
CHAPTER II

Zd-actions on compact abelian groups

5. The dual module

According to Theorem 4.2, Zd is of Markov type for every d ≥ 1, and Zd-
actions by automorphisms of compact groups enjoy the properties described in
(4.10), Propositions 4.9–4.10, Remark 4.15, and Theorem 4.11. Just as compact,
abelian groups like Tn = Rn/Zn have automorphisms with very intricate dy-
namical properties, there is an abundance of examples of interesting Zd-actions
by automorphisms of compact abelian groups. In this section we introduce a
general formalism for the investigation of such actions which will also give us
a systematic approach to constructing actions with specified properties.

Let d ≥ 1, and let α : n �→ αn be an action of Zd by automorphisms of
X. For every n = (n1, . . . , nd) ∈ Zd we denote by α̂n the automorphism of X̂
dual to αn and write α̂ : Zd �−→ Aut(X̂) for the resulting Zd-action dual to α.
Under the action α̂ the group X̂ becomes a Zd-module, and hence a module
over the group ring Z[Zd]. In order to make this explicit we denote by

Rd = Z[u±1
1 , . . . , u±1

d ] (5.1)

the ring of Laurent polynomials in the (commuting) variables u1, . . . , ud with
coefficients in Z. A typical element f ∈ Rd will be written as

f =
∑
n∈Zd

cf (n)un, (5.2)

where cf (n) ∈ Z and un = un1
1 · . . . · und

d for all n = (n1, . . . , nd) ∈ Zd, and
where cf (n) �= 0 for only finitely many n ∈ Zd. Then Rd

∼= Z[Zd], Rd acts on
X̂ by

(f, a) �→ f · a =
∑
n∈Zd

cf (n)α̂n(a) (5.3)
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for every f ∈ Rd, a ∈ X̂, and X̂ is an Rd-module. Note that

α̂n(a) = α̂n(a) = un · a (5.4)

for every n ∈ Zd and a ∈ X̂. Conversely, if M is an Rd-module (always assumed
to be countable), then Zd has an obvious action α̂M : n �→ α̂M

n on M given by

α̂M
n (a) = un · a (5.5)

for every n ∈ Zd and a ∈ M. We write X = M̂ for the dual group of M and
obtain a dual action

αM : n �→ αM
n ∈ Aut(X) (5.6)

of Zd on X. For future reference we collect these observations in a lemma.

Lemma 5.1. Let α : n �→ αn be a Zd-action by automorphisms of a com-
pact, abelian group X, and let α̂ : n �→ α̂n be the dual action of Zd on the
dual group X̂ of X. If Rd is the ring defined in (5.1) then X̂ is an Rd-module
under the Rd-action (5.3). Conversely, if M is an Rd-module, then (5.5) and
(5.6) define Zd-actions α̂M = α̂ and αM = α by automorphisms of M and
XM = M̂, respectively.

Examples 5.2. Let d ≥ 1.
(1) Let M = Rd. Since Rd is isomorphic to the direct sum

∑
Zd Z of copies

of Z indexed by Zd, the dual group X = R̂d is isomorphic to the cartesian
product TZd

of copies of T = R/Z. We write a typical element x ∈ TZd

as
x = (xn) = (xn,n ∈ Zd) with xn ∈ T for every n ∈ Zd and choose the
following identification of XRd = R̂d and TZd

: for every x = (xn) in TZd

and
f ∈ Rd,

〈x, f〉 = e
2πi
∑

n∈Zd cf (n)xn , (5.7)

where f is given by (5.2). Under this identification the Zd-action αRd on XRd =
TZd

becomes the shift-action

αRd
n (x)m = (σn(x))m = xm+n, (5.8)

with n ∈ Zd and x = (xm) ∈ XRd = TZd

.
(2) Let a ⊂ Rd be an ideal, and let M = Rd/a. Since M is a quotient of

the additive group Rd by a α̂Rd -invariant subgroup, the dual group XM is the
αRd-invariant subgroup

XRd/a = {x ∈ XRd = TZd

: 〈x, f〉 = 1 for every f ∈ a}

=
{

x ∈ TZd

:
∑
n∈Zd

cf (n)xm+n = 0 (mod 1)
for every f ∈ a and m ∈ Zd

}
,

(5.9)
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and αRd/a is the restriction of αRd to XM ⊂ TZd

, i.e.

αRd/a
n = σXRd/a

n (5.10)

for every n ∈ Zd.

(3) Let X ⊂ TZd

= R̂d be a closed subgroup, and let X⊥ = {f ∈ Rd :
〈x, f〉 = 1 for every x ∈ X} be the annihilator of X in R̂d. Then X is shift-
invariant if and only if X⊥ is an ideal in Rd: indeed, if X⊥ is an ideal, it is
obviously invariant under multiplication by the group of units {un : n ∈ Zd} ⊂
Rd, i.e. X⊥ is α̂Rd -invariant; conversely, if X⊥ is α̂Rd -invariant, then (5.3)
shows that f · a ∈ X⊥ for every f ∈ Rd and a ∈ X⊥. In other words, X⊥ is an
ideal.

(4) Let M be a Noetherian Rd-module, and let {a1, . . . , ak} be a set of
generators for M, i.e. M = Rd ·a1 + · · ·+Rd ·ak. The surjective homomorphism
(f1, . . . , fk) �→ f1 · a1 + · · · + fk · ak from Rk

d to M induces a dual injective
homomorphism φ : XM �−→ XRk

d ∼= (Tk)Zd

= Y such that αM
n · φ = σn · φ for

every n ∈ Zd, where σn is the shift on (Tk)Zd

defined in (5.8). In particular,
φ embeds XM as a closed, shift-invariant subgroup of (Tk)Zd

. Conversely, if
X ⊂ (Tk)Zd

is a closed, shift-invariant subgroup, then X̂ = Rk
d/X⊥, and X⊥

is a submodule of Rk
d. �

Examples 5.3. (1) Let α be the automorphism of T2 = R2/Z2 deter-
mined by the matrix A = ( 0 1

1 1 ). In Example 2.18 (2) we have seen that α
(or, more precisely, the Z-action on T2 defined by α) is conjugate to (XR1/(f),
αR1/(f)), where (f) ⊂ R1 is the principal ideal generated by the characteristic
polynomial f(u1) = 1 + u1 − u2

1 of A. Indeed, an element x ∈ X = R̂1 = TZ

satisfies that 〈x, un
1 f〉 = 1 if and only if xn + xn+1 − xn+2 = 0 (mod 1), and

hence

XR1/(f) = {x ∈ TZ : xn + xn+1 − xn+2 = 0 (mod 1) for all n ∈ Z}
(cf. (5.7) and (5.9)). The continuous group isomorphism φ = π{0,1} : XR1/(f)

�−→ T2 makes the diagram

XR1/(f) αR1/(f)

−−−−−→ XR1/(f)

φ

⏐⏐� ⏐⏐�φ

T2 −−−−→
α

T2

(5.11)

commute, and the automorphism αR1/(f) is equal to the shift on XR1/(f).
(2) Example (1) depends on the fact that the matrix A is conjugate (over

Z) to the companion matrix of its characteristic polynomial. If α is the auto-
morphism of T2 defined by A = ( 3 4

1 1 ), then the characteristic polynomial of A is
f(u1) = −1− 4u1 +u2

1, and AM = MB, where B = ( 0 1
1 4 ) and M = ( 1 3

0 1 ). The
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map φ : XR1/(f) �−→ T2 given by φ(x) = (x0+3x1, x1) for all x ∈ XR1/(f) ⊂ TZ

is a group isomorphism, and the diagram (5.11) commutes.
If A′ = ( 3 2

2 1 ), then the characteristic polynomial of A′ is again equal
to f(u1) = −1 − 4u1 + u2

1, A′M = MB with M = ( 1 3
0 2 ), but there is no

matrix M ′ with integer entries and determinant 1 such that A′M ′ = M ′B.
The homomorphism φ′ : XR1/(f) �−→ T2 with φ′(x) = (x0 + 3x1, 2x1) for all
x ∈ XR1/(f) ⊂ TZ is surjective, and we write ψ′ = φ̂ : Z2 �−→ R1/(f) for the
dual homomorphism, which is injective, but not bijective. The R1-module M =
X̂ arising from the Z-action n �→ (A′)n via Lemma 5.1 is (isomorphic to) the
submodule ψ′(Z2) of R1/(f). We claim that M is not isomorphic to R1/(f)—
in fact, M is not even cyclic, i.e. not of the form M = R1 · a for some a ∈ M.
Indeed, if M were cyclic, there would exist an element m = (m1,m2) ∈ Z2

such that {(A′)nm : n ∈ Z} generates Z2, which is equivalent to the condition
that

{m, A′m} = {(m1,m2), (3m1 + 2m2, 2m1 + m2)}
generates Z2. Hence

det
(

m1 3m1+2m2
m2 2m1+m2

)
= 2m2

1 − 2m1m2 − 2m2
2 = 1,

which is obviously impossible.

(3) Let f = 2− u1 ∈ R1, and let (f) be the principal ideal generated by
f . According to (5.7) and (5.9),

X = XR1/(f) = {x = (xn) ∈ TZ : 2xn = xn+1 (mod 1) for all n ∈ Z},
and αR1/(f) is equal to the shift-action σ of Z on X. The zero coordinate
projection φ = π{0} : X �−→ T is surjective and satisfies that φ · σ1 = T · φ,
where T : T �−→ T is the surjective homomorphism consisting of multiplication
by 2 modulo 1.

(4) Let f1 = 2−u1, f2 = 3−u2, and let a = (f1, f2) = f1R2 +f2R2 ⊂ R2.
Then

X = XR2/a = {x = (xm,n) ∈ TZ2
: 2x(m,n) = x(m+1,n) (mod 1) and

3x(m,n) = x(m,n+1) (mod 1) for every (m,n) ∈ Z2},
and αR2/a = σ is the shift-action of Z2 on XR2/a. The zero coordinate projec-
tion φ = π{(0,0)} : X �−→ T is again surjective and satisfies that φ · σn = Tn · φ
for every n ∈ Z2, where T is the N2-action on T defined by T(m,n)(t) = 2m3nt
(mod 1) for every (m,n) ∈ Z2 and t ∈ T.

(5) Let

X = {x = (xn) ∈ ZZ2

/2 : x(m1,m2)+x(m1+1,m2) + x(m1,m2+1) = 0 (mod 2)

for all m = (m1,m2) ∈ Z2}.
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From (5.7) and (5.9) we see that the shift-action σ of Z2 on the full, shift-
invariant subgroup X ⊂ ZZ2

/2 is conjugate to (XR2/a, αR2/a), where a = (2, 1 +
u1 + u2) ⊂ R2 is the ideal generated by 2 and 1 + u1 + u2.

(6) Let d ≥ 1. A Laurent polynomial f ∈ Rd is primitive if the highest
common factor of its coefficients is equal to 1. Suppose that f is primitive
and m > 1 an integer, and let (f) and (mf) be the principal ideals in Rd

generated by f and mf , respectively. The map h �→ mh from Rd to Rd induces
an injective homomorphism ξ : Rd/(f) �−→ Rd/(mf), the dual homomorphism
φ : XRd/(mf) �−→ XRd/(f) is surjective, and ker(φ) ∼= ZZd

/m. The group XRd/(f)

is connected, and the connected component of the identity in XRd/(mf) is
isomorphic to XRd/(f).

More generally, if a ⊂ Rd is an arbitrary ideal such that the additive
group Rd/a is torsion-free (or, equivalently, such that XRd/a is connected),
and if m ≥ 1 is an integer, then we obtain an exact sequence

0 −→ ZZd

/m

ψ−→ XRd/ma φ−→ XRd/a −→ 0,

where φ : XRd/ma �−→ XRd/a is the surjection dual to the injective homomor-
phism ξ : Rd/a �−→ Rd/ma consisting of multiplication by m, and where ψ is
the inclusion map. Note that ψ · σn(x) = α

Rd/ma
n · ψ(x) and φ · αRd/ma

n (y) =
α

Rd/a
n ·φ(y) for all n ∈ Zd, x ∈ ZZd

/m, and y ∈ XRd/ma, where σ is the shift-action

of Zd on ZZd

/m, and that the map φ induces an isomorphism of the connected
component of the identity in XRd/ma with XRd/a. �

The next proposition is a straightforward consequence of Theorem 4.2 and
Pontryagin duality (cf. also Example 5.2 (4)).

Proposition 5.4. Let X be a compact, abelian group, α a Zd-action by
automorphisms of X. The following conditions are equivalent.

(1) The Rd-module M = X̂ obtained via Lemma 5.1 is Noetherian;
(2) (X,α) satisfies the d.c.c.;
(3) (X,α) is conjugate to a subshift of (Tn)Zd

for some n ≥ 1.

The Noetherian Rd-modules form a particularly well-behaved class of Rd-
modules, and it is therefore not surprising that Zd-actions by automorphisms of
compact, abelian groups satisfying the d.c.c. have many exceptional properties.
As a first illustration of the rôle played by the descending chain condition, let
us consider the set of periodic points for a Zd-action α on a compact, abelian
group X.

Definition 5.5. Let Γ be a countable group and let α be a Γ-action by
automorphisms of a compact group X. A point x ∈ X is periodic under α (or
α-periodic) if its orbit αΓ(x) = {αγ(x) : γ ∈ Γ} is finite. If β ∈ Aut(X) then a
point x ∈ X is periodic under β if βn(x) = x for some n ≥ 1.



40 II. Zd-ACTIONS ON COMPACT ABELIAN GROUPS

The following examples show that a Zd-action by automorphisms of a
compact, abelian group need not have any periodic points other than the fixed
point 0X , but in Theorem 5.7 we shall see that the set of α-periodic points is
dense if (X,α) satisfies the d.c.c.

Examples 5.6. (1) Let X = Q̂ be the dual group of the additive group
Q, and consider the automorphism α of X dual to multiplication by 3

2
on Q.

If x ∈ X is a periodic point of α, i.e. if αn(x) = x for some n ≥ 1, then
〈αn(x) − x, a〉 = 〈x, ( 3n

2n − 1)a〉 = 1 for every a ∈ Q. However, ( 3n

2n − 1) �= 0, so
that 〈x, a〉 = 1 for every a ∈ Q. This shows that x = 0X .

(2) Let Y = ZZ
/2. For every n ≥ 2 we define a continuous, shift commuting,

surjective homomorphism φn : Y �−→ Y by setting (φn(y))m =
∑m+n−1

k=m yk for
every m ∈ Z and y = (yk, k ∈ Z) ∈ Y . We put ψn = φn for every n ≥ 2 and
denote by X the projective limit

Y
ψ2←− Y

ψ3←− . . .
ψn←−− Y

ψn+1←−−− . . . (5.12)

The shift σ on Y commutes with the maps ψn and induces an automorphism
α of the projective limit X in (5.12). Suppose that α has a periodic point
x ∈ X with period n, say. We can write x as (x(k), k ≥ 1) with x(k) ∈ Y and
ψk(x(k)) = x(k−1) for every k ≥ 2. Since x has period n, σn(x(k)) = x(k) for
every k ≥ 1. However, ψnk(x(nk)) = φnk(x(nk)) = x(nk−1) ∈ {0,1} for every
k ≥ 1, where 0 = (. . . , 0, 0, 0, . . . ) and 1 = (. . . , 1, 1, 1, . . . ) are the fixed points
of σ in Y . As k can be arbitrarily large we see that x(k) ∈ {0,1} for every
k ≥ 0. Finally we observe that, if k ≥ 2 is even, then x(k−1) = ψk(x(k)) = 0.
This shows that x(k) = 0 for every k ≥ 1, i.e. that x = 0X .

(3) We stay with the notation of Example (2) and set ψn = φ2 for every
n ≥ 2 in (5.12). The projective limit X in (5.12) can be written as X = {x =
(x(m,n)) ∈ ZZ×N

/2 : x(m,n) = x(m,n+1) + x(m+1,n+1) (mod 2) for every m ∈
Z and n ≥ 1}, and α is the horizontal shift on X defined by (α(x))(m,n) =
x(m+1,n) for all x ∈ X and (m,n) ∈ Z×N∗. The same argument as in Example
(2) shows that every point x ∈ X with period 2k, k ≥ 0 is equal to the identity
element 0X , but that there exist 2k−1 points of period k if k ≥ 1 is odd (for
every sequence y = (ym) ∈ Y with y(m+k) = ym and

∑k−1
j=0 xm+j = 0 (mod 2)

for all m ∈ Z there exists a unique point x ∈ X with αk(x) = x and x(m,1) = ym

for all m ∈ Z).
If a ⊂ R2 is the ideal (2, 1 + u2 + u1u2) = 2R2 + (1 + u2 + u1u2)R2, then

(5.7) and (5.9) show that (XR2/a, αR2/a) is (conjugate to) the shift-action of
Z2 on

X ′ = {x = (x(m,n)) ∈ ZZ2

/2 : x(m,n) + x(m,n+1) + x(m+1,n+1)

= 0 (mod 2) for every (m,n) ∈ Z2},
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and a comparison of X ′ with the definition of X in the preceding paragraph
reveals that X is equal to the projection of X ′ onto its coordinates in the upper
half plane of Z2, and that this projection sends the horizontal shift σ(1,0) of
X ′ to the automorphism α of X. In particular we see that the shift-action
σ of Z2 on X ′ has only one point with horizontal period 2k for every k ≥ 0
(the identity element). We also refer to Example 5.3 (5): the Z2-action αR2/a

appearing there obviously has the same property.

(4) Let ψn = φ3 for every n ≥ in (5.12). Then the resulting automorphism
α of the projective limit X in (5.12) has only one point with period 3k, k ≥ 0,
but there exist 2k points with period k for every k which is not divisible by 3.

(5) Let (pn, n ≥ 2) be a sequence of rational primes in which every prime
occurs infinitely often, and let (qn, n ≥ 2) be a sequence of odd primes in
which every odd prime occurs infinitely often. If ψn = φpn for every n ≥ 2,
then the automorphism α of the projective limit X in (5.12) has no periodic
points other than the fixed point 0X . However, if ψn = φqn , n ≥ 2, then the
resulting automorphism α will have 22k

periodic points with period 2k for every
k ≥ 0, but only one point with period 2l + 1 for every l ≥ 0 (the fixed point
0X).

None of the automorphisms α in Examples (1)–(5) satisfies the d.c.c. �

Theorem 5.7. Let X be a compact, abelian group, and let α be a Zd-
action by automorphisms of X. If (X,α) satisfies the d.c.c. then the set of
α-periodic points is dense in X.

Proof. Let M = X̂ be the Rd-module arising from Lemma 5.1. Fix a non-
zero element a ∈ M and choose a submodule Ma ⊂ M which is maximal with
respect to the property that a /∈ Ma. Then the Rd-module M′ = M/Ma has
the minimal non-zero submodule M′

1 = (Rd · a + Ma)/Ma. Consider the ideal
a = {f ∈ Rd : f · M′

1 = 0}, and let b be an ideal with a � b � Rd. The
minimality of M′

1 implies that b ·M′
1 = M′

1, and Corollary 2.5 in [5] shows that
there exists an element x ∈ 1 + b such that x ·M′

1 = {0}. This contradicts our
definition of a, and we conclude that the ideal a ⊂ Rd is maximal, and that
k = Rd/a is a (necessarily finite) field.

For every m ≥ 1 we write am ⊂ Rd for the ideal generated by {f1 ·. . . ·fm :
fi ∈ a for i = 1, . . . ,m}. If a′ = a + Ma ∈ am · M′ for every m ≥ 1, then
a ∈ M′′ =

⋂
m≥1 am · M′′, and a · M′′/M′′. The argument in the preceding

paragraph shows that there exists an element y ∈ 1 + a with y · M′′ = {0},
and the maximality of a implies that M′′ = {0}, which is absurd. Hence there
exists an integer m ≥ 1 with a′ /∈ am ·M′, and the maximality of Ma implies
that am ·M′ = {0}.

Each of the successive quotients ar·M′/ar+1·M′ in the decreasing sequence
of Rd-modules M′ ⊃ a ·M′ ⊃ · · · ⊃ am ·M′ = {0} is a Noetherian module over
k. Since k is finite we conclude that M′ is finite.
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We have found, for every non-zero a ∈ M = X̂, a submodule Ma ⊂ M
such that a /∈ Ma and M/Ma is finite. The subgroup Xa = M⊥

a ⊂ X is finite,
α-invariant, and is not annihilated by (the character corresponding to) a. Since
every point in Xa must be α-periodic, and since the α-periodic points form a
subgroup of X, this shows that the set of α-periodic points is dense in X. �

Before turning to the problem of relating the algebraic properties of a
Noetherian Rd-module M to the dynamical properties of (XM, αM) we should
discuss the extent to which M and (XM, αM) determine each other. Let d ≥ 1,
and let M be a Noetherian Rd-module which is torsion-free when regarded
as an additive group or, equivalently, as a Z-module (this is equivalent to the
assumption that XM = M̂ is connected). We define the Zd-action αM on XM

by (5.5) and (5.6) and consider the action induced by αM on the Čech homology
group H1(XM, T) (cf. [20]).

Lemma 5.8. The group H1(XM, T) is isomorphic to XM, and the auto-
morphism induced by αM

n on H1(XM, T) is equal to αM
n for every n ∈ Zd.

Proof. In view of Example 5.2 (4) we may assume that X = XM is a closed,
shift-invariant subgroup of (Tk)Zd

, and the connectedness of X allows us to
assume that X is full. If F (n) = {−n, . . . , n}d ⊂ Zd then πF (n)(X) ⊂ (Tk)F (n)

is a finite-dimensional torus, and X is equal to the projective limit

πF (1)(X)
πF (1)←−−− πF (2)(X)

πF (2)←−−− πF (3)(X)
πF (3)←−−− . . . . (5.13)

Since H1(πF (k)(X), T) ∼= πF (k)(X) ([20]), we see from (5.13) that H1(X, T) ∼=
X, and that the automorphism induced by αM

n = σn on H1(X, T) is equal to
σn for every n ∈ Zd. �

Theorem 5.9. Let X and X ′ be compact, connected, abelian groups, and
let α and α′ be Zd-actions by automorphisms of X and X ′ which satisfy the
d.c.c. The following statements are equivalent.

(1) The Zd-actions α and α′ are topologically conjugate, i.e. there exists a
homeomorphism φ : X �−→ X ′ with φ · αn = α′

n · φ for every n ∈ Zd;
(2) The Zd-actions α and α′ are algebraically conjugate, i.e. there exists a

continuous group isomorphism ψ : X �−→ X ′ such that ψ · αn = α′
n · ψ

for every n ∈ Zd.

Proof. The implication (2)⇒(1) is obvious. If (1) is satisfied we use Lemma
5.1 and Proposition 5.4 to find Noetherian Rd-modules M and M′ such that
(X,α) and (X ′, α′) are conjugate to (XM, αM) and (XM′

, αM′
), respectively.

By Lemma 5.8, H1(XM, T) ∼= XM, H1(XM′
, T) ∼= XM′

, and for every n ∈
Zd the isomorphisms of H1(XM, T) and H1(XM′

, T) defined by αM
n and αM′

n

are equal to αM
n and αM′

n , respectively. The continuous group isomorphism
ψ′ : H1(XM, T) �−→ H1(XM′

, T) induced by φ : X �−→ X ′ satisfies that ψ′ ·
αM

n = αM′
n · ψ′ for every n ∈ Zd, and this implies (2). �
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Corollary 5.10. Let d ≥ 1, and let M and M′ be finitely generated Rd-
modules which are torsion-free (as additive groups). The following statements
are equivalent.

(1) The Zd-actions αM and αM′
are topologically conjugate;

(2) The Zd-actions αM and αM′
are algebraically conjugate;

(3) There exists an Rd-module isomorphism χ : M �−→M′.

Proof. The equivalence of (1) and (2) is stated in Theorem 5.9. If (2) is
satisfied, then any group isomorphism ψ : XM �−→ XM′

with ψ ·αM
n = αM′

n ·ψ
for all n ∈ Zd induces a dual isomorphism ψ̂ : M′ �−→ M which is easily seen
to be an Rd-module isomorphism. The implication (3)⇒(2) is obvious. �

Concluding Remarks 5.11. (1) Most of the material of this section
comes from [45], except for Lemma 5.8, Theorem 5.9, and Corollary 5.10, which
come from [94]. Example 5.3 (2) is taken from [110], Example 5.3 (4) features in
[23] and [89], Example 5.3 (5) comes from [56] (cf. (0.1)), and Example 5.6 (1)
appears to be oral tradition attributed to Furstenberg. For Z-actions Theorem
5.7 was first proved in [55], and the general proof presented here is due to
Hartley. A more general version of Theorem 5.7 will be proved in Section 10
(Theorem 10.2).

(2) If X and X ′ are not connected, Theorem 5.9 (or the equivalence of
(1) and (2) in Corollary 5.10) is not true in general. The shifts on the groups
ZZ

/4 and (Z2
/2)

Z are topologically, but not algebraically conjugate. However, the
equivalence of (2) and (3) in Corollary 5.10 holds for any pair of Rd-modules
M and M′, whether they are torsion-free (as additive groups) or not.

6. The dynamical system defined by a Noetherian module

We begin with a little bit of algebra. Let d ≥ 1, and let R be a commutative
ring. We denote by R× the set of invertible elements (or units) in R, write
R[u1, . . . , ud] and R[u±1

1 , . . . , u±d
d ] for the rings of polynomials and Laurent

polynomials in the commuting variables u1, . . . , ud with coefficients in R, and
we define Rd by (5.1). For every rational prime p we denote by Fp the algebraic
closure of the prime field Fp = Z/pZ = Z/p and define a homomorphism
f �→ f/p from Rd to

R
(p)
d = Fp[u±1

1 , . . . , u±d
d ] (6.1)

by reducing the coefficients of f ∈ Rd modulo p. An element f ∈ R
(p)
d will again

be written in the form (5.1) with cf (n) ∈ Fp for all n ∈ Zd, where cf (n) �= 0
for only finitely many n ∈ Zd. For notational consistency we set F0 equal to
the algebraic closure Q of Q and put R

(0)
d = Rd and f/0 = f for every f ∈ Rd.

Let p ⊂ Rd be a prime ideal. We identify Z with the set of constant
polynomials in Rd, denote by p(p) the characteristic char(Rd/p) of Rd/p, i.e.
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the unique non-negative integer such that p∩Z = p(p)Z, and define the variety
of p by

V (p) = {c ∈ (F
×
p(p))

d : f/p(p)(c) = 0 for every f ∈ p}. (6.2)

If a ⊂ Rd is an arbitrary ideal we set

VC(a) = {c ∈ (C×)d : f(c) = 0 for every f ∈ a}. (6.3)

Suppose that M is an Rd-module. For every f ∈ Rd we write fM : M �−→
M for the map a �→ f ·a, a ∈M, and we denote by ann(a) = {f ∈ Rd : f ·a = 0}
the annihilator of an element a ∈ M. A prime ideal p ⊂ Rd is associated with
M if p = ann(a) for some a ∈ M, and the module M is associated with p if p
is the only prime ideal in Rd associated with M. If M is Noetherian then it is
associated with p if and only if

p = {f ∈ Rd : fM is not injective} = {f ∈ Rd : fM is nilpotent} (6.4)

(cf. Corollary VI.4.11 in [51]). If M is associated with p and N ⊂ M is a non-
zero submodule, then N is again associated with p. The module M is a torsion
module if the prime ideal {0} is not associated with M. We shall have to be
careful to distinguish between Rd-modules M which are not torsion and those
which are torsion-free as additive groups (or Z-modules): M is a torsion module
if every associated prime ideal is non-zero, M is a torsion group if each of its
associated primes contains a non-zero constant, and M is torsion-free (as an
additive group) if none of its associated primes contains a non-zero constant.

A submodule W ⊂M is p-primary (or p belongs to W) if M/W is associ-
ated with p. From now on we assume that M is Noetherian. By Theorem VI.5.3
in [51] there exist primary submodules W1, . . . ,Wm of M with the following
properties:

the primes pi belonging to the submodules Wi are all distinct;
W1 ∩ · · · ∩Wm = {0};

for every subset S � {1, . . . ,m},
⋂
i∈S

Wi �= {0}.
(6.5)

A family {W1, . . . ,Wm} of primary submodules satisfying (6.5) is called a
reduced primary decomposition of M, and {p1, . . . , pm} is the set of associated
primes of M. According to the Theorems VI.5.2 and VI.5.5 in [51] the set of
associated primes of M is independent of the specific decomposition (6.5), and

{f ∈ Rd : fM is not injective} =
⋃

i=1,...,m

pi. (6.6)

Proposition 6.1. Let d ≥ 1, q ⊂ Rd a prime ideal, and let W be a
Noetherian Rd-module associated with q. Then there exist integers 1 ≤ t ≤ s
and submodules {0} = N0 ⊂ · · · ⊂ Ns = W such that, for every i = 1, . . . , s,
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Ni/Ni−1
∼= Rd/qi for some prime ideal q ⊂ qi ⊂ Rd, qi = q for i = 1, . . . , t,

and qi � q for i = t + 1, . . . , s.

Proof. Note that, if N ⊂W is a submodule, and if p ⊂ Rd is a prime ideal
associated with W/N, then p ⊃ q. Indeed, if p = ann(a) for some a ∈ W/N,
choose b ∈ W such that a = b + N, and set N′ = p · b = {f · b : f ∈ p} ⊂ N. If
N′ �= {0} then N′ is associated with q, and (6.4) shows that gn ∈ p for every
g ∈ q and every sufficiently large n ≥ 1. Since p is prime we conclude that
q ⊂ p.

Let Ω1 be the set of submodules N ⊂ W with the following property:
there exists an integer r ≥ 1 and submodules {0} = N0 ⊂ · · · ⊂ Nr = N such
that Ni/Ni−1

∼= Rd/q for every i = 1, . . . , r. It is clear that Ω1 �= ∅, since
we can find an a ∈ W with ann(a) = q and N = Rda ∼= Rd/q. Since W is
Noetherian, Ω1 contains a maximal element W′, and we set V = W/W′ and
consider the set of prime ideals {q1, . . . , ql} associated with the Rd-module V.
If qi = q for some i ∈ {1, . . . , l}, then there exists an element b ∈ W with
b /∈W′ and {f ∈ Rd : fb ∈W′} = q, and this violates the maximality of W′.

Let Ω2 be the set of submodules N with W′ ⊂ N ⊂ W, for which there
exist submodules W′ = L0 ⊂ · · · ⊂ Lt = N such that, for every i = 1, . . . , t,
Li/Li−1

∼= Rd/qi for some prime ideal qi � q. Then Ω2 again has a maximal
element W′′. If W′′ �= W we set V′ = W/W′′, consider the set of prime ideals
associated with V′, all of which are strictly greater than q by the argument in
the first paragraph of this proof, and obtain a contradiction to the maximality
of W′′ exactly as before, where we were dealing with W′. Hence W′′ = W, and
the proposition is proved by setting N0 ⊂ · · · ⊂ Ns equal to {0} = N0 ⊂ · · · ⊂
Ns = L0 ⊂ · · · ⊂ Lt = N. �

Corollary 6.2. Let d ≥ 1, M a Noetherian Rd-module with associated
primes {p1, . . . , pm} and a corresponding reduced primary decomposition {W1,
. . . ,Wm}. Then there exist submodules M = Ns ⊃ · · · ⊃ N0 = {0} such that,
for every i = 1, . . . , s, Ni/Ni−1

∼= Rd/qi for some prime ideal qi ⊂ Rd, and
qi ⊃ pj for some j ∈ {1, . . . ,m} (such a sequence M = Ns ⊃ · · · ⊃ N0 = {0}
is called a prime filtration of M).

Proof. Apply Proposition 6.1 to the successive quotients of the sequence

M ⊃W1 ⊃ (W1 ∩W2) ⊃ · · · ⊃ (W1 ∩ · · · ∩Wm) = {0},

bearing in mind that

(W1 ∩ · · · ∩Wi)/(W1 ∩ · · · ∩Wi+1) ∼= (W1 ∩ · · · ∩Wi)/Wi+1 ⊂M/Wi+1

is associated with pi+1 for every i = 1, . . . ,m− 1 (if B,C are subgroups of an
abelian group A we use the symbol B/C to denote (B + C)/C). �
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Let M be a Noetherian Rd-module with a prime filtration M = Ns ⊃
· · · ⊃ N0 = {0}, and define the Zd-action α = αM on X = XM by (5.5) and
(5.6). For every j = 0, . . . , s, Yj = N⊥

j is a closed, α-invariant subgroup of X,
and the dual group of Yj−1/Yj is isomorphic to Rd/qj , where qj ⊂ Rd is a
prime ideal containing one of the associated primes of M. This allows one to
build up (X,α) from the successive quotients (Yj−1/Yj, α

Yj−1/Yj ), which have
the explicit realization (5.9)–(5.10) with a = qj . However, although the prime
ideals {p1, . . . , pm} are canonically associated with M, the ideals qj appearing
in Proposition 6.1 and Corollary 6.2 need no longer be canonical, and may
depend on a specific prime filtration of M. The next corollary can help to
overcome this problem.

Corollary 6.3. Let d ≥ 1, M a Noetherian Rd-module with associated
primes {p1, . . . , pm}. Then there exists a Noetherian Rd-module N = N(1) ⊕
· · · ⊕N(m) and an injective Rd-module homomorphism φ : M �−→ N such that
each of the modules N(j) has a prime filtration N(j) = N

(j)
rj ⊃ · · · ⊃ N

(j)
0 = {0}

with N
(j)
k /N

(j)
k−1

∼= Rd/pj for k = 1, . . . , rj.

If X = XM and Y = XN = XN(1)×· · ·×XN(m)
, then the homomorphism

ψ : Y �−→ X dual to φ is surjective and satisfies that

ψ · αN
n = ψ · (αN(1)

n × · · · × αN(m)

n ) = αM
n · ψ (6.7)

for every n ∈ Zd.

Proof. Choose a reduced primary decomposition W1, . . . ,Wm of M as
in (6.5). Then the map φ′ : a �→ (a + W1, . . . , a + Wm) from M into K =⊕m

i=1 M/Wi is injective. We fix j ∈ {1, . . . ,m} for the moment and apply
Proposition 6.1 to find a prime filtration {0} = N0 ⊂ · · · ⊂ Ns = M/Wj

such that N
(j)
k /N

(j)
k−1

∼= Rd/q
(j)
k for every k = 1, . . . , sj , where q

(j)
k ⊂ Rd is a

prime ideal containing pj , and where there exists an rj ∈ {1, . . . , sj} such that
q
(j)
k = pj for k = 1, . . . , rj, and q

(j)
k � pj for k = rj + 1, . . . , sj . If rj < sj

we choose Laurent polynomials g
(j)
k ∈ q

(j)
k � pj for k = rj + 1, . . . , sj , set

g(j) = g
(j)
rj+1 · . . . · g(j)

sj , and note that the map ψ(j) : M/Wj �−→ N
(j)
rj consisting

of multiplication by g(j) is injective. Since N
(j)
rj has the prime filtration {0} =

N
(j)
0 ⊂ · · · ⊂ N

(j)
rj whose successive quotients are all isomorphic to Rd/pj , the

module N = N
(1)
r1 ⊕ · · · ⊕N

(m)
rm has the required properties. The last assertion

follows from duality. �

Example 6.4. In Example 5.3 (2) we considered the automorphism of T2

given by the matrix A′ = ( 3 2
2 1 ) and obtained that the Z-action on T2 defined

by A′ is conjugate to (XM, αM), where M is the R1-module ψ′(Z2) ⊂ R1/(f)
with f(u1) = −1− 4u1 + u2

1 and ψ′(m1,m2) = m1 + (3m1 + 2m2)u1 ∈ R1/(f)
for every (m1,m2) ∈ Z2. As a submodule of R1/(f), M is associated with
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(f). Let a = ψ′(0, 1) = 2u1 ∈ R1/(f), and let N = R1 · a = 2R1/(f). Then
M/N = R1/a, where a is the prime ideal (2, 1+u1) = 2R1 +R1(1+u1) ⊂ R1,
and {0} ⊂ N ⊂M is a prime filtration of M with M/N ∼= R1/a and N/{0} ∼=
R1/(f). �

Our next result shows that certain dynamical properties of the Zd-action
αM on XM can be expressed purely in terms of the primes associated with
M and do not require the much more difficult analysis of the primes which
may occur in a prime filtration of M. Recall that an element g ∈ Rd is a
generalized cyclotomic polynomial if it is of the form g(u1, . . . , ud) = umc(un),
where m,n ∈ Zd, n �= 0, and c is a cyclotomic polynomial in a single variable.

Theorem 6.5. Let d ≥ 1, let M a Noetherian Rd-module with associated
primes {p1, . . . , pm}, and let (X,α) = (XM, αM) be defined by (5.5)–(5.6). For
every i = 1, . . . ,m we denote by p(pi) ≥ 0 the characteristic of Rd/pi.

(1) The following conditions are equivalent.
(a) α is ergodic;
(b) αn is ergodic for some n ∈ Zd;
(c) αRd/pi is ergodic for every i ∈ {1, . . . ,m};
(d) There do not exist integers i ∈ {1, . . . ,m} and l ≥ 1 with

{uln − 1 : n ∈ Zd} ⊂ pi;

(e) There do not exist integers i ∈ {1, . . . ,m} and l ≥ 1 with

V (pi) ⊂ {c = (c1, . . . , cd) ∈ (F
×
p(pi)

)d : cl
1 = · · · = cl

d = 1}.
(2) The following conditions are equivalent.

(a) α is mixing;
(b) For every i = 1, . . . ,m, αRd/pi is mixing;
(c) None of the prime ideals associated with M contains a general-

ized cyclotomic polynomial, i.e. {un− 1 : n ∈ Zd}∩ pi = {0} for
i = 1, . . . ,m.

(3) Let Λ ⊂ Zd be a subgroup with finite index. The following conditions
are equivalent.

(a) The set

FixΛ(α) = {x ∈ X : αn(x) = x for every n ∈ Λ}
is finite;

(b) For every i = 1, . . . ,m, the set FixΛ(αRd/pi) is finite;
(c) For every i = 1, . . . ,m, VC(pi) ∩ Ω(Λ) = ∅, where

Ω(Λ) = {c ∈ Cd : cn = 1 for every n ∈ Λ}
with c = (c1, . . . , cd), n = (n1, . . . , nd), and cn = cn1

1 · . . . · cnd

d .
(4) The following conditions are equivalent.

(a) α is expansive;
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(b) For every i = 1, . . . ,m, αRd/pi is expansive;
(c) For every i = 1, . . . ,m, VC(pi) ∩ Sd = ∅;
(d) For every i = 1, . . . ,m with p(pi) = 0, V (pi) ∩ Sd = ∅.

We begin the proof of Theorem 6.5 with a general proposition.

Proposition 6.6. Let M a countable Rd-module.

(1) For any n ∈ Zd the following conditions are equivalent.
(a) αM

n is ergodic;
(b) α

Rd/p
n is ergodic for every prime ideal p associated with M;

(c) No prime ideal p associated with M contains a polynomial of the
form uln − 1 with l ≥ 1.

(2) The following conditions are equivalent.
(a) αM is ergodic;
(b) αRd/p is ergodic for every prime ideal p associated with M;
(c) No prime ideal p associated with M contains a set of the form

{uln − 1 : n ∈ Zd} with l ≥ 1.
(3) The following conditions are equivalent.

(a) αM is mixing;
(b) αM

n is ergodic for every non-zero element n ∈ Zd;
(c) αM

n is mixing for every non-zero element n ∈ Zd;
(d) αRd/p is mixing for every prime ideal p associated with M;
(e) None of the prime ideals associated with M contains a general-

ized cyclotomic polynomial.

Proof. From Lemma 1.2 and (5.5)–(5.6) it is clear that the Z-action k �→
αM

kn is non-ergodic if and only if there exists a non-zero element a ∈ M such
that (uln− 1)a = 0 for some l ≥ 1. Let N = Rd ·a, and let b ∈ N be a non-zero
element such that p = ann(b) is maximal in the set of annihilators of elements
in N. Then p is a prime ideal associated with M which contains uln − 1. This
shows that (1.c)⇒(1.a). Conversely, if there exists a prime ideal p associated
with M which contains uln − 1 ∈ p for some l ≥ 1, we choose a ∈ M with
ann(a) = p, note that (uln − 1)a = 0, and obtain that (1.a)⇒(1.c).

If we apply the equivalence (1.a)⇐⇒(1.c) to the Rd-module Rd/p, whose
only associated prime is p, we see that α

Rd/p
n is non-ergodic if and only if

uln − 1 ∈ p for some l ≥ 1, which completes the proof of the first part of this
lemma.

If αM is non-ergodic, then Lemma 1.2 implies that there exists a non-zero
element a ∈ M such that the orbit {um · a : m ∈ Zd} of the Zd-action α̂M in
(5.5) is finite. As in the proof of (1) we set N = Rd · a, choose 0 �= b ∈ N such
that p = ann(b) is maximal, and note that p is a prime ideal which contains
{ulm − 1 : m ∈ Zd} for some l ≥ 1. Conversely, if there exists a prime ideal
p ⊂ Rd associated with M which contains {ulm − 1 : m ∈ Zd} for some
l ≥ 1, and Lemma 1.2 shows that the Zd-action αM cannot be ergodic. This
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shows that (2.c)⇐⇒(2.a), and the equivalence of (2.b) and (2.c) is obtained by
applying the equivalence of (2.a) and (2.c) to the Rd-module Rd/p.

In order to prove (3) we note that the equivalence (3.a)⇐⇒(3.b)⇐⇒(3.c)
follows from Theorem 1.6 (2), and the proof is completed by applying the part
(1) of this lemma both to αM and to αRd/p, where p ranges over the set of
prime ideals associated with M. �

Proof of Theorem 6.5 (1). The implication (b)⇒(a) is obvious. If (b)
does not hold there exists, for every n ∈ Zd, an l ≥ 1 with uln− 1 ∈ ⋃1≤i≤m pi

(Proposition 6.6). For every i = 1, . . . ,m, the set Γi = {n ∈ Zd : un − 1 ∈ pi}
is a subgroup of Zd. As we have just observed, the set Γ =

⋃m
i=1 Γi contains

some multiple of every element of Zd; if every Γi has infinite index in Zd, then
Γ is contained in the intersection with Zd of a union of m at most d − 1-
dimensional subspaces of Rd, which is obviously impossible. Hence Γi must
have finite index in Zd for some i ∈ {1, . . . ,m}, and we can find an integer
l ≥ 1 such that uln − 1 ∈ pi for every n ∈ Zd. This proves the implication
(d)⇒(b). The implications (a)⇐⇒(c)⇐⇒(d) were proved in Proposition 6.6,
and the equivalence of (d) and (e) follows from Hilbert’s Nullstellensatz. �

Proof of Theorem 6.5 (2). Use Proposition 6.6. �

Lemma 6.7. Let a ⊂ Rd be an ideal. Then a ∩ Z �= {0} if and only if
VC(a) = ∅.

Proof. If a ∩ Z �= {0} then VC(a) = ∅. Conversely, if VC(a) = ∅, then the
Nullstellensatz implies that Q[u±1

1 , . . . , u±1
d ]·a = Q[u±1

1 , . . . , u±1
d ], and there ex-

ist polynomials fi ∈ a, gi ∈ Q[u±1
1 , . . . , u±1

d ], i = 1, . . . , n, with 1 =
∑n

i=1 figi.
The coefficients of the gi generate a finite extension field K ⊃ Q, and R

(K)
d =

K[u±1
1 , . . . , u±1

d ] =
∑l

j=1 vjR
(Q)
d for suitably chosen elements {v1, . . . , vl} ∈

R
(K)
d , where R

(Q)
d = Q[u±1

1 , . . . , u±1
d ]. Since a(Q) = R

(Q)
d · a is an ideal in R

(Q)
d

and R
(K)
d · a(Q) = R

(K)
d , there exist elements {hj,k : 1 ≤ j, k ≤ l} ⊂ a(Q) such

that, for every j = 1, . . . , l, vj =
∑l

k=1 hj,kvk. Hence det(δj,k−hj,k) = 0, where
δj,k = 1 for j = k and δj,k = 0 otherwise, and we conclude that 1 ∈ a(Q). This
proves that a ∩ Z �= {0}. �

Proof of Theorem 6.5 (3). If b(Λ) ⊂ Rd is the ideal generated by {un−
1 : n ∈ Λ}, then

VC(b(Λ)) = {c ∈ Cd : cn = 1 for every n ∈ Λ} = Ω(Λ),

FixΛ(α)⊥ = b(Λ)·M, and ̂FixΛ(α) = M/b(Λ)·M (cf. (5.5)–(5.6)). In particular,
FixΛ(α) is finite if and only if M/b(Λ) ·M is finite.

Suppose that FixΛ(α) is finite. For every i = 1, . . . ,m we choose ai ∈ M
such that pi = ann(ai) and hence Li = Rd ·ai

∼= Rd/pi. The Artin-Rees Lemma
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(Corollary 10.10 in [5]) implies that

b(Λ)(t) ·M ∩ Li = b(Λ) · (b(Λ)(t−1) ·M ∩ Li) ⊂ b(Λ) · Li

for some t ≥ 1, where b(Λ)(t) ⊂ Rd is the ideal generated by {f1 · . . . · ft : fi ∈
b(Λ) for i = 1, . . . , t}. By assumption,

̂FixΛ(α) = M/b(Λ) ·M
is finite. Since b(Λ) is finitely generated we can choose f1, . . . fr such that
b(Λ) = f1Rd + · · ·+ frRd, and we conclude that

|b(Λ) ·M/b(Λ)(2) ·M| ≤
r∑

j=1

∣∣∣∣fj ·M
/ ( r∑

j,j′=1

fjfj′ ·M
)∣∣∣∣

≤
r∑

j=1

∣∣∣∣fj ·M
/ ( r∑

j′=1

fjfj′ ·M
)∣∣∣∣

≤ r

∣∣∣∣M/ ( r∑
j′=1

fj′ ·M
)∣∣∣∣ = r|M/b(Λ) ·M| <∞.

An induction argument shows that b(Λ)(k)M/b(Λ)(k+1) ·M is finite for every
k ≥ 1, and we conclude that M/b(Λ)(k) · M is finite for every k ≥ 1. In
particular, the modules Li/b(Λ)(t) ·M ∼= Li/(b(Λ)(t) ·M∩Li) and Li/b(Λ)·Li

∼=
Rd/(pi + b(Λ)) are finite. From Lemma 6.7 we conclude that VC(pi + b(Λ)) =
VC(pi) ∩ Ω(Λ) = ∅ for every i = 1, . . . ,m, which proves (c).

Conversely, if (c) is satisfied, we choose a prime filtration M = Ns ⊃
· · · ⊃ N0 = {0} of M such that, for every j = 1, . . . , s, Nj/Nj−1

∼= Rd/qj for
some prime ideal qj which contains one of the associated primes pi of M (cf.
Corollary 6.2). Since

VC(qj + b(Λ)) = VC(qj) ∩ VC(b(Λ)) ⊂ VC(pi) ∩ VC(b(Λ)) = ∅

for every j = 1, . . . , s, the module Rd/(qj +b(Λ)) is finite for every j by Lemma
6.7. Hence Nj/(Nj−1+b(Λ) ·M) is finite for j = 1, . . . , s, since it is (isomorphic
to) a quotient of Rd/(qj + b(Λ)), and M/b(Λ) ·M is finite. This implies the
finiteness of FixΛ(α) and completes the proof of the implication (c)⇒(a). The
equivalence of (b) and (c) is obtained by applying what we have just proved to
the Zd-actions αRd/pi , i = 1, . . . ,m. �

Lemma 6.8. Let a ⊂ Rd be an ideal with VC(a) ∩ Sd = ∅. Then αRd/a is
expansive.

Proof. We assume that XRd/a = R̂d/a and αRd/a are given by (5.9)–
(5.10). For every f ∈ Rd of the form (5.2) we set ‖f‖ =

∑
n∈Zd |cf (n)|. Let

{f1, . . . , fk} be a set of generators for a, ε = (10
∑k

j=1 ‖fj‖)−1, and N = {x ∈
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XRd/a : ‖x0‖ < ε}, where ‖t‖ = min{|t−n| : n ∈ Z} for every t ∈ T. We claim
that N is an expansive neighbourhood of the identity 0 in XRd/a.

If N is not expansive, there exists a point 0 �= x ∈ ⋂n∈Zd σn(N). Let
B = �∞(Zd) be the Banach space of all bounded, complex valued functions
(zn) = (zn,n ∈ Zd) on Zd in the supremum norm. Since ‖xn‖ < ε for every
n ∈ Zd, there exists a unique non-zero point y ∈ B with |yn| < ε and yn

(mod 1) = xn for every n ∈ Zd. From (5.7) and (5.9) we know that

〈x, fj〉 = e
2πi
∑

n∈Zd cfj
(n)xn = 1

and hence ∑
n∈Zd

cfj (n)yn ∈ Z

for j = 1, . . . , k, and our choice of ε implies that∑
n∈Zd

cfj (n)yn = 0 (6.8)

for all j. Consider the group of isometries {Un : n ∈ Zd} of B defined by
(Unz)m = zm+n for all m,n ∈ Zd and z ∈ B, and put

S =
{

z ∈ B :
∑
n∈Zd

cfj (n)zm+n = 0 for all m ∈ Zd and j = 1, . . . , k
}

=
{

z ∈ B :
(∑

n∈Zd

cfj (n)Un

)
z = 0 for j = 1, . . . , k

}
. (6.9)

From (6.8) we know that the closed linear subspace S ⊂ B is non-zero.
Let B(S) be the Banach algebra of all bounded, linear operators on S, denote
by Vn the restriction of Un to S, and let A ⊂ B(S) be the Banach subalgebra
generated by {Vn : n ∈ Zd}. We write M(A) for the space of maximal ideals of
A in its usual topology. The Gelfand transform A �→ Â from A to the Banach
algebra C(M(A), C) of continuous, complex valued functions on M(A) is a
norm-non-increasing Banach algebra homomorphism (cf. §11 in [75]). For every
n ∈ Zd, both Vn and V−n = V −1

n are isometries of S, and hence |V̂n(ω)| = 1
for every ω ∈ M(A). Since

∑
n∈Zd cfj (n)Vn = 0 (cf. (6.9)) we obtain that∑

n∈Zd cfj (n)V̂n(ω) = 0 for every j = 1, . . . , k and ω ∈ M(A). Fix ω ∈ M(A)
and put ci = V̂e(i)(ω) for every i = 1, . . . , d, where e(i) is the i-th unit vector in
Zd. Then

∑
n∈Zd cfj (n)cn = fj(c) = 0 for j = 1, . . . , k with c = (c1, . . . , cd) ∈

Sd. It follows that c ∈ VC(a) ∩ Sd, contrary to our initial assumption. This
proves that αRd/a is expansive. �

Proof of Theorem 6.5 (4). We begin by proving the equivalence of (a)
and (c). Suppose that (c) is satisfied, but that α is non-expansive. We apply
Corollary 6.2 and choose a prime filtration M = Ns ⊃ · · · ⊃ N0 = {0} such
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that, for every j = 1, . . . , s, Nj/Nj−1
∼= Rd/qj for some prime ideal qj ⊂ Rd

which contains one of the associated primes pi. Put Xj = N⊥
j ⊂ X and observe

that X = X0 ⊃ · · · ⊃ Xs = {1}, that Xj is a closed, α-invariant subgroup of
X, and that Xj−1/Xj

∼= R̂d/qj for j = 1, . . . , s. Then VC(q1) ⊂
⋃m

i=1 VC(pi),
hence VC(q1) ∩ Sd = ∅, and Lemma 6.8 shows that αRd/q1 is expansive. Since
αRd/q1 is conjugate to αX/X1 = αX0/X1 we see that αX0/X1 is expansive. The
non-expansiveness of α implies that αX1 cannot be expansive, and by repeating
this argument we eventually obtain that αXs is non-expansive, which is absurd.
This contradiction proves the expansiveness of α.

In order to explain the idea behind the proof of the reverse implication
we assume for the moment that M is of the form Rd/a for some ideal a ⊂ Rd.
If c = (c1, . . . , cd) ∈ VC(a) then the evaluation map f �→ f(c) defines an Rd-
module homomorphism ηc : Rd/a �−→ C, where C is an Rd-module under the
action (f, z) �→ f(c)z, f ∈ Rd, z ∈ C. If W is the closure of ηc(Rd/a) ⊂ C,
then ηc conjugates the Zd-action α̂ on M to the action θ on W , where θn is
multiplication by cn for every n ∈ Zd. If c ∈ VC(a) ∩ Sd then θ is isometric
(with respect to the usual metric on C), and the homomorphism ηc induces an
inclusion of V = Ŵ in XRd/a = R̂d/a. Since θ is isometric on W , the dual
action θ̂ on V is also equicontinuous, and coincides with the restriction of α to
V . This shows that α cannot be expansive.

We return to our given module M with its associated primes p1, . . . , pm

and a corresponding reduced primary decomposition W1, . . . ,Wm. If VC(pi) ∩
Sd �= ∅ for some i ∈ {1, . . . ,m} we set M′ = M/Wi, choose a1, . . . , ak ∈ M′

such that M′ = Rda1 + · · · + Rdak, and define a surjective homomorphism
ζ : Rk

d �−→ M′ by ζ(f1, . . . , fk) = f1a1 + · · ·+ fkak.
Choose a point c = (c1, . . . , cd) ∈ VC(pi)∩Sd, denote by ηc : Rd �−→ C the

evaluation map at c, and observe that a = ker(ηc) ⊃ pi. Let L = ker(ζ) + ak ⊂
Rk

d, and let N = {(0, . . . , 0, f) : f ∈ Rd} ⊂ Rk
d. From (6.6) (with M replaced

by M′) we see that ann(ak) ⊂ pi, so that

L ∩N ⊂ {(0, . . . , 0, f) : f ∈ pi} ⊂ {(0, . . . , 0, f) : f ∈ a}.
This allows us to define an additive group homomorphism ξ : L + N �−→ C by
ξ(a + b) = ηc(f) for all a ∈ L and b = (0, . . . , 0, f) ∈ N. Then

ξ(a) = 0 for a ∈ L, (6.10)

and

ξ · α̂Rk
d

n (a) = cnξ(a) for all a ∈ L + N, n = (n1, . . . , nd) ∈ Zd, (6.11)

where cn = cn1
1 · . . . · cnd

d . We claim that ξ can be extended to a homomor-
phism ξ̄ : Rk

d �−→ C which still satisfies (6.10) and (6.11). Indeed, there exists a
maximal extension ξ′ of ξ to a submodule N′ ⊂ Rk

d satisfying (6.11) for every
a ∈ N′. If b ∈ Rk

d � N′ and ξ′(b′) = 0 for every b′ ∈ Rdb ∩ N′, then we put
ρ = 0. If there exists an element f ∈ Rd with fb ∈ Rdb ∩ N′ and ξ′(fb) �= 0,
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then f(c) = ηc(f) �= 0: otherwise f ∈ a, fb ∈ ak ⊂ L, and ξ′(fb) = ξ(fb) = 0
by (6.10), which is impossible. Hence we can set ρ = ξ′(fb)/f(c). The map
ξ′′ : N′′ = Rdb + N′ �−→ C, defined by ξ′′(fb + a) = f(c)ρ + ξ′(a) for f ∈ Rd

and a ∈ N′, is a homomorphism which extends ξ′ and satisfies (6.11) for all
a ∈ N′′. This contradiction to the maximality of N′ proves our claim.

We have obtained an extension ξ̄ : Rk
d �−→ C of ξ satisfying (6.11) for all

a ∈ Rk
d; this implies that ker(ξ̄) is a submodule of Rk

d which contains ker(ζ),
and that ξ̄ induces an Rd-module homomorphism Ξ: M′ ∼= Rk

d/ker(ζ) �−→ C
with Ξ(M′) ⊃ ηc(Rd) and

Ξ · α̂M′
n = θn · Ξ (6.12)

for every n ∈ Zd, where θn is multiplication by cn. We denote by W the closure
of Ξ(M′) in C and write V = Ŵ for the dual group of W . Since Ξ sends M′ to
a dense subgroup of W , there is a dual inclusion V ⊂ ̂M′/ker(Ξ) ⊂ M̂′ ⊂ X,
and (6.12) shows that, for every v ∈ V and n ∈ Zd,

θ̂n(v) = αn(v). (6.13)

If the closed subgroup W ⊂ C is countable, then the group Θ = {θn : n ∈
Zd} ⊂ Aut(W ) is finite, since it consists of isometries of W , and hence Θ̂ =
{θ̂n : n ∈ Zd} ⊂ Aut(V ) is finite. From (6.13) it is clear that the restriction of
α to the infinite subgroup V ⊂ X cannot be expansive.

If W is uncountable, but disconnected, we replace W by its infinite,
discrete quotient group W ′ = W/W ◦, and obtain an α-invariant subgroup
V ′ = Ŵ/W ◦ ⊂ V ⊂ X on which α is not expansive.

If W is connected, it is either equal to C or isomorphic to R, and the
definition of Θ implies that W has a basis of Θ-invariant neighbourhoods of
the identity. The dual group V is isomorphic to W , and again possesses a basis
of Θ̂-invariant neighbourhoods of the identity. Since the inclusion V ↪→ X is
continuous, the Zd-action n �→ θ̂n on V ⊂ X must also be non-expansive in the
subspace topology, i.e. α is not expansive on V .

We have proved that there always exists an infinite, α-invariant, but not
necessarily closed, subgroup V ⊂ X on which α is non-expansive in the induced
topology. This shows that α is not expansive and completes the proof that
(a)⇐⇒(c).

The equivalence of (b) and (c) is seen by applying the implications (a)⇐⇒
(c) already proved to the Zd-actions αRd/pi , i = 1, . . . ,m.

It is clear that (c)⇒(d). Conversely, if VC(pi) ∩ Sd �= ∅ for some i ∈
{1, . . . ,m}, choose f1, . . . , fk in Rd with pi = f1Rd + · · · + fkRd, and define
polynomials gj, hj , j = 1, . . . , k, in

Rd = Q[x1, . . . , xd, y1, . . . , yd]
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by

gj(a1, . . . , ad, b1, . . . , bd) = Re(fj(a1 + b1

√−1, . . . , ad + bd

√−1))

and

hj(a1, . . . , ad, b1, . . . , bd) = Im(fj(a1 + b1

√−1, . . . , ad + bd

√−1))

for all j = 1, . . . , k and (a1, . . . , ad, b1, . . . , bd) ∈ R2d, where Re(z) and Im(z)
denote the real and imaginary parts of z ∈ C. For l = 1, . . . , d we put

χl(x1, . . . , xd, y1, . . . , yd) = x2
l + y2

l − 1 ∈ Rd.

The ideal J ⊂ Rd generated by {g1, . . . , gk, h1, . . . , hk, χ1, . . . , χk} satisfies that
VC(J)∩R2d �= ∅. Hence J does not contain a polynomial of the form 1+

∑r
j=1 ψ2

j

with r ≥ 1 and ψj ∈ Rd, and the real version of Hilbert’s Nullstellensatz implies
that VC(J) ∩ R2d ∩ Q

2d �= ∅ (proposition 4.1.7 and corollaire 4.1.8 in [11]). In
particular we see that (d) cannot be satisfied, and this shows that (d)⇒(c) and
completes the proof of Theorem 6.5 (4). �

Before we start listing some useful corollaries of Theorem 6.5 we give
an elementary characterization of the connectedness of a group X carrying a
Zd-action by automorphisms in terms of the prime ideals associated with the
Rd-module X̂.

Proposition 6.9. Let α be a Zd-action by automorphisms of a compact,
abelian group X, and let M = X̂ be the Rd-module defined by Lemma 5.1. The
following conditions are equivalent.

(1) X is connected;
(2) VC(p) �= ∅ for every prime ideal p ⊂ Rd associated with M.

Proof. Suppose that X is connected, and let p ⊂ Rd be a prime ideal
associated with M. Then there exists an element a ∈ M with Rd · a ∼= Rd/p,
which implies that XRd/p is a quotient group of X. In particular, XRd/p is
connected, so that Rd/p is a torsion-free, abelian group, and Lemma 6.7 implies
that VC(p) �= ∅. Conversely, if X is disconnected, then there exists—by duality
theory—a non-zero element a ∈M and a positive integer m with ma = 0, and
we set N = Rd · a and observe that N (and hence M) has an associated prime
ideal p containing a non-zero constant (cf. (6.6)). In particular, VC(p) = ∅. �

Corollary 6.10 (of Theorem 6.5). If α is an ergodic Zd-action by
automorphisms of a compact, abelian group X satisfying the d.c.c., then αn

is ergodic for some n ∈ Zd.

Proof. Lemma 5.1, Proposition 5.4, and Theorem 6.5 (1). �

Corollary 6.11. Let d ≥ 2, and let (f) ⊂ Rd be a principal ideal. Then
αRd/(f) is ergodic.
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Proof. By Theorem 6.5 (1), the non-ergodicity of α implies that V (pi) is
finite for at least one of the associated primes of M = Rd/(f). However, the
associate primes of M are are all principal (they are given by the prime factors
of f in Rd), and have infinite varieties. �

Corollary 6.12. Let d ≥ 1 and f ∈ Rd. If f is not divisible by any
generalized cyclotomic polynomial then αRd/(f) is mixing.

Proof. If p is one of the associated primes of Rd/(f) then p = (h) for a
prime factor h of f in Rd, and p contains a polynomial of the form un − 1 for
some (non-zero) n ∈ Zd if and only if h = c(un) for some cyclotomic polynomial
c (cf. Theorem 6.5 (2)). �

Corollary 6.13. Let X be a compact, abelian group, and let α be an
expansive Zd-action by automorphisms of X. Then the Rd-module M = X̂ is
a Noetherian torsion module.

Proof. According to (4.10) and Proposition 5.4, M is Noetherian, and by
Theorem 6.5 (4), {0} cannot be an associated prime ideal of M. �

Corollary 6.14. Let X be a compact, connected group, and let α be
an expansive Zd-action by automorphisms of X. Then X is abelian and α is
ergodic.

Proof. Theorem 2.4 shows that X is abelian, and (4.10) and Proposition
5.4 allow us to assume that (X,α) = (XM, αM) for some Noetherian Rd-
module M. By recalling Proposition 6.9 and comparing the conditions (1.e)
and (4.c) in Theorem 6.5 we see that α is ergodic. �

Corollary 6.15. Let X be a compact group, and let α be an expansive
Zd-action by automorphisms of X. If Y ⊂ X is a closed, normal, α-invariant
subgroup, then αY and αX/Y are both expansive.

Proof. The expansiveness of αY is obvious. In order to see that αX/Y is
expansive we note that the connected component of the identity X◦ ⊂ X is
abelian by Corollary 2.5. The group X/X◦ is zero-dimensional, and X/(Y +X◦)
is a quotient of a zero-dimensional group and hence again zero dimensional.
Since the Zd-action αX/(Y +X◦) satisfies the d.c.c., Corollary 3.4 implies that
αX/(Y +X◦) is expansive.

The group (Y + X◦)/Y is isomorphic to X◦/(Y ∩ X◦), and this iso-
morphism carries α(Y +X◦)/Y to αX◦/(Y ∩X◦). We apply Lemma 5.1 to the
abelian groups X◦ and X◦/(Y ∩ X◦), and obtain Rd-modules X̂◦ = M and

̂X◦/(Y ∩X◦) = N ⊂ M satisfying (5.3)–(5.4). Since αX◦
is expansive, The-

orem 6.5 (4) implies that VC(p) ∩ Sd = ∅ for every prime ideal p associated
with M. Every prime ideal associated with N is also associated with M, and
Theorem 6.5 (4) implies that αN is expansive. This implies the expansiveness
of both αX◦/(Y ∩X◦) and α(Y +X◦)/Y .



56 II. Zd-ACTIONS ON COMPACT ABELIAN GROUPS

Suppose that x ∈ X � Y . If x /∈ Y + X◦ then the expansiveness of
αX/(Y +X◦) guarantees the existence of an open neighbourhood N ′(1X) of the
identity in X such that αm(x) /∈ N ′(1X) + Y + X◦ ⊃ N ′(1X) + Y for some
m ∈ Zd. If x ∈ Y +X◦ then the expansiveness of α(Y +X◦)/Y allows us to choose
a neighbourhood N ′′(1X) of the identity in X with αm(x) /∈ N ′′(1X) + Y for
some m ∈ Zd. Put N(1X) = N ′(1X) ∩ N ′′(1X). Then there exists, for every
x ∈ X � Y , an m ∈ Zd with αm(x) /∈ N(1X) + Y , which shows that αX/Y is
expansive. �

In view of Theorem 6.5 we introduce the following definition, which will
help to simplify terminology.

Definition 6.16. Let d ≥ 1, and let p ⊂ Rd be a prime ideal. The ideal
p will be called ergodic, mixing, or expansive if the Zd-action αRd/p is ergodic,
mixing, or expansive.

Examples 6.17. (1) Let n ≥ 1, α = A ∈ GL(n, Z) = Aut(Tn), and let
β = Â = A
 ∈ Aut(Zn). The R1-module M = Zn arising from α via Lemma
5.1 is Noetherian, and ann(m) = {f ∈ R1 : f(A
)m = 0} for every m ∈ Zn.
In particular, the associated primes of M are the principal ideals (h), where h
runs through the prime factors of the characteristic polynomial χA = χA� of
A (or A
) in R1. In this setting Theorem 6.5 (1) reduces to the following well
known facts about toral automorphisms: (i) α is ergodic if and only if no root
of χA is a root of unity; (ii) α is expansive if and only if no root of χA has
modulus 1.

(2) The automorphism α in Example 5.6 (1) does not satisfy the d.c.c.
(cf. Theorem 5.7), and is therefore non-expansive by (6.10). However, if we
replace Q by Z[1

6
] = {k/6l : k ∈ Z, l ≥ 0} ∼= R1/(2u1 − 3) = M, where the

isomorphism between R1/(2u1 − 3) and Z[16 ] is the evaluation f �→ f( 3
2 ), then

the automorphism β′ of Z[1
6
] consisting of multiplication by 3

2
is conjugate to

multiplication by u1 on M. Since p = (2u1 − 3) ⊂ R1 is a prime ideal, M is
associated with p, VC(p) = { 3

2}, and the automorphism α′ on X = Ẑ[16 ] dual to
β′ is expansive by Theorem 6.5 (4). An explicit realization of α′ can be obtained
from Example 5.2 (2) by setting α′ equal to the shift σ on X ′ = {(xk) ∈ TZ :
3xk = 2xk+1 for every k ∈ Z}.

(3) Let p ⊂ R1 be a prime ideal. Since the ring R
(Q)
1 = Q[u±1

1 ] of Laurent
polynomials with rational coefficients is a principal ideal domain, R1/p must
be finite if p is non-principal. In order to see this, assume that p � R1 is a
non-principal prime ideal, and choose two irreducible elements g, h ∈ p with
gR1 �= hR1. We assume without loss in generality that gR1 �= mR1 for any
m ∈ Z. Then q = { 1

nf : n ≥ 1, f ∈ p} ⊂ R
(Q)
1 is an ideal strictly containing the

maximal ideal gR
(Q)
1 , and therefore equal to R

(Q)
1 . We conclude that p contains

a prime constant p, and hence the ideal (p, g) = pR1 + gR1. It follows that
R1/p is a quotient of the finite ring R1/(p, g) ∼= R

(p)
1 /g/pR

(p)
1 (cf. (6.1)). In
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particular, if p ⊂ R1 is a non-principal prime ideal, then XR1/p = R̂1/p is
finite, and αR1/p is non-ergodic.

If p = (f) for some f ∈ R1, the automorphism α = αR1/p is non-ergodic if
and only if f divides un

1−1 for some n ≥ 1 (Theorem 6.5 (1)) (as f is irreducible
this means that ±un

1f is cyclotomic for some n ∈ Z), and α is expansive if and
only if f is non-zero and has no roots of modulus 1 (Theorem 6.5 (4)). Since
we can write X = XR1/p in the form (5.9) we see that X is (isomorphic to) a
finite-dimensional torus if and only if there exists n ∈ Z and s ≥ 1 such that
un

1f(u1) = c0 + c1u1 + · · · + csu
s
1 with |c0cs| = 1. If |c0cs| > 1, then X is a

finite-dimensional solenoid, i.e. X̂ is isomorphic to a subgroup of Qs (Example
(2) and Example 5.3 (3)).

(4) Let α be an ergodic automorphism of a compact, abelian group X, and
let M = X̂ be the R1-module arising from α via Lemma 5.1. Then every prime
ideal p ⊂ R1 associated with M is principal, and p �= (f) for any cyclotomic
polynomial f ⊂ R1 (Proposition 6.6 and Example (3)). �

Further examples of expansive automorphisms of compact, abelian groups
will appear in Chapter 3.

Examples 6.18. In the following illustrations of Theorem 6.5 we consider
R2-modules of the form M = R2/a, where a ⊂ R2 is an ideal, realize X =
XM ⊂ TZ2

as in Example 5.2 (2), and denote by α = αM the shift-action of
Z2 on X.

(1) Let a = (1+u1+u2). Since a is prime, M is associated with a. Corollary
6.11 shows that α is ergodic, and Corollary 6.12 implies that α is mixing. Since
((−1 + i

√−3)/2, (−1− i
√−3)/2) ∈ VC(a)∩ S2, α is not expansive by Theorem

6.5 (4). Moreover, VC(a)∩Ω(3Z2) �= ∅, so that Fix3Z2(α) is infinite by Theorem
6.5 (3). note that Fix3Z2(α) consists of all points

· · · · · ·
· a b c a ·
· a+2b+c a+b+2c 2a+b+c a+2b+c ·
· −a−b −b−c −a−c −a−b ·
· a b c a ·· · · · · ·

with a, b, c ∈ T and 3a + 3b + 3c = 0 (mod 1). In particular, the connected
component of the identity Fix3Z2(α)◦ ⊂ Fix3Z2(α) is isomorphic to T2.

(2) Let a = (2 + u1 + u2) ⊂ R2. The action α is ergodic, mixing, non-
expansive, and (−1,−1) ∈ VC(a)∩Ω(2Z2) �= ∅. The points in Fix2Z2(α) are of
the form

· · · · ·
· a b a ·
· −2a−b −a−2b −2a−b ·
· a b a ·· · · · ·

with 4a + 4b = 1 (mod 1), and Fix2Z2(α)◦ is isomorphic to T.



58 II. Zd-ACTIONS ON COMPACT ABELIAN GROUPS

(3) Let a = (2 − u1 − u2) ⊂ R2. Then α is again ergodic, mixing, and
non-expansive. Since (1, 1) ∈ VC(a), α has uncountably many fixed points, and
hence FixΛ(α) is uncountable for every subgroup Λ ⊂ Zd.

(4) If a = (3 + u1 + u2) ⊂ R2, then α is ergodic, mixing, expansive, and
the expansiveness of α implies directly that FixΛ(α) is finite for every subgroup
Λ ⊂ Zd of finite index.

(5) In Example 5.3 (5) we considered the ideal a = (2, 1 + u1 + u2) ⊂
R2. Then VC(a) = ∅, and Theorem 6.5 (4) re-establishes the fact that α is
expansive. Since the polynomial 1 + u1 + u2 is prime in R

(2)
2 = Z/2[u±1

1 , u±2
2 ],

the ideal a is prime, and as in Corollary 6.12 we see that α is mixing (since every
prime polynomial in Z/2[u] divides a polynomial of the form ul − 1 for some
l ≥ 1, (the analogue of) Corollary 6.12 reduces to checking that 1 + u1 + u2 ∈
R

(2)
2 is not a polynomial in the single variable un for some 0 �= n ∈ Z2).

(6) Let a = (4, 1 + u1 − u2 + 2u2
2 + u1u2) ⊂ R2. Since every prime ideal

p associated with M = Rd/a must contain both the polynomial 1 + u1 − u2 +
2u2

2 +u1u2 and the constant 2, the prime ideals associated with M are given by
p1 = (2, 1− u1) and p2 = (2, 1− u2). In particular, α is ergodic and expansive,
but not mixing: the automorphisms α(1,0) and α(0,1) are non-ergodic, whereas
α(1,1) is ergodic.

(7) Let a = (6 − 2u1, 2 − 3u1 − 5u2
2). The prime ideals associated with

M = R2/a are given by p1 = (3−u1, 7+5u2
2), p2 = (3, 1+u2), p3 = (3, 1−u2),

and the Z2-action α is ergodic and expansive, but non-mixing. In this example
α(0,1) is non-ergodic (because of p3), but α(1,0) is ergodic.

(8) If a = (1 +u1 + u2
1, 1−u2) then α is non-ergodic, since a is prime and

contains {u3n − 1 : n ∈ Z2}. �
Concluding Remarks 6.19. (1) Most of the material in this section is

taken from [94]. For Example 6.17 (2) we refer to [71].
(2) If d ≥ 2, Corollary 6.10 is incorrect without the assumption that

(X,α) satisfies the d.c.c.: indeed, let, for every n ∈ Zd, Nn = Rd/(un − 1).
Then Nn is an Rd-module, and the Zd-action αNn is ergodic by Corollary 6.11.
We denote by M =

∑
n∈Zd Nn the direct sum of the modules Nn, n ∈ Zd, and

write a typical element a ∈M as a = (an) with an ∈ Nn for every n ∈ Zd. The
Zd-action α = αM arising from the Rd-module M via Lemma 5.1 is ergodic
by Lemma 1.2. However, αn is non-ergodic for every n ∈ Zd: if n = 0, this
assertion is obvious, and if n �= 0, then the non-zero element a(n) ∈M defined
by

a(n)m =

{
1 for m = n
0 for m �= n

satisfies that una(n) = a(n), and hence αn is non-ergodic by Lemma 1.2 (ap-
plied to the Z-action k �→ αkn).
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(3) Let M be a countable Rd-module, and define (XM, αM) by Lemma
5.1. For every f =

∑
n∈Zd cf (n) ∈ Rd we define a group homomorphism

αM
f =

∑
n∈Zd

cf (n)αM
n : XM �−→ XM (6.14)

by setting

αM
f (x) =

∑
n∈Zd

cf (n)αM
n (x)

for every x ∈ XM, and note that αM
f commutes with αM (i.e. αM

f · αM
n =

αM
n · αM

f for every n ∈ Zd), and that αM
f is dual to the homomorphism

fM : M �−→M (6.15)

consisting of multiplication by f . In particular, αM
f is surjective if and only if

fM is injective, i.e. if and only if f does not lie in any prime ideal associated
with M (cf. (6.4)). If M = Rd/a for some ideal a ⊂ Rd, then (5.9) shows that

XRd/a = {x ∈ TZd

= XRd : αRd

f (x) = 0X for every f ∈ a}, (6.16)

and every α-commuting homomorphism ψ : XM �−→ XM is of the form ψ =
αM

f for some f ∈ Rd: indeed, if ψ̂ : Rd/a �−→ Rd/a is the homomorphism dual

to ψ, then ψ̂(1) = f + a for some f ∈ Rd, and ψ = α
Rd/a
f . For every ideal

a ⊂ Rd we set a⊥ = XRd/a = R̂d/a ⊂ R̂d = TZd

, and observe that αRd/a is
the restriction of the shift-action σ of Zd on TZd

to a⊥. For every f ∈ Rd the
sequence

0 −→ (a + (f))⊥ −→ a⊥
α

Rd
f−−−→ b⊥ −→ 0, (6.17)

is exact, where

b = {g ∈ Rd : fg ∈ a}. (6.18)

In particular, α
Rd/a
f : a⊥ �−→ a⊥ is surjective if and only if a = b.

(4) Let p > 1 be a rational prime, and let α be a Zd-action by automorph-
isms of a compact, abelian group X with the property that px = 0 for every
x ∈ X. If M = X̂ is the Rd-module arising from lemma 5.1, then pa = 0 for
every a ∈M, so that M may be viewed as an R

(p)
d -module. Conversely, suppose

that N is a countable R
(p)
d -module. Exactly as in (5.1)–(5.6) we can define a

Zd-action α = αN on the dual group X = XN = N̂ of N. Since pa = 0 for every
a ∈ N, the group X is totally disconnected, and xp = 1X for every x ∈ X.
Since R

(p)
d is a quotient ring of Rd, N is also an Rd-module, and we write N′

instead of N if we wish to emphasize that N is viewed as an Rd-module. If N is
Noetherian (either as an Rd-module or as an R

(p)
d -module—the two conditions
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are obviously equivalent), then we can realize (XN, αN) = (XN′
, αN′

) as the
shift-action σ of Zd on a closed, shift-invariant subgroup X ⊂ (Tk)Zd

for some
k ≥ 1 (Example 5.2 (3)–(4)). Since px = 0X for every x ∈ X, we know that
xn ∈ (Fp)k for every n ∈ Zd, where Fp = {k

p
: k = 0, . . . , p − 1} ⊂ T, and

the obvious identification of Fp with the prime field Fp allows us to regard X

(and hence XN) as a closed, shift-invariant subgroup of (Fk
p)Zd

, and αN as the
shift-action on X.

In particular, if a ⊂ R
(p)
d is an ideal, and if N = R

(p)
d /a, then we may

regard αN = αR
(p)
d

/a as the shift-action of Zd on the subgroup

XR
(p)
d

/a =
{

x = (xm) ∈ FZd

p :
∑
n∈Zd

cf (n)xm+n = 0Fp

for all f ∈ a, m ∈ Zd

}
(6.19)

of FZd

p . Conversely, if X ⊂ FZd

p is a closed, shift-invariant subgroup, then

X⊥ = a ⊂ R
(p)
d
∼= F̂Zd

p (6.20)

is an ideal, X ∼= XR
(p)
d

/a, and the isomorphism between X and XR
(p)
d

/a carries
the shift-action σ of Zd on X to αR

(p)
d

/a.
Every prime ideal p ⊂ R

(p)
d associated with an R

(p)
d -module N defines

a prime ideal p′ = {f ∈ Rd : f/p ∈ p} ⊂ Rd, and p′ varies over the set
of prime ideals in Rd associated with N′ as p varies over the prime ideals in
R

(p)
d associated with N. As we have seen in Example 6.18 (5), the dynamical

properties of αN′
expressed in terms of the associated primes p′ ⊂ Rd of N′

have an analogous expression in terms of the prime ideals p ⊂ R
(p)
d associated

with N. In particular, α = αN = αN′
is non-ergodic if and only if V (p) is finite

for some prime ideal p ⊂ R
(p)
d associated with N, and α is mixing if and only

if no prime ideal p ⊂ R
(p)
d associated with N contains a polynomial in a single

variable un, 0 �= n ∈ Zd. Furthermore, if N is Noetherian, then FixΛ(α) is
finite for every subgroup Λ ⊂ Zd of finite index, and α is expansive.

The algebraic advantage in viewing an Rd-module M with pa = 0 for all
a ∈M as an R

(p)
d -module is that R

(p)
d is a ring of polynomials with coefficients

in the field Fp, which simplifies the ideal structure of R
(p)
d when compared

with that of Rd. As far as the dynamics are concerned there is, of course, no
difference between viewing M as a module over either of the rings Rd or R

(p)
d .

7. The dynamical system defined by a point

The results in Section 6 show that many questions about Zd-actions by
automorphisms of compact, abelian groups can be reduced to questions about
Zd-actions of the form αRd/p, where p ⊂ Rd is a prime ideal. In this section
we consider prime ideals of the form p = jc = {f ∈ Rd : f(c) = 0} with c =
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(c1, . . . , cd) ∈ (Q
×

)d. The groups XRd/jc arising from these ideals via Lemma
5.1 turn out to be connected and finite-dimensional (i.e. finite-dimensional tori
or solenoids); conversely, if p ⊂ Rd is a prime ideal such that XRd/p is connected
and finite-dimensional, then p = jc for some c ∈ (Q

×
)d (Corollary 7.4).

Let K be an algebraic number field, i.e. a finite extension of Q. A valuation
of K is a homomorphism φ : K �−→ R+ with the property that φ(a) = 0 if and
only if a = 0, φ(ab) = φ(a)φ(b), and φ(a+b) ≤ c·max{φ(a), φ(b)} for all a, b ∈ K
and some c ∈ R with c ≥ 1. The valuation φ is non-trivial if φ(K) � {0, 1},
non-archimedean if φ is non-trivial and we can set c = 1, and archimedean
otherwise. Two valuations φ, ψ of K are equivalent if there exists an s > 0 with
φ(a) = ψ(a)s for all a ∈ K. An equivalence class v of non-trivial valuations of K
is called a place of K, and v is finite if v contains a non-archimedean valuation,
and infinite otherwise. If v is finite, all valuations φ ∈ v are non-archimedean.

Let v be a place of K, and let φ ∈ v be a valuation. A sequence (an, n ≥ 1)
is Cauchy with respect to φ if there exists, for every ε > 0, an integer N ≥ 1
such that φ(am − an) < ε whenever m,n ≥ N . It is clear that this definition
does not depend on the valuation φ ∈ v, so that we may call (an) a Cauchy
sequence for v. Two Cauchy sequences (an) and (bn) for v are equivalent if
limn→∞ φ(an − bn) = 0, and this notion of equivalence again only depends on
v and not on φ. With respect to the obvious operations the set of equivalence
classes of Cauchy sequences for v is a field, denoted by Kv , which contains K
as a dense subfield (every a ∈ K is identified with the equivalence class of the
constant Cauchy sequence (a, a, a, . . . ) in Kv). The field Kv is the completion
of K in the v-adic topology.

Ostrowski’s Theorem (Theorem 2.2.1 in [16]) states that every non-trivial
valuation φ of Q is either equivalent to the absolute value (i.e. there exists a
t > 0 with φ(a)t = |a| for every a ∈ Q), or to the p-adic valuation for some
rational prime p ≥ 2 (i.e. there exists a t > 0 such that φ(m

n
)t = p(n′−m′) = |m

n
|p

for all m
n
∈ Q, where m = pm′

m′′, n = pn′
n′′, and neither m′′ nor n′′ are

divisible by p). It is easy to see that the valuations | · |∞, | · |p, | · |q are mutually
inequivalent whenever p, q are distinct rational primes, i.e. that the places of
Q are indexed by the set Π ∪ {∞}, where Π ⊂ N denotes the set of rational
primes. The completion Q∞ of Q is equal to R, and for every rational prime p
the completion Qp of Q is the field of p-adic rationals.

For every valuation φ of K, the restriction of φ to Q ⊂ K is a valuation of
Q and is equivalent either to | · |∞ or to | · |p for some rational prime p. In the
first case the place v � φ is infinite (or lies above ∞), and in the second case
v lies above p (or p lies below v). We denote by w the place of Q below v and
observe that Kv is a finite-dimensional vector space over the locally compact,
metrizable field Qw and hence locally compact and metrizable in its own right.
Choose a Haar measure λv on Kv (with respect to addition), fix a compact
set C ⊂ Kv with non-empty interior, and write modKv(a) = λv(aC)/λv(C) for
the module of an element a ∈ Kv. The map modKv : K �−→ R+ is continuous,



62 II. Zd-ACTIONS ON COMPACT ABELIAN GROUPS

independent of the choice of λv, and its restriction to K is a valuation in v
which is denoted by | · |v .

Above every place v of Q there are at least one and at most finitely many
places of K. Indeed, if K = Q(a1, . . . , an) with {a1, . . . , an} ⊂ Q, and if f
is the minimal polynomial of a1 over Q, then f is irreducible over Q, but f
may be reducible over Qv; we write f = f1 · . . . · fk for the decomposition
of f into irreducible factors over Qv and consider the field Qv[x]/(fi), where
(fi) denotes the principal ideal in the ring Qv[x] generated by fi. We define
an injective field homomorphism ζ : K(1) = Qv(a1) �−→ Qv[x]/(fi) by setting
ζ(a1) = x and ζ(b) = b for every b ∈ Qv and put φi(a) = modQv [x]/(fi)(ζ(a)) for
every a ∈ K(1). Then φi is a valuation of K(1) whose place wi lies above v. The
places w1, . . . , wk are all distinct, and they are the only places of K(1) above v
(Theorem III.1 in [109]). In exactly the same way we find finitely many places
of K(2) = K(1)(a2) = Q(a1, a2) above each place of K(1), and after n steps we
obtain that there are at least one and at most finitely many places of K above
each place of Q. A place v of K is infinite if and only it lies above ∞; in this
case v is either real (if Kv = R) or complex (if Kv = C).

We write PK, PK
f , and PK

∞, for the sets of places, finite places, and infinite
places of K. For every v ∈ PK, Rv = {r ∈ Kv : |r|v ≤ 1} is a compact subset
of Kv. If v ∈ PK

f , then Rv is, in addition, open, and is the unique maximal
compact subring of Kv; furthermore there exists a prime element πv ∈ Rv

such that πvRv is the unique maximal ideal of Rv. For every v ∈ PK
f we set

ov = K ∩ Rv, and we note that oK =
⋂

v∈P K
f

ov is the ring of integral elements
in K (Theorem V.1 in [109]). The set

KA =
{

ω= (ωv, v ∈ PK) ∈
∏

v∈P K

Kv :

|ωv|v ≤ 1 for all but finitely many v ∈ PK

}
,

(7.1)

furnished with that topology in which the subgroup{
ω = (ωv, v ∈ PK) ∈ KA : |ωv|v ≤ 1 for every v ∈ PK

f

}
∼=
∏

v∈P K∞

Kv ×
∏

v∈P K
f

Rv

carries the product topology and is open in KA, is the locally compact adele
ring of K. The diagonal embedding i : ξ �→ (ξ, ξ, . . . ) of K in AK maps K to a
discrete, co-compact subring of KA (cf. [16], [109]).

We fix a non-trivial character χ ∈ i(K)⊥ ⊂ K̂A and define, for every a ∈ K,
a character χa ∈ i(K)⊥ ⊂ K̂A by setting

χa(ω) = χ(i(a)ω)
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for every ω ∈ KA. By [16] or [109], the map a �→ χa is an isomorphism of the
discrete, additive group K onto i(K)⊥ ⊂ K̂A. The resulting identification

K̂ ∼= KA/i(K) (7.2)

depends, of course, on the chosen character χ. In order to make the isomorphism
(7.2) a little more canonical we consider, for every w ∈ PK, the subgroup

Ω({w})′ = {ω = (ωv) ∈ KA : ωv = 0 for every v �= w} ∼= Kw

of KA and denote by χ(w) ∈ K̂w the character induced by the restriction of χ
to Ω({w})′. After replacing χ by a suitable χa, a ∈ K, if necessary, we may
assume that the induced characters χ(w) ∈ K̂w, w ∈ PK

f , satisfy that

Rw ⊂ ker(χ(w)) = {ω ∈ Aw : χ(w)(ω) = 1},
π−1

w Rw �⊂ ker(χ(w))
(7.3)

for every w ∈ PK
f , where πw ∈ Rw is the prime element appearing in the

preceding paragraph (cf. [109]). With this choice of χ we have that

χ ∈ (i(K) + Ω(PK
f )′
)⊥

,

where

Ω(PK
f )′ = {ω = (ωv) ∈ KA : ωv = 0 for every v ∈ PK

∞ = PK � PK
f }.

Now consider a finite subset F ⊂ PK which contains PK
∞, denote by

iF : K �−→
∏
v∈F

Kv (7.4)

the diagonal embedding r �→ (r, . . . , r), r ∈ K, put

RF = {a ∈ K : |a|v ≤ 1 for every v /∈ F}, (7.5)

and observe that iF (RF ) is a discrete, additive subgroup of
∏

v∈F Kv. If

Ω = Ω(F ) = {ω = (ωv) ∈ KA : |ωv|v ≤ 1 for every v ∈ PK � F},
Ω′ = Ω(PK � F )′ = {ω = (ωv) ∈ KA : ωv = 0 for every v ∈ F},

Ω′′ = Ω ∩ Ω′,

then i(K) + Ω′′ = i(K) + Ω′, and (7.3) implies that χ ∈ (i(K) + Ω′′)⊥ =
(i(K) + Ω′)⊥ and

RF = {a ∈ K : χa ∈ (i(K) + Ω′)⊥}.
Hence

R̂F = KA/(i(K) + Ω′) ∼=
(∏

v∈F

Kv

) /
iF (RF ). (7.6)



64 II. Zd-ACTIONS ON COMPACT ABELIAN GROUPS

Let d ≥ 1, c = (c1, . . . , cd) ∈ (Q
×

)d, and jc = {f ∈ Rd : f(c) = 0}. We
wish to investigate the dynamical system (X,α) = (XRd/jc , αRd/jc) determined
by c. Denote by K = Q(c) the algebraic number field generated by {c1, . . . , cd}
and put

F (c) = {v ∈ PK
f : |ci|v �= 1 for some i ∈ {1, . . . , d}}, (7.7)

which is finite by Theorem III.3 in [109], and

Rc = RP (c), (7.8)

where P (c) = PK∞ ∪ F (c). Then Rc is an Rd-module under the action (f, a) �→
f(c)a, and we define the Zd-action

α(c) = αRc (7.9)

on the compact group

Y (c) = R̂c =
( ∏

v∈P (c)

Kv

) /
iF (Rc) (7.10)

by (5.5)–(5.6), where we use (7.6) to identify R̂c and
(∏

v∈P (c) Kv

) /
iF (Rc).

Theorem 7.1. There exists a continuous, surjective, finite-to-one homo-
morphism φ : Y (c) �−→ XRd/jc such that the diagram

Y (c) α
(c)
m−−−−→ Y (c)

φ

⏐⏐� ⏐⏐�φ

XRd/jc −−−−→
α

Rd/jc
m

XRd/jc

(7.11)

commutes for every m ∈ Zd.

Proof. The evaluation map ηc : f �→ f(c) induces an isomorphism η of the
Rd-module Rd/jc with the submodule ηc(Rd) ⊂ Rc ⊂ K; in particular

η(α̂Rd/jc
m (a)) = α̂ηc(Rd)

m (η(a)) = α̂Rc
m (η(a)) (7.12)

for every a ∈ Rd/jc and m ∈ Zd.
We claim that Rc/ηc(Rd) is finite. Indeed, since K = Q(c) is algebraic,

every a ∈ K can be written as a = b/m with b ∈ Z[c] = Z[c1, . . . , cd] and m ≥ 1.
In particular, since the ring of integers o(c) = oK ⊂ K is a finitely generated
Z-module, there exist positive integers m0,M0 with m0o(c) ⊂ Z[c] ⊂ ηc(Rd)
and |Ic/ηc(Rd)| ≤ |o(c)/m0o(c)| = M0 <∞.

According to the definition of F (c) there exists, for every v ∈ F (c), an
element av ∈ ηc(Rd) such that |av |v > 1 and |av|w = 1 for all w ∈ PK

f � F (c).

Then |an
v o(c)/ηc(Rd)| ≤ M0 and |(∑v∈F (c) an

v o(c))/ηc(Rd)| ≤ M
|F (c)|
0 for all
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n > 0. As n → ∞,
∑

v∈F (c) an
v o(c) increases to Rc, and we conclude that

|Rc/ηc(Rd)| ≤M
|F (c)|
0 <∞.

The inclusion map Rd/jc ∼= ηc(Rd) ↪→ Rc induces a dual, surjective,
finite-to-one homomorphism φ : Y (c) �−→ X = R̂d/jc, and the diagram (7.11)
commutes by (7.12). �

This comparison between Rc and ηc(Rd) shows that the Zd-actions α(c)

and αRd/jc are closely related. The group Rc can be determined much more
easily than ηc(Rd) and has other advantages, e.g. for the computation of en-
tropy in Section 7; on the other hand Rc may not be a cyclic Rd-module, in
contrast to ηc(Rd) ∼= Rd/jc. Since Rc is torsion-free (as an additive group),
Y (c) and XRd/jc are both connected.

Proposition 7.2. Let d ≥ 1, c = (c1, . . . , cd) ∈ (Q
×

)d, and let (XRd/jc ,
αRd/jc) and (Y (c), α(c)) be defined as in Theorem 7.1.

(1) For every m ∈ Zd, the following conditions are equivalent.
(a) α

(c)
m is ergodic;

(b) α
Rd/jc
m is ergodic;

(c) cm is not a root of unity.
(2) The following conditions are equivalent.

(a) α(c) is ergodic;
(b) αRd/jc is ergodic;
(c) At least one coordinate of c is not a root of unity.

(3) The following conditions are equivalent.
(a) α(c) is mixing;
(b) αRd/jc is mixing;
(c) cm �= 1 for all non-zero m ∈ Zd.

(4) If α(c) is ergodic then the groups FixΛ(α(c)) and FixΛ(αRd/jc) are finite
for every subgroup Λ ⊂ Zd with finite index.

(5) The following conditions are equivalent.
(a) α(c) is expansive;
(b) αRd/jc is expansive;
(c) The orbit of c under the diagonal action of the Galois group

Gal[Q : Q] on (Q
×

)d does not intersect Sd.

Proof. The Rd-modules Rc and Rd/jc are both associated with the prime
ideal jc, VC(jc) = Gal[Q : Q](c), and all assertions follow from Theorem 6.5. �

Proposition 7.3. Let N(c) be the cardinality of the orbit Gal[Q : Q](c)
of c under the Galois group. Then Y (c) ∼= TN(c) if and only if ci is an algebraic
unit for every i = 1, . . . , d (i.e. ci and c−1

i are integral in Q(c) for i = 1, . . . , d).
If at least one of the coordinates of c is not a unit, then Y (c) is a projective
limit of copies of TN(c).
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Proof. We use the notation established in (7.1)–(7.8). The number N(c)
is equal to the degree [Q(c) : Q]. If NR(c) and NC(c) are the numbers of real
and complex (infinite) places of Q(c) then N(c) = NR(c) + 2NC(c), and the
connected component of the identity in

∏
v∈P (c) Kv is isomorphic to RN(c). The

condition that every coordinate of c be a unit is equivalent to the assumption
that F (c) = ∅; in this case Y (c) is isomorphic to the quotient of RN(c) by the
discrete, co-compact subgroup iP (c)(Rc), i.e. Y (c) ∼= TN(c). If F (c) �= ∅ then
Y (c) is isomorphic to the quotient of RN(c)×∏v∈F (c) Kv by iP (c)(Rc). In order
to prove the assertion about the projective limit we choose, for every v ∈ F (c),
a prime element pv ∈ Kv (i.e. an element with pvRv = {a ∈ Kv : |a|v < 1}), and
set Δn = iP (c)(Rc)+

∏
v∈F (c) pn

v R̄v for every n ≥ 1. Then
⋂

n≥1 Δn = iP (c)(Rc),
and Y (c) is the projective limit of the groups Yn = Y (c)/Δn

∼= TN(c), n ≥ 1,
where the last isomorphism is established by meditation. �

If X is a compact, connected, abelian group with dual group X̂, then X̂
is torsion-free, and the map a �→ 1⊗ a from X̂ into the tensor product Q⊗Z X̂
is therefore injective. We denote by dim X the dimension of the vector space
Q ⊗Z X̂ over Q and note that this definition of dimX is consistent with the
usual topological dimension of X: in particular, 0 < dimY (c) = N(c) < ∞
in Proposition 7.3. With this terminology we obtain the following corollary of
Theorem 7.1 and Proposition 7.3.

Corollary 7.4. Let p ⊂ Rd be a prime ideal, and let (XRd/p, αRd/p) be
defined as in Lemma 5.1. The following conditions are equivalent.

(1) XRd/p is a connected, finite-dimensional, abelian group;
(2) p = jc for some c ∈ (Q

×
)d.

Furthermore, if α is an ergodic Zd-action by automorphisms of a compact,
connected, finite-dimensional abelian group X, then the Rd-module M = X̂
has only finitely many associated prime ideals, each of which is of the form
p = jc for some c ∈ (Q

×
)d.

Proof. The implication (2)⇒(1) is clear from Theorem 7.1, Proposition 7.3,
and the definition of dimX. Conversely, if p ⊂ Rd is a prime ideal such that
XRd/p = R̂d/p is connected, then p does not contain any non-zero constants,
and the map a �→ 1 ⊗ a from Rd/p into the tensor product Q ⊗Z (Rd/p) is
injective. This allows us to regard Rd/p as a subring of Q ⊗Z (Rd/p). The
variety V (p) is non-empty by Proposition 6.9, and is finite if and only if each
of the elements ui +p ∈ Q⊗Z (Rd/p), i = 1, . . . , d, is algebraic over the subring
Q ⊂ Q⊗Z (Rd/p). In particular, if V (p) is finite, then p = jc for every c ∈ V (p),
which implies (2). If V (p) is infinite, then at least one of the elements uj + p
is transcendental over Q ⊂ Q ⊗Z (Rd/p), and the powers uk

j + p, k ∈ Z, are
rationally independent. This is easily seen to imply that dim XRd/p =∞.

In order to prove the last assertion we assume that p ⊂ Rd is a prime
ideal associated with M. Then XRd/p is (isomorphic to) a quotient group of
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X, hence connected and finite-dimensional, and Proposition 6.9 and the first
part of this corollary together imply that p = jc for some c ∈ (Q

×
)d. If M

has infinitely many distinct associated prime ideals {jc(1) , jc(2) , . . . }, then we
can find, for every i ≥ 1, an element ai ∈ M with Rd · ai

∼= Rd/jc(i) . If
b ∈ (∑j−1

i=1 Rd·ai

)∩Rd·aj �= {0} for some j > 1, then the submodule Rd·b ⊂M
has an associated prime ideal j which strictly contains jc(j) ; in particular, j must
contain a non-zero constant, in violation of the fact that every prime ideal p
associated with Rd · b (and hence with M) must satisfy that VC(p) �= ∅. It
follows that M has a submodule isomorphic to Rd/jc(1) ⊕Rd/jc(2) ⊕ · · · , and
hence that dim X = ∞. This contradiction proves that there are only finitely
many distinct prime ideals associated with M. �

Example 7.5. If α is a Zd-action by automorphisms of a compact, con-
nected, finite-dimensional, abelian group, then the Rd-module M = X̂ need
not be Noetherian (cf. Corollary 7.4): if α is the automorphism of X = Q̂
in Example 5.6 (1) consisting of multiplication by 3

2
, then dim(X) = 1, but

M = X̂ = Q is not Noetherian (cf. Example 6.17 (2). �

The following Examples 7.6 show that the Zd-actions α(c) and αR/jc may
be, but need not be, topologically conjugate.

Examples 7.6. (1) If c = 2 then F (c) = {2}, Rc = Z[12 ], and we claim
that the automorphism α

(c)
1 on Y (c) = R̂c = (R×Q2)/iF (c)(Z[12 ]), which is mul-

tiplication by 2, is conjugate to the shift α
R1/(2−u1)
1 on the group XR1/(2−u1)

described in Example 5.3 (3). In order to verify this we note that there exists,
for every (s, t) ∈ R × Q2, a unique element r ∈ Z[1

2
] with r + s ∈ [0, 1) and

r + t ∈ Z2. This allows us to identify Y (c) = Ẑ[12 ] with (R× Z2)/iF (c)(Z). An
element a = k

2l ∈ Z[12 ] defines a character on Y (c) = (R × Z2)/iF (c)(Z) by
〈a, (s, t) + iF (c)(Z)〉 = e2πi(Int(as)+Frac(at)) for every s ∈ R and t ∈ Z2, where
Int(as) is the integral part of as ∈ R and Frac(at) ∈ [0, 1) is the (well-defined)
fractional part of at ∈ Q2. Consider the homomorphism φ : Y (c) �−→ TZ de-
fined by e2πi(φ(y))m = 〈2m, y〉 for every y ∈ Y (c) and m ∈ Z. Then φ is injective,
φ(Y (c)) ⊂ XR1/(2−u1), and it is not difficult to see that φ : Y (c) �−→ XR1/(2−u1)

is a continuous group isomorphism which makes the diagram (7.11) commute.
In particular, if we write a typical element y ∈ Y (c) as y = (s, t)+ iF (c)(Z) with
s ∈ R and t ∈ Z2, then

(φ((0, t) + iF (c)(Z)))m = 0 and (φ((s, 0) + iF (c)(Z)))m = 2ms (mod 1)

for every m ≥ 0.
Proposition 7.2 shows that the automorphism α(c) = αR1/jc is expansive

and hence ergodic.
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(2) If c = 3/2 then F (c) = {2, 3}, Rc = Z[16 ], and we see as in Example
(1) that multiplication by 3

2
on

Y (c) = R̂c = (R×Q2 ×Q3)/iF (c)(Z[16 ]) ∼= (R× Z2 × Z3)/iF (c)(Z)

is conjugate to the shift αR1/Jc on XR1/jc in Example 6.18 (2). The Z-action
α(c) = XR1/jc is expansive and ergodic by Proposition 7.2.

(3) Let c = 2 +
√

5. Then ηc(R1) = {k + l
√

5 : k, l ∈ Z} ∼= Z2, F (c) = ∅,
and Rc is equal to the set o(c) = oQ(c) of integral elements in Q(c). Since
oQ(c) = {k 1+

√
5

2 + l 1−√
5

2 : k, l ∈ Z} (cf. Lemma 10.3.3 in [16]), Rc �= ηc(R1). By
Proposition 7.2, the Z-actions α(c) and αR1/jc are both expansive (and hence
ergodic), but we claim that they are not topologically conjugate. According to
Corollary 5.10 this amounts to showing that Rc and R1/jc are not isomorphic
as R1-modules, and we establish this by showing that Rc is not cyclic. In terms
of the Z-basis { 1+

√
5

2 , 1−√
5

2 } for Rc, multiplication by c is represented by the
matrix A =

(
5 −2
2 −1

)
. If the module Rc is cyclic, then there exists a vector

m = (m1,m2) ∈ Z2 such that {m, Am} = {(m1,m2), (5m1 − 2m2, 2m1 −m2)
generates Z2, and as in Example 5.3 (2) we see that this impossible.

In this example XR1/jc ∼= Y (c) ∼= T2. The matrix A′ = ( 2 5
1 2 ) represents

multiplication by c in terms of the Z-basis {1,√5} of ηc(R1), and the matrices A
and A′ define non-conjugate automorphisms of T2 with identical characteristic
polynomials (cf. Example 5.3 (2)).

(4) Let c = 1+
√

5
2

. Then ηc(R1) = o(Q(c)) = Rc, and the Z-actions
α(c) and αR1/jc are algebraically conjugate. However, a little care is needed
in identifying R̂c with Y (c) in (7.10). The set P (c) = P

Q(c)
∞ consists of the

two real places determined by the embeddings
√

5 �→ √
5 and

√
5 �→ −√5

of Q(c) = Q(
√

5) in R, so that Y (c) = R2/iP (c)(Rc) with iP (c)(Rc) = {(k +
l 1+

√
5

2 , k+ l 1−√
5

2 ) : (k, l) ∈ Z2} ⊂ R2. Under the usual identification of R̂2 with
R2 given by 〈(t1, t2), (s1, s2)〉 = e2πi(s1t1+s2t2) for every (s1, s2), (t1, t2) ∈ R2,
the annihilator iP (c)(Rc)⊥ ⊂ R̂2 = R2 is of the form iP (c)(Rc)⊥ = 1√

5
·iP (c)(Rc),

and

Ŷ (c) = iP (c)(Rc)⊥ =
1√
5
· iP (c)(Rc) = iP (c)

(
1√
5
·Rc

)
∼= 1√

5
·Rc

∼= Rc.

(5) Let ω = (−1 +
√−3)/2 and c = 1 + 3ω ∈ Q. Then K = Q(ω) and

F (c) = {7}. We claim that Rc �= ηc(R1). Indeed, since the minimal polynomial
f(u) = u2 +u+1 of ω is irreducible over the field Q3 of triadic rationals, there
exists a unique place v of K above 3, and Kv = Q3(ω). Let Rv = {a ∈ Kv :
|a|v ≤ 1} and ov = K ∩ Rv. As |3|v = 1/9, every a ∈ S = Z + 3ov ⊂ ov with
|a|v < 1 satisfies that |a|v ≤ 3−2. In particular, ζ = 1 − ω ∈ ov � S, since
ζ2 = (1−ω)2 = −3ω and hence |ζ|v = 1/3 (cf. p.139 in [16]). Since ηc(R1) ⊂ S
and ζ ∈ o(c) ⊂ Rc we conclude that ζ ∈ Rc � ηc(R1) �= ∅.
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In order to verify that ηc(R1) ∼= R1/jc and Rc are non-isomorphic we take
an arbitrary, non-zero element a ∈ Rc and note that

{|b|v : b ∈ ηc(R1) · a} = {|f(c)|v |a|v : f ∈ R1} ⊂ {|a|v |b|v : b ∈ S}
� {3−n : n ≥ 0} = {|b|v : b ∈ Rc}.

Hence Rc is not cyclic, in contrast to R1/jc. Corollary 5.10 shows that the
Zd-actions α(c) and αR1/jc are not topologically conjugate. In this example the
isomorphic groups Y (c) and XR1/jc are projective limits of two-dimensional
tori, and the automorphisms α(c) and αR1/jc are expansive (and ergodic) by
Proposition 7.2. �

Examples 7.7. (1) Let c = (2, 3) ⊂ (Q
×

)2. Then jc = (u1 − 2, u2 − 3) ⊂
R2, F (c) = {2, 3}, Rc = Z[16 ], and as in Example 7.6 (1) one sees that the
Z2-action α(c) on Y (c) is conjugate to shift-action αR2/jc on the group XR2/jc

appearing in in Example 5.3 (4). Note that αR2/jc is expansive and mixing;
in fact, α

R2/jc
n is expansive for every non-zero n ∈ Z2 (Proposition 7.2). The

group Y (c) = (R×Q2 ×Q3)/iF (c)(Z[16 ]) ∼= (R× Z2 × Z3)/iF (c)(Z) is the same
as in Example 7.6 (2), but XR2/jc is now a closed, shift-invariant subgroup
of TZ2

. In order to describe an explicit isomorphism φ : Y (c) �−→ XR2/jc we
proceed as in Example 7.6 (1): identify Y (c) with (R × Z2 × Z3)/iF (c)(Z),
and write the character of Y (c) defined by an element a = j

2k3l ∈ Z[16 ] as
〈a, (r, s, t)+iF (c)(Z)〉 = e2πi(Int(ar)+Frac(as)+Frac(at)) for every r ∈ R, s ∈ Z2 and
t ∈ Z3. If φ : Y (c) �−→ TZ2

is the map given by e2πi(φ(y))(n1,n2) = 〈2n13n2 , y〉
for every y ∈ Y and (n1, n2) ∈ Z2, then φ is injective, φ(Y (c)) = XR2/jc , and φ
makes the diagram (7.11) commute.

(2) Let K ⊃ Q be an algebraic number field. We denote by oK ⊂ K the
ring of integers and write UK ⊂ oK for the group of units (i.e. UK = {a ∈
oK : a−1 ∈ oK}). By Theorem 10.8.1 in [16], UK is isomorphic to the cartesian
product F × Zr+s−1, where F is a finite, cyclic group consisting of all roots of
unity in K and r and s are the numbers of real and complex places of K. We
set d = r + s − 1, choose generators c1, . . . , cd ∈ UK such that every a ∈ UK

can be written as a = uck1
1 · . . . · ckd

d with u ∈ F and k1, . . . , kd ∈ Z, and set
c = (c1, . . . , cd). Then XRd/jc ∼= Y (c) ∼= Tr+2s, and the Zd-actions αRd/jc and
α(c) are mixing by Proposition 7.2.

(3) Let d ≥ 1, and let a ⊂ Rd be an ideal with V (a) �= ∅ (or, equivalently,
with VC(a) �= ∅). For every c ∈ V (a) the evaluation map ηc : f �→ f(c) from
Rd/a to Q(c) induces a dual, injective embedding of XRd/jc in XRd/a, so that
we may regard XRd/jc as a subgroup of XRd/a; in this picture αRd/jc is the
restriction of αRd/a to XRd/jc . In fact, if a is radical, i.e. if a =

√
a = {f ∈ Rd :

fk ∈ a for some k ≥ 1}, then a = {f ∈ Rd : f(c) = 0 for every c ∈ V (a)},
and the group generated by XRd/jc , c ∈ VC(a), is dense in XRd/a. In general,
αRd/a is expansive if and only if αRd/jc is expansive for every c ∈ V (a), but
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αRd/a may be mixing in spite of αRd/jc being non-ergodic for some c ∈ V (a):
take, for example, d = 2, a = (1+u1+u2) ⊂ R2, and c = ((−1+i

√−3)/2, (−1−
i
√−3)/2) ∈ V (a) (Theorem 6.5, Proposition 7.2, and Example 6.18 (1)). �

Concluding Remark 7.8. Theorem 7.1, Proposition 7.2, and Example
7.6 (5) are taken from [94], and Example 7.6 (4) was pointed out to me by
Jenkner. The possible difference between α(c) and αRd/jc for c ∈ (Q

×
)d allows

the construction of analogues to Williams’ Example 5.3 (2) for Zd-actions.

8. The dynamical system defined by a prime ideal

In this section we continue our investigation of the structure of the Zd-
actions αRd/p, where p ⊂ Rd is a prime ideal. For prime ideals of the form
jc, c ∈ (Q

×
)d, the work was done in Section 7, and for p = {0} we already

know that αRd/p is the shift-action of Zd on XRd/p = TZd

. Another case which
can be dealt with easily are the non-ergodic prime ideals (Definition 6.16).

Proposition 8.1. Let p ⊂ Rd be a prime ideal. Then p is non-ergodic if
and only if p is either maximal, or of the form jc for a point c = (c1, . . . , cd) ∈
Q

d
with cl

1 = · · · = cl
d = 1 for some l ≥ 1. Furthermore, if αRd/p is non-ergodic,

then XRd/p is either finite or a finite-dimensional torus, and there exists an
integer L ≥ 1 such that α

Rd/p
Ln = idXRd/p for every n ∈ Zd.

Proof. This is just a re-wording of Theorem 6.5 (1). An ideal p ⊂ Rd is
maximal if and only if Rd/p is a finite field; in particular, the characteristic
p(p) is positive for any maximal ideal p.

Let p ⊂ Rd be a prime ideal such that α = αRd/p is non-ergodic. If
p = p(p) > 0, then Theorem 6.5 (1.e) implies that V (p) ⊂ (F

×
p(p))d is finite

and that p is therefore maximal. In particular, Rd/p ∼= Fpl for some l ≥ 1,
where Fpl is the finite field with pl elements, and α(pl−1)n is the identity map
on XRd/p ∼= Fpl for every n ∈ Zd. Conversely, if p is maximal, then |XRd/p| =
|Rd/p| is finite, and α is therefore non-ergodic.

If p(p) = 0, then Theorem 6.5 (1.e) guarantees the existence of an integer
l ≥ 1 with cl

1 = · · · = cl
d = 1 for every c = (c1, . . . , cl) ∈ V (p) = VC(p), so that

V (p) is finite, and the primality of p allows us to conclude that p = jc for some
c = (c1, . . . , cd) ∈ Q

d
with cl

1 = · · · = cl
d = 1. From the definition of α(c) in

(7.9)–(7.10), Theorem 7.1, and Proposition 7.3, it is clear that XRd/p is a finite-
dimensional torus, and that αln is the identity map on XRd/p for every n ∈ Zd.
Conversely, if p = jc for some c = (c1, . . . , cd) ∈ Q

d
with cl

1 = · · · = cl
d = 1,

then Theorem 6.5 (1.e) shows that α is non-ergodic. �

Next we consider ergodic prime ideals p ⊂ Rd with p(p) > 0. We call a
subgroup Γ ⊂ Zd primitive if Zd/Γ is torsion-free; a non-zero element n ∈ Zd

is primitive if the subgroup {kn : k ∈ Z} ⊂ Zd is primitive. The following
proposition shows that there exists, for every ergodic prime ideal p ⊂ Rd with
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p(p) > 0, a maximal primitive subgroup Γ ⊂ Zd and a finite, abelian group
G such that the restriction αΓ of αRd/p to Γ is topologically and algebraically
conjugate to the shift-action of Γ on GΓ.

Proposition 8.2. Let p ⊂ Rd be an ergodic prime ideal with p = p(p) >
0, and assume that α = αRd/p is the shift-action of Zd on the closed, shift-
invariant subgroup X = XRd/p ⊂ FZd

p defined by (6.19). Then there exists an
integer r = r(p) ∈ {1, . . . , d}, a primitive subgroup Γ = Γ(p) ⊂ Zd, and a finite
set Q = Q(p) ⊂ Zd with the following properties.

(1) Γ ∼= Zr;
(2) 0 ∈ Q, and Q ∩ (Q + m) = ∅ whenever 0 �= m ∈ Γ;
(3) If Γ̄ = Γ+Q = {m+n : m ∈ Γ,n ∈ Q}, then the coordinate projection

πΓ̄ : X �−→ FΓ̄
p , which restricts any point x ∈ X ⊂ FZd

p to its coordinates
in Γ̄, is a continuous group isomorphism; in particular, the Γ-action
αΓ : n �→ αn, n ∈ Γ, is (isomorphic to) the shift-action of Γ on (FQ

p )Γ.

Proof. This is Noether’s normalization lemma in disguise. Consider the
prime ideal p′ = {f/p : f ∈ p} ⊂ R

(p)
d defined in Remark 6.19 (4), and write e(i)

for the i-th unit vector in Zd. We claim that there exists a matrix A ∈ GL(d, Z)
and an integer r, 1 ≤ r ≤ d, such that the elements vi = uAe(i)

+ p′ are
algebraically independent in the ring R = R

(p)
d /p′ for i = 1, . . . , r, and vj =

uAe(j)
+p′ is an algebraic unit over the subring Fp[v±1

1 , . . . , v±1
j−1] ⊂ R for j = r+

1, . . . , d. Indeed, if u′
1 = u1 + p′, . . . , u′

d = ud + p′ are algebraically independent
elements of R, then p′ = {0}, and the assertion holds with r = d, and with
A equal to the d × d identity matrix. Assume therefore (after renumbering
the variables, if necessary) that there exists an irreducible Laurent polynomial
f ∈ p′ of the form f = g0 + g1ud + · · ·+ glu

l
d, where gi ∈ Fp[u±1

1 , . . . , u±1
d−1] and

g0gl �= 0. If the supports of g0 and gl are both singletons, then ud and u−1
d are

both integral over the subring Fp[u′
1
±1

, . . . , u′
d−1

±1] ⊂ R. If the support of either
g0 or gl is not a singleton one can find integers k1, . . . , kd such that substitution
of the variables wi = uiu

ki

d , i = 1, . . . , d−1, in f leads to a Laurent polynomial
g(w1, . . . , wd−1, ud) = ukd

d f(u1, . . . , ud) of the form g = g′0 + g′1ud + · · ·+ g′l′u
l′
d ,

where g′i ∈ Fp[w±1
1 , . . . , w±1

d−1], and where the supports of g′0 and g′l′ are both
singletons. We set

B =

⎛⎜⎝
1 0 ... 0 k1
0 1 ... 0 k2

...
. . .

...
0 0 ... 1 kd−1
0 0 ... 0 1

⎞⎟⎠ ,

w′
i = wi + p′ = uBe(i)

+ p′, i = 1, . . . , d − 1, and note that w′
d and w′

d
−1

are integral over Fp[w′
1
±1, . . . , w′

d−1
±1] ⊂ R. If the elements w′

1, . . . , w
′
d−1 are

algebraically independent in R, then our claim is proved; if not, then we can
apply the same argument to w1, . . . , wd−1 instead of u1, . . . , ud, and iteration



72 II. Zd-ACTIONS ON COMPACT ABELIAN GROUPS

of this procedure leads to a matrix A ∈ GL(d, Z) and an integer r ≥ 0 such
that the elements v′

j = uAe(j)
+ p′ ∈ R satisfy that v′

1, . . . , v
′
r are algebraically

independent, and v′
j and v′

j
−1 are integral over R(j−1) = Fp[v′

1
±1, . . . , v′j−1

±1] ⊂
R for j > r, where R(0) = Fp if r = 0 (in which case R must be finite). From
Theorem 3.2 it is clear that the ergodicity of α implies that r ≥ 1, and this
completes the proof of our claim.

For the remainder of this proof we assume for simplicity that A is the d×d
identity matrix, so that vi = ui for i = 1, . . . , d (this is—in effect—equivalent
to replacing α by the Zd-action α′ : n �→ α′

n = αAn). The argument in the
preceding paragraph gives us, for each j = r + 1, . . . , d, an irreducible polyno-
mial fj(x) =

∑lj
k=0 g

(j)
k xk with coefficients in the ring Fp[u±1

1 , . . . , u±1
j−1] ⊂ Rd

such that hj(uj) = hj(u1, . . . , uj−1, uj) ∈ p′ and the supports of g
(j)
0 and

g
(j)
lj

are singletons. Let Γ ⊂ Zd be the group generated by {e(1), . . . , e(r)},
Q = {0} × · · · × {0} × {0, . . . , lr+1 − 1} × {0, . . . , ld − 1} ⊂ Zd, and let
Γ̄ = Γ + Q = {m + n : m ∈ Γ, n ∈ Q}. We write πΓ̄ : X �−→ FΓ̄

p for the
coordinate projection which restricts every x ∈ X to its coordinates in Γ̄ and
note that πΓ̄ : X �−→ FΓ̄

p is a continuous group isomorphism. In other words,
the restriction of α to the group Γ ∼= Zr is conjugate to the shift-action of Γ
on (FQ

p )Γ. �

If the prime ideal p ⊂ Rd satisfies that p(p) = 0, then the analysis of the
action αRd/p becomes somewhat more complicated. We denote by κ : Q̂ �−→ T
the surjective group homomorphism dual to the inclusion κ̂ : Z �−→ Q. If p ⊂ Rd

is a prime ideal with p(p) = 0 we regard XRd/p as the subgroup (5.9) of TZd

,
and define a closed, shift-invariant subgroup X̄Rd/p ⊂ Q̂Zd

by

X̄Rd/p =
{

x = (xn) ∈ Q̂Zd

:
∑
n∈Zd

cf (n)xm+n = 0
Q̂Zd

for every f ∈ p

}
.

(8.1)

The restriction of the shift-action σ of Zd on Q̂Zd

to X̄Rd/p will be denoted by
ᾱRd/p (cf. (2.1)). Define a continuous, surjective homomorphism κ : Q̂Zd �−→
TZd

by (κ(x))n = κ(xn) for every x = (xm) ∈ Q̂Zd

and n ∈ Zd, and write

κRd/p : X̄Rd/p �−→ XRd/p (8.2)

for the restriction of κ to X̄Rd/p. The map κRd/p is surjective, and the diagram

X̄Rd/p ᾱ
Rd/p
n−−−−→ X̄Rd/p

κ

⏐⏐� ⏐⏐�κ

XRd/p −−−−→
α

Rd/p
n

XRd/p

(8.3)
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commutes for every n ∈ Zd.
In order to explain this construction in terms of the dual modules we

consider the ring R
(Q)
d = Q[u±1

1 , . . . , u±1
d ] = Q⊗Z Rd, regard Rd as the subring

of R
(Q)
d consisting of all polynomials with integral coefficients, and denote by

p(Q) = Q ⊗Z p ⊂ R
(Q)
d the prime ideal in R

(Q)
d corresponding to p. Since

p(p) = 0, every Rd-module N associated with p is embedded injectively in the
R

(Q)
d -module N(Q) = Q⊗Z N by

ı̂N : a �→ 1⊗Z a, a ∈ N, (8.4)

and N(Q) is associated with p(Q). Since Rd ⊂ R
(Q)
d , N(Q) is an Rd-module, and

we can define the Zd-action αN(Q)
on XN(Q)

as in Lemma 5.1. Note that the
set of prime ideals associated with the Rd-module N(Q) is the same as that of
N; in particular, αN(Q)

is ergodic if and only if αN is ergodic and, for every
n ∈ Zd, αN(Q)

n is ergodic if and only if αN
n is ergodic. The homomorphism

ıN : XN(Q) �−→ XN (8.5)

dual to

ı̂ : N �−→ N(Q) (8.6)

is surjective, and the diagram

XN(Q) αN(Q)
n−−−−→ X̄N(Q)

κ

⏐⏐� ⏐⏐�κ

XN −−−−→
αN

n

XN

(8.7)

commutes for every n ∈ Zd. For N = Rd/p we obtain that

X(Rd/p)(Q)
= X̄Rd/p,

α(Rd/p)(Q)
= ᾱRd/p,

ıRd/p = κRd/p.

(8.8)

Proposition 8.3. Let p ⊂ Rd be a prime ideal with p(p) = 0 which is
not of the form p = jc for any c ∈ Q

d
. Then the Zd-action α = αRd/p on

X = XRd/p is ergodic, and there exists an integer r = r(p) ∈ {1, . . . , d}, a
primitive subgroup Γ = Γ(p) ⊂ Zd, and a finite set Q = Q(p) ⊂ Zd with the
following properties.

(1) Γ ∼= Zr;
(2) 0 ∈ Q, and Q ∩ (Q + m) = ∅ whenever 0 �= m ∈ Γ;
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(3) If Γ̄ = Γ+Q = {m+n : m ∈ Γ,n ∈ Q}, then the coordinate projection
πΓ̄ : X̄Rd/p �−→ Q̂Γ̄, which restricts any point x ∈ X̄Rd/p ⊂ Q̂Zd

to its
coordinates in Γ̄, is a continuous group isomorphism; in particular, the
Γ-action n �→ ᾱ

Rd/p
n , n ∈ Γ, is (isomorphic to) the shift-action of Γ

on (Q̂Q)Γ.

Proof. The proof is completely analogous to that of Proposition 8.2. We
find a matrix A ∈ GL(d, Z) and an integer r ∈ {1, . . . , d} with the following
properties: if vj = uAe(j)

and v′
j = vj + p for j = 1, . . . , d, then v′

1, . . . , v
′
r are

algebraically independent elements of R = Rd/p, and there exists, for each j =
r + 1, . . . , d, an irreducible polynomial fj(x) =

∑lj
k=0 g

(j)
k (xk) with coefficients

in the ring Z[v±1
1 , . . . , v±1

j−1] ⊂ Rd such that fj(v1, . . . , vj−1, vj) ∈ q and the

supports of g
(j)
0 and g

(j)
lj

are singletons.
We assume again that A is the d× d identity matrix, so that vj = uj for

j = 1, . . . , d and Γ ∼= Zr is generated by e(1), . . . , e(r), set Q = {0} × · · · ×
{0} × {0, . . . , lr+1 − 1} × · · · × {0, . . . , ld − 1} ⊂ Zd, and complete the proof
in the same way as that of Proposition 3.4, using (8.1) instead of (6.19). The
ergodicity of ᾱRd/p is obvious from the conditions (1)–(3), and from (8.3) we
conclude the ergodicity of αRd/p. �

Remarks 8.4. (1) We can extend the definition of r(p) in Proposition
8.2 and 8.3 to ergodic prime ideals of the form p = jc, c ∈ (Q

×
)d, by setting

r(jc) = 0. Then the integer r(p) is a well-defined property of the prime ideal p,
and is in particular independent of the choice of the primitive subgroup Γ ⊂ Zd

in Proposition 8.2 or 8.3 (it is easy to see that there is considerable freedom
in the choice of Γ): if r′,Γ′, Q′ are a positive integer, a primitive subgroup
of Zd, and a finite subset of Zd, satisfying the conditions (1)–(3) in either
of the Propositions 8.2 or 8.3, then r′ = r(p). This follows from Noether’s
normalization theorem; a dynamical proof using entropy will be given in Section
24.

(2) If p ⊂ Rd is an ergodic prime ideal with p(p) > 0, then the subgroup
Γ ⊂ Zd in Proposition 8.2 is a maximal subgroup of Zd for which the restriction
αΓ of αRd/p to Γ is expansive. In particular, r(p) is the smallest integer for
which there exists a subgroup Γ ∼= Zr in Zd such that αΓ is expansive.

(3) Even if the Zd-action αRd/p in Proposition 8.3 is expansive, the action
α(Rd/p)(Q)

is non-expansive. By proving a more intricate version of Proposition
8.3 one can analyze the structure of the group XRd/p directly, without pass-
ing to X(Rd/p)(Q)

: if XRd/p is written as a shift-invariant subgroup of TZd

(cf.
(5.9)), and if r = r(p),Γ, Q are given as in Proposition 8.3, then the projection
πΓ̄ : XRd/p �−→ TΓ̄ is still surjective, but need no longer be injective; the ker-
nel of πΓ̄ is of the form Y Γ for some compact, zero-dimensional group Y (cf.
Example 8.5 (2)).
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Examples 8.5. (1) Let p = (2, 1 + u1 + u2) ⊂ R2 (cf. Example 5.3 (5)).
Then p(p) = 2, r(p) = 1, and we may set Γ = {(k, k) : k ∈ Z} ∼= Z and
Q = {(0, 0), (1, 0)} ⊂ Z2 in Proposition 8.2. If X = XR2/p is written in the
form (6.19) as

X =
{
x = (xm) ⊂ FZd

2 : x(m1,m2) + x(m1+1,m2) + x(m1,m2+1) = 0F2

for all (m1,m2) ∈ Z2
}
,

then the projection πΓ̄ : X �−→ FΓ̄
2 sends the shift α

R2/p
(1,1) = α(1,1) on X to the

shift on FΓ̄
2
∼= (Z/2 × Z/2)Z. Note that, although α(1,1) acts expansively on X,

other elements of Z2 may not be expansive; for example, α(1,0) is non-expansive.
(2) Let p = (3 + u1 + 2u2) ⊂ R2. Then p(p) = 0, r(p) = 1, and Γ and Q

may be chosen as in Example (1). Note that XR2/p = X = {x = (xm) ⊂ TZd

:
x(m1,m2) +x(m1+1,m2) +x(m1,m2+1) = 0T for all (m1,m2) ∈ Z2}; the coordinate
projection πΓ̄ : X �−→ TΓ̄ in Proposition 8.3 is not injective; for every x ∈ X,
the coordinates x(m1,m2) with m1 ≥ m2 are completely determined by πΓ̄(x),
but each of the coordinates x(k,k+1), k ∈ Z, has two possible values. Similarly,
if we know the coordinates x(m1,m2), m1 ≥ m2 − r of a point x = (xm) ∈ X
for any r ≥ 0, then there are exactly two (independent) choices for each of
the coordinates x(k,k+r+1), k ∈ Z. This shows that the kernel of the surjective
homomorphism πΓ̄ : X �−→ TΓ̄ ∼= (T2)Z is isomorphic to ZΓ

2 , where Y = Z2

denotes the group of dyadic integers.
If p is replaced by the prime ideal p′ = (1 + 3u1 + 2u2) ⊂ R2, then Γ and

Q remain unchanged, but the kernel of πΓ̄ becomes isomorphic to (Z2 × Z3)Γ,
where Z3 is the group of tri-adic integers. Finally, if p′′ = (1 + u1 + u2) ⊂ R2,
and if Γ and Q are as in Example (1), then πΓ̄ : XR2/p′′ �−→ (TQ)Z is a group
isomorphism. �

Concluding Remark 8.6. The material in this section (with the excep-
tion of Proposition 8.1) is taken from [38].



http://www.springer.com/978-3-0348-0276-5


	CHAPTER II Zd-actions on compact abelian groups
	5. The dual module
	6. The dynamical system defined by a Noetherian module
	7. The dynamical system defined by a point
	8. The dynamical system defined by a prime ideal


