq(x).

Steffensen [488], Jordan [320] and Milne-Thomson [385] wrote books about fi-
nite differences intended both for mathematicians and statisticians. Johann Cigler
wrote an excellent book [138] on finite differences with a view to umbral calculus.

2.5 Elliptic and Theta Schools and notations, the oldest roots–the
q-forerunners

Just as the nicest equations in mechanics are connected with the torque (and the
angular momentum), the theta functions and the elliptic functions give the most
beautiful equations in calculus.

moment theta functions, elliptic functions

As was the case with q: Schools and traditions abound, so it is the case with the fore-
runners of q-analysis: different Schools, different notations. The early q-analysis
may be defined as the mathematics done in this area even before the q was intro-
duced and properly defined, namely the elliptic functions and theta functions from
ca. 1750 and onwards. We may call these the q-forerunners or speak of the pre-q
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mathematics or q-analysis in disguise. Euler had in fact already introduced q-series
and Jacobi continued to use the letter q , which has survived until today.

Eight Schools stand out:

1. Jacobi theta functions and elliptic functions of one variable.
2. Riemann Theta functions of one or more variables or Abelian functions.
3. Weierstraß elliptic functions and sigma functions.
4. The Glaisher-Neville-School for Jacobi elliptic functions.
5. The �q -School.
6. The Heine 	 function School.
7. The Weierstraß-Mellin School of Gamma functions and hypergeometric func-

tions.
8. The Italian elliptic function School.

School 1 is about the Jacobi theta functions, so called after the German math-
ematician Carl Gustav Jacob Jacobi. Jacobi’s development of the theta functions,
of which we have four, was made in parallel to (but before) that of Weierstraß of
School 3. This means that if we know all 4 Jacobi Theta functions, we can compute
all Weierstraß σ functions by means of 4 linear equations and vice versa.

There were in fact originally three different notations for Jacobi elliptic func-
tions:

Jacobi notation, Abel notation and finally the modern Gudermann notation
snu, cnu, dnu from 1844.

School 2 covers the Riemann Theta functions after G.F.B. Riemann (1826–66).
These are functions of one or more variables. Prominent persons working in this
School have been Krazer, Rauch and Lebowitz, Thomae, Göpel, Rosenheim and
Forsyth.

School 3 deals with the Weierstraß elliptic functions, after Weierstraß. These are
more general, defined on a general lattice in the complex plane.

School 4 is just a modern English version of School 1. By 1875 the theory of
elliptic functions was very popular; the Messenger of Mathematics had since no. 4
of 1875 a separate Section on elliptic functions, where among others Glaisher and
Cayley have contributed.

School 5 covers the q-Gamma function. There are, for instance, many modern
papers with inequalities for quotients of these functions. Atakishiyev [50, p. 1326]
has rediscovered the q-analogue of the Euler mirror formula.

The roots of the Heine 	 function (School 6) come from the Jacobi-Heine treat-
ment of elliptic functions [270].

Johannes Thomae (1840–1921) [497, p. 262] claims that his teacher Heine was
the first to find the q-analogue of the Euler mirror formula [270, p. 310].

The main difference between the two functions is that 	 has zeros, in contrast to
the �q function which has no zeros, and therefore 1

�q
is entire. In his thesis Ashton

[45], supervised by Lindemann, showed its connection to elliptic functions. Daum
[148] tried to find all the basic analogues of Thomae’s 3F2 transformation formula
[501, Eq. 11], using a notation analogous to that used by Whipple [541] and by
essentially replacing the �q function by the Heine 	 function.
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Daum [148] concludes his thesis by saying It is hoped, however that the use of
the modified Heine 	 function, will serve to emphasize the analogy between hyper-
geometric series and q-hypergeometric series and simplify the notation generally.

Sonine wrote a book [469] on the Heine 	 function in Russian, which also treats
the � function.

School 7 is in the area of the Mellin and Gamma functions and the nineteenth
century work in this area further influenced the Danish School, featuring names
such as Thiele, Nielsen and Nørlund.

School 8 started with the numerous Italian books about elliptic functions written
by Bellacchi in 1894, E. Pascal (II) in 1895, Bianchi (1856–1928) in 1901, and
Giulio Vivanti (1859–1949) in 1900 [524].

This influenced Pia Nalli to write her paper [391], where Theta functions and a
q-integral formula for a q-Riemann zeta function were given.

One can note here that the Gudermann’s notation was very quickly accepted in
Japan, see [378, p. 87].

2.6 Trigonometry, prosthaphaeresis, logarithms

There has always been a strong connection between mathematics and physics.
The 1648 book Mathematical Magick by John Wilkins (1614–1672) contains

basic mechanics, but no mathematics, by today’s definition.
Textbooks on mathematics in the late eighteenth century contained a variety of

subjects like mechanics, optics and astronomy. One example is the book Die Ele-
mente der Mathematik by Johann Friedrich Lorenz (1737–1807) from 1797, which
treated such diverse subjects as refraction, parallax, geography, the atmosphere of
the moon. Elementary trigonometric formulas were given, and these trigonometric
functions were used to treat the physics involved. This was natural since many ear-
lier mathematicians, like the Bernoullis, were both physicians and physicists. John
Bernoulli (1) has in fact even written a memoir about mathematical medicine.

We will start with a brief history about trigonometry and its relationship to spher-
ical triangles and astronomy.

Probably Aristarchus of Samos, Greece (−260) [392, p. 108] used ratios similar
to tangens. Menelaus of Alexandria (+100) in his treatise on spherical trigonometry
introduced the concept of sine [392, p. 108].

Aryabhata (+510) has for the first time used special names for sine and computed
tables for every angle [392, p. 108]. His contemporary Vara-Mihira has in the year
505 given formulas that are equivalent to sine and cosine [392, p. 108]. These Indian
works were then taken over by the Arabs and transmitted to Europe [392, p. 108].
The Egyptian mathematician and astronomer Ibn Yunus (950–1009) demonstrated
the product formula for cos and made many astronomical observations. During the
doldrums of the dark ages not much happened in trigonometry until the renaissance
with the rediscovery of the old Arabic culture. Prosthaphaeresis (the Greek word
for addition and subtraction) is a technique for computing products quickly using
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trigonometric identities, which predated logarithms. Myriads of books have been
written on trigonometry in Latin before the modern notations sin and cos were in-
troduced by Euler. The Greek and Alexandrian mathematicians were prominent in
proof theory and geometry, including conic sections. Certainly these ancient scien-
tists had some notation for trigonometric functions and some of this great research
has survived through Latin translations during the renaissance.

Georg Purbach (1423–1461), who was born near Linz, has enriched the
trigonometry and astronomy with new tables and theorems. He actually combined
the chords of Ptolemaios with the sines of the arabs and in that way introduced the
first tables of sines with decimals. His student in Vienna Johannes Müller (1436–
1476) continued Purbach’s research and inter alia introduced the tangent in astron-
omy; Müller called it foecundus (Latin: fruitful) because of its great advantages. His
work on flat and spherical trigonometry in five volumes was printed in Nuremberg
in 1533.

The trigonometry of Regiomontanus (Müller) looked about the same as now, the
biggest difference being that logarithms were not used. Many other mathematicians
have continued his development of trigonometry, e.g. John Werner (1468–1528),
who wrote a work in five volumes on triangles. Werner used the product formula
for sin and also contributed to the development of instruments. In the footsteps of
Werner, Georg Rheticus (1514–1574) used Prosthaphaeresis computations for in-
struments. Through his friendship with Duke Albert of Prussia, Rheticus agreed
in 1541 to the printing of Copernicus work De Revolutionibus. Two years ear-
lier, Rheticus visited Nicholaus Copernicus (1473–1543), whose great book could
not yet be printed. Copernicus De Revolutionibus was finally printed in 1543 in
Nuremberg; in an annex Rheticus adds tables for sin and cos. In 1596, Rheticus’
student Valentin Otto (1550–1603) published several books on plane and spherical
trigonometry, based on Rheticus’ computations.

Erasmus Reinhold (1511–1553) and Franciscus Maurolycus (1494–1575) have
also published tables of tangents or secants.

In 1591, Philippus Lansbergen (1561–1632) computed tables for sin, sec and tan
by hand in Geometria Triangularium. This is a short, concise work.

The Danish physicist and mathematician Thomas Fincke (1561–1656) was born
in Flensburg and later worked in Copenhagen. Fincke has introduced the concept of
sec.

Probably the first western European work dealing with systematic computations
in plane and spherical triangles was written 1579 by François Viète (1540–1603),
called ‘the father of modern algebraic notation’.

Viète used a certain notation for multiplication and found [230] formulas al-
most equivalent to multiplication and division for complex numbers as well as the
de Moivre’s theorem.

Joost Bürgi (1552–1632) was also an advocate for Prosthaphaeresis. At about the
same time as Napier, he invented the logarithms, but unfortunately he did not dare to
publish his invention until 1620 [110, p. 165]. Bürgi, who was a Swiss clockmaker
was also a member of the so-called Rosenkreuzer society, to which we will come
back later.
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James VI of Scotland, who was on a journey to Norway in the year 1590 to-
gether with his entourage, including Dr. John Craig, visited the island Ven on his
return to Scotland. There Tycho Brahe (1546–1601) had constructed a big machine
for prosthaphaeresis computations to ease the burden of calculation. Craig told his
friend John Napier (1550–1617) about the visit to the famous astronomer and that
inspired Napier to develop his logarithms and the generation of his tables, a work to
which he dedicated his remaining 25 years.

Johannes Kepler (1571–1630), who was collecting Tycho Brahe’s immense data,
read Napier’s book on logarithms in 1616; he found that he could describe his laws
for orbital periods and semimajor axes for planetary ellipses as a straight line in a
log-log diagram.

Thanks to these laws Isaac Newton (1642–1727) was able to discover the gravi-
tation law. At the request of Kepler, Bürgi finally brought himself to publish his im-
portant book on logarithms in 1620. Logarithms have been in great use ever since;
even physicians and nurses have employed these tables for various long computa-
tions.

In Ulm (1627), Kepler then published his Rudolphine tables with tables for
log sinx together with so-called Antilogarithms, a forerunner of the exponential.
In 1801, James Wilson in scriptores Logarithmici published a work on the use of
logarithms in navigation. Wilson has also written a book on finite differences in
1820.

2.7 The development of calculus

The first calculating machine was built by the German astronomer Wilhelm
Schickard (1592–1635) in 1623 [361, p. 48] and was designed for Kepler. The
Schickard calculator could add, subtract, multiply and divide, but remained un-
known for 300 years. In 1642, Blaise Pascal (1623–1662) constructed a mechanical
calculator, capable of addition and subtraction, called Pascal’s calculator or the Pas-
caline, in order to help his father with his calculations of taxes [361, p. 16]. Some of
his calculators were also exhibited in museums both in Paris and Dresden, but they
failed to be a commercial success. Although Pascal made further improvements and
built fifty machines, the Pascaline became little more than a toy and status symbol
for the very rich families in Europe, since it was extremely expensive. Also, people
feared it might create unemployment, since it could do the work of six accountants.

Gottfried Wilhelm Leibniz made two attempts to build a calculating machine
before he succeeded in 1673; his machine could do addition, subtraction, multipli-
cation and possibly division [283, p. 79].

Since the q-difference operator is fundamental for our treatment, we will go
through the historical development of the calculus in some detail. We will outline
the development of the infinitesimal calculus and find that the q-integral occurs in
geometric disguise. Euclid computed the volume of a pyramid by a geometric series
in Elements XII 3/5 [65, p. 48], [459, p. 98]. Archimedes used a geometric series to
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do the quadrature of the parabola. In the 17th century each mathematician did his
own proofs in calculus. Pierre de Fermat (1601–1665), Gilles Roberval (1602–75)
and Evangelista Torricelli (1608–47) had great success in the theory of integration.
All three, independent of each other, found the integral and derivative of power func-
tions, but in a geometric way. Roberval kept his post as professor in Paris by winning
every contest that was set up. Thus he could not publish his discoveries since then
he would reveal the secret’s of his methods [527, p. 21]. Roberval’s win of the com-
petition in 1634 was probably due to his knowledge of indivisibles [527, p. 21].

Between 1628 and 1634 Roberval invented his method of infinitesimals [527,
p. 59]. Roberval plotted graphs of trigonometric functions before 1637 in connection
with a volume calculation [527, p. 67]. He was also the first to compute certain
trigonometric integrals [527, p. 72].

In 1635 Bonaventura Cavalieri (1598–1647) was the first to publish integrals of
power functions xn in his book Geometria indivisibilis continuorum; but he proved
the result explicitly only for the first few cases, including n = 4, while, as he stated,
the general proof which he published was communicated to him by a French mathe-
matician Jean Beaugrand (1590–1640), who quite probably had got it from Fermat.
Beaugrand made a trip to Italy in 1635 to tell Cavalieri about Fermat’s achievements
[366, p. 51]. Cavalieri’s method was much like Roberval’s, but mathematically in-
ferior [527, p. 21].

Fermat was a famous mathematician who founded modern number theory, an-
alytic geometry (together with Descartes), and introduced the precursor of the
q-integral.

In that time period, father Marin Mersenne (1588–1648) kept track on science
in France and knew about all important discoveries, a kind of human internet.
Mersenne had made the work of Fermat, René Descartes (1596–1650) and Roberval
known in Italy, both through correspondence with Galilei (1564–1642) dating from
1635 and during a pilgrimage to Rome in 1644.

Fermat’s contribution became known through a translation of Diophantus Arith-
metica by Claude Gaspard de Bachet (1591–1639) in the year 1621. Fermat adhered
to the algebraic notation of Viète and relied heavily on Pappus in his development
of calculus. Like Kepler, Fermat uses the fact that extreme values of polynomials
are characterized by multiple roots of the function put equal to zero [284, p. 63].

Originally Fermat put f (x + h) = f (x − h) for extreme values [292], then de-
veloped the expression in terms of powers of h, and finally decided the type of the
extreme value from the sign. Later in 1643–44 he even talked of letting h → 0 [284,
p. 63]. The leading mathematician of the first part of the seventeenth century was
Fermat, who was very talented in languages and handwritings [284, p. 62]. Few re-
sults in the history of science have been so closely examined as Fermat’s method of
maxima and minima [245, p. 24].

Laplace acclaimed Fermat as the discoverer of the differential calculus, as well
as a codiscoverer of analytic geometry. Fermat was the first to consider analytic
geometry in R

3.
Descartes contended himself with R

2 [66, p. 83]. According to Moritz Cantor
(1829–1920) [96, p. 800], Descartes and Fermat were the greatest mathematicians
mentioned here.
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At that time Fermat and then also Torricelli, had already generalized the power
formula to rational exponents n �= −1. Fermat determined areas under curves which
he called general parabolas and general hyperbolas. This was equivalent to calculat-
ing integrals for fractional powers of x.

Vincenzo Viviani (1622–1703), another prominent pupil of Galilei, determined
the tangent to the cycloid.

In 1665, the first two scientific journals were published, Philosophical Transac-
tions of the Royal Society in England and Journal des Savants in France. The idea
of private, for-profit, journal publishing was already established during this time.
Fermat however, chose not to publish, probably for political reasons. It is also pos-
sible that Fermat was influenced by the old Greek habit of not publishing one’s own
proofs [366, p. 31].

Roberval was the first to (q-)integrate certain trigonometric functions. At about
the same time important contributions were made by the English mathematician
John Wallis (1616–1703) in Oxford, who in his book the Arithmetic of Infinitesimals
(1655) stressed the notion of the limit, see Section 3.7.8.

It was in mathematics that Wallis became an outstanding scientist in his country,
although he engaged himself in a wide range of interests.

Blaise Pascal associated himself with his contemporaries in Paris, like Roberval
and Mersenne. He learned a method similar to q-integration from his masters and
also corresponded with Fermat. Their short correspondence in 1654 [66, p. 107]
founded the theory of probability. During several months from 1658 to 1659, Pascal
summed infinite series, calculated derivatives of the trigonometric functions geo-
metrically and found power series for sine and cosine. However, in Pascal’s time
there were no signs for sine and cosine. During the last years of his life Pascal also
published the philosophical work Lettres provinciales under the pseudonym Louis
de Montalte.

Trigonometric tables were published in great numbers in the early seventeenth
century; e.g. Mathias Bernegger (1582–1640) published such tables 1612 and 1619
in Strasbourg.

During his life, Jacob Heinlein (1588–1660) had mostly worked as a priest; when
he was inaugurated by Kepler in the mathematical world at the time, Heinlein was
allowed to lecture on mathematics in Thübingen for a time after Schickard’s death
in 1635.

Heinlein published Synopsis mathematica universalis posthumously in Thübin-
gen in 1663 and 1679, where some trigonometric functions appear. This book was
then translated into English and issued in three editions in London, in 1702, 1709
and 1729. In the English expanded edition you will also find trigonometric tables.

The power series for sin and arcsin were communicated by Henry Oldenburg
(1626–1678) to Leibniz in 1675 [10]. These series were also known to Georg Mohr
(1640–1697) and John Collins (1625–1683). Isaac Barrow (1630–77), who was
Isaac Newton’s teacher in Cambridge [66, p. 117], published his geometrical lec-
tures in 1664. Barrow was familiar to the concept of drawing tangents and curves,
probably from the works of Cavalieri and Pascal. Barrow developed a kind of cal-
culus in a geometrical way, but did not have a suitable algebraic notation for it.
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J. M. Child claims that Barrow was the first to give a rigorous demonstration of the
derivative for fractional powers of x. But probably Fermat forestalled him. Barrow
also touched upon logarithmic differentiation.

Leibniz was a child prodigy in Leipzig, where he learned Latin and Greek by
studying books in his father’s library. At the age of 15 Leibniz explained the the-
orems of Euclidean geometry to his fellow students at the university. Leibniz also
studied philosophy and was fascinated by Descartes’s ideas. Leibniz had found re-
marks on combinations of letters in a book by Christopher Clavius (1537–1612)
[283, p. 3]. Leibniz could decipfer both letter- and number codes and in 1666 pub-
lished a thesis [357], where the mathematical foundations of combinations were
given.

He was also interested in alchemy and became a member of an alchemical soci-
ety in Leipzig [3]. It was a secret society named after Christian Rosenkreuz (1378–
1484), and founded in the seventeenth century. Its aim was to further knowledge,
in particular mathematics and alchemy. Despite his outstanding qualifications in
law, Leibniz was not given his doctor’s degree in Leipzig, so he turned to another
city. . . He stayed in Nuremberg for several months 1667 to learn the secrets of the
Rosenkreuzer and their scientific books. Because of his outstanding knowledge in
alchemy, he was elected as secretary of the society [346, p. 109]. He remembers that
he had Cavalieri’s book about indivisibles in his hands during this stay [283, p. 5].
During this time, Leibniz was completely under the spell of the concept of indivisi-
bles and had no clear idea of the real nature of infinitesimal calculus [283, p. 8].

Bored by the trivialities of the alchemists and realizing that the world’s scientific
centre was in France, Leibniz then entered the diplomatic service for several German
royal families. As a diplomat, he first went to Paris in 1672, where he mingled in
scientific and mathematical circles for four years. He was advised by the Dutch
mathematician Huygens to read Pascal’s work of 1659 A Treatise on the Sines of a
Quadrant of a Circle.

In January and February 1673 he visited the Royal Society and was elected to
membership [540, p. 260]. He wished to display one of the first models of his cal-
culating machine [283, p. 24]. An English calculating machine was also shown to
him, which used Napier’s bones [283, p. 25]. On 6 April 1673 Oldenburg mailed
Leibniz a long report, which Collins had drawn up for him, on the status of British
mathematics. James Gregory’s (1638–1675) and Newton’s work dominated the re-
port, which included a number of series expansions, although no suggestion of the
method of proof was given [540, p. 260]. At the end of 1675, Leibniz had received
only some of Newton’s results, all confined to infinite series [540, p. 262]. At Leib-
niz’ second visit to London, it appeared that Leibniz’ method proved to be more
general, but that left Collins wholly unmoved. Even before Leibniz’ visit, Collins
had been impressed enough to urge Newton anew to publish his method. But since
Newton at the time was engrossed in other interests, he did not respond to Collins’
suggestion and Oldenburg, who was engaged in Newton’s research, unfortunately
died two years later [540, p. 264].

Leibniz rewrote Pascal’s proof of sin′ x = cosx in terms of increment in
y/increment in x, using finite differences.
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The idea of a limit in the definition of the derivative was introduced by Jean
d’Alembert (1717–83) and Augustin Louis Cauchy in 1821.

Earlier, there was a suspicion that Leibniz got many of his ideas from the unpub-
lished works of Newton, but nowadays there is agreement that Leibniz and Newton
have arrived at their results independently. They have both contributed successfully
to the development of calculus; Leibniz was the one who started with integration
while Newton started with differentiation.

It was Leibniz, however, who named the new discipline. In fact, it was his sym-
bolism that built up European mathematics. Leibniz kept an important correspon-
dence with Newton, where he introduced and forcefully emphasized his own ideas
on the subject of tangents and curves. Newton says explicitly that he got the hint of
the method of the differential calculus from Fermat’s method of drawing tangents
[66, p. 83].

Leibniz also continued the use of infinity that had been used by Kepler and Fer-
mat. In fact Kepler started with an early calculus for the purpose of calculating the
perimeter of an ellipse and the optimal shape of wine boxes. When we, according to
Leibniz, speak of infinitely great or infinitely small quantities, we mean quantities
that are infinitely large or infinitely small, i.e. as large or small as you please. Leib-
niz said: It will be sufficient if, when we speak of infinitely large (or more strictly
unlimited), or of infinitely small quantities, it is understood that we mean quantities
that are indefinitely large or indefinitely small, i.e. as large as you please, or as small
as you please. . . These notions were then further used in the works of Euler, Gauß,
Heine, and the present author.

Newton called his calculus the “the science of fluxions”. Newton used the no-
tation ẋ for his fluxions; this symbol is much used in mechanics today. He wrote
his Methodus fluxionum et serium infinitorum in 1670–1671, but this work was not
published until 1736, nine years after his death. It was the astronomer Edmond Hal-
ley (1656–1742) who paid for the printing of the masterpiece Principia in 1687,
where the first rigorous theory of mechanics and gravitation was given. At that time
there was only one journal in England where Newton could publish, Philosophical
Transactions of the Royal Society, dating back to 1665. Newton’s theory of light was
published there 1672. The Transactions of the Cambridge Philosophical Society did
not appear until 1821–1928.

On the other hand, the infinity symbol was often used in the circle around Leib-
niz. In 1682 the first scientific journal of the German lands, Acta Eruditorum, was
founded in Leipzig, with Otto Mencke (1644–1707) as editor. This journal was very
broad in scope and at that time mathematics and astronomy were considered to be
one subject. Leibniz published his first paper on calculus in this journal in 1684. One
other important author was Ehrenfried Walter von Tschirnhaus (1651–1708), who
published on tangents under the pseudonym D. T. The Bernoulli brothers, Jakob and
John, soon also started to publish in Acta Eruditorum. The result was that almost all
of the elementary calculus that we now know was published here before the end of
the eighteenth century. For instance, the well-known Taylor formula was published
in a different form by Johann Bernoulli in 1694 [210].

We will stop from time to time and note some connections in order to moti-
vate the q-umbral calculus introduced here. Our first concern is of computational
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nature. Today there are several programs used by scientists for computations. The
q-calculus computations are especially hard because of their symbolic nature; there
are only two programs which can do the job well. We are only going to grade these
two programs on a relative scale, since an absolute evaluation is not possible; we
will take the ability of drawing colour graphs into consideration. To describe the
relative grades we write a table which compares Maple and Mathematica on the one
hand, and prosthaphaeresis and logarithms on the other hand. The astute reader will
immediately observe that logarithms have the higher grade, since it shortens down
the calculations considerably. The present paper continues the logarithmic method
for q-calculus which enables additions instead of multiplications in computations.
The resemblance to hypergeometric formulas is also appealing. The q-addition cor-
responds to the Viète formula for cos and to the de Moivre theorem. We try to use
a uniform notation for q-special functions, like the Eulerian notations sin and cos
which are now generally accepted. All this is called renaissance [170], [168], [165]
in the table.

For each row, the relative merit is higher to the right.

Viète Descartes

prosthaphaeresis logarithms
congruences index calculus
Pascaline Babbage computer
fluxions Arbogast notation
Basic Fortran
Maple Mathematica
Gasper/Rahman Renaissance

2.8 The Faulhaber mathematics

In this section we refer to Schneider’s biography [455] of Faulhaber. Johannes Faul-
haber (1580–1635) was an outstanding Ulmian mathematician, who early was ap-
prenticed as reckoner. He spoke, however, with a few exceptions, neither Latin nor
French [455, p. 180]. He could, therefore, not access the large Latin literature, which
was available at the time. The complex numbers of Rafael Bombelli (1526–1572)
[76] were also inaccessible to him. Faulhaber was a representative of discrete math-
ematics and we will briefly summarize his contributions.

1. The first 16 Bernoulli numbers (1631) [161, p. 128].
2. A formula equivalent to (2.4).
3. Pascal’s triangle.
4. Power sums similar to Section 5.3.
5. The formula (compare (5.89))

n−1∑

s=k

(
s

k

)
=

(
n

k + 1

)
. (2.10)
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2.9 Descartes, Leibniz, Hindenburg, Arbogast

Descartes had travelled a lot in his youth and perhaps met Faulhaber in the year
1620 in Ulm [11, p. 223]. Faulhaber was a member of the Rosenkreuzer. The
Rosenkreuzer liked to use unusual signs in their texts; e.g. Faulhaber showed the as-
trological sign of Jupiter to Descartes. The Rosenkreuzer also liked to collect scien-
tific books; Faulhaber had collected several books about algebra and geometry in his
home. According to [373, p. 50], Descartes attempted in vain to contact the broth-
erhood during his travels in Germany. Around that time mathematics in France was
not prosperous, due to the dominance of the Catholic Church (Richelieu, Mazarin).
As we have seen, the most talented scientists had to keep a secret correspondence:
they knew what had happened to Galilei. In 1666, the French Academy of Sciences
was founded at the suggestion of Colbert. The situation further improved after the
translation of Principia into French in 1759 by Émilie du Châtelet (1706–1749). In
Germany the situation was different, some states had changed to Protestantism. The
Rosenkreuzer were opposed to the Catholic Church and preferred a reform of the
religious system in continental Europe. They disliked the opposition of the Catholic
Church to scientific ideas and wanted a change. This may have been the most im-
portant reason why the Rosenkreuzer brotherhood was a secret society. There were
also English mathematicians, like John Dee (1527–1609), who were Rosenkreuzer.
Dee had written a long preface to the English translation of Elements. He was in the
service of Queen Elizabeth and had visited many people on his long trips, including
Tycho Brahe. The famous scientist Robert Hooke (1635–1703), contemporary of
Newton, wrote in codes and Newton was a dedicated alchemist who virtually gave
up science during the last third of his life [64, p. 196]. When Descartes returned
to Paris in October 1628, there were rumours that he had become a Rosenkreuzer.
According to [3], Descartes started to keep a secret notebook with signs used by
the Rosenkreuzer. Then at the end of 1628, Descartes definitely moved to Holland,
where he stayed for 21 years.

The infinite series were introduced by Newton. The formal power series were
conceptually introduced by Euler [190]. We will see that this concept prevailed for
quite a while until the introduction of modern analysis by Cauchy in 1821.

Leibniz did not have many pupils in Germany, since he worked a lot as a librar-
ian and travelled frequently. While in France mathematical physics was flourishing
(Laplace, Lagrange, Legendre (1752–1833), Biot (1774–1862)), German mathemat-
ics had a weak scientific position in the time between Frederick the great (1712–
1786) and the Humboldt education reform [312, p. 173], [95, p. 256]. One exception
was Georg Simon Klügel (1739–1812), who introduced a relatively modern concept
of trigonometric functions in [339] (1770) and [338] (1805).

Combinatorial notions such as permutation and combination had been introduced
by Pascal and by Jacob Bernoulli in [70].

In the footsteps of Leibniz, Hindenburg, a professor of physics and philosophy in
Leipzig founded the first modern School of combinatorics with the intention of pro-
moting this subject to a major position in mathematics. One of the ways to achieve
this aim was through journals. The Acta Eruditorum continued until 1782, then Hin-
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denburg and John Bernoulli (III) (1744–1807) edited Leipziger Magazin für reine
und angewandte Mathematik (1786–1789). This was followed by Archiv der reinen
und angewandten mathematik (1794–1799) with Hindenburg as sole editor. Hinden-
burg used certain complicated notations for binomial coefficients and powers; one
can feel the influence of the Rosenkreuzer secret codes here. The main advantages
of the Hindenburg combinatorial School was the use of combinatorics in power se-
ries and the partial transition from the Latin language of Euler. The disadvantages
were the limitation to formal computations and the old-fashioned notation.

A partial improvement was made by Bernhard Friedrich Thibaut (1775–1832)
[312, p. 193], [496], who expressed the multinomial theorem, a central formula in
the Hindenburg School, in a slightly more modern way. Thibaut also made a strict
distinction between equality of formal power series and equality in finite formulas
[312, p. 196], a central theme in q-calculus.

A similar discussion about formal power series was made by Gudermann in 1825
[253].

The Hindenburg combinatorial School can be divided into two phases [312,
p. 171].

1. 1780–1808.
2. 1808–1840.

The first important book of Hindenburg [280] began with a long quotation from
Leibniz [357]; this quotation would be normal in Hindenburg combinatorial School
publications until 1801 [312, p. 178].

One of the main reasons for this is the so-called multinomial expansion theorem,
a central formula in the Hindenburg combinatorial School, which was first men-
tioned in a letter 1695 from Leibniz to John Bernoulli, who proved it.

Hindenburg thought that a mechanical calculation would be an important objec-
tive for his School [312, p. 222] and that is exactly what we do in this book.

The bricks are the basic formulas for the q-factorials. The general formulas and
developments can often be expressed through the q-binomial coefficients as (4.74)
and (4.75).

Heinrich August Rothe (1773–1842) introduced a sign for sums, which was used
by Gudermann. In 1793 Rothe found a formula for the inversion of a formal power
series, improving on a formula found, with no proof provided, by Hieronymus Es-
chenbach (1764–1797) in 1789 [312, p. 200]. This invention gave the combinatorial
School a rise in Germany, as can be seen from the list of its ensuing publications
[312, p. 201].

Rothe’s presentation was marked by clarity, order and completeness, according
to a report in the newspaper Jenaische Allgemeine Literaturzeitung in 1804. Rothe
was the teacher of Martin Ohm, of whom we shall hear much later.

In the year 1800, Louis Arbogast suggested [42] to substitute a capital D for
the little dy

dx
of Leibniz to simplify the computations. Arbogast [42, p. v] writes: The

Leibniz theory of combinatorics has been improved by Hindenburg, who has studied
the development of functions of one variable and given the multinomial theorem.
The procedure and notation of Hindenburg is not familiar. I don’t know his writings
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except for the title; I have followed my proper ideas. The procedure I will give is
very analytical.

In [42, p. 127] Arbogast gives Taylor’s formula for a function of two variables.
The use of signs for sums would significantly increase the clarity of this long for-
mula . . . At any rate, Arbogast’s formula had a long-lasting influence on the devel-
opment of calculus in Germany and in England.

This can be seen from the different notations in two publications by Hinden-
burg. In 1795, the Journal Archiv der Reinen und Angewandten Mathematik received
some papers on the Taylor formula, in which it was expressed through a difference
operator. In 1803, however, Hindenburg [279, p. 180] also used the symbol D and
apparently noticed the difference between the two. The above-mentioned journal
also received some military reports, among others from Johann Heinrich Lambert
(1728–1777), mathematician and physicist. Hindenburg, who was also a physicist,
read Lambert’s articles in physics with interest, which in turn had a strong influence
on Gudermann.

From about this time onwards, the theory of special functions according to Eu-
ler can be said to have started. This development was parallel to the theory of the
Bernoulli numbers and the Stirling numbers.

2.10 The Fakultäten

In 1730 James Stirling (1692–1770), by a remarkable numerical analysis, confirmed
a result which would now be written in the form [159, p. 18]:

�

(
1

2

)
= √

π.

The Frenchman Alexandre-Théophile Vandermonde (1735–1796) found the
same formula [516]. This article was translated into German and the formula ap-
peared in [515, p. 77].

In 1772 Vandermonde introduced the following notation [515]:

Definition 14 The falling factorial is defined by

(x)n− ≡ x(x − 1)(x − 2) · · · (x − n + 1). (2.11)

We will now explain how the development of the Fakultäten occurred in parallel
with the development of Newton’s binomial theorem and the fluxions. To avoid the
metaphysical difficulties of the fluxions, John Landen (1719–1790) suggested to use
a purely algebraic method, which could be compared with Lagrange’s operational
method. That’s why Landen was called the English d’Alembert.

The Italian mathematician A. M. Lorgna (1730–1796) had similar ideas. In the
period 1791–1806 a series of books entitled Scriptores Logarithmici [371] were
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published in London. In the second volume Landen gives a proof of Newton’s bino-
mial theorem with positive quotient-exponent. In volume five he gives the proof for
exponent − 1

n
. The name and the method has many similarities with the so-called

Fakultäten. As we shall see, the fluxions disappeared in the English teaching about
twenty years later.

In 1798 Christian Kramp (1760–1826) introduced the Fakultäten, a function sim-
ilar to the � function. In 1800 Arbogast used the word Faktoriell and in 1808 Kramp
introduced the notation n!.

Vandermonde [515] used the function

f (u, x, y) ≡
y−1∏

m=0

(u + mx). (2.12)

When y ∈N, the following relations hold:

f
(
u,x, y + y′) = f (u, x, y)f

(
u + yx, x, y′), (2.13)

f (u, x,1) = u, (2.14)

f (ku, kx, y) = kyf (u, x, y), (2.15)

f (u, x, y) = f (u + yx − x,−x, y), (2.16)

f (u,0, y) = uy. (2.17)

This combinatorial School of Vandermonde and Kramp enjoyed a certain popu-
larity in the period 1772–1856. The aim of this School was to divide the Fakultäten
into four classes: positive, negative, whole and fractional exponents.

Each class had its own laws, similar as for the q-factorial. The Fakultäten were
also considered by Ettingshausen [525, p. 190]. Arbogast also writes a lot about the
Fakultäten in his book [42, p. 364]. Vandermonde and Kramp [347] tried to extend
this function to all y ∈ R+ by the definitions (2.13)–(2.17). This however did not
turn out well, as was shown by Friedrich Wilhelm Bessel (1784–1846) in 1812
[71, p. 241]. Bessel tried to mend this theory by defining the factorial f (u, x, y) in
another way. In this connection, Bessel [71, p. 348] published a formula very similar
to the Euler reflection formula

�(x)�(1 − x) = π

sinπx
. (2.18)

This formula was expressed in terms of Fakultäten. Two other similar formu-
las were published in the same paper. In 1824, M. Ohm and Ludwig Öttinger
(1797–1869) made further attempts in Crelle Journal to rescue the theory of the
Fakultäten without the introduction of complex numbers and of the principal branch
of the logarithm. In 1843 and 1856 Weierstraß [539] published a long paper, which
put the theory of analytic factorials on a solid mathematical foundation by con-
necting the formulas to the � function. Weierstraß’ investigations also contained
Bessel’s formula (2.18). Thereafter, the � function was mainly used. Nevertheless,
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the Fakultäten have continued to live in the Russian textbook by Guelfond, Calcul
des Différences Finies [257, p. 25]; this book was translated from Russian into many
languages.

2.11 Königsberg School

The Königsberg School was able to develop quickly, as there were not so many vis-
itors and one could therefore concentrate on research. It included many celebrities,
such as Immanuel Kant (1724–1804) and Jacobi. The proximity of St. Petersburg
was also noticeable, e.g. for the Bernoulli numbers. The Bessel function, which was
introduced in 1824 by Bessel, was investigated earlier by Jacob Bernoulli, Daniel
Bernoulli (1700–1782), Euler and Lagrange. There is also a link to differential equa-
tions: the Bessel differential equation is related to the Riccati differential equation,
which was introduced in 1724 by Francesco Riccati (1676–1754).

This paved the way for the development of the hypergeometric function, the basis
of special functions and the prerequisite for q-hypergeometric functions.

Jacobi discovered the theta functions by a brilliant formal derivation. After Ja-
cobi’s death (1851) his School was continued by his favourite student Friedrich
Julius Richelot (1808–1875).

Franz Ernst Neumann (1798–1895) and his doctoral student Louis Saalschütz
(1835–1913) have both contributed to the theory of special functions. Neumann,
who formulated the law of electric induction in 1845 and 1847, but with very dif-
ferent notation, has also contributed to the theory of Bessel functions (Neumann
function).

In his book [446] Saalschütz summarized the present knowledge in the field of
Bernoulli numbers, and has [446, p. 54–116], according to Gould, given 38 explicit
formulas for Bernoulli numbers.

Saalschütz also republished the Euler-Pfaff-Saalschütz summation formula for
hypergeometric functions.

Reinhold Hoppe (1816–1900), mathematical physicist and professor in Berlin,
also belonged to the Königsberg School.

2.12 Viennese School

This is a School without q-calculus.
Ettingshausen introduced the notation

(
m
n

)
for the binomial coefficients in his

book about combinatorics [525, p. 195] published in 1826 and used the so-called
Stirling numbers. At that time, Euler’s Vollstaendige Anleitung zur Integralrechnung
was also translated from Latin into German and published in Vienna.

Jozef Petzval (1807–1891) [227] was a world famous optician and good mathe-
matics teacher, who wrote an excellent textbook on differential equations.
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Leopold Gegenbauer (1849–1903) wrote excellent articles about orthogonal
polynomials; the Gegenbauer polynomials are named after him.

Lothar Koschmieder (1890–1974) worked in Wroclaw, Brno, Aleppo, Graz and
Tübingen. In the forties Koschmieder published, among other journals, in Austrian
journals. He worked a great deal with differential operator computations on polyno-
mials and (multiple) hypergeometric series.

2.13 Göttingen School

In 1808 Gauß wrote his only article on q-analysis [442], where he introduced the
q-binomial coefficients and computed some sums of these. This has evidently in-
fluenced Rothe and Johann Philipp von Grüson (1768–1857) to find the following
important theorem. According to Ward [531, p. 255] and Kupershmidt [349, p. 244],
the identity (2.19) was already known to Euler. Gauß in 1876 [222] proved this for-
mula.

Theorem 2.13.1 Rothe (1811) [441], [526, p. 36] (1814) von Grüson. Fundamental
Theorem of q-calculus:

m∑

n=0

(−1)n
(

m

n

)

q

q(n
2)un = (u;q)m. (2.19)

We note that the names of two students of Gauß, Grünert and Gudermann, can
be found in the next section, and this is no coincidence.

Johannes Friedrich Posselt (1794–1823) used Fakultäten in his Göttingen thesis
Dissertatio analytica de functionibus quibusdam symmetricis (1818); he spent his
last years at the observatory in Jena.

Without ever having passed through a baccalaureate degree, Moritz Stern (1807–
1894), born in Frankfurt, received in 1829 the Doctorate for a treatise on the theory
of continued fractions. Stern then became interested in the field of number theory,
to which he would devote by far the greater part of his life. In the period until the
appointment to professor in 1859, Stern also pursued the teaching, which Gauß did
not like: the two were good friends.

In 1847 Stern wrote the book Zur Theorie der Eulerschen Integrale. Stern had
a considerable role in the massive reform of university mathematics teaching that
took place in this period.

2.14 The combinatorial School: Gudermann, Grünert

The goal of the combinatorial School was to develop functions in power series by
Taylor’s formula. Taylor’s formula was originally formulated with finite difference-
quotients, so-called fluxions. Earlier, there were two names for finite differences,
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after Brook Taylor (1685–1731) and Jasques Cousin (1739–1800). Instead, in 1795,
Hindenburg introduced the notation [281, p. 94] k

y
in Archiv der Reinen and Ange-

wandten Mathematik.
Christoph Gudermann, encouraged by his close friendship with August Crelle

(1780–1855), was first school teacher in Cleve, later professor in Münster. He first
wrote in German and later alternately turned to Latin, the common scientific lan-
guage of that time and could therefore reach international recognition.

Gudermann wrote an excellent Latin in a time when the Latin in Europe had
declined.

Crelle was very interested in the contemporary mathematical questions and was
able to find publishers for Gudermann’s textbooks.

Gudermann even had a crucial role as the teacher of Weierstraß. It is reported that
thirteen students came to the first lecture of Gudermann about elliptic functions. At
the end of the semester only one remained, namely Weierstraß. Gudermann was
one of the first who discovered Weierstraß’ extraordinary talent for mathematics.
Weierstraß was inspired by Gudermann’s theories on series expansions and often
expressed his great gratitude for his old teacher. Weierstraß, for his part, developed
and modified the Gudermann combinatorial School.

Bernard Riemann was probably also influenced by Gudermann. In his textbook
on elliptic functions [432] one finds the series (7.32)–(7.34) with the Gudermann
notation. This book contains the Riemann lectures of 1855–56 and 1861–62.

Influenced by Lambert, who introduced the hyperbolic functions, Gudermann,
among other things, developed the function 1

cosh(x)
in powers of x, using the work of

Scherk on the so-called Euler numbers. The Gudermann names for the trigonometric
functions had many followers until 1908 [94, p. 173].

Gudermann used the sign for sums of Rothe and also a product symbol for sinx

and cosx in the form of infinite products [255, p. 68]. Gudermann has often devel-
oped his functions by Taylor’s formula; he then used a precursor of the Pochhammer
symbol − in the disguise of Kramp’s notation.

One could say that the circle around Gudermann formed a School of its own. This
School consisted, among others, of Johann August Grünert (1797–1872), editor of
Archiv der Mathematik und Physik, which started in 1841, and Oscar Schlömilch,
editor of Zeitschrift für Mathematik and Physik, which started in 1856. These two
journals differed from Crelle’s Journal, which had a more purely mathematical char-
acter. Grünert, mathematician and physicist, also took over the completion of the
dictionary of Klügel and the preparation of two supplementary volumes. He was a
student of Pfaff and Gauß, wrote, among other things, early on Fakultäten, and thus
composed tables of Stirling numbers [250, p. 71], [252, p. 279]. Stirling numbers
were later used in series expansions for Bernoulli functions [545, p. 210]. Grünert
worked almost 39 years as a full professor in Greifswald, where he founded a math-
ematical seminar in 1825, and also made his private library available to his students.

In Sweden, Malmsten and Björling both contributed to the Grünert Archiv.
This magazine also included publications about hyperbolic functions and spheri-
cal trigonometry. This last name is a modern term for analytical Sphaerics, which
was treated in [254]. We will later return to contributions about elliptic functions in
Grünert Archiv.
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You could say that this was an earlier start of the Mathematical Reviews and
Centralblatt Mathclass section 33 (Special functions with applications) in Europe.

Grünert had a conflict with Grassmann in 1862, and perhaps this is why his name
is not mentioned in Klein’s eminent book [336]; Klein also treats Gudermann un-
fairly.

In 1853, when Grünert was 56, Archiv der Mathematik und Physik began its
decline. After the death of Grünert in 1872, Hoppe took over the editorial.

2.15 Heidelberg School

Franz Ferdinand Schweins (1780–1856) taught mathematics 46 years at the Univer-
sity of Heidelberg. Heidelberg became the centre of the combinatorial School under
Schweins. Öttinger was director of the Pädagogicum in Durlach (near Karlsruhe) in
1820, professor at the Gymnasium in Heidelberg in 1822 and next lecturer at the
University of Heidelberg from 1831 to 1836.

One might therefore speak of a Heidelberg School. In the textbook by Öttinger
of 1831 [408, p. 26] one finds Euler’s special case of the formula (2.20) below; the
proof has been carried out by using partitions, just like Euler did. The textbook by
Schweins [458, p. 613] contains the Fakultäten. He often referred to Jozef Maria
Hoene Wronski (1778–1853). Schweins then proves the following theorem (2.20)
with the help of the Fakultäten, that together with (2.19) forms the basis of q-
analysis.

Theorem 2.15.1 The Schweinsian q-binomial theorem [457, p. 294, (497)]:

∞∑

n=0

〈a;q〉n
〈1;q〉n zn = (zqa;q)∞

(z;q)∞
,

|z| < 1, 0 < |q| < 1. (2.20)

In the following, we call this relation simply the q-binomial theorem; it is more
general than the two Euler formulas (6.188), (6.189).

Remark 2 The notation of Schweins leaves much to be desired, yet it is better than
Hindenburg’s notation.

Remark 3 In his book [458, p. 317–] Schweins gives a theory of “Producte mit
Versetzungen”, which according to Muir [389] is equivalent to a deep theory of
determinants. His colleague Öttinger has written a similar book Differential und
Differenzenrechnung in 1831. It is clear that the two have worked together.
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2.16 Weierstraß, formal power series and the � function

Karl Weierstraß was a colleague of M. Ohm, Kummer and Hoppe in Berlin. In the
footsteps of Gudermann, Weierstraß introduced the modern Analysis.

A famous student of Weierstraß, Gösta Mittag-Leffler (1846–1927) tells [491,
p. 214] that formal power series were always used. The Euler and Gaussian formulas
for the � function were here brought together in modern notation.

Earlier Adrien-Marie Legendre had denoted the � function by � and computed
the Euler integrals for �(x). As we have already mentioned, in 1856 Weierstraß
replaced the Fakultäten by the complex � function. In the same year Alfred En-
neper’s dissertation Über die Funktion � von Gauß mit komplexem Argument ap-
peared. Based on the Legendre integral representation of the Gamma function, En-
neper proceeds purely formal and arrives through long logarithmic computations to
a series of profound results.

These two works by Weierstraß and Enneper (1830–1885) thus have virtually ex-
tended the � function to the complex plane. In the present book the �q function is
extended to the complex plane, compare [180]. The elliptic functions in a more gen-
eral form than Gudermann’s also played an important role in Weierstraß work. The
number of Weierstraß students was high, and we list here only those who mainly
dealt with special functions. Nicolai Bugaev (1837–1903), doctorate in 1866, had
a gifted student Sonine, who worked with Laguerre polynomials and Bessel func-
tions. Mathias Lerch (1860–1922) has written some interesting articles on Theta
functions, which are similar to q-analysis. The works of Lerch in q-analysis have
many similarities with those of Leopold Schendel [450], who has also written a book
on this subject [451]. Schendel published work on the q-Gaussian Taylor series and
pointed out an expansion of the logarithmic integral.

2.17 Halle q-analysis School

In 1844 Gudermann published his famous book on elliptic functions [256]. Two
years later, in 1846, E. Heine, a docent in Bonn, who had studied with Gauß, Leje-
une Dirichlet (1805–1859) and Jacobi, wrote the following letter to his professor
Dirichlet. This letter, which is a natural continuation of the work of Gudermann,
was published in the same year [269] in the Crelle Journal.

Sehr viele Reihen, darunter auch solche, auf welche die elliptischen Funktionen führen, sind
in der allgemeinen Reihe

1 +
∞∑

k=1

∏k−1
m=0(q

a+m − 1)
∏k−1

m=0(q
b+m − 1)

∏k−1
m=0(q

1+m − 1)
∏k−1

m=0(q
c+m − 1)

zk

enthalten, die ich zur Abkürzung mit

2φ1(a, b; c;q, z)

bezeichne, gerade so wie es bei der hypergeometrischen Reihe zu geschehen pflegt, in
welche unser φ für q = 1 übergeht. Es scheint mir nicht uninteressant, die φ ganz ähn-
lich zu behandeln, wie Gauß the 2F1 in den ‘Disquisitiones generales’ untersucht hat. Ich
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will hier nur flüchtige Andeutungen zu einer solchen Übertragung geben. Es entspricht
jedem F im §5 der Disquisitiones genau eine Reihe φ. Einigen Formeln entsprechen zwei
oder mehr verschiedene φ, nämlich denen, in welchen a oder b unendlich werden. So hat
die Reihe für et zwei Analoga.

Heine worked as a professor in Halle, he often went to Berlin, as his sister, who was
married to Felix Mendelssohn, lived there.

Heine introduced the q-hypergeometric functions and proved their transforma-
tion formulas formally by continued fractions [270]. This was the first time that
q-equations had to be corrected; certainly it would have been better for Heine (al-
ready in 1847) to use the improved notation (1.57).

Heine translated the work of the Swedish mathematician Göran Dillner (1832–
1906) about quaternions into German. Heine published his famous book on spher-
ical harmonics [272] in 1861. In the same year, Thomae began his studies at the
Universität Halle, near his home. Heine had the greatest influence on Thomae, who
thus developed his great liking for function theory.

The astronomer Ernst Schering (1833–1897) was tutor of Thomae in Göttingen
1864, and wrote a treatise called Allgemeine Transformation der Thetafunctionen.
In 1867 Thomae became a docent in Halle, where he was a colleague of Heine and
Georg Cantor (1845–1918). Together with the Reverend Jackson, Thomae has de-
veloped the so-called q-integral, the inverse of the q-derivative. Thomae also wrote
important works about hypergeometric series and in fact many years these two sub-
jects have developed together.

The cooperation with Heine in q-analysis lasted till 1879.
Karl Heun (1859–1929), a student of Schering and Enneper in the period 1878–

80 in Göttingen, did not stay long in Halle between April and October 1880. Heun
went back to Göttingen and began his doctoral work, which was inspired by Heine;
his supervisor was again Schering. In 1881 Heun defended his doctoral dissertation
Kugelfunctions and Lamésche functions als Determinanten. The Heun equation is
a linear differential equation of second order of Fuchsian type with four singular
points.

2.18 Jakob Friedrich Fries, Martin Ohm, Babbage, Peacock
and Herschel

In the following we frequently quote Elaine Koppelman [345] and E. P. Ozhigova
[409].

Robert Woodhouse (1773–1827), George Peacock (1791–1858), Charles Bab-
bage (1791–1871) and John Herschel (1792–1871) were all from Cambridge.

Woodhouse discussed at length the importance of good notation [345, p. 177],
since the development of calculus in Cambridge had been slow until 1820 [345,
p. 155]. His conclusion was that the notation of Arbogast is by far superior.

Cajori [93] has drawn a similar conclusion.
Already in 1803 Woodhouse had tried to put calculus on a rigorous algebraic

basis by a formal power series development, similar to Lagrange, in his important
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work Principles of Analytic Calculation, which had a lasting influence on Babbage
[345, p. 178]. Another attempt by Woodhouse to bring mathematics at Cambridge
up-to-date was in 1804, when he published a paper on elliptic integrals in the Philo-
sophical Transactions of the Royal Society. He fully realised the significance of the
topic, which earlier had received little attention in Cambridge.

The first immediate reaction to Woodhouse’s book from 1803 came when Rev.
John Brinkley (1763–1835), in a paper in Phil. Trans. Royal Soc. London in 1807,
started the first symbolic calculus in England. Brinkley’s paper contained some ab-
breviations for expressions like xn

n! and ẋ
n! . Here ẋ is the fluxion of x. Brinkley also

calculated with expressions for “differences of nothing”, the precursor of Stirling
numbers. Of course the Stirling numbers had been known already to Thomas Har-
riot (1560–1621), but Brinkley probably was not aware of this. Although Brinkley
knew about Arbogast, he writes: My publication has hitherto been delayed by my
unwillingness to offer a fluxional notation different from either that of Newton or
Leibniz, each of which is very inconvenient as far as regards the application of the
theorems for finding fluxions.

Brinkley’s work became widely known in Russia, partly due to his fame as an
astronomer. His work was also published in France by the mathematician and as-
tronomer Dominique François Jean Arago (1786–1853) in 1827 [409, 138]. After
receiving the chair of astronomy at Trinity College, Dublin, in 1790, Brinkley had to
wait 18 years until the new telescope was erected, and still stands. He had eighteen
years more in which to use it. During the first of these periods Brinkley devoted him-
self to mathematical research; during the second he became a celebrated astronomer.

Jakob Friedrich Fries (1773–1843) was a German philosopher, who valued math-
ematics very highly. In 1822 Fries’s work on the mathematical philosophy of nature
appeared.

Fries says: Every philosophy that matches the exact sciences may be true, any
that contradicts them must necessarily be false.

Among others, Gauß highly valued the philosophy of Fries, and Schlömilch was
a student of Fries.

The fluxion concept was dominant in England until 1820, when the four peo-
ple from Cambridge managed to recognize the notation of Leibniz and Arbogast
in England [345, p. 156]. This led shortly to the introduction of operator calculus
[345, p. 156] or umbral calculus. The fluxion notation was cumbersome, an ex-
pression could have many meanings [409, p. 139]. Other mathematicians could not
understand the fluxions [409, p. 139].

The astronomical tables had a great importance for the navigation.
Herschel and Babbage have pointed to the many errors in the astronomical tables

and insisted that an automatic calculating machine is needed [409, p. 139]. Many
computations were then made using logarithms, see the book by Wilson from 1820
about calculus of finite differences.

In the translation of Lacroix’s book by Babbage, Peacock and Herschel (1816) it
is claimed in the preface that calculus was discovered by Fermat, made analytical by
Newton and enriched with a powerful and comprehensive notation by Leibniz [345,
p. 181]. Before Babbage dropped this subject he once again stressed the importance
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of a good notation for calculus [345, p. 184]. E. T. Bell (adviser of Morgan Ward)
wrote that operational mathematics, which was developed in England during the
period 1835–1860, despite its obvious utility, was scarcely reputable mathematics,
because no validity condition or validity region accompanied the formulas obtained
[345, p. 188]. In his book Treatise on Algebra (1830) Peacock studied the relation-
ship between algebra and natural numbers; he called it symbolic algebra.

One of Peacock’s students was De Morgan [409, p. 143]. England thus became
the centre for symbolic calculations. Combinatorial analysis (Germany) and sym-
bolic computations (England, France, Italy) developed in two different directions
[409, p. 121]. The symbolic calculus was introduced in 1880 in Italy [115]; in the
footsteps of Koschmieder, Johann Cigler reintroduced the symbolic method in Aus-
tria 1979 [133].

In 1837 the Cambridge Mathematical Journal was founded by, among others,
Duncan Gregory (1813–1844), to provide a place for publication of short mathe-
matical research papers and thus encourage young researchers. In an 1845 letter to
John Herschel [345, p. 189], De Morgan described the journal and Gregory’s contri-
butions as full of very original communications, very full of symbols. In Gregory’s
first paper on the separation of symbols, the linear differential equation with con-
stant coefficients was treated. Similar studies had already been published by Cauchy
in France; Gregory was familiar with Cauchy’s and Brisson’s works on this subject
[345, p. 190]. As pointed out by De Morgan in 1840 [345, p. 234], the symbolic
algebra method gives a strong presumption of truth, not a method of proof. Gregory
correctly claimed that the operations of multiplication and function differentiation
obey the same laws [345, p. 192]. Gregory’s methods only applied to differential
operators with constant coefficients.

A generalization to non-commutative operators was given in 1837 [345, p. 195]
by Robert Murphy. The studies of non-commutative operators were continued by,
among others, George Boole, William Donkin (1814–1869) and Charles Graves
(1812–1899). More general functional operators were studied by W. H. L. Russell
[345, p. 204], William Spottiswoode (1825–1883), William Hamilton (1805–1865)
and William Clifford (1845–1879).

Let’s summarize: the calculus of operations, imported from France and extended
by Babbage and Herschel, was an important mathematical research area in England
between 1835 and 1865 [345, p. 213]. Most of these articles were published in
the Cambridge Mathematical Journal and its successor, the Cambridge and Dublin
Mathematical Journal (CDMJ) (1845–1854).

The CDMJ handled all kinds of subjects such as physics and astronomy. In
CDMJ 1 De Morgan summarized the work of Arbogast.

In CDMJ 3, Rev. Brice Bronwin wrote an article about umbral calculus. This
description is typical of the many so-called mathematicians in England who were
clergymen and were not familiar with the modern Analysis of Cauchy. Formal power
series were introduced in England in the 1880s by Oliver Heaviside. Soon after
England took over the lead in umbral calculus.

The Quarterly Journal of Pure and Applied Mathematics (QJPAM) rose from the
ashes of the CDMJ in April 1855 [144]. The first two British editors were Ferrers
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and J. J. Sylvester (1814–1897), who was editor until 1878. It was here that the first
works on umbral calculus were published by Horner in 1861, John-Charles Blissard
in the years 1861–68 [144] and Glaisher. It was Sylvester who coined the name
umbral calculus.

F. H. Jackson, the first master of q-calculus in the twentieth century, who was
also a priest like Blissard, published many of his papers in QJPAM.

From about 1860 the calculus of operations split into different areas, some of
which are:

1. umbral calculus.
2. q-calculus.
3. theory of linear operators [345, p. 214].
4. algebra.

These different subjects are however far from disjoint.
The theory of formal power series within the Hindenburg combinatorial School

continued under Martin Ohm, who under the influence of Cauchy’s Cours d’analyse,
obtained convergence criteria for the known elementary transcendental functions in
certain regions. Ohm defined mathematical analysis using seven basic operations
and built a rather involved theory, which clearly was a forerunner of later attempts
to base all of mathematics on the integers [345, p. 226].

Some students of M. Ohm were

1. Eduard Heine, who introduced the q-hypergeometric series.
2. Leo Pochhammer (1841–1920), known for the Pochhammer symbol and the

Pochhammer integral.
3. Friedrich Prym (1841–1915), who made many investigations about special func-

tions and even founded a mathematical School in Würzburg.

Martin Ohm made mathematics into a clean, accurate subject, without physics. He
also wrote physics books. In a textbook of 1862 (short guide) Ohm writes on page
62 about Fakultäten. In 1848 Ohm unsuccessfully tried to merge the � function,
which after 1856 was universal and the Fakultäten.

In 1833 Hamilton read a paper expressing complex numbers as algebraic cou-
ples, and in 1837 he presented an article on the arithmetization of analysis [372].
This was a careful, detailed and logical criticism of the foundations of algebra,
and it represents an important step in the development of modern abstract algebra
(C. C. Macduffee, 1945) [345, p. 222].

In 1846 Hamilton published a series of papers with the title On symbolic geome-
try. Again he cited Peacock and Martin Ohm as the authors who had inspired him to
a deeper appreciation of the new School of algebra [345, p. 222]. Like De Morgan,
Hamilton wanted, at first, a system which would form an associative and commuta-
tive division algebra over the reals [345, p. 228]. Out of this finally grew the famous
quaternions.
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2.19 Different styles in q-analysis

In mathematics there are different styles. There is the so-called real analysis, in mod-
ern literature often connected with Sobolev spaces, where one the main purposes is
to find different norms and inequalities for integrals. Then there is the field of for-
mal computations with special functions, which is closely connected with number
theory and induction.

In q-analysis, there is a similar layout. Here in the real analysis case, often the
�q function is used to formulate inequalities. Also q-integrals occur, but here far
from all possibilities are exhausted.

The formal computations within q-analysis play, as we will see, a big role. In
most cases, a real analysis article contains few formal calculations and vice versa.
But this need not always be the case, both styles can learn from each other.
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