
Chapter 2

The Krull-Schmidt-Remak-
Azumaya Theorem

2.1 The exchange property

In the first two sections of this chapter we shall consider modules with the
exchange property. Making use of the exchange property we shall study refine-
ments of direct sum decompositions (Sections 2.3 and 2.10), prove the Krull-
Schmidt-Remak-Azumaya Theorem (Section 2.4) and prove that every finitely
presented module over a serial ring is serial (Section 3.5). If A,B,C are sub-
modules of a module M and C ≤ A, then A ∩ (B + C) = (A ∩ B) + C. This
is called the modular identity. We begin with an immediate consequence of the
modular identity that will be used repeatedly in the sequel.

Lemma 2.1 If A ⊆ B ⊆ A⊕C are modules, then B = A⊕D, where D = B∩C.

Proof. Application of the modular identity to the modules A ⊆ B and C yields
B ∩ (C + A) = (B ∩ C) + A, that is, B = A + D. This sum is direct because
A ∩ D ⊆ A ∩ C = 0. �

Given a cardinal ℵ, an R-module M is said to have the ℵ-exchange property
if for any R-module G and any two direct sum decompositions

G = M ′ ⊕ N = ⊕i∈IAi,

where M ′ ∼= M and |I| ≤ ℵ, there are R-submodules Bi of Ai, i ∈ I, such that
G = M ′ ⊕ (⊕i∈IBi).

In this notation an application of Lemma 2.1 to the modules

Bi ⊆ Ai ⊆ Bi ⊕ (M ′ ⊕ (⊕j �=iBj))
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yields Ai = Bi ⊕ Di, where Di = Ai ∩ (M ′ ⊕ (⊕j �=iBj)). Hence the submod-
ules Bi of Ai in the definition of module with the ℵ-exchange property are
necessarily direct summands of Ai.

A module M has the exchange property if it has the ℵ-exchange property
for every cardinal ℵ. A module M has the finite exchange property if it has the
ℵ-exchange property for every finite cardinal ℵ.

A finitely generated module has the exchange property if and only if it
has the finite exchange property.

Lemma 2.2 If G, M ′, N , P , Ai (i ∈ I), Bi (i ∈ I) are modules, Bi ⊆ Ai for
every i ∈ I,

G = M ′ ⊕ N ⊕ P = (⊕i∈IAi) ⊕ P (2.1)

and
G/P = ((M ′ + P )/P ) ⊕ (⊕i∈I((Bi + P )/P )) , (2.2)

then
G = M ′ ⊕ (⊕i∈IBi) ⊕ P.

Proof. From (2.2) it follows immediately that G = M ′ +
(∑

i∈I Bi

)
+ P . In

order to show that this sum is direct, suppose m′ +
(∑

i∈I bi

)
+ p = 0 for

some m′ ∈ M ′, bi ∈ Bi almost all zero, and p ∈ P . From (2.2) we have that
(m′ + P ) +

(∑
i∈I(bi + P )

)
= 0 in G/P , so that m′ ∈ P and bi ∈ P for every

i ∈ I. Then by (2.1) we get m′ ∈ M ′ ∩ P = 0 and bi ∈ Bi ∩ P ⊆ Ai ∩ P = 0.
Therefore p = 0. �

The proof of the next corollary follows immediately from the definitions
and Lemma 2.2.

Corollary 2.3 If G, M ′, N , P , Ai (i ∈ I) are modules, |I| ≤ ℵ,

G = M ′ ⊕ N ⊕ P = (⊕i∈IAi) ⊕ P

and M ′ has the ℵ-exchange property, then for every i ∈ I there exists a direct
summand Bi of Ai such that

G = M ′ ⊕ (⊕i∈IBi) ⊕ P. �

The rest of this section is devoted to proving the first properties of modules
with the exchange property. The following result shows that the class of modules
with the ℵ-exchange property is closed under direct summands and finite direct
sums.

Lemma 2.4 Suppose ℵ is a cardinal and M = M1 ⊕ M2. The module M has
the ℵ-exchange property if and only if both M1 and M2 have the ℵ-exchange
property.
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Proof. Suppose M = M1 ⊕ M2 has the ℵ-exchange property,

G = M ′
1 ⊕ N = ⊕i∈IAi,

M ′
1
∼= M1 and |I| ≤ ℵ. Then G′ = M2 ⊕ G = M ′ ⊕ N = M2 ⊕ (⊕i∈IAi),

where M ′ = M ′
1 ⊕ M2

∼= M . Fix an element k ∈ I, and set I ′ = I \ {k}.
Then G′ = M ′ ⊕ N = (M2 ⊕ Ak) ⊕ (⊕i∈I′Ai). Hence there exist submodules
B ⊆ M2 ⊕ Ak and Bi ⊆ Ai for every i ∈ I ′ such that

G′ = M ′ ⊕ B ⊕ (⊕i∈I′Bi) . (2.3)

Since M2 ⊆ M2 ⊕ B ⊆ M2 ⊕ Ak, it follows from Lemma 2.1 that

M2 ⊕ B = M2 ⊕ Bk,

where Bk = (M2 ⊕B)∩Ak. Thus M ′ ⊕B = (M ′
1 ⊕M2)⊕B = M ′

1 ⊕M2 ⊕Bk.
Substituting this into (2.3) we obtain

G′ = M ′
1 ⊕ M2 ⊕ (⊕i∈IBi) . (2.4)

Application of the modular identity to the modules M ′
1 ⊕ (⊕i∈IBi) ⊆ G and

M2 yields G ∩ (M2 + (M ′
1 ⊕ (⊕i∈IBi))) = (G ∩ M2) + (M ′

1 ⊕ (⊕i∈IBi)), that
is, G = M ′

1 ⊕ (⊕i∈IBi). Thus M1 has the ℵ-exchange property.
Conversely, suppose M1 and M2 have the ℵ-exchange property and

G = M ′
1 ⊕ M ′

2 ⊕ N = ⊕i∈IAi,

where M ′
1
∼= M1, M ′

2
∼= M2 and |I| ≤ ℵ. Since M1 has the ℵ-exchange property,

there are submodules A′
i ⊆ Ai such that G = M ′

1 ⊕M ′
2 ⊕N = M ′

1 ⊕ (⊕i∈IA
′
i).

Since M2 also has the ℵ-exchange property, from Corollary 2.3 it follows that
for every i ∈ I there exists a submodule Bi ⊆ A′

i such that

G = M ′
2 ⊕ (⊕i∈IBi) ⊕ M ′

1.

Thus M = M1 ⊕ M2 has the ℵ-exchange property. �
Clearly, every module has the 1-exchange property. Modules the with 2-

exchange property have the finite exchange property, as the next lemma shows.

Lemma 2.5 If a module M has the 2-exchange property, then M has the finite
exchange property.

Proof. It is sufficient to show, for an arbitrary integer n ≥ 2, that if M has the
n-exchange property, then M has the (n + 1)-exchange property. Let M be a
module with the n-exchange property (n ≥ 2) and suppose

G = M ′ ⊕ N = A1 ⊕ A2 ⊕ · · · ⊕ An+1,
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where M ′ ∼= M . Set P = A1⊕A2⊕· · ·⊕An, so that G = M ′⊕N = P ⊕An+1.
Since M has the 2-exchange property, there exist submodules P ′ ⊆ P and
Bn+1 ⊆ An+1 such that G = M ′ ⊕P ′⊕Bn+1. An application of Lemma 2.1 to
the modules P ′ ⊆ P ⊆ P ′⊕(M ′⊕Bn+1) and Bn+1 ⊆ An+1 ⊆ Bn+1⊕(M ′⊕P ′)
yields P = P ′ ⊕ P ′′ and An+1 = Bn+1 ⊕ A′

n+1, where P ′′ = P ∩ (M ′ ⊕ Bn+1)
and A′

n+1 = An+1 ∩ (M ′ ⊕ P ′). From the decompositions

G = M ′ ⊕ P ′ ⊕ Bn+1 = (P ′′ ⊕ A′
n+1) ⊕ (P ′ ⊕ Bn+1)

we infer that P ′′ is isomorphic to a direct summand of M ′. Therefore P ′′ has
the n-exchange property by Lemma 2.4. Since

P = P ′ ⊕ P ′′ = A1 ⊕ A2 ⊕ · · · ⊕ An,

there exist submodules Bi ⊆ Ai (i = 1, 2, . . . , n) such that

P = P ′′ ⊕ B1 ⊕ B2 ⊕ · · · ⊕ Bn.

Application of Lemma 2.1 to the modules

P ′′ ⊆ M ′ ⊕ Bn+1 ⊆ G = P ′′ ⊕ (P ′ ⊕ An+1)

yields M ′ ⊕ Bn+1 = P ′′ ⊕ P ′′′, where P ′′′ = (M ′ ⊕ Bn+1) ∩ (P ′ ⊕ An+1).
Therefore

G = M ′ ⊕ P ′ ⊕ Bn+1 = P ′ ⊕ P ′′ ⊕ P ′′′ = P ⊕ P ′′′

= B1 ⊕ · · · ⊕ Bn ⊕ P ′′ ⊕ P ′′′ = B1 ⊕ · · · ⊕ Bn ⊕ Bn+1 ⊕ M ′,

that is, M has the (n + 1)-exchange property. �

2.2 Indecomposable modules with the
exchange property

The aim of this section is to show that the indecomposable modules with the
(finite) exchange property are exactly those with a local endomorphism ring.
First we prove two elementary lemmas that will be used often in the sequel.

Lemma 2.6 Let A be a module and let M1,M2,M
′ be submodules of A. Suppose

A = M1 ⊕ M2. Let π2:A = M1 ⊕ M2 → M2 denote the canonical projection.
Then A = M1 ⊕M ′ if and only if π2|M ′ :M ′ → M2 is an isomorphism. If these
equivalent conditions hold, then the canonical projection πM ′ :A → M ′ with
respect to the decomposition A = M1 ⊕ M ′ is (π2|M ′)−1 ◦ π2.

Proof. The mapping π2|M ′ is injective if and only if M ′ ∩ M1 = 0, and is
surjective if and only if for every x2 ∈ M2 there exists x′ ∈ M ′ such that
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x′ = x1 +x2 for some x1 ∈ M1, that is, if and only if M2 ⊆ M ′+M1, i.e., if and
only if M1 + M2 = M ′ + M1. This proves the first part of the statement. For
the second part suppose that the equivalent conditions hold. Given an arbitrary
element a ∈ A, one has a = x1 +πM ′(a) for a suitable element x1 ∈ M1. Hence
π2(a) = π2(x1) + π2|M ′(πM ′(a)), from which (π2|M ′)−1 π2(a) = πM ′(a). �

Lemma 2.7 Let M,N,P1, . . . , Pn be modules with M ⊕ N = P1 ⊕ · · · ⊕ Pn. If
M is an indecomposable module with the finite exchange property, then there
is an index j = 1, 2, . . . , n and a direct sum decomposition Pj = B ⊕ C of Pj

such that M ⊕ N = M ⊕ B ⊕ (⊕i �=jPi), M ∼= C and N ∼= B ⊕ (⊕i �=jPi).

Proof. Since M has the finite exchange property, for every i = 1, 2, . . . , n there
exists a decomposition Pi = Bi ⊕ Ci of Pi such that

M ⊕ B1 ⊕ · · · ⊕ Bn = P1 ⊕ · · · ⊕ Pn.

If we factorize modulo B1⊕· · ·⊕Bn we find that M ∼= C1⊕· · ·⊕Cn. But M is
indecomposable. Hence there exists an index j such that M ∼= Cj and Ci = 0
for every i 	= j. Then Bi = Pi for i 	= j, hence

M ⊕ N = M ⊕ B1 ⊕ · · · ⊕ Bn = M ⊕ Bj ⊕ (⊕i �=jPi) .

In particular, N ∼= Bj ⊕ (⊕i �=jPi). Thus B = Bj and C = Cj have the required
properties. �

Theorem 2.8 The following conditions are equivalent for an indecomposable
module MR.

(a) The endomorphism ring of MR is local.

(b) MR has the finite exchange property.

(c) MR has the exchange property.

Proof. (a) ⇒ (b). Let MR be a module with local endomorphism ring End(MR).
By Lemma 2.5 in order to prove that the finite exchange property holds it suf-
fices to show that M has the 2-exchange property. Let G,N,A1, A2 be modules
such that G = M ⊕N = A1⊕A2. Let εM , εA1 , εA2 , πM , πA1 , πA2 be the embed-
dings of M,A1, A2 into G and the canonical projections of G onto M,A1, A2

with respect to these two decompositions. We must show that there are sub-
modules B1 ⊆ A1 and B2 ⊆ A2 such that G = M ⊕ B1 ⊕ B2. Now

1M = πMεM = πM (εA1πA1 + εA2πA2)εM = πMεA1πA1εM + πMεA2πA2εM .

Since End(M) is local, one of these two summands, say πMεA1πA1εM , must be
an automorphism of M . Let H be the image of the monomorphism

εA1πA1εM :M → G,
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so that εA1πA1εM induces an isomorphism M → H and πM |H :H → M is an
isomorphism. From Lemma 2.6 we have that G = N ⊕ H and the projection
G → H with respect to this decomposition is (πM |H)−1πM . Since

H = εA1πA1εM (M) ⊆ A1 ⊆ N ⊕ H,

it follows from Lemma 2.1 that A1 = H⊕B1, where B1 = A1∩N , and the pro-
jection A1 → H with respect to this decomposition is (πM |H)−1πM |A1 . There-
fore G = A1⊕A2 = H⊕(B1⊕A2). With respect to this last decomposition of G
the projection G → H is (πM |H)−1πM |A1πA1 = (πM |H)−1πMεA1πA1 , and this
mapping restricted to M is (πM |H)−1πMεA1πA1εM . This is an isomorphism.
Again by Lemma 2.6 we get that G = M ⊕ B1 ⊕ A2.

(b) ⇒ (c). Let MR be an indecomposable module with the finite exchange
property and suppose G = M ⊕ N = ⊕i∈IAi. Fix a non-zero element x ∈ M .
There is a finite subset F of I such that x ∈ ⊕i∈F Ai. Set A′ = ⊕i∈I\F Ai, so
that G = M ⊕ N = (⊕i∈F Ai) ⊕ A′. By Lemma 2.7 either there is an index
j ∈ F and a direct sum decomposition Aj = B ⊕ C of Aj such that

G = M ⊕ B ⊕ (⊕i∈F, i �=jAi) ⊕ A′,

or there is a direct sum decomposition A′ = B′ ⊕ C ′ of A′ such that

G = M ⊕ B′ ⊕ (⊕i∈F Ai) .

The second possibility cannot occur because M ∩ (⊕i∈F Ai) 	= 0. Hence there
is an index j ∈ F and a submodule B of Aj such that

G = M ⊕ B ⊕ (⊕i∈F, i �=jAi) ⊕ A′ = M ⊕ B ⊕ (⊕i∈I, i �=jAi) .

(c) ⇒ (a). Let M be an indecomposable module and suppose that End(M)
is not a local ring. Then there exist two elements ϕ,ψ ∈ End(M) which are not
automorphisms of M , such that ϕ−ψ = 1M . Let A = M1⊕M2 be the external
direct sum of two modules M1,M2 both equal to M , and let πi:A → Mi,
i = 1, 2 be the canonical projections. The composite of the mappings(

ϕ
ψ

)
:M → M1 ⊕ M2 and (1M − 1M ) :M1 ⊕ M2 → M

is the identity mapping of M , so that if M ′ denotes the image of
(

ϕ
ψ

)
and K

denotes the kernel of (1M − 1M ), then A = M ′ ⊕K. If the exchange property
were to hold for M , there would be direct summands B1 of M1 and B2 of M2

such that A = M ′⊕K = M ′⊕B1⊕B2. Since M1 and M2 are indecomposable,
we would have either A = M ′ ⊕ M1 or A = M ′ ⊕ M2. If A = M ′ ⊕ M1, then
π2|M ′ :M ′ → M2 is an isomorphism (Lemma 2.6). Then the composite mapping

π2 ◦
(

ϕ
ψ

)
:M → M2 is an isomorphism. But π2 ◦

(
ϕ
ψ

)
= ψ, contradiction.

Similarly if A = M ′ ⊕ M2. This shows that M does not have the exchange
property. �
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2.3 Isomorphic refinements of finite direct
sum decompositions

Let M be a module over a ring R. Suppose that {Mi | i ∈ I } and {Nj | j ∈ J }
are two families of submodules of M such that M = ⊕i∈IMi = ⊕j∈JNj . Then
these two decompositions are said to be isomorphic if there exists a one-to-one
correspondence ϕ: I → J such that Mi

∼= Nϕ(i) for every i ∈ I, and the second
decomposition is a refinement of the first if there is a surjective map ϕ:J → I
such that Nj ⊆ Mϕ(j) for every j ∈ J (equivalently, if there is a surjective map
ϕ:J → I such that ⊕j∈ϕ−1(i)Nj = Mi for every i ∈ I). The first theorem of this
section gives a criterion that assures the existence of isomorphic refinements of
two direct sum decompositions.

Theorem 2.9 Let ℵ be a cardinal, let M be a module with the ℵ-exchange prop-
erty, and let M = ⊕i∈IMi = ⊕j∈JNj be two direct sum decompositions of M
with I finite and |J | ≤ ℵ. Then these two direct sum decompositions of M have
isomorphic refinements.

Proof. We may assume I = {0, 1, 2, . . . , n}. We shall construct a chain Nj ⊇
N ′

0,j ⊇ N ′
1,j ⊇ · · · ⊇ N ′

n−1,j ⊇ N ′
n,j for every j ∈ J such that

M =
(
⊕k

i=0Mi

)
⊕
(
⊕j∈JN ′

k,j

)
for every k = 0, 1, 2, . . . , n. The construction of the N ′

k,j is by induction on k.
For k = 0 the module M0 has the ℵ-exchange property (Lemma 2.4). Hence
there are submodules N ′

0,j of Nj such that M = M0 ⊕
(
⊕j∈JN ′

0,j

)
. Suppose

1 ≤ k ≤ n and that the modules N ′
k−1,j with M =

(
⊕k−1

i=0 Mi

)
⊕
(
⊕j∈JN ′

k−1,j

)
have been constructed. Apply Corollary 2.3 to the decompositions

M = Mk ⊕
(
⊕n

i=k+1Mi

)
⊕
(
⊕k−1

i=0 Mi

)
=
(
⊕j∈JN ′

k−1,j

)
⊕
(
⊕k−1

i=0 Mi

)
(note that Mk has the ℵ-exchange property by Lemma 2.4). Then there exist
submodules N ′

k,j of N ′
k−1,j such that M = Mk ⊕

(
⊕j∈JN ′

k,j

)
⊕
(
⊕k−1

i=0 Mi

)
,

which is what we had to prove.
For k = n we have that M = (⊕n

i=0Mi) ⊕
(
⊕j∈JN ′

n,j

)
, so that N ′

n,j = 0
for every j ∈ J . Since the N ′

k,j are direct summands of M contained in N ′
k−1,j,

there is a direct sum decomposition N ′
k−1,j = N ′

k,j ⊕ Nk,j for every k and j
(Lemma 2.1). Similarly, Nj = N ′

0,j⊕N0,j . Hence Nj = N0,j⊕N1,j⊕· · ·⊕Nn,j for
every j ∈ J , so that M = ⊕j∈J ⊕n

i=0 Ni,j is a refinement of the decomposition
M = ⊕j∈JNj .

As M =
(
⊕k−1

i=0 Mi

)
⊕
(
⊕j∈JN ′

k−1,j

)
=
(
⊕k

i=0Mi

)
⊕
(
⊕j∈JN ′

k,j

)
for

k = 1, 2, . . . , n, factorizing modulo
(
⊕k−1

i=0 Mi

)
⊕
(
⊕j∈JN ′

k,j

)
we obtain that

⊕j∈JNk,j
∼= Mk for k = 1, 2, . . . , n. Similarly ⊕j∈JN0,j

∼= M0. Hence for every
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i = 0, 1, 2, . . . , n there is a decomposition Mi = ⊕j∈JN ′′
i,j of Mi with N ′′

i,j
∼= Ni,j

for every i and j. Thus ⊕n
i=0 ⊕j∈J N ′′

i,j is a refinement of the decomposition
M = ⊕n

i=0Mi isomorphic to the decomposition M = ⊕j∈J ⊕n
i=0 Ni,j. �

A second case in which it is possible to find isomorphic refinements is that
of direct sum decompositions into countably many direct summands with the
ℵ0-exchange property. This is proved in the next theorem.

Theorem 2.10 Let M be a module with two direct sum decompositions

M = B0 ⊕ B1 ⊕ B2 ⊕ . . . (2.5)

M = C0 ⊕ C1 ⊕ C2 ⊕ . . . (2.6)

with countably many direct summands, where all the summands Bi and Cj

have the ℵ0-exchange property. Then the two direct sum decompositions (2.5)
and (2.6) have isomorphic refinements.

Proof. Set B′
i,−1 = Bi and C ′

i,−1 = Ci for every i = 0, 1, 2, . . . . By induction
on j = 0, 1, 2, . . . we shall construct direct summands Bi,j , B

′
i,j of Bi for every

i = j + 1, j + 2, j + 3, . . . and direct summands Ci,j, C
′
i,j of Ci for every i =

j, j+1, j+2, . . . such that the following properties hold for every j = 0, 1, 2, . . . :

(a) B′
i,j−1 = Bi,j ⊕ B′

i,j for every i = j + 1, j + 2, j + 3, . . . ;

(b) C ′
i,j−1 = Ci,j ⊕ C ′

i,j for every i = j, j + 1, j + 2, . . . ;

(c) M = (B′
0,−1⊕C ′

0,0)⊕ (B′
1,0⊕C ′

1,1)⊕· · ·⊕ (B′
j,j−1⊕C ′

j,j)⊕ (⊕∞
k=j+1C

′
k,j);

(d) M = (B′
0,−1⊕C ′

0,0)⊕ (B′
1,0⊕C ′

1,1)⊕· · ·⊕ (B′
j,j−1⊕C ′

j,j)⊕ (⊕∞
k=j+1B

′
k,j);

(e) Cj,j ⊕ Cj+1,j ⊕ Cj+2,j ⊕ · · · ∼= B′
j,j−1;

(f) Bj+1,j ⊕ Bj+2,j ⊕ Bj+3,j ⊕ · · · ∼= C ′
j,j.

Case j = 0. Since B0 has the ℵ0-exchange property, there exists a de-
composition Ci = Ci,0 ⊕ C ′

i,0 of Ci for every i = 0, 1, 2, . . . such that

M = B0 ⊕ C ′
0,0 ⊕ C ′

1,0 ⊕ C ′
2,0 ⊕ . . . . (2.7)

From (2.6) and (2.7) it follows that

B0
∼= C0,0 ⊕ C1,0 ⊕ C2,0 ⊕ . . . ,

that is, (e) holds.
The direct summand C ′

0,0 of C0 has the ℵ0-exchange property by Lemma
2.4. Applying Corollary 2.3 to (2.5) and (2.7) we obtain direct sum decompo-
sitions Bi = Bi,0 ⊕ B′

i,0 of Bi for every i = 1, 2, 3, . . . such that

M = B0 ⊕ C ′
0,0 ⊕ B′

1,0 ⊕ B′
2,0 ⊕ B′

3,0 ⊕ . . . . (2.8)
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From (2.5) and (2.8) we get that C ′
0,0

∼= B1,0 ⊕ B2,0 ⊕ B3,0 ⊕ . . . , that is,
(f) holds. This concludes the construction of the submodules Ci,0, C

′
i,0 of Ci for

every i = 0, 1, 2, . . . and the submodules Bi,0, B
′
i,0 of Bi for every i = 1, 2, 3, . . . .

Now properties (a) and (b) hold because B′
i,−1 = Bi and C ′

i,−1 = Ci for every
i = 0, 1, 2, . . . . Property (c) is given by equation (2.7), and (d) is given by
equation (2.8). This concludes the first inductive step j = 0.

Now fix an integer � > 0 and suppose we have already constructed the
direct summands Ci,j, C

′
i,j of Ci with the required properties for j < � and i ≥ j

and the direct summands Bi,j , B
′
i,j of Bi for j < � and i > j. In particular we

suppose that (d) holds for j = � − 1, that is, we suppose that

M = B′
�,�−1 ⊕

(
⊕∞

k=�+1B
′
k,�−1

)
⊕
(
(B′

0,−1 ⊕ C ′
0,0)

⊕ (B′
1,0 ⊕ C ′

1,1) ⊕ · · · ⊕ (B′
�−1,�−2 ⊕ C ′

�−1,�−1)
)
, (2.9)

and we suppose that (c) holds for j = � − 1, that is,

M =
(
⊕∞

k=�C
′
k,�−1

)
⊕
(
(B′

0,−1 ⊕ C ′
0,0)

⊕ (B′
1,0 ⊕ C ′

1,1) ⊕ · · · ⊕ (B′
�−1,�−2 ⊕ C ′

�−1,�−1)
)
. (2.10)

Since B′
�,�−1 is a direct summand of B�, it has the ℵ0-exchange property by

Lemma 2.4. Hence we can apply Corollary 2.3 to the two decompositions (2.9)
and (2.10), and obtain that there exist direct sum decompositions

C ′
k,�−1 = Ck,� ⊕ C ′

k,�

of C ′
k,�−1 for every k = �, � + 1, � + 2, . . . such that

M = B′
�,�−1 ⊕

(
⊕∞

k=�C
′
k,�

)
⊕
(
(B′

0,−1 ⊕ C ′
0,0)

⊕ (B′
1,0 ⊕ C ′

1,1) ⊕ · · · ⊕ (B′
�−1,�−2 ⊕ C ′

�−1,�−1)
)
. (2.11)

This is property (c) for the integer �. Now equality (2.10) can be rewritten as

M =
(
⊕∞

k=�

(
Ck,� ⊕ C ′

k,�

))
⊕
(
(B′

0,−1 ⊕ C ′
0,0)

⊕(B′
1,0 ⊕ C ′

1,1) ⊕ · · · ⊕ (B′
�−1,�−2 ⊕ C ′

�−1,�−1)
)
.

This and (2.11) yield
B′

�,�−1
∼= ⊕∞

k=�Ck,�,

that is, property (e) holds.
Now C ′

�,� is a direct summand of C�. Hence it has the ℵ0-exchange prop-
erty. Equality (2.11) can be rewritten as

M = C ′
�,� ⊕

(
⊕∞

k=�+1C
′
k,�

)
⊕
(
(B′

0,−1 ⊕ C ′
0,0)

⊕(B′
1,0 ⊕ C ′

1,1) ⊕ · · · ⊕ (B′
�−1,�−2 ⊕ C ′

�−1,�−1) ⊕ B′
�,�−1

)
(2.12)
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and (2.9) can be rewritten as

M =
(
⊕∞

k=�+1B
′
k,�−1

)
⊕
(
(B′

0,−1 ⊕ C ′
0,0)

⊕(B′
1,0 ⊕ C ′

1,1) ⊕ · · · ⊕ (B′
�−1,�−2 ⊕ C ′

�−1,�−1) ⊕ B′
�,�−1

)
. (2.13)

Applying Corollary 2.3 to (2.12) and (2.13) we find that there exists a direct
sum decomposition B′

k,�−1 = Bk,� ⊕B′
k,� for every k = �+1, �+2, . . . such that

M = C ′
�,� ⊕

(
⊕∞

k=�+1B
′
k,�

)
⊕
(
(B′

0,−1 ⊕ C ′
0,0)

⊕(B′
1,0 ⊕ C ′

1,1) ⊕ · · · ⊕ (B′
�−1,�−2 ⊕ C ′

�−1,�−1) ⊕ B′
�,�−1

)
. (2.14)

This proves property (d) for the integer �. From (2.13) and (2.14) it follows
that C ′

�,�
∼= ⊕∞

k=�+1Bk,�. Hence (f) holds, and this concludes the construction
by induction.

From (e) we infer that there exist modules Bi,j for i ≤ j such that Bi,j
∼=

Cj,i and
Bj,j ⊕ Bj,j+1 ⊕ Bj,j+2 ⊕ . . . = B′

j,j−1 (2.15)

for every j ≥ 0. From (a) we have that

Bi = B′
i,−1 = Bi,0 ⊕ B′

i,0 = Bi,0 ⊕ Bi,1 ⊕ B′
i,1

= · · · = Bi,0 ⊕ Bi,1 ⊕ · · · ⊕ Bi,i−1 ⊕ B′
i,i−1,

so that
Bi = ⊕∞

k=0Bi,k (2.16)

by (2.15).
Similarly, from (f) we get that there exist modules Ci,j for i < j such that

Ci,j
∼= Bj,i and

Cj,j+1 ⊕ Cj,j+2 ⊕ Cj,j+3 ⊕ . . . = C ′
j,j (2.17)

for every j ≥ 0. From (b) it follows that Cj = Cj,0 ⊕Cj,1 ⊕ · · · ⊕Cj,j ⊕C ′
j,j , so

that
Cj = ⊕∞

k=0Cj,k (2.18)

by (2.17).
Since Bi,j

∼= Cj,i for every i, j = 0, 1, 2, . . . , (2.16) and (2.18) yield the
required isomorphic refinements of the decompositions (2.5) and (2.6). �
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2.4 The Krull-Schmidt-Remak-Azumaya Theorem

The Krull-Schmidt-Remak-Azumaya Theorem is one of the main topics of this
volume. We shall obtain a proof of it using the exchange property. We begin
with a lemma that is of independent interest.

Lemma 2.11 If a module M is a direct sum of modules with local endomorphism
rings, then every indecomposable direct summand of M has local endomorphism
ring.

Proof. Suppose M = A ⊕ B = ⊕i∈IMi, where A is indecomposable and
all the modules Mi have local endomorphism ring. Let F be a finite subset
of I with A ∩ ⊕i∈F Mi 	= 0, and set C = ⊕i∈F Mi. The module C has the
exchange property (Lemma 2.4 and Theorem 2.8). Hence there exist direct
sum decompositions A = A′ ⊕ A′′ of A and B = B′ ⊕ B′′ of B such that
M = C ⊕A′⊕B′. Note that A′ is a proper submodule of A, because A∩C 	= 0
and A′ ∩ C = 0. Since A is indecomposable, it follows that A′ = 0. Thus
M = C⊕B′. From M = C⊕B′ = A⊕B′⊕B′′ it follows that C ∼= A⊕B′′. Thus
A is isomorphic to a direct summand of C. Hence A has the exchange property
by Lemma 2.4. Therefore A has local endomorphism ring by Theorem 2.8. �

We are ready for the proof of the Krull-Schmidt-Remak-Azumaya The-
orem.

Theorem 2.12 (Krull-Schmidt-Remak-Azumaya Theorem) Let M be a module
that is a direct sum of modules with local endomorphism rings. Then any two
direct sum decompositions of M into indecomposable direct summands are iso-
morphic.

Proof. Suppose that M = ⊕i∈IMi = ⊕j∈JNj , where all the Mi and Nj

are indecomposable. By Lemma 2.11 all the modules Mi and Nj have local
endomorphism rings. For I ′ ⊆ I and J ′ ⊆ J let

M(I ′) = ⊕i∈I′Mi and N(J ′) = ⊕j∈J ′Nj .

By Lemma 2.4 and Theorem 2.8 the modules M(I ′) and N(J ′) have the ex-
change property whenever I ′ and J ′ are finite. Since the summands Nj are inde-
composable, for every finite subset I ′ ⊆ I there exists a subset J ′ ⊆ J such that
M = M(I ′)⊕N(J\J ′). From M = M(I ′)⊕N(J\J ′) = N(J ′)⊕N(J\J ′), we get
that M(I ′) ∼= N(J ′). By Theorem 2.9 applied to the decompositions M(I ′) ∼=
N(J ′), the two decompositions M(I ′) = ⊕i∈I′Mi and N(J ′) = ⊕j∈J ′Nj have
isomorphic refinements. From the indecomposability of the Mi and Nj , it fol-
lows that there is a one-to-one correspondence ϕ: I ′ → J ′ such that Mi

∼= Nϕ(i)

for every i ∈ I ′. For every R-module A set

IA = { i ∈ I | Mi
∼= A } and JA = { j ∈ J | Nj

∼= A }.
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From what we have just seen it follows that if IA is finite, then |IA| ≤ |JA|,
and if IA 	= ∅, then JA 	= ∅. By symmetry, if JA is finite, then |JA| ≤ |IA|, and
JA 	= ∅ implies IA 	= ∅. In order to prove the theorem it is sufficient to show
that |IA| = |JA| for every R-module A.

Suppose first that IA is finite. In this case we argue by induction on |IA|.
If |IA| = 0, then |JA| = 0. If |IA| ≥ 1, fix an index i0 ∈ IA. Then there is an
index j0 ∈ J such that M = M({i0})⊕N(J \ {j0}). If we factorize the module
M({i0}) ⊕ N(J \ {j0}) = M(I) modulo M({i0}) we obtain that

N(J \ {j0}) ∼= M(I \ {i0}).

From the induction hypothesis we get that |IA \ {i0}| = |JA \ {j0}|, so that
|IA| = |JA|.

By symmetry we can conclude that if JA is finite, then |IA| = |JA| as well.
Hence we can suppose that both IA and JA are infinite sets. By symmetry

it is sufficient to show that |JA| ≤ |IA| for an arbitrary module A.
For each i ∈ IA set J(i) = { j ∈ J | M = Mi ⊕ N(J \ {j}) }. Obviously

J(i) ⊆ JA. If x is a non-zero element of Mi, then there is a finite subset J ′′ of
J such that x ∈ N(J ′′). Hence Mi ∩ N(K) 	= 0 for every K ⊆ J that contains
J ′′. Thus J(i) ⊆ J ′′, so that J(i) is finite.

We claim that
⋃

i∈IA
J(i) = JA. In order to prove the claim, fix j ∈ JA.

Then there exists a finite subset I ′ of I such that Nj ∩M(I ′) 	= 0. Hence there
exists a finite subset J ′ ⊆ J such that M = M(I ′)⊕N(J \J ′). Note that j ∈ J ′.
Since N(J ′ \{j}) has the exchange property, we can apply Corollary 2.3 to the
decompositions M = N(J ′ \ {j}) ⊕ Nj ⊕ N(J \ J ′) = (⊕i∈I′Mi) ⊕ N(J \ J ′).
Then for every i ∈ I ′ there exists a direct summand M ′

i of Mi such that
M = N(J ′ \ {j})⊕ (⊕i∈I′M ′

i)⊕ N(J \ J ′). Then Nj
∼= ⊕i∈I′M ′

i , so that there
exists an index k ∈ I ′ with M ′

k = Mk and M ′
i = 0 for every i ∈ I ′, i 	= k. Note

that Mk
∼= Nj

∼= A, so that k ∈ IA. Thus

M = N(J ′ \ {j}) ⊕ Mk ⊕ N(J \ J ′) = Mk ⊕ N(J \ {j}),

that is, j ∈ J(k). Hence j ∈
⋃

i∈IA
J(i), which proves the claim.

It follows that

|JA| =

∣∣∣∣∣ ⋃
i∈IA

J(i)

∣∣∣∣∣ ≤ |IA| · ℵ0 = |IA|. �
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2.5 Applications

In this section we apply the Krull-Schmidt-Remak-Azumaya Theorem to some
important classes of modules.

A first immediate application of the Krull-Schmidt-Remak-Azumaya
Theorem 2.12 can be given to the class of semisimple modules.

Lemma 2.13 (Schur) The endomorphism ring End(M) of a simple module M
is a division ring.

Proof. If M is a simple module and f is a non-zero endomorphism of M , then
ker f and f(M) must be submodules of M . Hence they are either 0 or M . If
ker f = M , then f = 0, contradiction. Therefore ker f = 0 and f is injective. If
f(M) = 0, then f = 0, contradiction. Therefore f(M) = M and f is surjective.
Thus f is an automorphism of M , that is, f is invertible in End(M). �

Since division rings are local rings, we get the Krull-Schmidt-Remak-
Azumaya Theorem for semisimple modules:

Theorem 2.14 Any two direct sum decompositions of a semisimple module into
simple direct summands are isomorphic. �

The next result describes the structure of the submodules and the homo-
morphic images of a semisimple module.

Proposition 2.15 Let M be a semisimple R-module and {Mi | i ∈ I } a family
of simple submodules of M such that M = ⊕i∈IMi. Then for every submodule
N of M there is a subset J of I such that N ∼= ⊕i∈JMi and M/N ∼= ⊕i∈I\JMi.

Proof. By Proposition 1.1 the submodule N of the semisimple module M is a
direct summand of M , so that M = N ⊕N ′ for a submodule N ′ ∼= M/N of M .
By Proposition 1.1 again, both N and N ′ are semisimple. Hence N = ⊕λ∈ΛNλ

and N ′ = ⊕μ∈Λ′N ′
μ for suitable simple submodules Nλ, N ′

μ. By Theorem 2.14
the two decompositions ⊕i∈IMi = (⊕λ∈ΛNλ) ⊕

(
⊕μ∈Λ′N ′

μ

)
of M are iso-

morphic. Therefore there are a subset J of I and one-to-one correspondences
ϕ:J → Λ and ψ: I \ J → Λ′ such that Mi

∼= Nϕ(i) for every i ∈ J and
Mi

∼= N ′
ψ(i) for every i ∈ I \ J . The conclusion follows immediately. �

As a second application of Theorem 2.12, we study the uniqueness of
decomposition of some particular artinian or noetherian modules.

Lemma 2.16 Let M be a module and f an endomorphism of M .

(a) If n is a positive integer such that fn(M) = fn+1(M), then

ker(fn) + fn(M) = M.
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(b) If M is an artinian module, then f is an automorphism if and only if f
is injective.

Proof. (a) If n is such that fn(M) = fn+1(M), then f t(M) = f t+1(M) for
every t ≥ n, so that fn(M) = f2n(M). Let us show that

ker(fn) + fn(M) = M.

If x ∈ M , then fn(x) ∈ fn(M) = f2n(M), so that fn(x) = fn(y) for some
y ∈ fn(M). Therefore z = x − y ∈ ker(fn), and x = z + y ∈ ker(fn) + fn(M).

(b) If f an injective endomorphism of the artinian module M , the de-
scending chain

f(M) ⊇ f2(M) ⊇ f3(M) ⊇ . . .

is stationary, so that ker(fn)+fn(M) = M for some positive integer n by part
(a). As fn is injective, ker(fn) = 0, and therefore fn(M) = M . In particular,
f is surjective. �

Similarly it can be proved that

Lemma 2.17 Let M be a module and f an endomorphism of M .

(a) If n is a positive integer such that ker fn = ker fn+1, then

ker(fn) ∩ fn(M) = 0.

(b) If M is a noetherian module, then f is an automorphism if and only if f
is surjective. �

A submodule N of a module MR is fully invariant if ϕ(N) ⊆ N for
every ϕ ∈ End(MR), that is, if N is a submodule of the left End(MR)-
module M . A submodule N of MR is essential in MR if N ∩ P 	= 0 for
every non-zero submodule P of MR. The socle of a module MR is the sum
of all simple submodules of MR. It is a semisimple fully invariant submodule
of MR and it will be denoted soc(MR). Since every non-zero artinian module
has a simple submodule, the socle is an essential submodule in every artinian
module. If NR is an artinian module and its socle soc(NR) is a simple mod-
ule, by Lemma 2.16(b) an endomorphism f ∈ End(NR) is not an automorph-
ism if and only f(soc(NR)) = 0. It follows that End(NR) is a local ring with
Jacobson radical J(End(NR)) = { f ∈ End(NR) | f(soc(NR)) = 0 }. Therefore
Theorem 2.12 yields

Theorem 2.18 Let MR be an R-module that is a direct sum of artinian mod-
ules with simple socle. Then any two direct sum decompositions of MR into
indecomposable direct summands are isomorphic. �
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The hypothesis that the artinian modules have simple socle is essential in
Theorem 2.18 as we shall see in Section 8.2.

Recall that a module M is local if it has a greatest proper submodule.
Hence noetherian local modules are the “duals” of artinian modules with a
simple socle. The next result is the dual of Theorem 2.18 and is proved similarly.

Theorem 2.19 Let M be an R-module that is a direct sum of noetherian local
modules. Then any two direct sum decompositions of M into indecomposable
direct summands are isomorphic. �

Our third application of the Krull-Schmidt-Remak-Azumaya Theorem
will be to the class of modules of finite composition length.

Lemma 2.20 (Fitting’s Lemma) If M is a module of finite length n and f is
an endomorphism of M , then M = ker(fn) ⊕ fn(M).

Proof. Since M is of finite length n, both the chains

ker f ⊆ ker f2 ⊆ ker f3 ⊆ . . .

and
f(M) ⊇ f2(M) ⊇ f3(M) ⊇ . . .

are stationary at the n-th step, so that ker(fn) ⊕ fn(M) = M by Lemmas
2.16(a) and 2.17(a). �

We shall say that a module MR is a Fitting module if for every f ∈
End(MR) there is a positive integer n such that M = ker(fn) ⊕ fn(M). Thus
by Lemma 2.20 every module of finite length is a Fitting module. It is easily
seen that direct summands of Fitting modules are Fitting modules.

Lemma 2.21 The endomorphism ring of an indecomposable Fitting module is
a local ring.

Proof. If M is a Fitting module and f is an endomorphism of M , there exists
a positive integer n such that M = ker(fn)⊕ fn(M). If M is indecomposable,
two cases may occur. In the first case ker(fn) = 0 and fn(M) = M . Then fn

is an automorphism of M , so that f is an automorphism of M . In the second
case ker(fn) = M , that is, f is nilpotent. Hence every endomorphism of M is
either invertible or nilpotent.

In order to show that the endomorphism ring End(M) of M is local, we
must show that the sum of two non-invertible endomorphisms is non-invertible.
Suppose that f and g are two non-invertible endomorphisms of M , but f +g is
invertible. If h = (f +g)−1 is the inverse of f +g, then fh+gh = 1. Since f and
g are not automorphisms, neither fh nor gh are automorphisms. Therefore, as
we have just seen in the previous paragraph, there exists a positive integer n
such that (gh)n = 0. Since 1 = (1 − gh)(1 + gh + (gh)2 + · · · + (gh)n−1), the
endomorphism 1− gh = fh is invertible. This contradiction proves the lemma.

�
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Theorem 2.12 and Lemma 2.21 yield

Theorem 2.22 Let M be an R-module that is a direct sum of indecomposable
Fitting modules. Then any two direct sum decompositions of M into indecom-
posable direct summands are isomorphic. �

In particular, from Lemma 2.20 it follows that

Corollary 2.23 (The Krull-Schmidt Theorem) Let M be an R-module of finite
length. Then M is the direct sum of a finite family of indecomposable modules,
and any two direct sum decompositions of M as direct sums of indecomposable
modules are isomorphic. �

A further class of modules to which the Krull-Schmidt-Remak-Azumaya
Theorem can be applied immediately is the class of indecomposable injective
modules. The proof of the following lemma is an easy exercise left to the reader.

Lemma 2.24 Let M 	= 0 be an R-module. The following conditions are equiva-
lent:

(a) The intersection of any two non-zero submodules of M is non-zero.

(b) The injective envelope of M is indecomposable.

(c) Every non-zero submodule of M is essential in M .

(d) Every non-zero submodule of M is indecomposable. �

An R-module M 	= 0 is said to be uniform if it satisfies the equivalent
conditions of Lemma 2.24. For instance, an artinian module is uniform if and
only if it has a simple socle.

We state the next lemma in the language of Grothendieck categories. The
reader who is not used to this language may think of the case of an indecom-
posable injective R-module.

Lemma 2.25 Let M be an indecomposable injective object of a Grothendieck
category C. Then

(a) An endomorphism of M is an automorphism if and only if it is a mono-
morphism.

(b) The endomorphism ring of M is a local ring.

In particular, the endomorphism ring of every indecomposable injective module
is a local ring.
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Proof. (a) If f :M → M is a monomorphism, then im(f) is a subobject of
M isomorphic to M . In particular, im(f) is a non-zero direct summand of M .
Since M is indecomposable, im(f) = M and f is an automorphism.

(b) Let EndC(M) denote the endomorphism ring of M . We must show that
the sum of two non-invertible elements of EndC(M) is non-invertible. Suppose
that f and g are two non-invertible endomorphisms of M . In (a) we have seen
that f and g are not monomorphisms, that is, ker f 	= 0 and ker g 	= 0. Since
M is coirreducible (= uniform), we have ker f ∩ ker g 	= 0. Now

ker f ∩ ker g ⊆ ker(f + g),

so that ker(f + g) 	= 0. Therefore f + g is not invertible in EndC(M). �

As an immediate application of Lemma 2.25 to the category C = Mod-R
and the Krull-Schmidt-Remak-Azumaya Theorem we have:

Theorem 2.26 Let M be an R-module that is a direct sum of injective indecom-
posable modules. Then any two direct sum decompositions of M into indecom-
posable direct summands are isomorphic. �

As a second application of Lemma 2.25 to the category C = (RFP, Ab)
we find:

Corollary 2.27 The endomorphism ring of an indecomposable pure-injective
module is a local ring.

Proof. Let MR be an indecomposable pure-injective module, let RFP be the full
subcategory of R-Mod whose objects are the finitely presented left R-modules,
let Ab be the category of abelian groups, and let C =(RFP, Ab) be the category
of all additive functors from RFP to Ab. Then

M ⊗R −: RFP→ Ab

is an indecomposable injective object in the Grothendieck category C (Prop-
osition 1.39). Since EndR(M) ∼= EndC(M), the ring EndR(M) is local by
Lemma 2.25(b). �

We conclude this section showing that the Krull-Schmidt Theorem holds
for Σ-pure-injective modules. We need a preliminary proposition.

Proposition 2.28 Let R be a ring and let B ⊆ C be classes of non-zero right
R-modules. Suppose that every module in C has a direct summand in B and
that for every proper pure submodule P of any module M ∈ C there exists a
submodule D of M such that D ∈ B, P ∩ D = 0 and P + D = P ⊕ D is pure
in M . Then every module M ∈ C is a direct sum of modules belonging to B.
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Proof. Suppose MR ∈ C. Let I be the set of submodules of M that belong
to B and put S = { I | I ⊆ I,

∑
N∈I N is a pure submodule of M and the

sum
∑

N∈I N is direct }. Since every module in C has a direct summand in B,
the set S is non-empty. Partially order S by set inclusion. Then the union of
a chain of elements of S is an element of S by Proposition 1.31(a). By Zorn’s
Lemma S has a maximal element J . Set P =

∑
N∈J N = ⊕N∈JN , so that P

is a pure submodule of M . If P is a proper submodule of M , then there is a
submodule D of M such that D ∈ B, P ∩ D = 0 and P + D is pure in M .
Thus J ∪ {D} ∈ S, and D /∈ J because P ∩ D = 0 and the module D ∈ B is
non-zero. This contradicts the maximality of J . Hence M = P is a direct sum
of modules belonging to B. �

Theorem 2.29 Let MR be a Σ-pure-injective R-module. Then MR is a direct
sum of modules with local endomorphism ring, so that any two direct sum de-
compositions of MR as direct sums of indecomposables are isomorphic.

Proof. We shall apply Proposition 2.28 to the class C of Σ-pure-injective non-
zero R-modules and the class B of indecomposable Σ-pure-injective R-modules.
Firstly, we must show that every Σ-pure-injective non-zero module MR has an
indecomposable direct summand N . To see this, let x be a non-zero element
of MR. Let P be the set of all pure submodules of MR that do not contain
x. Then P is non-empty and the union of every chain in P is an element
of P (Proposition 1.31(a)). By Zorn’s Lemma P has a maximal element Q.
By Corollary 1.42 there exists a submodule N of M such that M = Q ⊕ N . If
N = N ′⊕N ′′ with N ′, N ′′ 	= 0, then Q⊕N ′ and Q⊕N ′′ are direct summands of
M that do not belong to P. Hence x ∈ (Q⊕N ′)∩(Q⊕N ′′) = Q, a contradiction.
The contradiction proves that N is indecomposable, as we wanted to prove.

Secondly, we must show that for every proper pure submodule P of a
Σ-pure injective module MR there exists an indecomposable Σ-pure-injective
submodule D of M such that P ∩ D = 0 with P + D = P ⊕ D pure in M .
For such a pure submodule P we know that MR = P ⊕P ′ for a submodule P ′

(Corollary 1.42), and by the first part of the proof P ′ = D ⊕ P ′′ for suitable
submodules D and P ′′ with D indecomposable. The module D has the required
properties.

Hence by Proposition 2.28 every Σ-pure-injective module M is a direct
sum of indecomposable modules.

Finally, every indecomposable direct summand of M is pure-injective,
hence every indecomposable direct summand of M has a local endomorphism
ring (Corollary 2.27). �
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2.6 Goldie dimension of a modular lattice

The notion of Goldie dimension of a module concerns the lattice L(M) of all
submodules of M , which is a modular lattice. Modular lattices seem to be the
proper setting for the definition of Goldie dimension. Hence in this section we
shall consider arbitrary modular lattices and their Goldie dimension.

Throughout this section (L,∨,∧) will denote a modular lattice with 0 and
1, that is, a lattice with a smallest element 0 and a greatest element 1 such
that a ∧ (b ∨ c) = (a ∧ b) ∨ c for every a, b, c ∈ L with c ≤ a. If a, b ∈ L and
a ≤ b let [a, b] = {x ∈ L | a ≤ x ≤ b } be the interval between a and b.

A finite subset { ai | i ∈ I } of L \ {0} is said to be join-independent
if ai ∧ (

∨
j �=i aj) = 0 for every i ∈ I. The empty subset of L \ {0} is join-

independent. An arbitrary subset A of L \ {0} is join-independent if all its
finite subsets are join-independent.

Lemma 2.30 Let A ⊆ L \ {0} be a join-independent subset of a modular lattice
L. If B,C are finite subsets of A and B∩C = ∅, then

(∨
b∈B b

)
∧
(∨

c∈C c
)

= 0.

Proof. By induction on the cardinality |B| of B. The case |B| = 0 is trivial.
Suppose the lemma holds for subsets of cardinality < |B|. Fix an element
b ∈ B and set B′ = B \ {b} and a =

(∨
x∈B x

)
∧
(∨

y∈C y
)
. By the induction

hypothesis

(b ∨ a) ∧
( ∨

x∈B′
x

)
≤

⎛⎝ ∨
y∈{b}∪C

y

⎞⎠ ∧
( ∨

x∈B′
x

)
= 0, (2.19)

and by the definition of join-independent set( ∨
x∈B′

x ∨ a

)
∧ b ≤

( ∨
x∈B′∪C

x

)
∧ b = 0. (2.20)

Then

a ≤ (b ∨ a) ∧
(∨

x∈B x
)

= (b ∨ a) ∧
((∨

x∈B′ x
)
∨ b
)

(by the modular identity)
=
(
(b ∨ a) ∧

(∨
x∈B′ x

))
∨ b (by (2.19))

= 0 ∨ b = b,

(2.21)

and

a ≤
(∨

x∈B′ x ∨ a
)
∧
(∨

x∈B x
)

=
(∨

x∈B′ x ∨ a
)
∧
(
b ∨
∨

x∈B′ x
)

(by the modular identity)
=
((∨

x∈B′ x ∨ a
)
∧ b
)
∨
(∨

x∈B′ x
)

(by (2.20))
≤ 0 ∨

∨
x∈B′ x =

∨
x∈B′ x.

(2.22)

From (2.21) and (2.22) it follows that a ≤ b ∧
∨

x∈B′ x = 0, as desired. �
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Proposition 2.31 Let A ⊆ L \ {0} be a join-independent subset of a modular
lattice L. Let a ∈ L be a non-zero element such that a∧ (

∨
b∈B b) = 0 for every

finite subset B of A. Then A ∪ {a} is a join-independent subset of L.

Proof. We must prove that every finite subset of A ∪ {a} is join-independent.
This is obvious for finite subsets of A. Hence it suffices to show that if B is a
finite subset of A, then B ∪{a} is join-independent. Since a∧ (

∨
b∈B b) = 0, we

have to prove that b ∧ (a ∨
∨

x∈B\{b} x) = 0 for each b ∈ B. Now(∨
y∈B y

)
∧
(
a ∨

(∨
x∈B\{b} x

))
(by the modular identity)

=
((∨

y∈B y
)
∧ a
)
∨
(∨

x∈B\{b} x
)

(by hypothesis)

= 0 ∨
(∨

x∈B\{b} x
)

=
∨

x∈B\{b} x,

(2.23)

so that

b ∧ (a ∨
∨

x∈B\{b} x) (since b ≤
∨

y∈B y)

= b ∧
(∨

y∈B y
)
∧ (a ∨

∨
x∈B\{b} x) (by (2.23))

= b ∧
(∨

x∈B\{b} x
)

= 0 (because B is join-independent).

�

By Zorn’s Lemma every join-independent subset of L \ {0} is contained
in a maximal join-independent subset of L \ {0}.

An element a ∈ L is essential in L if a∧ x 	= 0 for every non-zero element
x ∈ L. Thus 0 is essential in L if and only if L = {0}. If a, b are elements of L,
a ≤ b and a is essential in the lattice [0, b], then a is said to be essential in b.
In particular, 0 is essential in b if and only if b = 0.

Lemma 2.32 Let a, b, c be elements of L. If a is essential in b and b is essential
in c, then a is essential in c.

Proof. Let x be a non-zero element of [0, c]. We must show that a∧x 	= 0. Now
b∧ x 	= 0 because b is essential in c, hence a∧ (b∧ x) 	= 0 because a is essential
in b. But a ∧ (b ∧ x) = a ∧ x. �

Lemma 2.33 Let a, b, c, d be elements of L such that b ∧ d = 0. If a is essential
in b and c is essential in d, then a ∨ c is essential in b ∨ d.

Proof. If any of the four elements a, b, c, d is zero, the statement of the lemma
is trivial. Hence we shall assume that a, b, c, d are all non-zero.

We claim that if the hypotheses of the lemma hold for the four elements
a, b, c, d ∈ L \ {0}, then a ∨ d is essential in b ∨ d. Assume the contrary. Then
there exists a non-zero element x ∈ L such that x ≤ b ∨ d and

(a ∨ d) ∧ x = 0.
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Since {a, d} is join-independent, the set {a, d, x} is join-independent by Prop-
osition 2.31. In particular, a ∧ (d ∨ x) = 0, so that a ∧ b ∧ (d ∨ x) = 0. This
implies that b ∧ (d ∨ x) = 0, because a is essential in b and b ∧ (d ∨ x) ≤ b.
Now {d, x} ⊆ {a, d, x} is join-independent, and thus b∧ (d∨ x) = 0 forces that
{b, d, x} is join-independent (Proposition 2.31). In particular, x ∧ (b ∨ d) = 0.
But x ≤ b ∨ d, so that x = 0. This contradiction proves the claim.

If we apply the claim to the four elements c, d, a, a, we obtain that c∨a is
essential in d∨ a, that is, a∨ c is essential in a∨ d. The conclusion now follows
from this, the claim and Lemma 2.32. �

By an easy induction argument we obtain

Corollary 2.34 Let a1, a2, . . ., an, b1, b2, . . ., bn be elements of L such that
{b1, b2, . . . , bn} is join-independent. If ai is essential in bi for every i = 1, 2, . . . ,
n, then a1 ∨ a2 ∨ · · · ∨ an is essential in b1 ∨ b2 ∨ · · · ∨ bn. �

A lattice L 	= {0} is uniform if all its non-zero elements are essential in
L, that is, if x, y ∈ L and x ∧ y = 0 imply x = 0 or y = 0 . An element a of a
modular lattice L is uniform if a 	= 0 and the lattice [0, a] is uniform.

Lemma 2.35 If a modular lattice L does not contain infinite join-independent
subsets, then for every non-zero element a ∈ L there exists a uniform element
b ∈ L such that b ≤ a.

Proof. Let a 	= 0 be an element of a modular lattice L such that every b ≤ a
is not uniform. We shall define a sequence a1, a2, a3, . . . of non-zero elements of
[0, a] such that for every n ≥ 1 the set {a1, a2, . . . , an} is join-independent and
a1 ∨ · · · ∨ an is not essential in [0, a]. The construction of the elements an is by
induction on n. For n = 1 note that a is not uniform, hence there exist non-zero
elements a1, a

′
1 ∈ [0, a] such that a1∧a′

1 = 0, i.e., a1 has the required properties.
Suppose a1, . . . , an−1 have been defined. Since a1 ∨ · · · ∨ an−1 is not essential
in [0, a], there exists a non-zero b ∈ [0, a] such that b ∧ (a1 ∨ · · · ∨ an−1) = 0.
The element b is not uniform. Hence there exist an, a′

n ∈ [0, b], where an, a′
n

are non-zero, such that an ∧ a′
n = 0. Then an ∧ (a1 ∨ · · · ∨ an−1) = 0, so that

{a1, a2, . . . , an} is join-independent by Proposition 2.31. Moreover

a′
n ∧ (a1 ∨ · · · ∨ an) (since a′

n ≤ b)
= a′

n ∧ b ∧ ((a1 ∨ · · · ∨ an−1) ∨ an) (by the modular identity)
= a′

n ∧ ((b ∧ (a1 ∨ · · · ∨ an−1)) ∨ an)
= a′

n ∧ (0 ∨ an) = 0.

This completes the construction. Now { an | n ≥ 1 } is an infinite join-indepen-
dent set. �
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Theorem 2.36 The following conditions are equivalent for a modular lattice L
with 0 and 1.

(a) L does not contain infinite join-independent subsets.

(b) L contains a finite join-independent subset {a1, a2, . . . , an} with ai uni-
form for every i = 1, 2, . . . , n and a1 ∨ a2 ∨ · · · ∨ an essential in L.

(c) The cardinality of the join-independent subsets of L is ≤ m for a non-
negative integer m.

(d) If a0 ≤ a1 ≤ a2 ≤ . . . is an ascending chain of elements of L, then there
exists i ≥ 0 such that ai is essential in aj for every j ≥ i.

Moreover, if these equivalent conditions hold and {a1, a2, . . . , an} is a finite
join-independent subset of L with ai uniform for every i = 1, 2, . . . , n and
a1 ∨ a2 ∨ · · · ∨ an essential in L, then any other join-independent subset of L
has cardinality ≤ n.

Proof. (a) ⇒ (b). Let F be the family of all join-independent subsets of L
consisting only of uniform elements. The family F is non-empty (Lemma 2.35).
By Zorn’s Lemma F has a maximal element X with respect to inclusion. By
(a) the set X is finite, say X = {a1, a2, . . . , an}. The element a1∨a2∨· · ·∨an is
essential in L, otherwise there would exist a non-zero element x ∈ L such that
(a1∨a2∨· · ·∨an)∧x = 0, and by Lemma 2.35 there would be a uniform element
b ∈ L such that b ≤ x. Then {a1, a2, . . . , an, b} would be join-independent by
Proposition 2.31, a contradiction.

(b) ⇒ (c). Suppose that (b) holds, so that there exists a finite join-
independent subset {a1, a2, . . . , an} of L with ai uniform for every i and

a1 ∨ · · · ∨ an

essential in L. Assume that there exists a join-independent subset {b1,b2,...,bk}
of L of cardinality k > n. For every t = 0, 1, . . . , n we shall construct a subset
Xt of {a1, a2, . . . , an} of cardinality t and a subset Yt of {b1, b2, . . . , bk} of
cardinality k − t such that Xt ∩ Yt = ∅ and Xt ∪ Yt is join-independent. For
t = 0 set X0 = ∅ and Y0 = {b1, b2, . . . , bk}. Suppose that Xt and Yt have been
constructed for some t, 0 ≤ t < n. We shall construct Xt+1 and Yt+1. Since
|Yt| = k − t > n − t > 0, there exists j = 1, 2, . . . , k with bj ∈ Yt. Set

c =
∨

y∈(Xt∪Yt)\{bj}
y.

We claim that c ∧ a� = 0 for some � = 1, 2, . . . , n. Otherwise, if c ∧ ai 	= 0
for every i = 1, 2, . . . , n, then c ∧ ai is essential in ai because ai is uniform,
so that

∨n
i=1 c ∧ ai is essential in

∨n
i=1 ai by Corollary 2.34. Since

∨n
i=1 ai is
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essential in 1, it follows that
∨n

i=1 c ∧ ai is essential in 1 (Lemma 2.32). Then
c ≥

∨n
i=1 c ∧ ai is essential in 1, so that c ∧ bj 	= 0. This contradicts the fact

that Xt ∪ Yt is join-independent and the contradiction proves the claim. From
Proposition 2.31 and the claim it follows that (Xt ∪ {a�}) ∪ (Yt \ {bj}) is join-
independent, so that Xt+1 = Xt ∪ {a�} and Yt+1 = Yt \ {bj} have the required
properties. This completes the construction of the sets Xt and Yt.

For t = n we have a non-empty subset Yn of {b1, b2, . . . , bk} such that
{a1, a2, . . . , an} ∪ Yn is a join-independent subset of cardinality k, so that

(a1 ∨ a2 ∨ · · · ∨ an) ∧ y = 0

for every y ∈ Yn, and this contradicts the fact that a1∨a2∨· · ·∨an is essential
in L. Hence every join-independent subset of L has cardinality ≤ n.

(c) ⇒ (d). If (d) does not hold, there is a chain a0 ≤ a1 ≤ a2 ≤ . . . of
elements of L such that for every i ≥ 0 there exists j(i) > i with ai not essential
in aj(i). Set j0 = 0 and jn+1 = j(jn) for every n ≥ 0. Then for every n ≥ 0
there exists a non-zero element bn ≤ ajn+1 such that bn ∧ ajn = 0. The set
{ bn | n ≥ 0 } is join-independent by Proposition 2.31. Thus (c) does not hold.

(d) ⇒ (a). If (a) is not satisfied, then L contains a countable infinite join-
independent subset { bi | i ≥ 0 }. Set an =

∨n
i=0 bi. Then a0 ≤ a1 ≤ a2 ≤ . . . ,

and for every n ≥ 0 the element an is not essential in an+1 because

an ∧ bn+1 = 0.

Hence (d) is not satisfied.
The last part of the statement has already been seen in the proof

of (b) ⇒ (c). �
Thus, for a modular lattice L, either there is a finite join-independent

subset {a1, a2, . . . , an} with ai uniform for every i = 1, 2, . . . , n and

a1 ∨ a2 ∨ · · · ∨ an

essential in L, and in this case n is said to be the Goldie dimension dimL of
L, or L contains infinite join-independent subsets, in which case L is said to
have infinite Goldie dimension. The Goldie dimension of a lattice L is zero if
and only if L has exactly one element.

2.7 Goldie dimension of a module

In this section we shall apply the Goldie dimension of modular lattices intro-
duced in the previous section to the lattice L(M) of all submodules of a module
MR. If the lattice L(M) has finite Goldie dimension n, then n will be said to
be the Goldie dimension dimMR of the module MR. Otherwise, if the lattice
L(M) has infinite Goldie dimension, that is, if MR contains an infinite direct
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sum of non-zero submodules, the module MR will be said to have infinite Goldie
dimension (dimMR = ∞).

Since a module M is essential in its injective envelope E(M),

dim(M) = dim(E(M)).

In Section 2.5 we had already defined uniform modules. Obviously, a module
M is uniform if and only if the lattice L(M) is uniform. A module M has finite
Goldie dimension n if and only if it contains an essential submodule that is
the finite direct sum of n uniform submodules U1, . . . , Un (Theorem 2.36(b)).
In this case E(M) = E(U1) ⊕ E(U2) ⊕ · · · ⊕ E(Un) is the finite direct sum of
n indecomposable modules. Note that by Theorem 2.26 we already knew that
if E(M) is a finite direct sum of indecomposable modules, then the number
of direct summands in any indecomposable decomposition of E(M) does not
depend on the decomposition. Hence a module M has finite Goldie dimension n
if and only if its injective envelope E(M) is the direct sum of n indecomposable
modules.

In the next proposition we collect the most important arithmetical proper-
ties of the Goldie dimension of modules. Some of these properties have already
been noticed. Their proof is elementary.

Proposition 2.37 Let M be module.

(a) dim(M) = 0 if and only if M = 0.

(b) dim(M) = 1 if and only if M is uniform.

(c) If N ≤ M and M has finite Goldie dimension, then N has finite Goldie
dimension and dim(N) ≤ dim(M).

(d) If N ≤ M and M has finite Goldie dimension, then dim(N) = dim(M)
if and only if N is essential in M .

(e) If M and M ′ are modules of finite Goldie dimension, then M ⊕ M ′ is a
module of finite Goldie dimension and dim(M ⊕N) = dim(M)+dim(N).
�
Artinian modules and noetherian modules have finite Goldie dimension.

For an artinian module M , the Goldie dimension of M is equal to the composi-
tion length of its socle soc(M). In particular, an artinian module M has Goldie
dimension 1 if and only if it has a simple socle.

The next proposition contains a first application of the Goldie dimension
of a ring.

Proposition 2.38 Let R be a ring and suppose that RR has finite Goldie di-
mension. Then every surjective endomorphism of a finitely generated projec-
tive right R-module PR is an automorphism. In particular, every right or left
invertible element of R is invertible.
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Proof. If PR is a finitely generated projective R-module, then PR has finite
Goldie dimension. If ϕ is a surjective endomorphism of PR, then

PR ⊕ kerϕ ∼= PR,

so that dim(kerϕ) = 0, that is, ϕ is injective. For the second part of the
statement we must show that if x, y ∈ R and xy = 1, then yx = 1. Since
xy = 1, left multiplication by x is a surjective endomorphism μx of RR. From
xy = 1 it follows that yR ⊕ ker(μx) = R. Hence yR = R, i.e., y is also right
invertible. Thus y is invertible and x is its two-sided inverse. �

2.8 Dual Goldie dimension of a module

We shall now apply the results on the Goldie dimension of modular lattices
of Section 2.6 to the dual lattice of the lattice L(M) of all submodules of a
module M . If (L,∧,∨) is a modular lattice, then its dual lattice (L,∨,∧) is
also a modular lattice. In particular, the Duality Principle holds for modular
lattices, that is, if a statement Φ expressed in terms of ∧, ∨, ≤ and ≥ is
true for all modular lattices, then the dual statement of Φ, obtained from Φ
interchanging ∧ with ∨ and ≤ with ≥, is also true for all modular lattices.

Since the dual of the lattice L(M) of all submodules of a module M
is modular, all the results of Section 2.6 hold for this lattice. We now shall
translate the results of Section 2.6 for the dual of the lattice L(M) to the
language of modules.

Let M be a right R-module. A finite set {Ni | i ∈ I } of proper submodules
of M is said to be coindependent if Ni + (

⋂
j �=i Nj) = M for every i ∈ I,

or, equivalently, if the canonical injective mapping M/
⋂

i∈I Ni → ⊕i∈IM/Ni

is bijective. An arbitrary set A of proper submodules of M is coindependent
if its finite subsets are coindependent. If A is a coindependent set of proper
submodules of M and N is a proper submodule of M such that N+(

⋂
X∈B X) =

M for every finite subset B of A, then A ∪ {N} is a coindependent set of
submodules of M (Proposition 2.31). By Zorn’s Lemma, every coindependent
set of submodules of M is contained in a maximal coindependent set.

The following lemma, which is dual to Lemma 2.24, has an elementary
proof.

Lemma 2.39 Let M 	= 0 be an R-module. The following conditions are equiva-
lent:

(a) The sum of any two proper submodules of M is a proper submodule of M .

(b) Every proper submodule of M is superfluous in M .

(c) Every non-zero homomorphic image of M is indecomposable. �
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An R-module M 	= 0 is said to be couniform, or hollow , if it satisfies
the equivalent conditions of the previous Lemma 2.39. Every local module is
couniform, but not conversely. For instance, the Z-module Z(p∞) (the Prüfer
group) is couniform and is not local. Every proper submodule of a finitely
generated module M is contained in a maximal submodule of M . Hence if M
is a finitely generated module, M is couniform if and only if M is local. From
Theorem 2.36 we obtain

Theorem 2.40 The following conditions are equivalent for a right module M :

(a) There do not exist infinite coindependent sets of proper submodules of M .

(b) There exists a finite coindependent set {N1, N2, . . . , Nn} of proper sub-
modules of M with M/Ni couniform for all i and N1 ∩ N2 ∩ · · · ∩ Nn

superfluous in M .

(c) The cardinality of the coindependent sets of proper submodules of M is
≤ m for a non-negative integer m.

(d) If N0 ⊇ N1 ⊇ N2 ⊇ . . . is a descending chain of submodules of M , then
there exists i ≥ 0 such that Ni/Nj is superfluous in M/Nj for every j ≥ i.

Moreover, if these equivalent conditions hold and {N1, N2, . . . , Nn} is a finite
coindependent set of proper submodules of M with M/Ni couniform for all i
and N1 ∩ N2 ∩ · · · ∩ Nn superfluous in M , then every other coindependent set
of proper submodules of M has cardinality ≤ n. �

The dual Goldie dimension codim(M) of a right module M is the Goldie
dimension of the dual lattice of the lattice L(M). Hence a module M has
finite dual Goldie dimension n if and only if there exists a coindependent set
{N1, N2, . . . , Nn} of proper submodules of M with M/Ni couniform for all i and
N1 ∩N2 ∩ · · ·∩Nn superfluous in M . And a module M has infinite dual Goldie
dimension if there exist infinite coindependent sets of proper submodules of M .
Note that if a module M has finite dual Goldie dimension, then for every proper
submodule N of M there exists a proper submodule P of M containing N with
M/P couniform (Lemma 2.35).

From Theorem 2.40(d) we obtain

Corollary 2.41 Every artinian module has finite dual Goldie dimension. �

The proof of the next result is straightforward.

Proposition 2.42 Let M be module.

(a) codim(M) = 0 if and only if M = 0.

(b) codim(M) = 1 if and only if M is couniform.
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(c) If N ≤ M and M has finite dual Goldie dimension, then M/N has finite
dual Goldie dimension and codim(M/N) ≤ codim(M).

(d) If M has finite dual Goldie dimension and N ≤ M , then codim(M/N) =
codim(M) if and only if N is superfluous in M .

(e) If M and M ′ are modules of finite dual Goldie dimension, then M ⊕M ′

is a module of finite dual Goldie dimension and

codim(M ⊕ M ′) = codim(M) + codim(M ′). �

If a module M has finite dual Goldie dimension n, then there exists a
set {N1, N2, . . . , Nn} of submodules of M such that N = N1 ∩ N2 ∩ · · · ∩ Nn

is superfluous in M and M/N ∼= ⊕n
i=1M/Ni is a direct sum of n couniform

modules. Note that there is no epimorphism of such a module M onto a direct
sum of n + 1 non-zero modules. In Section 2.7 we saw that if a module M has
the property that there are no monomorphisms from a direct sum of infinitely
many non-zero modules into M , then M has finite Goldie dimension. This result
cannot be dualized, that is, it is not true that if M is a module and there is no
homomorphic image of M that is a direct product of infinitely many non-zero
modules, then M has finite dual Goldie dimension. For instance, consider the Z-
module Z, that is, the abelian group of integers. Then there is no homomorphic
image of Z that is a direct product

∏
i∈I Gi of infinitely many non-zero abelian

groups Gi. But the set of all pZ, p a prime number, is an infinite coindependent
set of proper subgroups of Z, so that codim(Z) = ∞.

For a semisimple module the dual Goldie dimension coincides with the
composition length of the module. Hence for a semisimple artinian ring R,

dim(RR) = dim(RR) = codim(RR) = codim(RR).

We shall denote this finite dimension dim(R).

Proposition 2.43 The following conditions are equivalent for a ring R.

(a) The ring R is semilocal.

(b) The right R-module RR has finite dual Goldie dimension.

(c) The left R-module RR has finite dual Goldie dimension.

Moreover, if these equivalent conditions hold,

codim(RR) = codim(RR) = dim(R/J(R)).

Proof. (a) ⇒ (b). Suppose RR has infinite dual Goldie dimension, and let
{ In | n ≥ 1 } be an infinite coindependent set of proper right ideals of R.
Then R/

⋂k
n=1 In is a direct sum of k non-zero cyclic modules for every k ≥ 1.
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If C is a non-zero cyclic module, C/CJ(R) is a non-zero module. Therefore
R/(J(R) +

⋂k
n=1 In) is a direct sum of at least k non-zero modules for every

k ≥ 1. In particular R/J(R) cannot have finite length, so that R cannot be
semilocal.

(b) ⇒ (a). Suppose that RR has finite dual Goldie dimension. Let I be
the set of all right ideals of R that are finite intersections of maximal right
ideals. Note that if I, J ∈ I and I ⊂ J , then R/I and R/J are semisimple
modules of finite length and

codim(R/J) = length(R/J) < length(R/I) = codim(R/I).

Since codim(R/I) ≤ codim(RR) for every I, it follows that every descending
chain in I is finite, i.e., the partially ordered set I is artinian. In particular I
has a minimal element. Since any intersection of two elements of I belongs to
I, the set I has a least element, which is the Jacobson radical J(R). Hence
J(R) ∈ I is a finite intersection of maximal right ideals. Therefore R/J(R) is
a semisimple artinian right R-module, and R is semilocal.

Since (a) is right-left symmetric, (a), (b) and (c) are equivalent. Finally,
J(R) is a superfluous submodule of RR (Nakayama’s Lemma 1.4), so that if
(b) holds, then codim(RR) = codim(R/J(R)) by Proposition 2.42(d). �

Corollary 2.44 Let PR be a finitely generated projective module over a semilocal
ring R. Then every surjective endomorphism of PR is an automorphism. In
particular, every right or left invertible element of a semilocal ring is invertible.

Proof. Since R is semilocal, RR has finite dual Goldie dimension, so that PR

has finite dual Goldie dimension (Proposition 2.42). If f :PR → PR is sur-
jective, then ker f is a direct summand of PR, and ker f ⊕ PR

∼= PR. Thus
codim(ker f) = 0, i.e., ker f = 0. The proof of the second part of the statement
is analogous to the proof of the second part of the statement of Proposition 2.38.

�

We conclude this section with an example. A non-zero uniserial module
is both uniform and couniform. Therefore a serial module has finite Goldie
dimension if and only if it is the direct sum of a finite number of uniserial
modules, if and only if it has finite dual Goldie dimension. More precisely, a
serial module M has finite Goldie dimension n if and only if it is the direct
sum of exactly n non-zero uniserial modules (so that the number n of direct
summands of M that appear in any decomposition of M as a direct sum of
non-zero uniserial modules does not depend on the decomposition), if and only
if M has finite dual Goldie dimension n.
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2.9 ℵ-small modules and ℵ-closed classes

Let R be an arbitrary ring. An R-module NR is small if for every family

{Mi | i ∈ I }

of R-modules and any homomorphism ϕ:NR → ⊕i∈IMi, there is a finite subset
F ⊆ I such that πjϕ = 0 for every j ∈ I \ F . Here the πj :⊕i∈IMi → Mj are
the canonical projections.

For instance, every finitely generated module is small. Another class of
small modules is given by the class of uncountably generated uniserial modules,
as the next proposition shows.

Proposition 2.45 Every uniserial module that is not small can be generated by
ℵ0 elements.

Proof. Let U be a uniserial module that is not small. Then there exist modules
Mi, i ∈ I, and a homomorphism ϕ:U → ⊕i∈IMi such that if πj :⊕i∈IMi → Mj

denotes the canonical projection for every j ∈ I, then πjϕ 	= 0 for infinitely
many j ∈ I.

For every x ∈ U set supp(x) = { i ∈ I | πiϕ(x) 	= 0 }, so that supp(x) is
a finite subset of I for every x ∈ U . Note that if x, y ∈ U and xR ⊆ yR, then
supp(x) ⊆ supp(y). Define by induction a sequence of elements xn ∈ U , n ≥ 0,
such that supp(x0) ⊂ supp(x1) ⊂ supp(x2) ⊂ . . . . Set x0 = 0. If xn ∈ U has
been defined, then supp(xn) is finite, but πjϕ 	= 0 for infinitely many j ∈ I.
Hence there exists k ∈ I with k /∈ supp(xn) and πkϕ 	= 0 . Let xn+1 ∈ U be
an element of U with πkϕ(xn+1) 	= 0. Then supp(xn+1) 	⊆ supp(xn), so that
xn+1R 	⊆ xnR. Hence xnR ⊆ xn+1R, from which supp(xn) ⊂ supp(xn+1). This
defines the sequence xn.

If the elements xn do not generate the module U , then there exists v ∈ U
such that v /∈ xnR for every n ≥ 0. Then vR ⊇ xnR for every n, so that
supp(v) ⊇ supp(xn) for every n. This yields a contradiction, because supp(v)
is finite and

⋃
n≥0 supp(xn) is infinite. Hence the xn generate U and U is

countably generated. �

Now we shall extend the definition of small module. Let ℵ be a cardinal
number. An R-module NR is ℵ-small if for every family {Mi | i ∈ I } of R-
modules and any homomorphism ϕ:NR → ⊕i∈IMi, the set { i ∈ I | πiϕ 	= 0 }
has cardinality ≤ ℵ.

For instance, every small module is ℵ0-small, and every uniserial module
is ℵ0-small. It is easy to see that if ℵ is a finite cardinal number and NR is
ℵ-small, then NR = 0.

Let R be a ring, G a non-empty class of right R-modules and let ℵ be a
cardinal number. We say that G is ℵ-closed if:
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(a) G is closed under homomorphic images, that is, if MR, NR are right R-
modules, f :MR → NR is an epimorphism and MR ∈ G, then NR ∈ G;

(b) every module in G is ℵ-small;

(c) G is closed under direct sums of ℵ modules, that is, if Mi ∈ G for every
i ∈ I and |I| ≤ ℵ, then ⊕i∈IMi ∈ G.

Examples 2.46 (1) For an infinite cardinal number ℵ and a ring R, let G be
the class of all ℵ-generated modules, that is, the right R-modules that are
homomorphic images of R(ℵ). Then G is an ℵ-closed class.

(2) For a cardinal number ℵ and a ring R, let G be the class of all ℵ-small
right R-modules. Then G is an ℵ-closed class.

(3) Let R be a ring and let ℵ be a finite cardinal number. We have already
remarked that every ℵ-small right R-module is zero. Hence every ℵ-closed class
of right R-modules consists of all zero R-modules.

(4) Let R be a ring and let G be the class of all σ-small R-modules, that is,
the right R-modules that are countable ascending unions of small submodules.
Then G is an ℵ0-closed class. Note that by Proposition 2.45 every uniserial
module is σ-small. �

The following theorem is essentially equivalent to an extension due to
C. Walker of a theorem of [Kaplansky 58, Theorem 1]. Kaplansky proved it
in the case in which ℵ = ℵ0 and G is the class of ℵ0-generated modules, and
Walker extended it to the class of ℵ-generated modules for an arbitrary cardinal
number ℵ. [Warfield 69c] remarked that the theorem holds for the classes of
ℵ-small modules and σ-small modules, and that suitable versions for larger
cardinals were also valid.

Theorem 2.47 Let R be a ring, let ℵ be a cardinal number and G an ℵ-closed
class of right R-modules. If a module MR is a direct sum of modules belonging
to G, then every direct summand of MR is a direct sum of modules belonging
to G.

Proof. Since the case of a finite cardinal number ℵ is trivial (Example 2.46(3)),
we may suppose ℵ infinite. Let MR = ⊕i∈IMi, where Mi ∈ G for every i ∈ I,
and assume MR = NR⊕PR. Let L(NR) and L(PR) be the sets of all submodules
of NR and PR, respectively, and let T be the set of all triples (J,A,B) such
that

(1) J ⊆ I, A ⊆ L(NR) ∩ G, B ⊆ L(PR) ∩ G;

(2) the sum
∑

X∈A X is direct, that is,
∑

X∈A X = ⊕X∈AX;

(3) the sum
∑

Y ∈B Y is direct, that is,
∑

Y ∈B Y = ⊕Y ∈BY ;

(4) ⊕i∈JMi = (⊕X∈AX) ⊕ (⊕Y ∈BY ).
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Note that T is non-empty, because (∅, ∅, ∅) ∈ T . Define a partial ordering on
T by setting (J,A,B) ≤ (J ′,A′,B′) whenever J ⊆ J ′, A ⊆ A′, and B ⊆ B′. It
is easily seen that every chain in T has an upper bound in T , so that by Zorn’s
Lemma T has a maximal element (K, C,D). Suppose K ⊂ I. Let i ∈ I \K and
let ε be the idempotent endomorphisms of MR with ker(ε) = PR that is the
identity on NR.

Define an ascending chain I0 ⊆ I1 ⊆ I2 ⊆ . . . of subsets of I of cardinality
at most ℵ in the following way. Set I0 = {i}. Suppose In has been defined. Since
⊕j∈InMj ∈ G, its homomorphic images ε(⊕j∈InMj) and (1 − ε)(⊕j∈InMj)
belong to G, so that ε(⊕j∈InMj) + (1 − ε)(⊕j∈InMj) is in G. In particular,
this module is ℵ-small, hence there exists a subset In+1 of I of cardinality
at most ℵ such that ε(⊕j∈InMj) + (1− ε)(⊕j∈InMj) ⊆ ⊕j∈In+1Mj . Note that
⊕j∈InMj ⊆ ε(⊕j∈InMj)+(1−ε)(⊕j∈InMj), so that In ⊆ In+1. This completes
the construction of the subsets In by induction.

Let I ′ be the union of the countable ascending chain I0 ⊆ I1 ⊆ I2 ⊆ . . . ,
so that I ′ is a subset of I of cardinality at most ℵ. Hence ⊕j∈I′Mj ∈ G. Since
i ∈ I ′, it follows that I ′ ∪ K ⊃ K. And ε(⊕j∈InMj) ⊆ ⊕j∈In+1Mj for all n
implies that ε(⊕j∈I′Mj) ⊆ ⊕j∈I′Mj . Similarly, (1 − ε)(⊕j∈I′Mj) ⊆ ⊕j∈I′Mj .

Now ⊕j∈KMj = (⊕X∈CX) ⊕ (⊕Y ∈DY ) because (K, C,D) ∈ T , and

ε(⊕j∈I′∪KMj) = ε(⊕j∈I′Mj + ⊕j∈KMj)
= ε(⊕j∈I′Mj + ⊕X∈CX + ⊕Y ∈DY ) = ε(⊕j∈I′Mj) + ⊕X∈CX

⊆ ⊕j∈I′Mj + ⊕j∈KMj = ⊕j∈I′∪KMj .

Hence the idempotent endomorphism ε of MR induces an idempotent endo-
morphism on ⊕j∈I′∪KMj , so that

⊕j∈I′∪KMj = ε(⊕j∈I′∪KMj) ⊕ (1 − ε)(⊕j∈I′∪KMj).

The submodule ⊕X∈CX is a direct summand of ⊕j∈I′∪KMj contained in
ε(⊕j∈I′∪KMj). Hence it is a direct summand of ε(⊕j∈I′∪KMj), that is, there
exists a submodule X of NR such that

ε(⊕j∈I′∪KMj) = (⊕X∈CX) ⊕ X.

Similarly, ⊕Y ∈DY is a direct summand of ⊕j∈I′∪KMj contained in

(1 − ε)(⊕j∈I′∪KMj),

so that (1 − ε)(⊕j∈I′∪KMj) = (⊕Y ∈DY ) ⊕ Y for some submodule Y of PR.
Therefore ⊕j∈I′∪KMj = (⊕X∈CX) ⊕ X ⊕ (⊕Y ∈DY ) ⊕ Y . It follows that

X ⊕ Y ∼= ⊕j∈I′∪KMj/ ⊕j∈K Mj
∼= ⊕j∈I′\KMj ∈ G,

so that both X and Y belong to G. This shows that (I ′ ∪K, C ∪{X},D∪{Y })
is an element of T strictly greater than the maximal element (K, C,D). This
contradiction proves that K = I. Thus MR = (⊕X∈CX) ⊕ (⊕Y ∈DY ). Hence
NR = ⊕X∈CX and PR = ⊕Y ∈DY . �
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If we apply Theorem 2.47 to the ℵ0-closed class of all countably generated
(= ℵ0-generated) modules we get a famous result of [Kaplansky 58]:

Corollary 2.48 (Kaplansky) Any projective module is a direct sum of countably
generated modules. �

Corollary 2.49 Let N be a direct summand of a serial module. Then there is a
decomposition N = ⊕i∈INi, where each Ni is a direct summand of the direct
sum of a countable family {Ui,n | n ∈ N } of uniserial modules.

Proof. Let G be the class of all σ-small modules. This is an ℵ0-closed class
that contains all uniserial modules (Example 2.46(4)). Apply Theorem 2.47.
Then N is a direct sum of modules Ni belonging to G. Hence it suffices to
prove that a module Ni belonging to G that is a direct summand of a serial
module is a direct summand of the direct sum of a countable family of uniserial
modules. If Ni is a direct summand of a serial module ⊕j∈JUj , there are two
homomorphisms ϕ:Ni → ⊕j∈JUj and ψ:⊕j∈JUj → Ni such that ψϕ = 1Ni . If
Ni ∈ G, Ni is ℵ0-small, so that the set C = { j ∈ J | πjϕ 	= 0 } has cardinality
≤ ℵ0. Now it is easily seen that Ni is a direct summand of the direct sum of
the countable family {Uj | j ∈ C }. �

We conclude the section with a proposition due to [Warfield 69c, Lemma
5], who proved it not only for modules, but for objects of more general abelian
categories. Here we consider the case of modules only.

Proposition 2.50 Let R be a ring, ℵ a cardinal number and G an ℵ-closed class
of right R-modules. If M = ⊕i∈IAi = ⊕j∈JBj , where Ai, Bj are non-zero
modules belonging to G for every i ∈ I and every j ∈ J, then there exists a
partition { Iλ | λ ∈ Λ } of I and a partition {Jλ | λ ∈ Λ } of J with |Iλ| ≤ ℵ,
|Jλ| ≤ ℵ and ⊕i∈Iλ

Ai
∼= ⊕j∈Jλ

Bj for every λ ∈ Λ.

Proof. The case of a finite cardinal number ℵ is trivial. Hence we may suppose
ℵ infinite. We claim that if i0 ∈ I, then there exist subsets I ′ ⊆ I and J ′ ⊆ J
of cardinality ≤ ℵ such that i0 ∈ I ′ and ⊕i∈I′Ai = ⊕j∈J ′Bj . In order to prove
the claim define sets I ′n and J ′

n of cardinality ≤ ℵ for every integer n ≥ 0 by
induction as follows. Set I ′0 = {i0} and J ′

0 = ∅. Suppose I ′n and J ′
n have been

defined. Then (⊕i∈I′
n
Ai)+(⊕j∈J ′

n
Bj) ∈ G, so that there exists a subset J ′

n+1 ⊆
J of cardinality at most ℵ such that (⊕i∈I′

n
Ai)+(⊕j∈J ′

n
Bj) ⊆ ⊕j∈J ′

n+1
Bj . Since

(⊕i∈I′
n
Ai) + (⊕j∈J ′

n+1
Bj) ∈ G, there exists a subset I ′n+1 ⊆ I of cardinality at

most ℵ such that (⊕i∈I′
n
Ai)+(⊕j∈J ′

n+1
Bj) ⊆ ⊕i∈I′

n+1
Ai. It is now obvious that

I ′ =
⋃

n≥0 I ′n and J ′ =
⋃

n≥0 J ′
n have the property required in the claim.

Define a chain of subsets K0 ⊆ K1 ⊆ · · · ⊆ Kλ ⊆ . . . of I and a chain
of subsets L0 ⊆ L1 ⊆ · · · ⊆ Lλ ⊆ . . . of J for each ordinal λ by transfinite
induction in the following way. Set K0 = L0 = ∅. If λ is a limit ordinal set
Kλ =

⋃
μ<λ Kμ and Lλ =

⋃
μ<λ Lμ. For every ordinal μ such that Kμ = I
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set Kμ+1 = Kμ and Lμ+1 = Lμ. Otherwise, if Kμ ⊂ I, choose an element
i0 ∈ I \ Kμ. By the claim there exist I ′ ⊆ I and J ′ ⊆ J , both of cardinality
≤ ℵ, such that i0 ∈ I ′ and ⊕i∈I′Ai = ⊕j∈J ′Bj . In this case set Kμ+1 = Kμ ∪ I ′

and Lμ+1 = Lμ ∪ J ′.
Obviously ⊕i∈Kλ

Ai = ⊕j∈Lλ
Bj for every λ, and there exists an ordinal λ

such that Kλ = I. Then Lλ = J . Set Iλ = Kλ+1 \ Kλ and Jλ = Lλ+1 \ Lλ for
every λ < λ. Then

⊕i∈Kλ+1Ai = ⊕j∈Lλ+1Bj and ⊕i∈Kλ
Ai = ⊕j∈Lλ

Bj

imply ⊕i∈Iλ
Ai

∼= ⊕j∈Jλ
Bj . �

2.10 Direct sums of ℵ-small modules

In Section 2.3 we saw two cases in which there exist isomorphic refinements of
two direct sum decompositions. The next theorem examines a third case.

Theorem 2.51 Let MR be a module that is a direct sum of ℵ0-small submodules.
Then any two direct sum decompositions of M into summands having the ℵ0-
exchange property have isomorphic refinements.

Proof. We have already remarked that the class G of all ℵ0-small R-modules is
ℵ0-closed (Example 2.46(2)). By Theorem 2.47 any decomposition of MR refines
into one in which the summands belong to G. By Lemma 2.4 every refinement
of a decomposition of MR into summands with the ℵ0-exchange property is a
decomposition into summands with the ℵ0-exchange property. Hence we may
suppose that we have two direct sum decompositions of M into summands
belonging to G and having the ℵ0-exchange property. By Proposition 2.50 we
may assume that the index sets are countable. In this case the result is given
by Theorem 2.10. �

A fourth case in which isomorphic refinements exist is considered in the
next important result, due to [Crawley and Jónsson, Theorem 7.1], who proved
it for algebraic systems more general than modules. Here we shall present the
proof given by [Warfield 69c, Theorem 7]. Also the proof given by Warfield holds
in a context more general than ours, that is for suitable abelian categories, but
we shall restrict our attention to the case we are interested in, that is, the case
of modules. Recall that a module is σ-small if it is a countable ascending union
of small submodules (Example 2.46(4)).

Theorem 2.52 If a module M is a direct sum of σ-small modules each of which
has the exchange property, then any two direct sum decompositions of M have
isomorphic refinements.
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Proof. We claim that if A = ⊕∞
i=1Bi is a direct sum of countably many σ-small

modules Bi each of which has the exchange property and A = C ⊕ D, then C
is a direct sum of σ-small modules with the exchange property.

In order to prove the claim note that the direct summand C of A is
σ-small, hence there is an ascending chain 0 = S0 ⊆ S1 ⊆ S2 ⊆ . . . of small
submodules of C whose union is C itself. We shall construct submodules Ck, Pk

of C for each k ≥ 0 with the property that (1) C = C0 ⊕ C1 ⊕ · · · ⊕ Ck ⊕ Pk,
(2) Sk ⊆ C0 ⊕ C1 ⊕ · · · ⊕ Ck and (3) Ck has the exchange property for every
k ≥ 0. Set C0 = 0 and P0 = C. Suppose C0, . . . , Ck−1, P0, . . . , Pk−1 with the
required properties have been constructed. Then C0 ⊕ C1 ⊕ · · · ⊕ Ck−1 has
the exchange property. Hence there exist direct summands B′

i of Bi such that
A = C0 ⊕C1 ⊕ · · ·⊕Ck−1 ⊕ (⊕∞

i=1B
′
i). Since Sk is small, there exists a positive

integer n(k) such that Sk ⊆ Tn(k), where

Tn(k) = C0 ⊕ C1 ⊕ · · · ⊕ Ck−1 ⊕
(
⊕n(k)

i=1 B′
i

)
.

The module Tn(k) has the exchange property, so that from

A = C ⊕ D = Tn(k) ⊕
(
⊕∞

i=n(k)+1B
′
i

)
,

we have that there exist Pk ⊆ C and a direct sum decomposition Dk ⊕D′
k = D

such that A = Tn(k)⊕Pk⊕Dk. Set C ′
k = C∩

(
Tn(k) ⊕ Dk

)
, so that C = C ′

k⊕Pk

by Lemma 2.1 and Sk ⊆ C ′
k. Set Ck = C ′

k ∩ Pk−1. Then

C0 ⊕ C1 ⊕ · · · ⊕ Ck−1 ⊆ C ′
k ⊆ C = C0 ⊕ C1 ⊕ · · · ⊕ Ck−1 ⊕ Pk−1

forces C ′
k = C0 ⊕ C1 ⊕ · · · ⊕ Ck−1 ⊕ Ck (Lemma 2.1). Hence

C = C0 ⊕ C1 ⊕ · · · ⊕ Ck ⊕ Pk

and Sk ⊆ C0 ⊕ C1 ⊕ · · · ⊕ Ck. Finally,

C0 ⊕ C1 ⊕ · · · ⊕ Ck ⊕ Pk ⊕ Dk ⊕ D′
k = C ⊕ D = A

= Tn(k) ⊕ Pk ⊕ Dk = C0 ⊕ C1 ⊕ · · · ⊕ Ck−1 ⊕
(
⊕n(k)

i=1 B′
i

)
⊕ Pk ⊕ Dk

implies that Ck ⊕ D′
k
∼= ⊕n(k)

i=1 B′
i, so that Ck has the exchange property be-

cause it is isomorphic to a direct summand of ⊕n(k)
i=1 B′

i. This completes the
construction by induction.

It is now obvious that C = ⊕∞
k=1Ck. Since Bi is σ-small, A itself is σ-small,

so that each Ck is σ-small. This proves the claim.
In order to prove the theorem, suppose

M = ⊕i∈IBi (2.24)

where, for each i ∈ I, Bi is σ-small and has the exchange property. Since every
direct summand of Bi is σ-small and has the exchange property, it is enough
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to show that the decomposition (2.24) and any other decomposition

M = ⊕j∈JMj (2.25)

have isomorphic refinements. By Theorem 2.47 the decomposition (2.25) has a
refinement

M = ⊕k∈KCk (2.26)

in which every Ck is σ-small. If we apply Proposition 2.50 to the decompositions
(2.24) and (2.26) we see that we may assume I and K countable. By the
claim the decomposition (2.26) has a refinement that is a direct sum of σ-small
modules with the exchange property. Now Theorem 2.51 allows us to conclude.

�

From Theorem 2.52 we immediately obtain the following three corollaries:

Corollary 2.53 If a module M is a direct sum of countably generated modules
Mi, i ∈ I, each of which has the exchange property and N is a direct summand
of M , then N = ⊕i∈INi, where each Ni is isomorphic to a direct summand
of Mi. �

Corollary 2.54 If a module M is a direct sum of uniserial modules each of which
has a local endomorphism ring, then any two direct sum decompositions of M
have isomorphic refinements. �

Corollary 2.55 If M = ⊕i∈IMi, where each Mi is a countably generated module
with a local endomorphism ring, then any other direct sum decomposition of
M can be refined to a decomposition isomorphic to the decomposition M =
⊕i∈IMi. In particular, any direct summand of M is isomorphic to ⊕i∈JMi for
a subset J of I. �

Corollary 2.55 is clearly a strengthened form of the Krull-Schmidt-Remak-
Azumaya Theorem for direct sums of countably generated modules. It is appar-
ently still an open question whether the hypothesis of being countably gener-
ated in Corollary 2.55 can be removed, that is, whether every direct summand
of a direct sum of modules with local endomorphism rings is a direct sum of
modules with local endomorphism rings. See [Elliger].

A ring R is said to be an exchange ring [Warfield 72] if RR has the ex-
change property. For a ring R the right R-module RR has the exchange prop-
erty if and only if the left module RR has the exchange property [Warfield 72,
Corollary 2]. We shall not need this fact, and its proof will be omitted.

Theorem 2.56 If R is an exchange ring, then any projective right R-module is
a direct sum of right ideals generated by idempotents.
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Proof. A projective R-module NR is isomorphic to a direct summand of a free
module MR. Now apply Corollary 2.53 to MR and NR. �

Every local ring is an exchange ring by Theorem 2.8. Hence from The-
orem 2.56 we have that

Corollary 2.57 Any projective right module over a local ring is free. �

2.11 The Loewy series

In this section, we introduce Loewy modules, which form a class containing all
artinian modules. Let M be a module over an arbitrary ring R. Inductively
define a well-ordered sequence of fully invariant submodules socα(M) of M as
follows:

soc0(M) = 0,
socα+1(M)/socα(M) = soc(M/socα(M)) for every ordinal α,
socβ(M) =

⋃
α<β socα(M) for every limit ordinal β.

The chain

soc0(M) ⊆ soc1(M) ⊆ soc2(M) ⊆ · · · ⊆ socα(M) ⊆ . . .

is called the (ascending) Loewy series of M . The module M is a Loewy module
if there is an ordinal α such that M = socα(M), and in this case the least
ordinal α such that M = socα(M) is called the Loewy length of M . Note that
the Loewy series is always stationary, that is, for every module M there exists
an ordinal α such that socβ(M) = socα(M) for every β ≥ α (for instance, it is
sufficient to take any ordinal α whose cardinality is greater than the cardinality
of M). For such an ordinal α, set δ(M) = socα(M). Then δ(M) is the largest
Loewy submodule of M , and M/δ(M) has zero socle.

Lemma 2.58 A module M is a Loewy module if and only if every non-zero
homomorphic image of M has a non-zero socle.

Proof. If M is a Loewy module and N is a proper submodule of M , consider
the set of all the ordinal numbers α such that socα(M) ⊆ N . It is easily seen
that this set has a greatest element β. Then M/N is a homomorphic image of
M/socβ(M), and the image of the socle socβ+1(M)/socβ(M) of M/socβ(M)
in M/N is non-zero. Therefore the socle of M/N is non-zero.

Conversely, if M is not a Loewy module, then M/δ(M) is a non-zero
homomorphic image of M with zero socle. �
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In particular, since every non-zero artinian module has a non-zero socle,
every artinian module is Loewy. Every Loewy module is an essential extension
of its socle.

Let T be the class of all Loewy right R-modules and let F be the class of
all right R-modules with zero socle. Then (T ,F) is a torsion theory , that is,

(a) Hom(T, F ) = 0 for all T ∈ T , F ∈ F .

(b) If M is a right R-module and Hom(M,F ) = 0 for all F ∈ F , then M ∈ T .

(c) If M is a right R-module and Hom(T,M) = 0 for all T ∈ T , then M ∈ F .

The case of a right noetherian ring R is particularly interesting. If M
is a Loewy right module over a right noetherian ring R and x ∈ M , then
xR is a noetherian Loewy module, so that the ascending chain socn(xR),
n ≥ 0, must be stationary and xR = socm(xR) for some m. Since the modules
socn+1(xR)/socn(xR) are semisimple noetherian modules, it follows that xR
is an R-module of finite composition length. Therefore:

Proposition 2.59 If M is a Loewy right module over a right noetherian ring,
then M is the sum of its submodules of finite composition length. In particular,
M has Loewy length ≤ ω. �

If x is an element in a right module MR, the annihilator

annR(x) = {a ∈ R | xa = 0 }

of x is always a right ideal of R. In particular, if b ∈ R, its right annihila-
tor r.annR(b) = {a ∈ R | ba = 0 } is a right ideal of R. As a corollary of
Proposition 2.59 we obtain

Corollary 2.60 Let R be a right noetherian ring and let G = { I | I is a right
ideal of R and R/I is a right R-module of finite length }. Then

δ(MR) = {x ∈ M | annR(x) ∈ G }

for every R-module MR.

Proof. Let x be an element of M . Then annR(x) ∈ G if and only if xR is a
right R-module of finite length, that is, if and only if x ∈ socn(MR) for some
positive integer n, i.e., if and only if x ∈ socω(MR) = δ(MR). �

Proposition 2.59 can be adapted to commutative rings, as the next lemma
shows.

Lemma 2.61 The Loewy length of an artinian module over a commutative ring
is ≤ ω.
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Proof. If soc0(M) ⊆ soc1(M) ⊆ soc2(M) ⊆ · · · ⊆ socα(M) ⊆ . . . is the Loewy
series of an artinian module M , then

⋃
n∈N socn(M) = M , because if x ∈ M ,

then xR is an artinian module. Hence xR is a module of finite composition
length, so that xR ⊆ socn(M) for some n ∈ N. Therefore M = socω(M) has
Loewy length ≤ ω. �

Uniserial artinian modules of arbitrary Loewy length can be constructed
over suitable non-commutative rings [Fuchs 70b, Facchini 84].

2.12 Artinian right modules over commutative
or right noetherian rings

In this section we prove that the Krull-Schmidt Theorem holds for artinian
right modules over rings which are either right noetherian or commutative. In
Chapter 8 we shall see that it can fail for artinian modules over arbitrary non-
commutative rings. Note that artinian modules are always finite direct sums of
artinian indecomposable modules.

Lemma 2.62 Let MR be a module over an arbitrary ring R and let

M0 ⊆ M1 ⊆ M2 ⊆ . . .

be an ascending chain of fully invariant submodules of MR. Suppose that each
Mi has finite composition length and M =

⋃
i≥0 Mi. Then

(a) If f ∈ End(MR), then M = M ′ ⊕ M ′′, where M ′ =
⋃

n≥0 ker(fn) and

M ′′ =
⋃

i≥0

(⋂
n≥0 fn(Mi)

)
. Moreover, f restricts to an automorphism

of M ′′.

(b) If MR is indecomposable, then End(MR) is a local ring.

Proof. (a) For every i ≥ 0 there is a positive integer ni such that for every
j ≥ ni

f j(Mi) = fni(Mi) and ker(f j) ∩ Mi = ker(fni) ∩ Mi.

By Lemmas 2.16(a) and 2.17(a)

Mi =
(
ker(f j) ∩ Mi

)
⊕ f j(Mi),

so that

Mi =

⎛⎝⋃
n≥0

ker(fn) ∩ Mi

⎞⎠⊕

⎛⎝⋂
n≥0

fn(Mi)

⎞⎠ .
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Further, f restricted to
M ′′

i =
⋂
n≥0

fn(Mi)

is a monomorphism, hence an automorphism of M ′′
i . Now (a) follows easily.

(b) If MR is indecomposable, either MR = M ′ or MR = M ′′. Hence for
every f ∈ End(MR), either MR =

⋃
n≥0 ker(fn) or f is an automorphism. This

shows that if f is a non-invertible element of End(MR), the restriction of f
to any Mi is nilpotent. Now argue as in the second paragraph of the proof of
Lemma 2.21 to show that the sum of two non-invertible elements of End(MR)
is non-invertible. Thus End(MR) is local. �

In the next proposition we prove that if the base ring R is either right
noetherian or commutative, then all direct sum decompositions of a module
that is a direct sum of artinian modules have an isomorphic common refinement.
Hence the Krull-Schmidt Theorem holds for artinian modules over such rings.

Proposition 2.63 Let R be a ring which is either right noetherian or commu-
tative and let M = ⊕i∈IMi be a right R-module which is the direct sum of
indecomposable artinian modules Mi. Then any direct sum decomposition of
M refines into a decomposition isomorphic to the decomposition M = ⊕i∈IMi

and any direct summand N of M is isomorphic to ⊕i∈JMi for a subset J ⊆ I.

Proof. Let A be an artinian right module over a ring R that is either right
noetherian or commutative. By Proposition 2.59 and Lemma 2.61 the module A
has Loewy length ≤ ω, so that A = socω(A) =

⋃
n∈N socn(A). Every socn(A)

is an artinian module of Loewy length ≤ n. Since socn+1(A)/socn(A) is a
semisimple artinian module, every socn(A) is a module of finite composition
length. By Lemma 2.62 every indecomposable artinian module A has a local
endomorphism ring and is countably generated. Now apply Corollary 2.55. �

2.13 Notes on Chapter 2

The exchange property was introduced by [Crawley and Jónsson]. Actually,
Crawley and Jónsson’s results were proved for a wide class of algebraic struc-
tures, namely for algebras in the sense of Jónsson-Tarski. Injective modules
[Warfield 69c], quasi-injective modules [Fuchs 69], pure-injective modules [Zim-
mermann-Huisgen and Zimmermann 84], continuous modules (Mohamed and
Müller, 1989), projective modules over perfect rings (Yamagata, 1974, and
Harada-Ishii, 1975), and projective modules over Von Neumann regular rings
[Stock] have the exchange property. It is not known whether the exchange prop-
erty and the finite exchange property are equivalent for arbitrary modules. By
Theorem 2.8 they are equivalent for indecomposable modules.
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A module M is continuous if the following two conditions hold:

(C1) every submodule of M is essential in a direct summand of M ;

(C2) if a submodule N of M is isomorphic to a direct summand of M , then N
is a direct summand of M .

A module M is quasi-continuous if (C1) holds, and moreover

(C3) if N1 and N2 are direct summands of M such that N1 ∩ N2 = 0, then
N1 ⊕ N2 is a direct summand of M .

Making use of ideas of [Oshiro and Rizvi], [Mohamed and Müller] have re-
cently proved that the exchange property and the finite exchange property are
equivalent for quasi-continuous modules. Note that there exist indecomposable
quasi-continuous modules without the finite exchange property, for instance
the abelian group Z.

The proofs of Lemma 2.2, Corollary 2.3, Lemmas 2.4 and 2.5 and The-
orems 2.9 and 2.10 are taken from [Crawley and Jónsson]. In the proof of The-
orem 2.8 the implication (b) ⇒ (c) is taken from [Crawley and Jónsson] and
the remaining implications are due to [Warfield 69a, Proposition 1].

The history of the Krull-Schmidt-Remak-Azumaya Theorem begins with
two papers of [Krull 25] and [Schmidt]. The present form of the theorem ap-
peared for the first time in [Azumaya 50]. In that paper Azumaya proved the
uniqueness of decomposition for infinite direct sums of modules with local endo-
morphism rings. In this book, the general result (Theorem 2.12) is referred to as
the “Krull-Schmidt-Remak-Azumaya Theorem”, whereas the “Krull-Schmidt
Theorem” is the “classical” Krull-Schmidt Theorem, that is, the result con-
cerning modules of finite length (Corollary 2.23). Krull himself used to term
“Isomorphiesatz der direkte Zerlegung” (Isomorphism theorem of direct de-
composition) for what we call the Krull-Schmidt Theorem. In [Krull 32] (last
paragraph of the paper), Krull asked whether the “Isomorphiesatz der direkte
Zerlegung” is independent of the descending chain condition, i.e., whether
the Krull-Schmidt Theorem holds for artinian modules (cf. [Levy, p. 660]).
The answer to this question appeared in [Facchini, Herbera, Levy and Vámos]
and is the main topic of Section 8.2. The proofs of Lemma 2.11 and the
Krull-Schmidt-Remak-Azumaya Theorem we have given here are taken from
[Crawley and Jónsson].

Lemmas 2.20 and 2.21 are due to [Fitting, Satz 8], and Corollary 2.27 is
due to [Zimmermann and Zimmermann-Huisgen 78, Theorem 9]. The proof of
Proposition 2.28 is based on an argument of [Eisenbud and Griffith, Proof of
Proposition 1.1].

The Goldie dimension for modules and rings was introduced by [Goldie
60], who called it “dimension”. The Goldie dimension of a module is also called
the uniform dimension, or the uniform rank, or simply the rank of the module.
Concepts such as having finite Goldie dimension or uniform submodules and
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their basic properties go back to [Goldie 58, 60]. Goldie dimension for arbitrary
modular lattices was introduced by [Grzeszczuk and Puczy�lowski]. For the proof
of Lemma 2.30 and Proposition 2.31 we have followed [Năstăsescu and Van
Oystaeyen]. The rest of the material in Section 2.6 is taken from [Grzeszczuk
and Puczy�lowski].

The notion of dual Goldie dimension is due to [Varadarajan], who used
the term corank for what we call dual Goldie dimension of a module. There
are a number of different ways that one could attempt to dualize the notion
of Goldie dimension; for instance, [Fleury] considers the spanning dimension of
a module, a possible different dualization of the Goldie dimension. The span-
ning dimension of a module M is defined as the least integer k such that
M is a sum N1 + · · · + Nk (not necessarily direct) of k couniform submod-
ules Ni of M . In our presentation of dual Goldie dimension we have followed
[Grzeszczuk and Puczy�lowski].

Proposition 2.45 is essentially taken from [Fuchs and Salce, Lemma 24].
Theorem 2.51, Corollary 2.55, the definition of exchange ring and The-

orem 2.56 are due to [Warfield 69c, 69a, 72]. He also proved that a right mod-
ule MR has the finite exchange property if and only if its endomorphism ring
End(MR) is an exchange ring [Warfield 72, Theorem 2]. From Lemma 2.4 it fol-
lows immediately that if e is an idempotent in a ring R, then R is an exchange
ring if and only if eRe and (1−e)R(1−e) are exchange rings. There are further
characterizations of exchange rings. For instance, [Monk] proved that a ring R
is an exchange ring if and only if for every a ∈ R there exist b, c ∈ R such that
bab = b and c(1 − a)(1 − ba) = 1 − ba. Goodearl ([Goodearl and Warfield 76,
p. 167]) and [Nicholson] independently proved that a ring R is an exchange
ring if and only if for every x ∈ R there exists an idempotent e ∈ R such that
e ∈ xR and 1 − e ∈ (1 − x)R. This characterization has allowed the notion of
exchange ring to be extended to rings without unit [Ara 97]. [Nicholson] also
proved that R is an exchange ring if and only if R/J(R) is an exchange ring
and idempotents lift modulo J(R).

Corollary 2.57 is a famous result of [Kaplansky 58, Theorem 2].
Loewy started using Loewy series in 1905 in the study of representations

of matrix groups. Later, in 1926, Krull defined the term “Loewy series” and
in [Krull 28] he observed that transfinite Loewy series could be defined. The
results in Section 2.12 (i.e., that the Krull-Schmidt Theorem holds for artinian
modules over rings which are either right noetherian or commutative) are due
to [Warfield 69a]. The most important case of artinian module over a com-
mutative noetherian ring was discovered by [Matlis]. He proved that if R is a
noetherian commutative ring, S is a simple R-module and E(S) is the injective
envelope of S, then E(S) is an artinian R-module whose endomorphism ring is
a local noetherian complete commutative ring [Matlis, Theorems 3.7 and 4.2].
Conversely, if MR is an artinian module with simple socle over a commutative
ring R, then E = End(MR) is a local noetherian complete commutative ring
and EM is the injective envelope of the unique simple E-module [Facchini 81,
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Theorem 2.8]. The following results hold for Loewy modules over commutative
rings. Let M be a Loewy module over a commutative ring R. For each ordinal
α the α-th Loewy factor of M is the semisimple module socα+1(M)/socα(M),
and the composition length of socα+1(M)/socα(M) is the α-th Loewy invariant
of M , denoted by dα(M). The support of M is the set of all maximal ideals P
of R such that (0 :M P ) 	= 0. If R is a commutative ring and M is a Loewy
R-module with finite support {P1, P2, . . . , Pn}, then M = ⊕n

i=1Mi, where for
each i = 1, 2, . . . , n, Mi is a Loewy module whose Loewy factors are all direct
sums of copies of R/Pi. If M is a Loewy module over a commutative ring, α
is an ordinal and r is a positive integer such that both dα(M) and dα+r(M)
are finite, then dβ(M) is finite for every β > α + r and M = socα+ω(M)
[Shores, Theorem 4.2]. From this result we again obtain that every artinian
module over a commutative ring has Loewy length ≤ ω. A module M over a
commutative ring R is artinian if and only if it is a Loewy module with finite
Loewy invariants [Facchini 81, Theorem 2.7]. Let M be an artinian module

over a commutative ring such that d1(M) ≤ n. Then dr(M) ≤
(

n + r − 1
r

)
for every r ≥ 1 ([Shores, Theorem 4.4] and [Facchini 81, Theorem 3.1]). Now
let t be an indeterminate over the ring Z of integers. If M is an artinian mod-
ule over a commutative ring, define P (M, t) =

∑∞
n=0 dn(M)tn ∈ Z[[t]]. Then

P (M, t) is a rational function in t of the form f(t)/(1 − t)s, where f(t) ∈ Z[t]
and s = d0(M)d1(M). If d is the order of the pole of P (M, t) at t = 1, then,
for all sufficiently large n, dn(M) and the composition length l(socn(M)) of
socn(M) are polynomials in n with rational coefficients of degree d − 1 and d
respectively [Facchini 81, Theorem 3.2].

A ring R is right semiartinian if RR is a Loewy module. If R is right
semiartinian, every right R-module is a Loewy module. Right semiartinian
rings are exchange rings [Baccella].



http://www.springer.com/978-3-0348-0302-1


	Chapter 2 The Krull-Schmidt-RemakAzumaya Theorem
	2.1 The exchange property
	2.2 Indecomposable modules with the exchange property
	2.3 Isomorphic refinements of finite direct sum decompositions
	2.4 The Krull-Schmidt-Remak-Azumaya Theorem
	2.5 Applications
	2.6 Goldie dimension of a modular lattice
	2.7 Goldie dimension of a module
	2.8 Dual Goldie dimension of a module
	2.9 ℵ-small modules and ℵ-closed classes
	2.10 Direct sums of ℵ-small modules
	2.11 The Loewy series
	2.12 Artinian right modules over commutative or right noetherian rings
	2.13 Notes on Chapter 2




