CHAPTER 11

Z%-actions on compact abelian groups

5. The dual module

According to Theorem 4.2, Z¢ is of Markov type for every d > 1, and Z-
actions by automorphisms of compact groups enjoy the properties described in
(4.10), Propositions 4.9-4.10, Remark 4.15, and Theorem 4.11. Just as compact,
abelian groups like T = R™/Z™ have automorphisms with very intricate dy-
namical properties, there is an abundance of examples of interesting Z%-actions
by automorphisms of compact abelian groups. In this section we introduce a
general formalism for the investigation of such actions which will also give us
a systematic approach to constructing actions with specified properties.

Let d > 1, and let a: n — ay be an action of Z? by automorphisms of
X. For every n = (n1,...,nq) € Z¢ we denote by G, the automorphism of X
dual to ay and write &: Z* — Aut(X) for the resulting Z%action dual to .
Under the action & the group X becomes a Z%module, and hence a module
over the group ring Z[Z?]. In order to make this explicit we denote by

Ry = Zui?, ..., ut!] (5.1)

the ring of Laurent polynomials in the (commuting) variables uq, ..., uq with
coefficients in Z. A typical element f € PRy will be written as

f=> crmpun, (5.2)

nezd

where c¢(n) € Z and u® = uf* -...-u})? for all n = (nq,...,n4) € Z%, and
where cf(n) # 0 for only finitely many n € Z%. Then Ry = Z[Z%), R, acts on
X by

(f,0) = fra= ) cr(n)in(a) (53)

nezd
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36 1. Z4-ACTIONS ON COMPACT ABELIAN GROUPS

for every f € Ry, a € X, and X is an Rg-module. Note that
Gp(a) = Gpla) =u™ - a (5.4)

for every n € Z? and a € X. Conversely, if 9 is an Ry-module (always assumed

to be countable), then Z? has an obvious action 4™ : n — &% on M given by
aa) =u™ - a (5.5)

for every n € Z? and a € 9. We write X = M for the dual group of M and
obtain a dual action

™ n— o e Aut(X) (5.6)
of Z% on X. For future reference we collect these observations in a lemma.

LEMMA 5.1. Let a: n — oy be a Z%-action by automorphisms of a com-
pact, abelian group X, and let &: n — an be the dual action of 7% on the
dual group X of X. If Ry is the ring defined in (5.1) then X is an Rq-module
under the Rq-action (5.3). Conversely, zf M is an Rq-module, then (5.5) and
(5.6) deﬁne Z%-actions ™ = & and o™ = a by automorphisms of M and

XM = sm respectively.

EXAMPLES 5.2. Let d > 1.

(1) Let 9 = Ry. Since Ry is isomorphic to the direct sum "4 Z of copies
of Z indexed by Z?, the dual group X = i)/‘i; is isomorphic to the cartesian
product TZ" of copies of T = R/Z. We write a typical element z € TZ" as
r = (zn) = (vn,n € Z%) with x, € T for every n € Z¢ and choose the
following identification of X% = MR, and TZ': for every z = (zn) in TZ" and
[ € Ra,

(o, f) = &7 uneza 1010, (57)
where f is given by (5.2). Under this identification the Z%-action o”*¢ on X% =
TZ" becomes the shift-action

A (2)m = (0n(2))m = Tmin, (5.8)

with n € Z% and 2 = () € X% = TZ",

(2) Let a C Ry be an ideal, and let M = Ry/a. Since M is a quotient of

the additive group Ry by a G™¢-invariant subgroup, the dual group X™ is the

a®d-invariant subgroup

X Rala — {z e X%a = T2 . (x,fy =1 for every f € a}

= {w eTZ . Z c¢f(n)Zmin =0 (mod 1) (5.9)

neZ?  for every f € a and m e Z¢
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and a™4/% is the restriction of a® to X™ C ']I‘Zd, ie.
/a
afa/e = offmd (5.10)

for every n € Z¢.

(3) Let X C TZ" = R, be a closed subgroup, and let X+ = {f € M, :
(x, f) = 1 for every € X} be the annihilator of X in R,. Then X is shift-
invariant if and only if X is an ideal in My: indeed, if X is an ideal, it is
obviously invariant under multiplication by the group of units {u® : n € Z?} C
Ry, i.e. X+ is aMe-invariant; conversely, if X+ is aM¢-invariant, then (5.3)
shows that f-a € X+ for every f € Ry and a € X*. In other words, X is an
ideal.

(4) Let 9 be a Noetherian Ry-module, and let {a1,...,ar} be a set of
generators for M, i.e. M = Ry-a1+- - -+ R4 -ax. The surjective homomorphism
(fiyeoos fe) = f1-a1 + -+ fi - ap from RE to M induces a dual injective
homomorphism ¢: X% — X%Ra = (']I‘k)zd =Y such that o - ¢ = o, - ¢ for
every n € Z%, where oy, is the shift on (T*)2" defined in (5.8). In particular,
¢ embeds X™ as a closed, shift-invariant subgroup of (T’“)Zd. Conversely, if
X C (TF)Z" is a closed, shift-invariant subgroup, then X = RE/XL and X+
is a submodule of Dﬁig. G

ExAMPLES 5.3. (1) Let a be the automorphism of T? = R?/Z? deter-
mined by the matrix A = (91). In Example 2.18 (2) we have seen that «
(or, more precisely, the Z-action on T? defined by «) is conjugate to (X*1/(f),
o™ /(D) where (f) C R, is the principal ideal generated by the characteristic
polynomial f(u;) = 1+ u; — u? of A. Indeed, an element z € X = 9/{\1 = TZ
satisfies that (x,u} f) = 1 if and only if 2, + 2541 — Zpy2 = 0 (mod 1), and
hence

X/ = {z € TZ : 2y + Tpy1 — Tpgo =0 (mod 1) for all n € Z}

(cf. (5.7) and (5.9)). The continuous group isomorphism ¢ = 7o 1} : X%/ ()
— T2 makes the diagram

xR/ 2D )
% ff’ (5.11)
T T2

87

commute, and the automorphism o”'/(f) is equal to the shift on X™1/(f),

(2) Example (1) depends on the fact that the matrix A is conjugate (over
Z) to the companion matrix of its characteristic polynomial. If « is the auto-
morphism of T? defined by A = (3 {), then the characteristic polynomial of A is
f(ur) = —1—4u; +u}, and AM = M B, where B=({})and M = (}3). The
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map ¢: X7/ () — T2 given by ¢(z) = (xo+3x1,x;) for all z € XT/(F) ¢ T%
is a group isomorphism, and the diagram (5.11) commutes.

If A” = (32), then the characteristic polynomial of A’ is again equal
to f(u1) = —1 —4duy +u}, AM = MB with M = (}3), but there is no
matrix M’ with integer entries and determinant 1 such that A’M’ = M'B.
The homomorphism ¢': X%/(F) +— T2 with ¢'(z) = (2 + 3z1,22;) for all
z e X®/() ¢ TZ is surjective, and we write ¢/ = ¢: Z2 — R, /(f) for the
dual homomorphism, which is injective, but not bijective. The PR;-module I =
X arising from the Z-action n — (A’)" via Lemma 5.1 is (isomorphic to) the
submodule ' (Z?) of R1/(f). We claim that 9 is not isomorphic to Ry /(f)—
in fact, 91 is not even cyclic, i.e. not of the form 9t = R, - a for some a € M.
Indeed, if M were cyclic, there would exist an element m = (my,msy) € Z2
such that {(A’)"m : n € Z} generates Z?, which is equivalent to the condition
that

{m, A'm} = {(m1,m2), (3m1 + 2ma, 2my + m2)}

generates Z2. Hence

my 3mi+2me
det (mz 2m1+mo

) =2m? — 2mymy — 2m3 =1,
which is obviously impossible.
(3) Let f =2 —wuy € MRy, and let (f) be the principal ideal generated by
f- According to (5.7) and (5.9),
X = X"/ = o= (x,) € T?: 22, = 2,41 (mod 1) for all n € Z},

and o®1/() is equal to the shift-action o of Z on X. The zero coordinate
projection ¢ = moy: X —— T is surjective and satisfies that ¢ - o1 =T - ¢,
where T: T —— T is the surjective homomorphism consisting of multiplication
by 2 modulo 1.

(4) Let fl =2—uq, fQ =3—ug,and let a = (fl,fg) = flg“tg—‘rfgmg C fRs.
Then
X = XMe/o = (g = (Tm,n) € T . 22 (m.n) = T(m+1,n) (mod 1) and
3L (m,n) = T(m,n+1) (mod 1) for every (m,n) € 7%},
and a™2/% = ¢ is the shift-action of Z? on X™2/%, The zero coordinate projec-
tion ¢ = 7m((0,0)y: X —— T is again surjective and satisfies that ¢ - o =Ty - ¢

for every n € Z?, where T is the N?-action on T defined by T, »)(t) = 23"t
(mod 1) for every (m,n) € Z* and t € T.

(5) Let

2
X ={r=(rn) € Z%Q L T (my,ma) T (ma+1,ma) T T(my,ma+1) =0 (mod 2)

for all m = (my, ms) € Z*}.
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From (5.7) and (5.9) we see that the shift-action o of Z? on the full, shift-
invariant subgroup X C Z%; is conjugate to (X72/¢ a™2/9) where a = (2,1 +
u1 + ug) C Ry is the ideal generated by 2 and 1+ uy + us.

(6) Let d > 1. A Laurent polynomial f € R, is primitive if the highest
common factor of its coefficients is equal to 1. Suppose that f is primitive
and m > 1 an integer, and let (f) and (mf) be the principal ideals in Ry
generated by f and mf, respectively. The map h — mh from Ry to Ry induces
an injective homomorphism &: R/ (f) — Ra/(mf), the dual homomorphism
¢: XTRalmf) X Ra/(]) is surjective, and ker(¢p) = Z%;. The group X %e/(F)
is connected, and the connected component of the identity in X%¢/(mf) ig
isomorphic to X %a/(f),

More generally, if a C PRy is an arbitrary ideal such that the additive
group Ry/a is torsion-free (or, equivalently, such that X Ra/a g connected),
and if m > 1 is an integer, then we obtain an exact sequence

)

0 — 2%, Y xTalme 2 xMale g

where ¢: XRa/ma _, xRa/a ig the surjection dual to the injective homomor-
phism &: Ry/a — Ry/ma consisting of multiplication by m, and where 9 is
the inclusion map. Note that 1 - on(x) = aga/me., ¥(z) and ¢ - afd/ma(y) =
afd/u-qﬁ(y) forallm € Z%, z € Z%:n, and y € XR4/m% where ¢ is the shift-action

of Z4 on 7%

fm>

component of the identity in X®¢/me with XRa/¢ ]

and that the map ¢ induces an isomorphism of the connected

The next proposition is a straightforward consequence of Theorem 4.2 and
Pontryagin duality (cf. also Example 5.2 (4)).

PROPOSITION 5.4. Let X be a compact, abelian group, o a Z*-action by
automorphisms of X. The following conditions are equivalent.

(1) The Rg-module M = X obtained via Lemma 5.1 is Noetherian;
(2) (X, «) satisfies the d.c.c.;
(3) (X, ) is conjugate to a subshift of (T”)Zd for somen > 1.

The Noetherian Rgz-modules form a particularly well-behaved class of 9R4-
modules, and it is therefore not surprising that Z?-actions by automorphisms of
compact, abelian groups satisfying the d.c.c. have many exceptional properties.
As a first illustration of the réle played by the descending chain condition, let
us consider the set of periodic points for a Z%-action « on a compact, abelian
group X.

DEFINITION 5.5. Let I' be a countable group and let « be a I'-action by
automorphisms of a compact group X. A point € X is periodic under « (or
a-periodic) if its orbit ar(z) = {a,(z) : v € T'} is finite. If § € Aut(X) then a
point z € X is periodic under § if 8™(x) = z for some n > 1.
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The following examples show that a Z%action by automorphisms of a
compact, abelian group need not have any periodic points other than the fixed
point Ox, but in Theorem 5.7 we shall see that the set of a-periodic points is
dense if (X, o) satisfies the d.c.c.

EXAMPLES 5.6. (1) Let X = @ be the dual group of the additive group
Q, and consider the automorphism « of X dual to multiplication by g on Q.
If © € X is a periodic point of «, i.e. if a™(z) = x for some n > 1, then
(a™(x) — x,a) = (x, (g: —1)a) =1 for every a € Q. However, (g: —1)#0,s0
that (z,a) =1 for every a € Q. This shows that z = Ox.

(2) Let Y = Z%. For every n > 2 we define a continuous, shift commuting,

surjective homomorphism ¢,,: Y —— Y by setting (¢, (y))m = Zztz_l yi, for

every m € Z and y = (yx, k € Z) € Y. We put ¢, = ¢, for every n > 2 and
denote by X the projective limit

y Loy ds Sy S (5.12)

The shift 0 on Y commutes with the maps 9,, and induces an automorphism
a of the projective limit X in (5.12). Suppose that « has a periodic point
x € X with period n, say. We can write = as (z(®), k > 1) with z(*) € Y and
Pr(z®) = 2= for every k > 2. Since x has period n, 0" (z®)) = 2 for
every k > 1. However, ¢, (")) = ¢,1,("F)) = (k=1 ¢ {0,1} for every
k>1, where 0 =(...,0,0,0,...)and 1 = (...,1,1,1,...) are the fixed points
of ¢ in Y. As k can be arbitrarily large we see that z(*) {0,1} for every
k > 0. Finally we observe that, if k > 2 is even, then z(*~1) = wk(az(k)) = 0.
This shows that (®) = 0 for every k > 1, i.e. that z = Ox.

(3) We stay with the notation of Example (2) and set v,, = ¢ for every
n > 2 in (5.12). The projective limit X in (5.12) can be written as X = {z =
(T(m,my) € Z%QXN D Z(mn) = Tman+1) T Timting1) (mod 2) for every m €
Z and n > 1}, and « is the horizontal shift on X defined by (a())(m.n) =
T(p1,n) for all z € X and (m,n) € Z x N*. The same argument as in Example
(2) shows that every point z € X with period 2¥, k > 0 is equal to the identity
element Ox, but that there exist 25~ points of period & if & > 1 is odd (for
every sequence Y = (Ym) € Y with y¢,1x) = ym and Z;:Ol Zmt; =0 (mod 2)
for all m € Z there exists a unique point z € X with o®(z) = z and T(m,1) = Ym
for all m € Z).

If a C MRy is the ideal (2,1 4 w2 + uug) = 282 + (1 + uz + uguz)Re, then
(5.7) and (5.9) show that (X%2/¢ a™2/%) is (conjugate to) the shift-action of
Z? on

X' ={z=(x 7%
= = (m,n)) € /2 + L(m,n) + T(m,n+1) + T(m+1,n4+1)
=0 (mod 2) for every (m,n) € Z*},
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and a comparison of X’ with the definition of X in the preceding paragraph
reveals that X is equal to the projection of X’ onto its coordinates in the upper
half plane of Z2, and that this projection sends the horizontal shift o(1,0) of
X' to the automorphism « of X. In particular we see that the shift-action
o of Z? on X’ has only one point with horizontal period 2* for every k& > 0
(the identity element). We also refer to Example 5.3 (5): the Z-action a™2/¢
appearing there obviously has the same property.

(4) Let ¢, = ¢3 for every n > in (5.12). Then the resulting automorphism
a of the projective limit X in (5.12) has only one point with period 3*, k& > 0,
but there exist 2¥ points with period k for every k which is not divisible by 3.

(5) Let (pn, n > 2) be a sequence of rational primes in which every prime
occurs infinitely often, and let (g,, n > 2) be a sequence of odd primes in
which every odd prime occurs infinitely often. If v, = ¢,, for every n > 2,
then the automorphism « of the projective limit X in (5.12) has no periodic
points other than the fixed point 0x. However, if ¢, = ¢,,, n > 2, then the

resulting automorphism a will have 22" periodic points with period 2* for every
k > 0, but only one point with period 2] + 1 for every ! > 0 (the fixed point

0x).
None of the automorphisms « in Examples (1)—(5) satisfies the d.c.c. [

THEOREM 5.7. Let X be a compact, abelian group, and let o be a Z°-
action by automorphisms of X. If (X,«) satisfies the d.c.c. then the set of
a-periodic points is dense in X.

PROOF. Let M = X be the Rg-module arising from Lemma 5.1. Fix a non-
zero element a € M and choose a submodule M, C M which is maximal with
respect to the property that a ¢ 91,. Then the Rz-module M = M/M,, has
the minimal non-zero submodule M} = (Ry - a + M,)/M,. Consider the ideal
a={fe€Ry: f-M =0}, and let b be an ideal with a C b C PRy. The
minimality of 9t} implies that b-9t; = MM}, and Corollary 2.5 in [5] shows that
there exists an element « € 1+ b such that - 9] = {0}. This contradicts our
definition of a, and we conclude that the ideal a C PR, is maximal, and that
t=NR,;/ais a (necessarily finite) field.

For every m > 1 we write a™ C R, for the ideal generated by {f1-...- fim :
fi€afori=1,....m}. Ifad =a+M, € a™- WM for every m > 1, then
ae€ M =),>, 0" M, and a- M’/9M"”. The argument in the preceding
paragraph shows that there exists an element y € 1+ a with y - 9" = {0},
and the maximality of a implies that 9" = {0}, which is absurd. Hence there
exists an integer m > 1 with o’ ¢ a™ - 9, and the maximality of 9, implies
that a™ - 9 = {0}.

Each of the successive quotients a” -9t /a" 1.9 in the decreasing sequence
of Rg-modules M D a- M D --- D a™ - M = {0} is a Noetherian module over
€. Since ¢ is finite we conclude that 9 is finite.
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We have found, for every non-zero a € 9 = X, a submodule 9, C M
such that a ¢ 9, and M/M,, is finite. The subgroup X, = M- C X is finite,
a-invariant, and is not annihilated by (the character corresponding to) a. Since
every point in X, must be a-periodic, and since the a-periodic points form a
subgroup of X, this shows that the set of a-periodic points is dense in X. [

Before turning to the problem of relating the algebraic properties of a
Noetherian R4-module 9 to the dynamical properties of (X™, a™) we should
discuss the extent to which 9t and (X™, a™) determine each other. Let d > 1,
and let M be a Noetherian PRy-module which is torsion-free when regarded
as an additive group or, equivalently, as a Z-module (this is equivalent to the
assumption that X™ = M is connected). We define the Z%-action o™ on X™
by (5.5) and (5.6) and consider the action induced by a™ on the Cech homology
group Hy (X7 T) (cf. [20]).

LEMMA 5.8. The group Hi(X™,T) is isomorphic to X™, and the auto-
morphism induced by o on Hi(X™ T) is equal to & for every n € Z4.

PROOF. In view of Example 5.2 (4) we may assume that X = X™ is a closed,
shift-invariant subgroup of (']I‘k)zd, and the connectedness of X allows us to
assume that X is full. If F(n) = {-n,...,n}¢ C Z¢ then mp(,)(X) C (TF)F™
is a finite-dimensional torus, and X is equal to the projective limit

7TF(1)(X)ﬂﬂp(z)(X)ﬂﬂp(:;)(X)ﬂ (513)
Since Hy(mp k) (X), T) = 7 (X) ([20]), we see from (5.13) that Hy (X, T) =
X, and that the automorphism induced by o = o, on H; (X, T) is equal to
on for every n € Z4. 0O

THEOREM 5.9. Let X and X' be compact, connected, abelian groups, and
let o and o' be Z%-actions by automorphisms of X and X' which satisfy the
d.c.c. The following statements are equivalent.

(1) The Z-actions o and o' are topologically conjugate, i.e. there exists a
homeomorphism ¢: X +—— X' with ¢ - an = o, - ¢ for every n € Z%;

(2) The Z-actions o and o' are algebraically conjugate, i.e. there exists a
continuous group isomorphism : X —— X' such that ¢ - an = oy -
for every n € Z4.

PRrROOF. The implication (2)=-(1) is obvious. If (1) is satisfied we use Lemma
5.1 and Proposition 5.4 to find Noetherian Rg-modules M and 9’ such that
(X,a) and (X', a’) are conjugate to (X™, a™) and (XDJI/,Ofm/)7 respectively.
By Lemma 5.8, H(X™ T) = XM, Hl(Xfml,’]T) ~ XM and for every n €
74 the isomorphisms of Hy(X™ T) and Hy(X™ ,T) defined by ™ and o2
are equal to o' and anm/, respectively. The continuous group isomorphism
' Hi(X™T) — Hy(X™,T) induced by ¢: X — X' satisfies that ¢’ -

o = o™ .y for every n € Z%, and this implies (2). O
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COROLLARY 5.10. Letd > 1, and let 9 and I be finitely generated Ry-
modules which are torsion-free (as additive groups). The following statements
are equivalent.

(1) The Z4-actions o™ and ™ are topologically conjugate;
(2) The Z%-actions o™ and o™ are algebraically conjugate;
(3) There exists an Rg-module isomorphism x: 9 — M.

PROOF. The equivalence of (1) and (2) is stated in Theorem 5.9. If (2) is
satisfied, then any group isomorphism 1: X™ +— X" with ¢ - X = o2V .4
for all n € Z% induces a dual isomorphism v: 9’ —— M which is easily seen

to be an My-module isomorphism. The implication (3)=(2) is obvious. O

CONCLUDING REMARKS 5.11. (1) Most of the material of this section
comes from [45], except for Lemma 5.8, Theorem 5.9, and Corollary 5.10, which
come from [94]. Example 5.3 (2) is taken from [110], Example 5.3 (4) features in
[23] and [89], Example 5.3 (5) comes from [56] (cf. (0.1)), and Example 5.6 (1)
appears to be oral tradition attributed to Furstenberg. For Z-actions Theorem
5.7 was first proved in [55], and the general proof presented here is due to
Hartley. A more general version of Theorem 5.7 will be proved in Section 10
(Theorem 10.2).

(2) If X and X’ are not connected, Theorem 5.9 (or the equivalence of
(1) and (2) in Corollary 5.10) is not true in general. The shifts on the groups
Z% and (Z?Q)Z are topologically, but not algebraically conjugate. However, the
equivalence of (2) and (3) in Corollary 5.10 holds for any pair of 2Rgz-modules
M and NM’, whether they are torsion-free (as additive groups) or not.

6. The dynamical system defined by a Noetherian module

We begin with a little bit of algebra. Let d > 1, and let R be a commutative
ring. We denote by R* the set of invertible elements (or units) in R, write
Rluq, ..., uq] and R[ulﬂ,...,ufd] for the rings of polynomials and Laurent
polynomials in the commuting variables u1, ..., uq with coefficients in R, and
we define Ry by (5.1). For every rational prime p we denote by F,, the algebraic
closure of the prime field F, = Z/pZ = 7Z,, and define a homomorphism
f = fp from Ry to

RP) = F,[ui?, ..., ut] (6.1)

by reducing the coefficients of f € 9y modulo p. An element f € %Ef ) will again
be written in the form (5.1) with c¢(n) € F, for all n € Z¢, where c¢(n) # 0
for only finitely many n € Z%. For notational consistency we set Fy equal to
the algebraic closure Q of Q and put i)“{g)) =Ry and f/o = f for every f € Ry.

Let p C Ry be a prime ideal. We identify Z with the set of constant
polynomials in 9y, denote by p(p) the characteristic char(QRq/p) of Ra/p, i.e.
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the unique non-negative integer such that pNZ = p(p)Z, and define the variety
of p by

V(p)={ce (F;(p))d : frp@py(c) = 0 for every f € p}. (6.2)

If a C Ry is an arbitrary ideal we set
Ve(a) = {c e (C)%: f(c) =0 for every f € a}. (6.3)

Suppose that 91 is an Rg-module. For every f € Ry we write fon: M +—
M for the map a — f-a, a € M, and we denote by ann(a) = {f € Ry : f-a =0}
the annihilator of an element a € 9. A prime ideal p C Ry is associated with
M if p = ann(a) for some a € M, and the module M is associated with p if p
is the only prime ideal in R, associated with 991. If 901 is Noetherian then it is
associated with p if and only if

p={f €Rqy: fom is not injective} = {f € Ry : fon is nilpotent} (6.4)

(cf. Corollary VI.4.11 in [51]). If 91 is associated with p and 91 C 9 is a non-
zero submodule, then O is again associated with p. The module 9 is a torsion
module if the prime ideal {0} is not associated with 9. We shall have to be
careful to distinguish between 2Rg-modules 9t which are not torsion and those
which are torsion-free as additive groups (or Z-modules): 91 is a torsion module
if every associated prime ideal is non-zero, 9 is a torsion group if each of its
associated primes contains a non-zero constant, and 91 is torsion-free (as an
additive group) if none of its associated primes contains a non-zero constant.

A submodule 25 C 9 is p-primary (or p belongs to 20) if M /AW is associ-
ated with p. From now on we assume that 91 is Noetherian. By Theorem VI.5.3
in [51] there exist primary submodules 20, ..., 20, of M with the following
properties:

the primes p; belonging to the submodules 20; are all distinct;
W, N---NW,, = {0};

for every subset S C {1,...,m}, ﬂ 20; # {0}.
ies

(6.5)

A family {20;,...,20,,} of primary submodules satisfying (6.5) is called a
reduced primary decomposition of 9, and {p1,...,p.,} is the set of associated
primes of M. According to the Theorems VI.5.2 and VI.5.5 in [51] the set of
associated primes of 9 is independent of the specific decomposition (6.5), and

{f € Ry : fon is not injective} = U Pi. (6.6)
i=1,....m

PROPOSITION 6.1. Let d > 1, q C Ry a prime ideal, and let 20 be a
Noetherian Rg-module associated with q. Then there exist integers 1 <t < s
and submodules {0} =Ny C -+ C Ny = W such that, for everyi =1,...,s,
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M /M1 = Ra/q; for some prime ideal q C q; C Ry, q; = q fori=1,... ¢,
and q; 2 q fori=t+1,...,s.

PRrOOF. Note that, if 91 C 27 is a submodule, and if p C Ry is a prime ideal
associated with 20/91, then p D q. Indeed, if p = ann(a) for some a € /N,
choose b € 2 such that a =b+ N, and set W =p-b={f-b: fept CNIf
N # {0} then N is associated with g, and (6.4) shows that ¢g" € p for every
g € q and every sufficiently large n > 1. Since p is prime we conclude that
qCp.

Let € be the set of submodules 9 C 20 with the following property:
there exists an integer r > 1 and submodules {0} = 9y C --- C M, = M such
that 9% /M—1 = Ry/q for every i = 1,...,r. It is clear that Oy # &, since
we can find an ¢ € 20 with ann(a) = q and 9 = Rga = Re/q. Since W is
Noetherian, ; contains a maximal element 20, and we set U = 23/20" and
consider the set of prime ideals {q1,...,q;} associated with the Rg-module Y.
If q; = q for some i € {1,...,l}, then there exists an element b € 2 with
b¢ W and {f € Ry : fb €W} = q, and this violates the maximality of 2.

Let Q5 be the set of submodules 9 with 20" € M C 20, for which there
exist submodules 20" = £y C --- C £; = 9 such that, for every i = 1,...,1,
£:/Li—1 = MRy/q; for some prime ideal q; 2 q. Then Q5 again has a maximal
element 207. If 9" #£ W we set V' = W /W, consider the set of prime ideals
associated with U, all of which are strictly greater than q by the argument in
the first paragraph of this proof, and obtain a contradiction to the maximality
of 20" exactly as before, where we were dealing with 20’. Hence 20" = 20, and
the proposition is proved by setting 9y C --- C 9, equal to {0} =Ny C -+ C
Ng=LogC---CL =9 O

COROLLARY 6.2. Let d > 1, MM a Noetherian Rg-module with associated
primes {p1,...,Ppm} and a corresponding reduced primary decomposition {201,
.20, }. Then there exist submodules M =My D --- D Ny = {0} such that,
for every i = 1,...,s, M;/Mi_1 = Ra/q; for some prime ideal q; C Rq, and
q; D p; for some j € {1,...,m} (such a sequence M =N, O --- D Ny = {0}
is called a prime filtration of 9M).

PrOOF. Apply Proposition 6.1 to the successive quotients of the sequence
MDOW; D (W NWs)D---D (W N---NW,) = {0},
bearing in mind that
(W N---NW,;)/(WrN---NWipq1) Z (Wi N ---N2W,) /Wiy CM/W,44

is associated with p;1q for every i =1,...,m — 1 (if B,C are subgroups of an
abelian group A we use the symbol B/C to denote (B + C)/C). O
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Let 9t be a Noetherian PRg-module with a prime filtration 9t = 9, D
-+ D Mg = {0}, and define the Z%-action a = o™ on X = X™ by (5.5) and
(5.6). For every j =0,...,s, Y; = ‘ﬁj is a closed, a-invariant subgroup of X,
and the dual group of Y;_1/Y; is isomorphic to fRq/q;, where q; C Py is a
prime ideal containing one of the associated primes of 9. This allows one to
build up (X, ) from the successive quotients (Y;_1/Y;,a¥i-1/¥3), which have
the explicit realization (5.9)—(5.10) with a = q;. However, although the prime
ideals {p1,...,pm} are canonically associated with 9, the ideals q, appearing
in Proposition 6.1 and Corollary 6.2 need no longer be canonical, and may
depend on a specific prime filtration of 91. The next corollary can help to
overcome this problem.

COROLLARY 6.3. Let d > 1, M a Noetherian Rg-module with associated
primes {p1,...,pm}. Then there exists a Noetherian Rg-module M = NM @
@M and an injective Ry-module homomorphism ¢: MM — N such that

each of the modules M) has a prime filtration NU) = ‘ﬁ%) DD ‘ﬂ(()j) = {0}
with ‘ﬁ,&”/‘ﬁ,@l > NRy/pj fork=1,...,7;.

IFX=X"andY = X" = X me(m), then the homomorphism
VY — X dual to ¢ is surjective and satisfies that

vrad =v- (@) x - xad™) = oty (6.7)
for every n € Z4.

PROOF. Choose a reduced primary decomposition 20q,...,20,, of 9 as
in (6.5). Then the map ¢': a — (a + Wh1,...,a + 20,,) from M into K =
B, M/W, is injective. We fix j € {1,...,m} for the moment and apply
Proposition 6.1 to find a prime filtration {0} = 9y C --- C Ny, = M/W;
such that m;”/mgjl = ﬂ‘id/qg) for every k = 1,...,s;, where q,(cj) C Ry is a
prime ideal containing p;, and where there exists an r; € {1,...,s;} such that
ql(f) =yp; for k=1,...,7;, and q,(f) Dpjfork=r;+1,...,8;. If r; <5

(4) (4)

we choose Laurent polynomials ¢;’ € q;° ~p; for k = r; +1,...,5;, set
g = gg)ﬂ - ~gg), and note that the map ¢\ : M/W; — ‘ﬁg) consisting

of multiplication by ¢ is injective. Since ‘ﬂ%) has the prime filtration {0} =
‘ﬁ(()] Jc...c mﬁi) whose successive quotients are all isomorphic to q/p;, the

module 9t = ‘ﬁ%) D---D m&m) has the required properties. The last assertion
follows from duality. O

EXAMPLE 6.4. In Example 5.3 (2) we considered the automorphism of T?
given by the matrix A’ = (3 %) and obtained that the Z-action on T? defined
by A’ is conjugate to (X™,a™), where 90 is the R;-module o' (Z?) C R, /(f)
with f(u1) = =1 —4u; +u? and ¥/ (my, ma) = my + (3my + 2ma)u; € R1/(f)
for every (my,mz) € Z% As a submodule of R;/(f), M is associated with
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(f). Let a = ¢'(0,1) = 2u; € R1/(f), and let 9N = Ry - a = 29, /(f). Then
M/N = Ry /a, where a is the prime ideal (2,1 +u1) = 2R; +R1(1+u1) C Ry,
and {0} C 91 C M is a prime filtration of M with M/ = R, /a and N/{0} =
Ri/(f). O

Our next result shows that certain dynamical properties of the Z?-action
a™ on X can be expressed purely in terms of the primes associated with
M and do not require the much more difficult analysis of the primes which
may occur in a prime filtration of 9. Recall that an element g € Ry is a
generalized cyclotomic polynomial if it is of the form g(uq,...,uq) = u™c(u™),
where m,n € Z¢, n # 0, and ¢ is a cyclotomic polynomial in a single variable.

THEOREM 6.5. Letd > 1, let 9T a Noetherian Rq-module with associated

primes {p1,...,pm}, and let (X,a) = (X7, ™) be defined by (5.5)-(5.6). For
every i = 1,...,m we denote by p(p;) > 0 the characteristic of Ra/p;.

(1) The following conditions are equivalent.
(a) « is ergodic;

(b) an is ergodic for some n € Z4;
(c) a™e/%i s ergodic for everyi € {1,...,m};
(d) There do not exist integers i € {1,...,m} and | > 1 with

{u™ —1:ne2% Cp;

(e) There do not exist integers i € {1,...,m} and | > 1 with

V(p:) C {c=(c1,...,cqa) € (]F;(pi))d b= =cy =1}

(2) The following conditions are equivalent.

(a) « is mizing;

(b) For everyi=1,...,m, a™a/Pi is mizing;

(¢) None of the prime ideals associated with MM contains a general-
ized cyclotomic polynomial, i.e. {u® —1:n € Z} Np; = {0} for
i=1,...,m.

(3) Let A C Z% be a subgroup with finite index. The following conditions
are equivalent.

(a) The set

Fixp(a) = {z € X : an(z) = x for every n € A}

is finite;
(b) For everyi=1,...,m, the set Fixy(a®e/P) is finite;
(¢) For everyi=1,...,m, Ve(p;) NQA) = &, where

Q(A) ={ceC?:c™ =1 for every n € A}

with ¢ = (c1,...,¢q), n=(ny,...,nq), and ™ =ci* -...- ).
(4) The following conditions are equivalent.
(a) « is expansive;
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(b) For everyi=1,...,m, a®a/Pi is expansive;
(c) For everyi=1,...,m, Ve(p;)NS? =
(d) For everyi=1,...,m with p(p;) =0, V(p;)NS? =

We begin the proof of Theorem 6.5 with a general proposition.

PROPOSITION 6.6. Let M a countable R4-module.

(1) For any n € Z% the following conditions are equivalent.
(a) X is ergodic;
(b) oznd/p 1s ergodic for every prime ideal p associated with 9M;
(¢) No prime ideal p associated with MM contains a polynomial of the
form u™ — 1 with 1 > 1.
(2) The following conditions are equivalent.
(a) o™ is ergodic;
(b) a®e/¥ is ergodic for every prime ideal p associated with IM;
(¢) No prime ideal p associated with MM contains a set of the form
{u —1:n €z} with 1 > 1.

(3) The following conditions are equivalent.
(a) ™ is mizing;
(b) o is ergodic for every non-zero element n € Z4;
(c) o is mizing for every non-zero element n € Z4;
(d) a™e/% is mizing for every prime ideal p associated with 9;
(e) None of the prime ideals associated with I contains a general-

ized cyclotomic polynomial.

PRrROOF. From Lemma 1.2 and (5.5)—(5.6) it is clear that the Z-action k —
o is non-ergodic if and only if there exists a non-zero element a € 9 such
that (u'™ —1)a = 0 for some [ > 1. Let 9 = R, - a, and let b € N be a non-zero
element such that p = ann(b) is maximal in the set of annihilators of elements
in 9. Then p is a prime ideal associated with 9t which contains u'™ — 1. This
shows that (1.c)=(1.a). Conversely, if there exists a prime ideal p associated
with 9T which contains v — 1 € p for some [ > 1, we choose a € 91 with
ann(a) = p, note that (u'™ — 1)a = 0, and obtain that (1.a)=(1.c).

If we apply the equivalence (1.a)<=(1.c) to the Rg-module Ry /p, whose

only associated prime is p, we see that ana/P g non-ergodic if and only if

— 1 € p for some [ > 1, which completes the proof of the first part of this
lemma.

If a™ is non-ergodic, then Lemma 1.2 implies that there exists a non-zero
element @ € M such that the orbit {u™ - a : m € Z4} of the Z%action &™ in
(5.5) is finite. As in the proof of (1) we set M = Ry - a, choose 0 # b € M such
that p = ann(b) is maximal, and note that p is a prime ideal which contains
{um™ —1: m € Z4} for some | > 1. Conversely, if there exists a prime ideal
p C My associated with 9 which contains {u™ — 1 : m € Z?} for some
1 > 1, and Lemma 1.2 shows that the Z%action a™ cannot be ergodic. This
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shows that (2.c)<=(2.a), and the equivalence of (2.b) and (2.c) is obtained by
applying the equivalence of (2.a) and (2.c) to the Rg-module R, /p.

In order to prove (3) we note that the equivalence (3.a)<=(3.b)<=(3.c)
follows from Theorem 1.6 (2), and the proof is completed by applying the part
(1) of this lemma both to a™ and to o”¢/?, where p ranges over the set of
prime ideals associated with 9t. O

PROOF OF THEOREM 6.5 (1). The implication (b)=-(a) is obvious. If (b)
does not hold there exists, for every n € Z%, an 1 > 1 with u/™ —1 € Uy <iom Pi
(Proposition 6.6). For every i = 1,...,m, theset I'; = {n € Z¢ : u™ — 1 € p;}
is a subgroup of Z?. As we have just observed, the set I' = Uzril I'; contains
some multiple of every element of Z%; if every I'; has infinite index in Z%, then
I' is contained in the intersection with Z? of a union of m at most d — 1-
dimensional subspaces of R?, which is obviously impossible. Hence I'; must
have finite index in Z? for some i € {1,...,m}, and we can find an integer
[ > 1 such that u™ — 1 € p; for every n € Z%. This proves the implication
(d)=(b). The implications (a)<=(c)<=(d) were proved in Proposition 6.6,
and the equivalence of (d) and (e) follows from Hilbert’s Nullstellensatz. [

PROOF OF THEOREM 6.5 (2). Use Proposition 6.6. [

LEMMA 6.7. Let a C Ry be an ideal. Then aNZ # {0} if and only if
V@(a) = .

PROOF. If aNZ # {0} then V¢ (a) = @. Conversely, if V(a) = &, then the
Nullstellensatz implies that Q[ulﬂ, e ,u;tl] a= Q[ulﬂ, cee udﬂ], and there ex-
ist polynomials f; € a, g; € Q[ulﬂ7 . ,ufitlL i=1,...,n, with 1 =", fig:.
The coefficients of the g; generate a finite extension field K D Q, and SRSK) =

Kluft, ... ul!] = Z;zl Uji)%g@) for suitably chosen elements {vy,...,v} €
ERSK), where ER&Q) = Qui!,...,uF"]. Since a@ = 9“{&@) -a is an ideal in %&Q)

and EREIK) 0@ = %SK), there exist elements {h;x : 1 < j,k <1} C a(® such

that, forevery j =1,...,1,v; = 22:1 hj k. Hence det(d;x —hjx) = 0, where
0j, = 1 for j = k and 0, = 0 otherwise, and we conclude that 1 € a@. This
proves that anNZ # {0}. O

PROOF OF THEOREM 6.5 (3). If b(A) C MRy is the ideal generated by {u™—
1:n € A}, then

Ve(b(A) = {c e C?:c® =1 for every n € A} = Q(A),
Fix (o) = b(A)-M, and Fixa (a) = D/b(A)-M (cf. (5.5)~(5.6)). In particular,
Fixa (o) is finite if and only if 9t/b6(A) - 9 is finite.
Suppose that Fixa(«) is finite. For every ¢ = 1,...,m we choose a; € 9
such that p; = ann(a;) and hence £; = Ry -a; = Ry/p,;. The Artin-Rees Lemma
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(Corollary 10.10 in [5]) implies that
b(A) D 9N g =b(A)- (b(A)D MmN L) Cb(A)- &

for some ¢ > 1, where b(A)®) C My is the ideal generated by {f1-...  fi: fi €
b(A) for i =1,...,t}. By assumption,

Fixa(a) = 9/b(A) - M

is finite. Since b(A) is finitely generated we can choose fi,... f, such that
b(A) = f1R4 + - + [-R4, and we conclude that

fj'fm/<zr: fjfj"fm>’

J,3'=1

Séfj"m/<i_1fjfj"9ﬁ>‘
sm/ (2& sm)’ — |9M/b(A) - M| < .

An induction argument shows that b(A)®M/b(A)F+D . 0 is finite for every
k > 1, and we conclude that D/b(A)*) . 9 is finite for every k& > 1. In
particular, the modules £;/b(A)®) -9 = €, /(b(A)®)-9MNL;) and £;/b(A)-L; =
Ra/(p; + b(A)) are finite. From Lemma 6.7 we conclude that Ve (p; + b(A)) =
Ve(p) NQ(A) = @ for every i = 1,...,m, which proves (c).

Conversely, if (c) is satisfied, we choose a prime filtration 9T = M, D
-+ DNy = {0} of M such that, for every j =1,...,s, N;/N,;_1 = NRy/q; for
some prime ideal q; which contains one of the associated primes p; of M (cf.
Corollary 6.2). Since

6(A) - 2/6(A)® o < 3

<r

Ve(a; + b(A)) = Ve(a;) N Ve(b(A)) < Velpi) N Ve(b(A) = 2

for every j =1,...,s, the module Rq/(q;+b(A)) is finite for every j by Lemma
6.7. Hence M, /(MN,;_1 +b(A)-9M) is finite for j =1, ..., s, since it is (isomorphic
to) a quotient of My/(q; + b(A)), and MWi/b(A) - M is finite. This implies the
finiteness of Fixa (o) and completes the proof of the implication (¢)=-(a). The
equivalence of (b) and (c) is obtained by applying what we have just proved to
the Z%actions a™4/?i i=1,....m. O

LEMMA 6.8. Let a C Ry be an ideal with Ve(a) NS? = @. Then o™/ js
eTpansive.

PrROOF. We assume that XTe/¢ = @ and a™¢/® are given by (5.9)-
(5.10). For every f € My of the form (5.2) we set [|f|| = >, cza lcy(n)]. Let

{f1,---, fx} be a set of generators for a, ¢ = (10 2?21 1517t and N = {x €
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XRa/d . ||zo|| < €}, where ||t|| = min{|t — n| : n € Z} for every t € T. We claim
that N is an expansive neighbourhood of the identity 0 in X %4/¢,

If N is not expansive, there exists a point 0 # z € [),cza on(N). Let
B = (>°(Z%) be the Banach space of all bounded, complex valued functions
(zn) = (2n,n € Z9) on Z¢ in the supremum norm. Since ||z,|| < ¢ for every
n € Z% there exists a unique non-zero point y € B with |y,| < & and y,
(mod 1) = x,, for every n € Z¢. From (5.7) and (5.9) we know that

<‘T7 f]> - @2ﬂ—i Enezd Cfj (n)zn -1

and hence
Z cy;(n)yn €7Z
nezd
for j =1,...,k, and our choice of ¢ implies that
> e (m)yn =0 (6.8)
nezd

for all j. Consider the group of isometries {U, : n € Z4} of B defined by
(Un2)m = Zmuin for all m,n € Z% and z € B, and put

S:{zGB: Zcfj(n)szrn:O for all m € 7% andj:L...,k}

neZzd

:{zEB:<Zcfj(n)Un>z:Oforj:l,...,k:}. (6.9)

nezd

From (6.8) we know that the closed linear subspace S C B is non-zero.
Let B(S) be the Banach algebra of all bounded, linear operators on S, denote
by Vi the restriction of U, to S, and let A C B(S) be the Banach subalgebra
generated by {V;, : n € Z4}. We write M(A) for the space of maximal ideals of
A in its usual topology. The Gelfand transform A — A from A to the Banach
algebra C(M(A),C) of continuous, complex valued functions on M(A) is a
norm-non-increasing Banach algebra homomorphism (cf. §11 in [75]). For every
n € Z4, both V, and V_,, = V7! are isometries of S, and hence |‘//;(w)| =1
for every w € M(A). Since ) yacy,(n)Vy = 0 (cf. (6.9)) we obtain that
Y nczd Cf; (n)f/;(w) =0forevery j=1,...,k and w € M(A). Fix w € M(A)
and put ¢; = 17e<\> (w) for every i = 1,...,d, where e(?) is the i-th unit vector in
Z%. Then Y zacp,(n)c® = fi(c) = 0for j =1,...,k with ¢ = (c1,...,¢cq) €
S?. Tt follows that ¢ € Vg(a) NS, contrary to our initial assumption. This
proves that a®4/¢ is expansive. [J

PROOF OF THEOREM 6.5 (4). We begin by proving the equivalence of (a)
and (c). Suppose that (c) is satisfied, but that « is non-expansive. We apply
Corollary 6.2 and choose a prime filtration 9 = 9, O --- D My = {0} such
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that, for every j =1,...,s, 9;/M;_1 = Ry/q; for some prime ideal q; C Ry
which contains one of the associated primes p;. Put X; = ‘JIJL C X and observe
that X = Xy D --- D Xy = {1}, that X, is a closed, a-invariant subgroup of
X, and that Xj—l/Xj = D‘id/qj for j = 1, oy S Then V(C(ql) - UZZI V(C(pz),
hence Ve(q1) NS? = @, and Lemma 6.8 shows that o™/ is expansive. Since
B/ is conjugate to aX/X1 = aX0/X1 we see that a¥0/X1 is expansive. The
non-expansiveness of o implies that aX* cannot be expansive, and by repeating
this argument we eventually obtain that o™ is non-expansive, which is absurd.
This contradiction proves the expansiveness of a.

In order to explain the idea behind the proof of the reverse implication
we assume for the moment that 9 is of the form MRg/a for some ideal a C Ry.
If ¢ = (c1,...,¢q) € Ve(a) then the evaluation map f — f(c) defines an Ry-
module homomorphism 7.: Ry/a — C, where C is an Rs-module under the
action (f,z) — f(c)z, f € Ryq,z € C. If W is the closure of n.(Rs/a) C C,
then 7. conjugates the Z%action & on 91 to the action # on W, where 6, is
multiplication by ¢® for every n € Z9. If ¢ € Vi(a) N'S? then 6 is isometric
(with respect to the usual metric on C), and the homomorphism 7. induces an

inclusion of V = W in X%¢/¢ = @. Since 6 is isometric on W, the dual
action 6 on V is also equicontinuous, and coincides with the restriction of o to
V. This shows that « cannot be expansive.

We return to our given module 9 with its associated primes pi,...,Pm
and a corresponding reduced primary decomposition 21, ..., 2W,,. If Ve(p;) N
S% # @ for some i € {1,...,m} we set M = M/2W;, choose ay,...,a, € M
such that 9’ = Rgya; + -+ + Rgax, and define a surjective homomorphism
C: R — M by C(fr,---, fr) = fra + - + frag.

Choose a point ¢ = (c1,...,cq) € Ve(p:)NS?, denote by 7.: Ry — C the
evaluation map at ¢, and observe that a = ker(n.) D p;. Let £ = ker(¢) +a* C
RE and let M = {(0,...,0, f) : f € Ry} C RE. From (6.6) (with 9 replaced
by 9') we see that ann(ag) C p;, so that

NN c{0,...,0,f): fep} C{0,...,0,f): f €a}.

This allows us to define an additive group homomorphism &: £ + 91 +—— C by
E(a+b)=n.(f) foralla € £and b= (0,...,0, f) € 9. Then

£(a) =0 for a € £, (6.10)

and
£-aXi(a) = P¢(a) forall a€ £+M, n=(ny,...,ng) € 2%, (6.11)
where ¢® = ¢f" - ... - c)}?. We claim that { can be extended to a homomor-

phism £: Rk —— C which still satisfies (6.10) and (6.11). Indeed, there exists a
maximal extension & of ¢ to a submodule ' C R satisfying (6.11) for every
a€NW. Ifbe RN and (V) = 0 for every b’ € Rgb NI, then we put
p = 0. If there exists an element f € Ry with fb € Rzb NN’ and ' (fb) # 0,



6. THE DYNAMICAL SYSTEM DEFINED BY A NOETHERIAN MODULE 53

then f(c) = ne(f) # 0: otherwise f € a, fb € a* C £, and &'(fb) = £(fb) =0
by (6.10), which is impossible. Hence we can set p = &'(fb)/f(c). The map
&N = Reb+ 9 — C, defined by £ (fb+a) = f(c)p + & (a) for f € Ry
and a € 9, is a homomorphism which extends £’ and satisfies (6.11) for all
a € M”. This contradiction to the maximality of 91" proves our claim.

We have obtained an extension ¢: SR’; — C of ¢ satisfying (6.11) for all
a € R%; this implies that ker(£) is a submodule of R% which contains ker((),
and that ¢ induces an Rg-module homomorphism Z: M’ = R /ker(¢) — C
with Z(9) D n.(Rq) and

2.4 =0, = (6.12)

for every n € Z4, where 0, is multiplication by ¢”. We denote by W the closure
of Z(M) in C and write V = W for the dual group of W. Since = sends 9 to

a dense subgroup of W, there is a dual inclusion V' C im’ﬁ{e\r(E) cCOM C X,
and (6.12) shows that, for every v € V and n € Z,

On(v) = an(v). (6.13)

If the closed subgroup W C C is countable, then the group ® = {6, : n €
7%} < Aut(W) is finite, since it consists of isometries of 1, and hence © =
{0n : 1 € Z%} C Aut(V) is finite. From (6.13) it is clear that the restriction of
« to the infinite subgroup V' C X cannot be expansive.

If W is uncountable, but disconnected, we replace W by its infinite,
discrete quotient group W’ = W/W°, and obtain an a-invariant subgroup

V' =W/We° CV C X on which « is not expansive.

If W is connected, it is either equal to C or isomorphic to R, and the
definition of © implies that W has a basis of O-invariant neighbourhoods of
the identity. The dual group V is isomorphic to W, and again possesses a basis
of O-invariant neighbourhoods of the identity. Since the inclusion V' — X is
continuous, the Z%-action n — én on V C X must also be non-expansive in the
subspace topology, i.e. a is not expansive on V.

We have proved that there always exists an infinite, a-invariant, but not
necessarily closed, subgroup V' C X on which « is non-expansive in the induced
topology. This shows that « is not expansive and completes the proof that
(a)<=(c).

The equivalence of (b) and (c) is seen by applying the implications (a)<=-
(c) already proved to the Z%actions a®e/Pi i =1,... m.

It is clear that (c)=>(d). Conversely, if Vc(p;) N'S? # @ for some i €
{1,...,m}, choose fi,..., fr in Ry with p; = f1Rq + -+ + frR4, and define
polynomials g;,h;, 7 =1,...,k, in

Rd:Q[xla-"axdayla"'7yd]
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gj(al,...,ad,bl,...,bd) = Re(fj(al +b1\/—1,...,ad+bd\/—1))

and
hj(al,...7ad,b1,...,bd) = Im(fj(al —|—b1\/—1,...,ad +bd\/—1))

for all j = 1,...,k and (ay,...,aq,b1,...,bq) € R?? where Re(z) and Im(z)
denote the real and imaginary parts of z € C. For [ =1,...,d we put

Xl(xla"'axd7y17"'7yd) :xl2+yl2_1 € Ra.

The ideal J C R4 generated by {g1,..., gk, 1, -, hi, X1, - - -, Xk} satisfies that
Ve (9)NR2?? £ . Hence J does not contain a polynomial of the form 1+Z;:1 wjz
with 7 > 1 and ; € R4, and the real version of Hilbert’s Nullstellensatz implies

that Ve (9) NR24 N QQd # & (proposition 4.1.7 and corollaire 4.1.8 in [11]). In
particular we see that (d) cannot be satisfied, and this shows that (d)=-(c) and
completes the proof of Theorem 6.5 (4). O

Before we start listing some useful corollaries of Theorem 6.5 we give
an elementary characterization of the connectedness of a group X carrying a
Z%-action by automorphisms in terms of the prime ideals associated with the
Ry-module X .

PROPOSITION 6.9. Let a be a Z%-action by automorphisms of a compact,
abelian group X, and let M = X be the Rg-module defined by Lemma 5.1. The
following conditions are equivalent.

(1) X is connected;
(2) Ve(p) # @ for every prime ideal p C Ry associated with IN.

PRrROOF. Suppose that X is connected, and let p C 9y be a prime ideal
associated with 97. Then there exists an element a € 9 with R, - a = Ry/p,
which implies that X®4/P is a quotient group of X. In particular, X™¢/? is
connected, so that PRy /p is a torsion-free, abelian group, and Lemma 6.7 implies
that Vo(p) # @. Conversely, if X is disconnected, then there exists—by duality
theory—a non-zero element a € 9t and a positive integer m with ma = 0, and
we set N = Ry - a and observe that 91 (and hence M) has an associated prime
ideal p containing a non-zero constant (cf. (6.6)). In particular, Ve (p) = @. O

COROLLARY 6.10 (OF THEOREM 6.5). If o is an ergodic Z%-action by
automorphisms of a compact, abelian group X satisfying the d.c.c., then an
is ergodic for some n € Z2.

PROOF. Lemma 5.1, Proposition 5.4, and Theorem 6.5 (1). O

COROLLARY 6.11. Let d > 2, and let (f) C Ry be a principal ideal. Then
a®a/(F) s ergodic.
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PRrOOF. By Theorem 6.5 (1), the non-ergodicity of « implies that V(p;) is
finite for at least one of the associated primes of 9 = MRy/(f). However, the
associate primes of 91 are are all principal (they are given by the prime factors
of f in R,), and have infinite varieties. O

COROLLARY 6.12. Let d > 1 and f € Rq. If f is not divisible by any
generalized cyclotomic polynomial then o4/ is mizing.

PROOF. If p is one of the associated primes of Ry/(f) then p = (h) for a
prime factor h of f in PRy, and p contains a polynomial of the form u™ — 1 for
some (non-zero) n € Z< if and only if h = ¢(u®) for some cyclotomic polynomial
¢ (cf. Theorem 6.5 (2)). O

COROLLARY 6.13. Let X be a compact, abelian group, and let o be an
expansive Z2-action by automorphisms of X. Then the Rq-module M = X is
a Noetherian torsion module.

PROOF. According to (4.10) and Proposition 5.4, 9 is Noetherian, and by
Theorem 6.5 (4), {0} cannot be an associated prime ideal of 9. O

COROLLARY 6.14. Let X be a compact, connected group, and let o be
an expansive Z-action by automorphisms of X. Then X is abelian and o is
ergodic.

PRrROOF. Theorem 2.4 shows that X is abelian, and (4.10) and Proposition
5.4 allow us to assume that (X,a) = (X™,a™) for some Noetherian 9R4-
module M. By recalling Proposition 6.9 and comparing the conditions (1.e)
and (4.c) in Theorem 6.5 we see that « is ergodic. [

COROLLARY 6.15. Let X be a compact group, and let o be an erpansive
Z4-action by automorphisms of X. If Y C X is a closed, normal, a-invariant
subgroup, then oY and aX/Y are both expansive.

PROOF. The expansiveness of a¥ is obvious. In order to see that o™/ is

expansive we note that the connected component of the identity X° C X is
abelian by Corollary 2.5. The group X/X° is zero-dimensional, and X /(Y +X?°)
is a quotient of a zero-dimensional group and hence again zero dimensional.
Since the Z%-action o/ +X°) gatisfies the d.c.c., Corollary 3.4 implies that
aX/(Y+X®) {5 expansive.

The group (Y + X°)/Y is isomorphic to X°/(Y N X°), and this iso-
morphism carries oY XY to oX°/(YOX") We apply Lemma 5.1 to the
abelian groups X° and X°/(Y N X°), and obtain %s-modules X° = M and
XO/(/Y?XO) = M C M satisfying (5.3)-(5.4). Since oX’ is expansive, The-
orem 6.5 (4) implies that Ve (p) N'S? = @ for every prime ideal p associated
with 9. Every prime ideal associated with 91 is also associated with 9, and

Theorem 6.5 (4) implies that o is expansive. This implies the expansiveness
of both oX°/(YNX®) and oY +X)/Y
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Suppose that © € X \Y. If z ¢ Y + X° then the expansiveness of
aX/(Y+X°) guarantees the existence of an open neighbourhood N'(1x) of the
identity in X such that am(z) ¢ N'(1x) +Y + X° D N'(1x) + Y for some
m € Z% If € Y+ X° then the expansiveness of a(Y +X°)/Y allows us to choose
a neighbourhood N”(1x) of the identity in X with auy,(z) € N"(1x) + Y for
some m € Z4. Put N(1x) = N’(1x) N N”(1x). Then there exists, for every
z€XNY,an m € Z? with () ¢ N(1x) + Y, which shows that oX/Y is
expansive. [

In view of Theorem 6.5 we introduce the following definition, which will
help to simplify terminology.

DEFINITION 6.16. Let d > 1, and let p C Ry be a prime ideal. The ideal
p will be called ergodic, mixing, or expansive if the Z%-action o®4/? is ergodic,
mixing, or expansive.

EXAMPLES 6.17. (1) Let n > 1, « = A € GL(n,Z) = Aut(T™), and let
f=A=AT € Aut(Z"). The Ri-module 9 = Z" arising from « via Lemma
5.1 is Noetherian, and ann(m) = {f € R, : f(AT)m = 0} for every m € Z".
In particular, the associated primes of 9t are the principal ideals (h), where h
runs through the prime factors of the characteristic polynomial x4 = x 47 of
A (or AT) in ;. In this setting Theorem 6.5 (1) reduces to the following well
known facts about toral automorphisms: (i) « is ergodic if and only if no root
of x4 is a root of unity; (ii) « is expansive if and only if no root of x4 has
modulus 1.

(2) The automorphism « in Example 5.6 (1) does not satisfy the d.c.c.
(cf. Theorem 5.7), and is therefore non-expansive by (6.10). However, if we
replace Q by Z[}] = {k/6' : k € Z,1 > 0} = R1/(2u1 — 3) = M, where the
isomorphism between R1/(2u1 — 3) and Z[}] is the evaluation f +— f(3), then
the automorphism 3’ of Z[é] consisting of multiplication by 3 is conjugate to
multiplication by w; on 9. Since p = (2u; — 3) C Ry is a prime ideal, M is
associated with p, Ve(p) = {3}, and the automorphism o’ on X = Z[;] dual to
(' is expansive by Theorem 6.5 (4). An explicit realization of &’ can be obtained
from Example 5.2 (2) by setting o/ equal to the shift o on X’ = {(x}) € TZ:
3xp = 2w for every k € Z}.

(3) Let p C My be a prime ideal. Since the ring i)‘{gQ) = Q[ui"] of Laurent
polynomials with rational coefficients is a principal ideal domain, 2R;/p must
be finite if p is non-principal. In order to see this, assume that p C R; is a
non-principal prime ideal, and choose two irreducible elements g,h € p with
gR1 # hRy. We assume without loss in generality that g9, # mfR; for any
m € Z. Then q = {}Lf n>1,fep}C %SQ) is an ideal strictly containing the
maximal ideal gD‘ng), and therefore equal to SR&Q). We conclude that p contains
a prime constant p, and hence the ideal (p,g) = pR1 + gR1. It follows that

R1/p is a quotient of the finite ring Ri1/(p,g) = i)%gp)/g/pﬁ%gp) (cf. (6.1)). In
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particular, if p C 9, is a non-principal prime ideal, then X%1/pP = m is
finite, and a™/? is non-ergodic.

If p = (f) for some f € PRy, the automorphism a = o™/¥ is non-ergodic if
and only if f divides u} —1 for some n > 1 (Theorem 6.5 (1)) (as f is irreducible
this means that +uf f is cyclotomic for some n € Z), and « is expansive if and
only if f is non-zero and has no roots of modulus 1 (Theorem 6.5 (4)). Since
we can write X = X™1/? in the form (5.9) we see that X is (isomorphic to) a
finite-dimensional torus if and only if there exists n € Z and s > 1 such that
ul f(ur) = co + crug + -+ - + csuf with |eoes| = 1. If |epes| > 1, then X is a
finite-dimensional solenoid, i.e. X is isomorphic to a subgroup of Q° (Example
(2) and Example 5.3 (3)).

(4) Let « be an ergodic automorphism of a compact, abelian group X, and
let 9 = X be the R;-module arising from « via Lemma 5.1. Then every prime
ideal p C R; associated with 9 is principal, and p # (f) for any cyclotomic
polynomial f C 2Ry (Proposition 6.6 and Example (3)). [

Further examples of expansive automorphisms of compact, abelian groups
will appear in Chapter 3.

EXAMPLES 6.18. In the following illustrations of Theorem 6.5 we consider
Ro-modules of the form 9 = Ra/a, where a C MRy is an ideal, realize X =
XM TZ as in Example 5.2 (2), and denote by o = o™ the shift-action of
Z? on X.

(1) Let a = (14w 4uz). Since a is prime, 9 is associated with a. Corollary
6.11 shows that « is ergodic, and Corollary 6.12 implies that « is mixing. Since
(—141iv-3)/2, (=1 —iv/-3)/2) € Vc(a) NS?, a is not expansive by Theorem
6.5 (4). Moreover, Ve (a)NQ(3Z?) # @, so that Fixszz () is infinite by Theorem
6.5 (3). note that Fixzzz(«r) consists of all points

. a b c a .

- a+2b+c a+b+2c¢ 2a+b+c at+2b+c -

- —a—-b —-b—c —a—c —a-b -

a b c a
with a,b,¢ € T and 3a + 3b + 3¢ = 0 (mod 1). In particular, the connected
component of the identity Fixsz2(a)® C Fixsze(a) is isomorphic to T2
(2) Let a = (2 + uy + u2) C Ra. The action « is ergodic, mixing, non-

expansive, and (—1,—1) € Vg(a) N Q(2Z2) # @. The points in Fixyz:(a) are of
the form

. a b a .
- —2a—b —a—2b —2a—b -
a b a .

with 4a +4b =1 (mod 1), and Fixazz(«)® is isomorphic to T.
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(3) Let a = (2 —u3 — uz) C Ra. Then « is again ergodic, mixing, and
non-expansive. Since (1,1) € V¢ (a), o has uncountably many fixed points, and
hence Fix, () is uncountable for every subgroup A C Z.

(4) If a = (3 + ug + u2) C Ro, then « is ergodic, mixing, expansive, and
the expansiveness of « implies directly that Fix («) is finite for every subgroup
A C Z% of finite index.

(5) In Example 5.3 (5) we considered the ideal a = (2,1 + u3 + u2) C

Ry. Then Ve(a) = &, and Theorem 6.5 (4) re-establishes the fact that « is

expansive. Since the polynomial 1 + u; 4 uo is prime in 9{9 =7 /Q[ulﬂ, ufz],

the ideal a is prime, and as in Corollary 6.12 we see that « is mixing (since every
prime polynomial in Z/;[u] divides a polynomial of the form u! — 1 for some
[ > 1, (the analogue of) Corollary 6.12 reduces to checking that 1 4+ uy + ug €
9%52) is not a polynomial in the single variable u® for some 0 # n € Z?).

(6) Let a = (4,1 4+ uy — uz + 2u3 + ujuz) C Re. Since every prime ideal
p associated with 9t = 94/a must contain both the polynomial 1 4 u; — ug +
2u3 +ujus and the constant 2, the prime ideals associated with 9t are given by
p1 = (2,1 —wu) and pa = (2,1 — ug). In particular, « is ergodic and expansive,
but not mixing: the automorphisms «; gy and « g, 1) are non-ergodic, whereas
a(1,1) is ergodic.

(7) Let a = (6 — 2u1,2 — 3u; — 5u3). The prime ideals associated with
9N = Ra/a are given by p1 = (3—uy, 7T+5ud), pa = (3,1 +ua), p3 = (3,1 —ua),
and the Z2-action « is ergodic and expansive, but non-mixing. In this example
a(o,1) is non-ergodic (because of p3), but a(; ¢ is ergodic.

(8) If a = (1 +uy +u?,1 —uz) then « is non-ergodic, since a is prime and
contains {u*® —1:n € Z?}. O

CONCLUDING REMARKS 6.19. (1) Most of the material in this section is
taken from [94]. For Example 6.17 (2) we refer to [71].

(2) If d > 2, Corollary 6.10 is incorrect without the assumption that
(X, ) satisfies the d.c.c.: indeed, let, for every n € Z¢, M, = Ry/(u® — 1).
Then M, is an Rg-module, and the Z?-action o™ is ergodic by Corollary 6.11.
We denote by 9 =" /4 My the direct sum of the modules Ny, n € 74, and
write a typical element a € M as a = (an) with a, € Ny, for every n € Z<. The
Z%-action o = o™ arising from the M4-module M via Lemma 5.1 is ergodic
by Lemma 1.2. However, a, is non-ergodic for every n € Z9: if n = 0, this
assertion is obvious, and if n # 0, then the non-zero element a(n) € 9 defined
by

1 for m=n
a(D)m =
0 for m#n

satisfies that u™a(n) = a(n), and hence oy, is non-ergodic by Lemma 1.2 (ap-
plied to the Z-action k — ayy,).
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(3) Let M be a countable M|y-module, and define (X™, ™) by Lemma
5.1. For every f =3 ;4 cy(n) € Ry we define a group homomorphism

a?‘n = Z cr(n)at: XM x ™ (6.14)

d
by setting ner

af'(z) = ) ep(m)ay(z)

nezd
for every z € X™, and note that a?cﬁ commutes with o™ (i.e. a?pﬁ ot =

alt. a?cﬁ for every n € Z%), and that oz?gn is dual to the homomorphism

for: M r— M (6.15)

consisting of multiplication by f. In particular, ai’cﬁ is surjective if and only if
fon is injective, i.e. if and only if f does not lie in any prime ideal associated
with 9 (cf. (6.4)). If M = MR, /a for some ideal a C Ry, then (5.9) shows that

X%ale — (g TZ = X% a?d(a:) =0x forevery fe€a}, (6.16)
and every a-commuting homomorphism ¢: X My XM s of the form ¢ =
a?pn for some f € Ry: indeed, if ©: Ry/a — Ry/a is the homomorphism dual
to 1, then ¢(1) = f + a for some f € Ry, and ¢ = a?d/a. For every ideal
a C Ry we set alb = XNa/a — @ C S)Tﬁ\d = TZd, and observe that a™d/¢ ig

the restriction of the shift-action o of Z¢ on TZ" to a*. For every f € Ry the
sequence

amd
0— (a+(f))tF —at =6t —0, (6.17)
is exact, where
b={g€Ry: fg€a}. (6.18)

In particular, a?d/a: at —— at is surjective if and only if a = b.

(4) Let p > 1 be a rational prime, and let o be a Z%-action by automorph-
isms of a compact, abelian group X with the property that pr = 0 for every
z € X. If M = X is the Ry-module arising from lemma 5.1, then pa = 0 for
every a € 9, so that 91 may be viewed as an %Sf )_module. Conversely, suppose
that 91 is a countable %g’)—module. Exactly as in (5.1)—(5.6) we can define a
Z%-action o = o™ on the dual group X = X™ = 9 of N. Since pa = 0 for every
a € N, the group X is totally disconnected, and =P = 1x for every z € X.
Since %&p ) is a quotient ring of Ry, N is also an Rg-module, and we write I
instead of M if we wish to emphasize that O is viewed as an Rg-module. If N is

)

Noetherian (either as an $Rg-module or as an Sﬁgp -module—the two conditions
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are obviously equivalent), then we can realize (X%, a®) = (X%, a") as the
shift-action o of Z¢ on a closed, shift-invariant subgroup X C ('H‘k)Zd for some
k > 1 (Example 5.2 (3)—(4)). Since px = Ox for every z € X, we know that
Ty € (F,)F for every n € Z%, where F, = {¥ : k =0,...,p— 1} C T, and
the obvious identification of F}, with the prime field F, allows us to regard X
(and hence X™) as a closed, shift-invariant subgroup of (F’;)Zd, and o as the
shift-action on X.

In particular, if a C %&p) is an ideal, and if 91 = i)%glp)/a, then we may

(p)
= amdp

regard o™ /% as the shift-action of Z% on the subgroup

(p) d
XRd e = {x = (Tm) € ]F;Z7 : Z cy(N)Tmyn = O,
nezs for all f€a, meZ?

} (6.19)

of F%d. Conversely, if X C F%d is a closed, shift-invariant subgroup, then
Xt =acRP =z (6.20)

is an ideal, X =2 X ny/ ¢ and the isomorphism between X and X % /6 carries
the shift-action o of Z% on X to a4 /2.

Every prime ideal p C i)‘ifip ) associated with an D‘i((ip )_module M defines
a prime ideal p’ = {f € Ry : f), € p} C Ry, and p’ varies over the set
of prime ideals in Ry associated with 9V as p varies over the prime ideals in
EREip ) associated with 9. As we have seen in Example 6.18 (5), the dynamical

properties of ™ expressed in terms of the associated primes p’ C Ry of N
)

have an analogous expression in terms of the prime ideals p C ‘ﬁ((ip associated
with 91. In particular, o = a™ = o™ is non-ergodic if and only if V(p) is finite

for some prime ideal p C mgp ) associated with N, and « is mixing if and only
if no prime ideal p C g)t{g? ) associated with M contains a polynomial in a single
variable u®, 0 # n € Z%. Furthermore, if M is Noetherian, then Fixy(c) is
finite for every subgroup A C Z¢ of finite index, and « is expansive.

The algebraic advantage in viewing an $Rg-module 9 with pa = 0 for all
a € 9 as an S‘ifip )_module is that D‘igp )isa ring of polynomials with coefficients
in the field F,, which simplifies the ideal structure of %Elp ) when compared
with that of R4. As far as the dynamics are concerned there is, of course, no
difference between viewing 91 as a module over either of the rings Ry or E)%g’ ).

7. The dynamical system defined by a point

The results in Section 6 show that many questions about Z%-actions by
automorphisms of compact, abelian groups can be reduced to questions about
Z%-actions of the form a™¢/? where p C QRy is a prime ideal. In this section
we consider prime ideals of the form p = j. = {f € Ry : f(c) = 0} with ¢ =



7. THE DYNAMICAL SYSTEM DEFINED BY A POINT 61

(c1,...,cq) € (@X)d. The groups X ™/ic arising from these ideals via Lemma
5.1 turn out to be connected and finite-dimensional (i.e. finite-dimensional tori
or solenoids); conversely, if p C My is a prime ideal such that X ¢/ is connected
and finite-dimensional, then p = j, for some ¢ € (Q")? (Corollary 7.4).

Let K be an algebraic number field, i.e. a finite extension of Q. A valuation
of K is a homomorphism ¢: K — R* with the property that ¢(a) = 0 if and
only if a = 0, ¢(ab) = ¢(a)p(b), and ¢(a+b) < c-max{p(a), p(b)} foralla,b € K
and some ¢ € R with ¢ > 1. The valuation ¢ is non-trivial if ¢(K) 2 {0,1},
non-archimedean if ¢ is non-trivial and we can set ¢ = 1, and archimedean
otherwise. Two valuations ¢, 1) of K are equivalent if there exists an s > 0 with
¢(a) = (a)® for all a € K. An equivalence class v of non-trivial valuations of K
is called a place of K, and v is finite if v contains a non-archimedean valuation,
and infinite otherwise. If v is finite, all valuations ¢ € v are non-archimedean.

Let v be a place of K, and let ¢ € v be a valuation. A sequence (a,, n > 1)
is Cauchy with respect to ¢ if there exists, for every € > 0, an integer N > 1
such that ¢(a;, — a,) < € whenever m,n > N. It is clear that this definition
does not depend on the valuation ¢ € v, so that we may call (a,,) a Cauchy
sequence for v. Two Cauchy sequences (ay) and (b,) for v are equivalent if
lim,, 0 ¢(an, — by,) = 0, and this notion of equivalence again only depends on
v and not on ¢. With respect to the obvious operations the set of equivalence
classes of Cauchy sequences for v is a field, denoted by K,, which contains K
as a dense subfield (every a € K is identified with the equivalence class of the
constant Cauchy sequence (a,a,a,...) in K,). The field K, is the completion
of K in the v-adic topology.

Ostrowski’s Theorem (Theorem 2.2.1 in [16]) states that every non-trivial
valuation ¢ of Q is either equivalent to the absolute value (i.e. there exists a
t > 0 with ¢(a)t = |a| for every a € Q), or to the p-adic valuation for some
rational prime p > 2 (i.e. there exists at > 0 such that ¢(™")* = pn'=m') — |™ |
for all " € Q, where m = p™'m”, n = p"”n”, and neither m” nor n’ are
divisible by p). It is easy to see that the valuations |- |, |- |p, |- | are mutually
inequivalent whenever p, ¢ are distinct rational primes, i.e. that the places of
Q are indexed by the set IT U {oco}, where II C N denotes the set of rational
primes. The completion Q. of Q is equal to R, and for every rational prime p
the completion Q, of Q is the field of p-adic rationals.

For every valuation ¢ of K, the restriction of ¢ to Q@ C K is a valuation of
Q and is equivalent either to | - | or to | - |, for some rational prime p. In the
first case the place v 3 ¢ is infinite (or lies above oo), and in the second case
v lies above p (or p lies below v). We denote by w the place of Q below v and
observe that K, is a finite-dimensional vector space over the locally compact,
metrizable field Q,, and hence locally compact and metrizable in its own right.
Choose a Haar measure A, on K, (with respect to addition), fix a compact
set C' C K, with non-empty interior, and write modg, (a) = A, (aC)/\,(C) for
the module of an element a € K,. The map modg, : K — R™ is continuous,
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independent of the choice of \,, and its restriction to K is a valuation in v
which is denoted by | - |,.

Above every place v of Q there are at least one and at most finitely many
places of K. Indeed, if K = Q(ay,...,a,) with {a1,...,a,} C Q, and if f
is the minimal polynomial of a; over Q, then f is irreducible over Q, but f
may be reducible over Q,; we write f = f; - ... fi for the decomposition
of f into irreducible factors over Q, and consider the field Q,[z]/(f;), where
(fi) denotes the principal ideal in the ring Q,[z] generated by f;. We define
an injective field homomorphism ¢: KM = Q,(a;) — Q,[z]/(f;) by setting
((a1) = = and ¢(b) = b for every b € Q, and put ¢;(a) = modg, »1/(f,) (¢(a)) for
every a € K. Then ¢; is a valuation of K(!) whose place w; lies above v. The
places wy, ..., wy are all distinct, and they are the only places of K" above v
(Theorem IIL.1 in [109]). In exactly the same way we find finitely many places
of K& = K®(ay) = Q(a1, az) above each place of K| and after n steps we
obtain that there are at least one and at most finitely many places of K above
each place of Q. A place v of K is infinite if and only it lies above co; in this
case v is either real (if K, = R) or complex (if K, = C).

We write P, P, and P, for the sets of places, finite places, and infinite
places of K. For every v € P, R, = {r € K, : |r|, < 1} is a compact subset
of K,. If v € Pf]K7 then R, is, in addition, open, and is the unique maximal
compact subring of K,; furthermore there exists a prime element m, € R,
such that m,R, is the unique maximal ideal of R,. For every v € PfK we set
0, = KNRX,, and we note that ox = ﬂUeP%K 0, is the ring of integral elements

in K (Theorem V.1 in [109]). The set

Ky = {wz (wv,UEPK) IS H K, :

vePK (71)
|wy]y < 1 for all but finitely many v € PK},

furnished with that topology in which the subgroup

{w=(wy,vEP*) €Ky : |wyly <1 for every v e PfK}

%HKUXH%}

vePX vEP;K

carries the product topology and is open in Ky, is the locally compact adele
ring of K. The diagonal embedding i: £ — (£,€,...) of K in Ax maps K to a
discrete, co-compact subring of Ky (cf. [16], [109]).

We fix a non-trivial character x € i(K)+ C K, and define, for every a € K,
a character y, € i(K)* C ]KX by setting



7. THE DYNAMICAL SYSTEM DEFINED BY A POINT 63

for every w € K4. By [16] or [109], the map a — ¥, is an isomorphism of the
discrete, additive group K onto i(K)* C K. The resulting identification
K =~ K, /i(K) (7.2)

depends, of course, on the chosen character y. In order to make the isomorphism
(7.2) a little more canonical we consider, for every w € P¥, the subgroup

Q{w}) = {w = (wy) €Kp 1w, =0 for every v #w} 2K,

of K and denote by x(*) ¢ K\ the character induced by the restriction of x
to Q({w})’. After replacing y by a suitable ° Xas @ € K, if necessary, we may
assume that the induced characters () € Kw, w e P , satisfy that
Ry C ker w € Ay, =1
(") = { “(w) =1}, (7:3)
T Ry & ker(x(w))

for every w € PfK, where 7, € R, is the prime element appearing in the
preceding paragraph (cf. [109]). With this choice of x we have that

x € (i(K) + o))"
where
Q(PfK)’ ={w=(wy) €Ky :w, =0 for every v € PX = P¥ P#K}.
Now consider a finite subset /' C PX which contains PX | denote by
ir: K— [ K, (7.4)
veF
the diagonal embedding r — (r,...,r), r € K, put
Rr={a€K:|al, <1 for every v & F}, (7.5)

and observe that ip(Rp) is a discrete, additive subgroup of [ K,. If

vEF

Q=QF) = {w= (wy) €Ky : |lwy|o <1 for every v € P*\ F},

QA =QP*F) ={w=(wy) €Kp :w, =0 for every v € F},

O =N,
then i(K) + Q" = i(K) + ', and (7.3) implies that x € (i(K) + Q")+ =
(i(K) + Q)+ and
Rrp={acK:x, € (i(K)+Q)"}.

Hence

Rr = K,u/(i(K) E (H K1,> / Rp). (7.6)

veEF
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Let d > 1, ¢ = (c1,...,cq) € (Q), and jo = {f € Rq : f(c) = 0}. We
wish to investigate the dynamical system (X, o) = (Xa/le q®a/ic) determined
by ¢. Denote by K = Q(c) the algebraic number field generated by {ci,...,cq}
and put

Fe)={ve PfK t|eily # 1 for some i € {1,...,d}}, (7.7)
which is finite by Theorem II1.3 in [109], and
Re = Rp(e), (7.8)

where P(c) = PX U F(c). Then R, is an $3g-module under the action (f,a)
f(c)a, and we define the Z?-action

al®) = fte (7.9)

on the compact group

Y© =R, = ( 11 KU> / ir(R.) (7.10)

vEP(c)
by (5.5)-(5.6), where we use (7.6) to identify R. and (H?)EP((:) Ky) /ir(Re).

THEOREM 7.1. There exists a continuous, surjective, finite-to-one homo-
morphism ¢: Y (©) —— XRalle such that the diagram

v _om oy

o) |o (7.11)

XfRd/jc R de/jc
amd/jc

commutes for every m € Z2.

PROOF. The evaluation map 7.: f + f(c) induces an isomorphism 7 of the
Rg-module Ry /j. with the submodule 7.(R4) C R. C K; in particular

(' (@) = a0 (n(a)) = dgy (n(a)) (7.12)

for every a € Ry/j. and m € Z4.

We claim that R./n.(Rq) is finite. Indeed, since K = Q(c) is algebraic,
every a € K can be written as a = b/m with b € Z[c] = Z]c1, ..., cq) and m > 1.
In particular, since the ring of integers o(c) = og C K is a finitely generated
Z-module, there exist positive integers mg, My with mgo(c) C Z[c] C n.(Raq)
and |J./n.(Ra)| < |o(e)/moo(c)| = My < co.

According to the definition of F(¢) there exists, for every v € F(c), an
element a, € n.(Rq) such that |a,|, > 1 and |ay|, =1 for all w € Pf]K ~ F(c).

Then [ao(c)/ne(Ra)| < Mo and |(X,¢ poy @20(0))/ne(Ra)| < MY for all
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n > 0. As n — 00, 3, cp() ayo(c) increases to R, and we conclude that
[Be/ne(Ra)] < My" ! < o0,
The inclusion map Ry/j. = n.(Ry) — R. induces a dual, surjective,

finite-to-one homomorphism ¢: Y(©) —— X = My/j., and the diagram (7.11)
commutes by (7.12). O

This comparison between R, and 7.(Rg) shows that the Z%actions al®)
and a™/le are closely related. The group R. can be determined much more
easily than 7.(94) and has other advantages, e.g. for the computation of en-
tropy in Section 7; on the other hand R. may not be a cyclic Rz-module, in
contrast to 1.(Rq) = Ra/je. Since R, is torsion-free (as an additive group),
Y(©) and X%a/ie are both connected.

PROPOSITION 7.2. Let d > 1, ¢ = (c1,...,cq) € (Q°), and let (XRalie,
ofRd/jC) and (Y(C),a(c)) be defined as in Theorem 7.1.

(1) For every m € Z9, the following conditions are equivalent.
(a) Q) is ergodic;
(b) amte s ergodic;
(¢) ¢™ is not a root of unity.
(2) The following conditions are equivalent.
(a) ol is ergodic;
(b) a™Me/ic s ergodic;
(c) At least one coordinate of ¢ is not a root of unity.
(3) The following conditions are equivalent.
(a) o' is mizing;
(b) a™alie is mizing;
(c) ™ %1 for all non-zero m € Z4.
(4) If o' is ergodic then the groups Fixa(a(?) and Fixp (a®4/ie) are finite
for every subgroup A C Z¢ with finite index.
(5) The following conditions are equivalent.
(a) ol is expansive;
(b) a™alie s expansive;
(¢) The orbit of ¢ under the diagonal action of the Galois group
GallQ: Q] on (Q)? does not intersect S*.

PROOF. The Rg-modules R, and PRy/j. are both associated with the prime
ideal j., Ve (jc) = Gal|Q : Q](c), and all assertions follow from Theorem 6.5. O

PROPOSITION 7.3. Let N(c) be the cardinality of the orbit Gal|Q : Q](c)
of ¢ under the Galois group. Then Y(©) = TN if and only if ¢; is an algebraic
unit for everyi=1,...,d (i.e. ¢; and C;l are integral in Q(c) fori=1,...,d).
If at least one of the coordinates of ¢ is not a unit, then Y9 is a projective
limit of copies of TN,
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PROOF. We use the notation established in (7.1)—(7.8). The number N(c)
is equal to the degree [Q(c) : Q]. If Ngr(c) and N¢(c) are the numbers of real
and complex (infinite) places of Q(c¢) then N(¢) = Ng(c) + 2N¢(c), and the
connected component of the identity in J], . P(e) K, is isomorphic to RV(). The
condition that every coordinate of ¢ be a unit is equivalent to the assumption
that F'(¢) = &; in this case Y'(©) is isomorphic to the quotient of RV(¢) by the
discrete, co-compact subgroup ip()(R.), i.e. Y@ = TN If F(c) # @ then
Y(©) is isomorphic to the quotient of RN (€) x HveF(C) K, by ip(e)(Re). In order
to prove the assertion about the projective limit we choose, for every v € F(c),
a prime element p, € K, (i.e. an element with p,R, = {a € K, : |a|, < 1}), and
set Ap = ip(e)(Re)+]er (o p' R, for every n > 1. Then Nos1Bn =ipe)(Re),
and Y is the projective limit of the groups Y, = Y(C)/An >~ TN p>1,
where the last isomorphism is established by meditation. [

If X is a compact, connected, abelian group with dual group X then X
is torsion-free, and the map a — 1®a from X into the tensor product Q®z X
is therefore injective. We denote by dim X the dimension of the vector space
Q ®z X over Q and note that this definition of dim X is consistent with the
usual topological dimension of X: in particular, 0 < dimY(®) = N(¢) < oo
in Proposition 7.3. With this terminology we obtain the following corollary of
Theorem 7.1 and Proposition 7.3.

COROLLARY 7.4. Let p C Ry be a prime ideal, and let (XNa/P a™a/P) pe
defined as in Lemma 5.1. The following conditions are equivalent.

(1) XRa/v s o connected, finite-dimensional, abelian group;
(2) p =jc for some c € (Qx)d.
Furthermore, if a is an ergodic Z%-action by automorphisms of a compact,

connected, finite-dimensional abelian group X, then the Rg-module M = X
has only finitely many associated prime ideals, each of which is of the form

p =j. for some c € (Q)%.

PRrROOF. The implication (2)=-(1) is clear from Theorem 7.1, Proposition 7.3,
and the definition of dim X. Conversely, if p C Ry is a prime ideal such that

XRalp — S)m is connected, then p does not contain any non-zero constants,
and the map a — 1 ® a from R,/p into the tensor product Q ®z (Rq/p) is
injective. This allows us to regard Ry/p as a subring of Q ®z (R4/p). The
variety V(p) is non-empty by Proposition 6.9, and is finite if and only if each
of the elements u; +p € Q®z (Ra/p), i = 1,...,d, is algebraic over the subring
Q Cc Q®z (R4/p). In particular, if V(p) is finite, then p = j. for every ¢ € V(p),
which implies (2). If V(p) is infinite, then at least one of the elements u; + p
is transcendental over Q C Q ®z (Ra/p), and the powers uf +p, k €Z, are
rationally independent. This is easily seen to imply that dim X%/? = oo

In order to prove the last assertion we assume that p C Ry is a prime
ideal associated with 9. Then X%4/P is (isomorphic to) a quotient group of
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X, hence connected and finite-dimensional, and Proposition 6.9 and the first
part of this corollary together imply that p = j. for some ¢ € (Qx)d. If om
has infinitely many distinct associated prime ideals {j,a),j.,-..}, then we
can find, for every ¢ > 1, an element a; € M with Ry - a; = Ra/im. If
be ( 3;11 Ra-a;)NRq-a; # {0} for some j > 1, then the submodule Ry-b C M
has an associated prime ideal j which strictly contains j.); in particular, j must
contain a non-zero constant, in violation of the fact that every prime ideal p
associated with R, - b (and hence with 9) must satisfy that Ve (p) # @. Tt
follows that 9t has a submodule isomorphic to Rg/j0) B Ra/je B -+, and
hence that dim X = oco. This contradiction proves that there are only finitely
many distinct prime ideals associated with 2. [0

EXAMPLE 7.5. If a is a Z%action by automorphisms of a compact, con-
nected, finite-dimensional, abelian group, then the PRz-module M = X need
not be Noetherian (cf. Corollary 7.4): if « is the automorphism of X = Q
in Example 5.6 (1) consisting of multiplication by 3, then dim(X) = 1, but
91 = X = Q is not Noetherian (cf. Example 6.17 (2). O

The following Examples 7.6 show that the Z%-actions a(®) and o™/l may
be, but need not be, topologically conjugate.

EXAMPLES 7.6. (1) If ¢ = 2 then F(c) = {2}, R. = Z[}], and we claim

that the automorphism agc) onY© =R, = (RxQ2)/ir(e)(Z[}]), which is mul-

tiplication by 2, is conjugate to the shift a?l/@_"l) on the group X%1/(2—u1)

described in Example 5.3 (3). In order to verify this we note that there exists,
for every (s,t) € R x Qq, a unique element r € Z[}] with r + s € [0,1) and
7+t € Zy. This allows us to identify Y(©) = Z[}] with (R x Zs)/ip((Z). An
element a = f, € Z[}] defines a character on Y(© = (R x Z3)/ip()(Z) by
(a,(s,t) + ip(e)(2)) = e2millntlas)+Frac(at)) for every s € R and t € Zs, where
Int(as) is the integral part of as € R and Frac(at) € [0,1) is the (well-defined)
fractional part of at € Q,. Consider the homomorphism ¢: Y(©) —— TZ de-
fined by e2™(@W)m — (2™ 4 for every y € V() and m € Z. Then ¢ is injective,
H(Y(9)) ¢ XP1/C=w1) "and it is not difficult to see that ¢: Y(©) — X%1/(—u1)
is a continuous group isomorphism which makes the diagram (7.11) commute.
In particular, if we write a typical element y € Y(©) as y = (s,1) +ip(e)(Z) with
s € R and t € Zs, then

(@((0,8) +ire)(Z))m =0 and  (¢((s,0) +ip()(Z)))m = 2™s (mod 1)

for every m > 0.
Proposition 7.2 shows that the automorphism a(®) = a®1/ic is expansive
and hence ergodic.
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(2) If ¢ = 3/2 then F(c) = {2,3}, R. = Z[}], and we see as in Example
(1) that multiplication by 3 on

YO =R, = (R x Qs x Q3)/ip(ey(Z[L]) = (R x Zo X Z3) Jip(e) (Z)

is conjugate to the shift a™1/3¢ on X™1/ic in Example 6.18 (2). The Z-action
ald) = X%1/ie is expansive and ergodic by Proposition 7.2.

(3) Let ¢ = 2 ++/5. Then n.(Ry) = {k + V5 : k,l € Z} 2 72, F(c) = 2,
and R, is equal to the set o(c) = og(, of integral elements in Q(c). Since
0Q(e) = {k1+2\/5 —|—l1_2\/5 : k,l € Z} (cf. Lemma 10.3.3 in [16]), R. # 1.(%R1). By
Proposition 7.2, the Z-actions a(®) and a”/ic are both expansive (and hence
ergodic), but we claim that they are not topologically conjugate. According to
Corollary 5.10 this amounts to showing that R. and %R, /j. are not isomorphic
as Ri-modules, and we establish this by showing that R, is not cyclic. In terms
of the Z-basis {1+2‘/5, 1_2‘/5} for R., multiplication by c is represented by the
matrix 4 = (3 :%) If the module R. is cyclic, then there exists a vector
m = (my, my) € Z* such that {m, Am} = {(my, m2), (5m1 — 2ma, 2my — mo)
generates Z2, and as in Example 5.3 (2) we see that this impossible.

In this example X™1/Je 22 V(©) = T2 The matrix A’ = (3 3) represents
multiplication by ¢ in terms of the Z-basis {1,v/5} of n.(R1), and the matrices A
and A’ define non-conjugate automorphisms of T2 with identical characteristic
polynomials (cf. Example 5.3 (2)).

(4) Let ¢ = 1+2‘/5. Then 7.(R1) = 0(Q(c)) = R., and the Z-actions
al® and a®™1/ie are algebraically conjugate. However, a little care is needed
in identifying R, with Y(© in (7.10). The set P(c) = P consists of the
two real places determined by the embeddings V5 — /5 and V5 — —/5
of Q(c) = Q(V5) in R, so that Y9 = R%/ip,(R.) with ip)(R.) = {(k +
ll+2\/5,l<:—|—l 1_2\/5) : (k,1) € Z?} C R2. Under the usual identification of R? with
R? given by ((t1,t2), (s1,52)) = e2™(s1tit9212) for every (sq,s2), (t1,12) € R?,
the annihilator ip(.) (R.)* C R2 = R? is of the form ip(e)(Re)t = \}5 “ip(e) (Re),
and
1 1

1
X c Rc =1 c 'R(: = 'chRc-
v5 "t Z”()(Ms ) V5

(5) Let w = (=1 ++/=3)/2 and ¢ = 1 + 3w € Q. Then K = Q(w) and
F(c) = {7}. We claim that R, # n.(91). Indeed, since the minimal polynomial
f(u) = u? +u+1 of w is irreducible over the field Q3 of triadic rationals, there
exists a unique place v of K above 3, and K, = Q3(w). Let R, = {a € K,, :
lal, < 1} and 0, = KNR,. As [3|, = 1/9, every a € S = Z + 30, C 0, with
lal, < 1 satisfies that |a|, < 372. In particular, ( = 1 —w € 0, \ S, since
¢? = (1—w)? = —3w and hence ||, = 1/3 (cf. p.139 in [16]). Since n.(R1) C S
and ¢ € o(c) C R, we conclude that ( € R. \ n.(R1) # .

YO = ipe)(Re)™ =
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In order to verify that n.(R1) = R1/j. and R, are non-isomorphic we take
an arbitrary, non-zero element a € R, and note that

{1blo 2 b € ne(Ra) - a} = {|f()]olalo : £ € R} C{laly[blo : b€ S}
C{37":n>0} ={|bly : b€ R}

Hence R, is not cyclic, in contrast to MR /j.. Corollary 5.10 shows that the
Z-actions a(?) and a™/ie are not topologically conjugate. In this example the
isomorphic groups Y(© and X™1/ic are projective limits of two-dimensional
tori, and the automorphisms a(® and a”™1/ic are expansive (and ergodic) by
Proposition 7.2. []

EXAMPLES 7.7. (1) Let ¢ = (2,3) C (Q™)2. Then j, = (uy — 2,us — 3) C
R, F(c) = {2,3}, R, = Z[;], and as in Example 7.6 (1) one sees that the
Z2-action a(®) on Y@ is conjugate to shift-action a™2/7c on the group X %2/
appearing in in Example 5.3 (4). Note that a™2/)c is expansive and mixing;
in fact, amzlie ig expansive for every non-zero n € Z? (Proposition 7.2). The
group V(9 = (R x Qs x Q3)/ir(e)(Z]g)) = (R X Zg X Z3) [ip()(Z) is the same
as in Example 7.6 (2), but X M2/l is now a closed, shift-invariant subgroup
of TZ*. In order to describe an explicit isomorphism ¢: Y(©) — XR2/ic we
proceed as in Example 7.6 (1): identify V(9 with (R x Zy x Z3)/ir) (Z),
and write the character of Y(¢) defined by an element a = 2,531 € Z[é] as
(a, (r,s,t) +ip)(Z)) = e2mi(Int(ar)+Frac(as)+Frac(at)) for every r € R, s € Zo and
teZs If p: YO — TZ is the map given by €2 (¢W)niny) = (2m1372 )
for every y € Yand (n1,ny) € Z2, then ¢ is injective, p(V(9)) = XP2/ic and ¢
makes the diagram (7.11) commute.

(2) Let K D Q be an algebraic number field. We denote by ox C K the
ring of integers and write Ux C ox for the group of units (i.e. Ux = {a €
ok :a~ ! € ox}). By Theorem 10.8.1 in [16], Ux is isomorphic to the cartesian
product F' x Z™t*~1 where F is a finite, cyclic group consisting of all roots of
unity in K and r and s are the numbers of real and complex places of K. We
set d = r + s — 1, choose generators ci,...,cq € Uk such that every a € Uk
can be written as a = uc’fl et csd with v € F and kq,...,kq € Z, and set
c=(c1,...,¢q). Then XRalje 2 y(e) o Tr+2s and the Z%actions a™4/le and
a(®) are mixing by Proposition 7.2.

(3) Let d > 1, and let a C 2Ry be an ideal with V(a) # @ (or, equivalently,
with Ve(a) # @). For every ¢ € V(a) the evaluation map n.: f — f(c) from
Ma/a to Q(c) induces a dual, injective embedding of X%a/ic in XM4/a g0 that
we may regard X™¢/ic as a subgroup of X™¢/%; in this picture a®¢/ic is the
restriction of a™4/® to XRa/ic In fact, if a is radical, i.e. if a = va = {f € Ry :
f¥ € a for some k > 1}, then a = {f € Ry : f(c) = 0 for every c € V(a)},
and the group generated by X™¢/ic ¢ € Vi(a), is dense in X /%, In general,
a™a/e is expansive if and only if a™/ie is expansive for every ¢ € V(a), but
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a™4/% may be mixing in spite of a®¢/ie being non-ergodic for some ¢ € V(a):
take, for example, d = 2, a = (14-u; +uz) C Re, and ¢ = ((—1+iv/—3)/2, (—1—
iv/—3)/2) € V(a) (Theorem 6.5, Proposition 7.2, and Example 6.18 (1)). [

CONCLUDING REMARK 7.8. Theorem 7.1, Proposition 7.2, and Example
7.6 (5) are taken from [94], and Example 7.6 (4) was pointed out to me by
Jenkner. The possible difference between a(®) and o/l for ¢ € (Q™) allows
the construction of analogues to Williams’ Example 5.3 (2) for Z9-actions.

8. The dynamical system defined by a prime ideal

In this section we continue our investigation of the structure of the Z-
actions a™/? where p C PRy is a prime ideal. For prime ideals of the form
je, € € (Qx)d, the work was done in Section 7, and for p = {0} we already
know that a™4/? is the shift-action of Z¢ on X®4/P = T2, Another case which
can be dealt with easily are the non-ergodic prime ideals (Definition 6.16).

PROPOSITION 8.1. Let p C Ry be a prime ideal. Then p is non-ergodic if
and only if p is either mazimal, or of the form j. for a point ¢ = (c1,...,cq) €
d . . . .
Q" withc, =---=cly =1 for somel > 1. Furthermore, if &™e/¥ s non-ergodic,
then X4/ is either finite or a finite-dimensional torus, and there exists an

integer L > 1 such that a?ﬁ/p = tdyny/ for every n € VAS

PROOF. This is just a re-wording of Theorem 6.5 (1). An ideal p C Ry is
maximal if and only if R;/p is a finite field; in particular, the characteristic
p(p) is positive for any maximal ideal p.

Let p C PRy be a prime ideal such that a = a™¢/? is non-ergodic. If
p = p(p) > 0, then Theorem 6.5 (1.e) implies that V(p) C (F;(p))d is finite
and that p is therefore maximal. In particular, Rq/p = F,; for some [ > 1,
where IF,,; is the finite field with p! elements, and Q(pt—1)n 18 the identity map
on X%a/P = F , for every n € Z?. Conversely, if p is maximal, then [X™¢/?| =
|PR4/p| is finite, and « is therefore non-ergodic.

If p(p) = 0, then Theorem 6.5 (1.e) guarantees the existence of an integer
[ >1withc = =ch =1 for every ¢ = (c1,...,c1) € V(p) = Ve(p), so that
V(p) is finite, and the primality of p allows us to conclude that p = j. for some
c=(c1,...,¢q) € (@d with ¢} = --- = ¢}, = 1. From the definition of (¢ in
(7.9)-(7.10), Theorem 7.1, and Proposition 7.3, it is clear that X4/ is a finite-
dimensional torus, and that oy, is the identity map on X4/? for every n € Z¢.
Conversely, if p = j. for some ¢ = (c1,...,¢q4) € Qd with ¢f = -+ =, =1,
then Theorem 6.5 (1.e) shows that « is non-ergodic. O

Next we consider ergodic prime ideals p C Ry with p(p) > 0. We call a
subgroup I' C Z¢ primitive if Z¢/T is torsion-free; a non-zero element n € Z4
is primitive if the subgroup {kn : k € Z} C Z% is primitive. The following
proposition shows that there exists, for every ergodic prime ideal p C Ry with
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p(p) > 0, a maximal primitive subgroup I' C Z¢ and a finite, abelian group
G such that the restriction a' of a®™4/? to I' is topologically and algebraically
conjugate to the shift-action of I" on GT.

PROPOSITION 8.2. Let p C Ry be an ergodic prime ideal with p = p(p) >
0, and assume that o = o™4/? is the shift-action of Z% on the closed, shift-
invariant subgroup X = XTa/P C F%d defined by (6.19). Then there exists an
integer r = r(p) € {1,...,d}, a primitive subgroup T' = T'(p) C Z%, and a finite
set Q = Q(p) C Z% with the following properties.
(1) r=z;
(2) 0€Q, and QN (Q +m) = & whenever 0 #m € T';
(3) If I'=T+Q = {m+n:meT,n € Q}, then the coordinate projection
X — IFF which restricts any pointx € X C IFZ to its coordinates
m f, s a contmuous group isomorphism; in partzcular the T'-action
al:n— an, n €T, is (isomorphic to) the shift-action of T on (F¢)".
Proor. This is Noether’s normalization lemma in disguise. Consider the
prime ideal p’ = {f/, : f € p} C 9{ ) defined in Remark 6.19 (4), and write e(?)
for the i-th unit vector in Z?. We clalm that there exists a matrix A € GL(d, Z)
and an integer r, 1 < r < d, such that the elements v, = uAe(i) + p’ are
algebraically independent in the ring R = %Eip ) /p’ for i = 1 , 7, and v; =
uAe” +p’ is an algebraic unit over the subring F, [vfﬂ7 N i 1} - R forj =r+
.,d. Indeed, if v} = u; +p’,...,u); = uqg+p’ are algebraically independent
elements of R, then p’ = {0}, and the assertion holds with r = d, and with
A equal to the d x d identity matrix. Assume therefore (after renumbering
the variables, if necessary) that there exists an irreducible Laurent polynomial
f €y’ of the form f = go+ g1uaq+ - - -+ giul;, where g; € Fp[ulil,. ufiﬂl] and
gogi # 0. If the supports of gy and g; are both singletons, then ug and u; d are

both integral over the subring F,, [u'lil, e u&flil} C R. If the support of either
go or g; is not a singleton one can find integers k1, . . ., kg such that substitution
of the variables w; = uiuléi, 1=1,...,d—1, in f leads to a Laurent polynomial
g(w17 (R 7wd—17ud) = usdf(uh (R ,Ud) of the form 9= gIO +giud + - +gl/’uldv
where g/ € Fylwi,...,wi',], and where the supports of gj and g}, are both
singletons. We set

10 .. 0 K

01 ... 0 k

B=|: ,

00 ... 1kq_1

00 ..0 1
w, = w; +p = ube” 4+ p’,i =1,...,d — 1, and note that w/, and wl’i_1
are integral over Fp[w’lil, . 7wl’i_1i1} C R. If the elements w},...,w),_, are

algebraically independent in R, then our claim is proved; if not, then we can
apply the same argument to wi,...,wy—1 instead of uq,...,uq, and iteration
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of this procedure leads to a matrix A € GL(d,Z) and an integer r > 0 such

that the elements v = ute?” 4 p’ € R satisfy that v],...,v. are algebraically
independent, and v and vg-_l are integral over RU=1D = F,[v} ! ... ,v;-_lﬂ} C

R for j > r, where R©) =TF, if » = 0 (in which case R must be finite). From
Theorem 3.2 it is clear that the ergodicity of a implies that » > 1, and this
completes the proof of our claim.

For the remainder of this proof we assume for simplicity that A is the d xd
identity matrix, so that v; = u; for ¢ = 1,...,d (this is—in effect—equivalent
to replacing o by the Z%-action o/: n + o), = aan). The argument in the
preceding paragraph gives us, for each j =r 4+ 1,...,d, an irreducible polyno-
mial f;(z) = Z;’;O g,(cj)xk with coefficients in the ring F,[ui!,. .. ,ujill] C Ry
such that hj;(u;) = hj(ui,...,uj_1,u;) € p’ and the supports of g(()]) and
gl(j) are singletons. Let I' C Z? be the group generated by {e(l),...,e(r)},
Q = {0} x -+ x {0} x {0,...,041 — 1} x {0,...,lg — 1} C Z% and let
F=T+Q={m+n:meTl necQ} Wewrite 7: X — F] for the
coordinate projection which restricts every x € X to its coordinates in T' and
note that mp: X — Fg is a continuous group isomorphism. In other words,
the restriction of a to the group I' = Z" is conjugate to the shift-action of T"
on (F$)F. O

If the prime ideal p C R, satisfies that p(p) = 0, then the analysis of the
action a™¢/P becomes somewhat more complicated. We denote by #: @ — T
the surjective group homomorphism dual to the inclusion &: Z — Q. If p C Ry
is a prime ideal with p(p) = 0 we regard X™4/? as the subgroup (5.9) of T2,
and define a closed, shift-invariant subgroup X%4/? @Zd by

_ ~rpd
TRalp _ {x — (@) €07+ Y ¢s(0)min = 0 6.1)
nezd for every f € p}. .

The restriction of the shift-action o of Z% on @Zd to X™4/P will be denoted by
aBa/P (cf. (2.1)). Define a continuous, surjective homomorphism r: Q% —
TZ" by (k(2))n = k(zn) for every = (xm) € Q%" and n € Z4, and write

KRa/p. xRa/p  xRa/p (8.2)

for the restriction of & to X®¢/P. The map x”¢/? is surjective, and the diagram

_ gRalv o _
XRa/p En . XRa/p

<] | (8.3)

o alv
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commutes for every n € Z.

In order to explain this construction in terms of the dual modules we
consider the ring ER&Q) = (@[ulﬂ, .. ,ufl] = Q®z Ry, regard Ry as the subring
of %&Q) consisting of all polynomials with integral coefficients, and denote by

p@ = Qezyp C %S@) the prime ideal in %S@) corresponding to p. Since
p(p) = 0, every Ry-module 91 associated with p is embedded injectively in the

R P-module M@ = Q @z N by
M a—1®za, a €N, (8.4)

and M@ is associated with p(@. Since Ry C 9‘{;@), N is an My -module, and

we can define the Z%-action am(@) on X n@ as in Lemma 5.1. Note that the

set of prime ideals associated with the Rg-module M@ is the same as that of

n@

I; in particular, « is ergodic if and only if a™ is ergodic and, for every

neZ a?(@ is ergodic if and only if o is ergodic. The homomorphism

RS G el (8.5)
dual to
7 N— N (8.6)
is surjective, and the diagram

@ o9 Lo
X" = . X™

nl ln (8.7)

xn — X7
aNn
n

commutes for every n € Z?%. For M = My /p we obtain that
XRa/0)P _ gRa/p

q@a/m)@ _ aRalr (8.8)

JJa/p — ( Ra/p

PROPOSITION 8.3. Let p C Ry be a prime ideal with p(p) = 0 which is
not of the form p = j. for any ¢ € Qd. Then the Z%-action o = a™4/? on
X = X%a/? s ergodic, and there exists an integer r = r(p) € {1,...,d}, a
primitive subgroup T' = I'(p) C Z%, and a finite set Q = Q(p) C Z< with the
following properties.

(1) T=Z";
(2) 0€Q, and QN (Q +m) = & whenever 0 #m € T';
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(3) If I =T+Q = {m+n:m €T,n € Q}, then the coordinate projection
g XRalP »—>_@f, which restricts any point x € XMa/P @Zd to its
coordinates in T, is a continuous group isomorphism; in particular, the
T-action n — an®/* ,n €T, is (isomorphic to) the shift-action of T

on (Q9)T.

ProOOF. The proof is completely analogous to that of Proposition 8.2. We
find a matrix A € GL(d,Z) and an integer r € {1,...,d} with the following
properties: if v; = uAe” and v =wv;+pforj=1,...,d, then vi,... v, are
algebraically independent elements of R = R;/p, and there exists, for each j =
r+1,...,d, an 1rredu01ble polynomial f;(x) = Zigzo g,(cj )(xk) with coefficients
in the ring Z[vE!, ... vl € My such that f;(v,...,vj_1,v;) € q and the

»Yj— 1
supports of g(j ) and g(j ) are singletons.

We assume again “that A is the d x d identity matrix, so that v; = u; for
= ,d and T' = 7" is generated by e™,... e set Q = {0} x --- x
{0} X {0 ey — 1} x oo x {0,...,lg — 1} C Zd, and complete the proof
in the same Way as that of Proposition 3.4, using (8.1) instead of (6.19). The
ergodicity of @®¢/? is obvious from the conditions (1)—(3), and from (8.3) we
conclude the ergodicity of a®™¢/?. [

REMARKS 8.4. (1) We can extend the definition of r(p) in Proposition

8.2 and 8.3 to ergodic prime ideals of the form p = j., ¢ € (Qx)d, by setting
7(je) = 0. Then the integer r(p) is a well-defined property of the prime ideal p,
and is in particular independent of the choice of the primitive subgroup I' C Z¢
in Proposition 8.2 or 8.3 (it is easy to see that there is considerable freedom
in the choice of T'): if »/, IV, Q" are a positive integer, a primitive subgroup
of Z%, and a finite subset of Z<¢, satisfying the conditions (1)-(3) in either
of the Propositions 8.2 or 8.3, then ' = r(p). This follows from Noether’s
normalization theorem; a dynamical proof using entropy will be given in Section
24.

(2) If p C Ry is an ergodic prime ideal with p(p) > 0, then the subgroup
I' ¢ Z% in Proposition 8.2 is a maximal subgroup of Z¢ for which the restriction
al of a™4/P to T is expansive. In particular, r(p) is the smallest integer for
which there exists a subgroup I' 2 Z" in Z¢ such that o' is expansive.

(3) Even if the Z%-action a™/? in Proposition 8.3 is expansive, the action
aPa/P) @ g non-expansive. By proving a more intricate version of Proposition
8.3 one can analyze the structure of the group X™4/P directly, without pass-
ing to X®a/p) @ if XRa/P s written as a shift-invariant subgroup of T2 (cf.
(5.9)), and if r = r(p), T, Q are given as in Proposition 8.3, then the projection
mp: XTa/v — TU is still surjective, but need no longer be injective; the ker-

nel of 7 is of the form YT for some compact, zero-dimensional group Y (cf.
Example 8.5 (2)).
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EXAMPLES 8.5. (1) Let p = (2,1 + w1 + u2) C Ro (cf. Example 5.3 (5)).
Then p(p) = 2, r(p) = 1, and we may set I' = {(k, k) : k € Z} = Z and
Q = {(0,0),(1,0)} C Z? in Proposition 8.2. If X = X™2/P is written in the
form (6.19) as

d
X = {ZL’ = (ZL’m) C Fg “T(my,ma) t T(my+1,m,) T L(my,ma+1) = Or,
for all (my, ma) € Z*},

then the projection 7p: X +— IFE sends the shift aiggl/)p = a(1,1) on X to the

~

shift on F} = (Z)9 x Z/Q)Z. Note that, although «a(; 1) acts expansively on X,
other elements of Z2 may not be expansive; for example, Q(1,0) is non-expansive.

(2) Let p = (3 + uy + 2uz) C Ra. Then p(p) =0, r(p) =1, and T and Q
may be chosen as in Example (1). Note that X%2/P = X = {z = () C TZ" :
Ty ma) FL(my+1,me) T L(ma ,mat1) = Ot for all (mq,ms) € 72}; the coordinate
projection mp: X —— T in Proposition 8.3 is not injective; for every » € X,
the coordinates (,, m,) With m; > my are completely determined by 7p (),
but each of the coordinates z( r41), k € Z, has two possible values. Similarly,
if we know the coordinates x(p, m,), m1 > ma — 7 of a point = (rm) € X
for any r > 0, then there are exactly two (independent) choices for each of
the coordinates (y yyr4+1), & € Z. This shows that the kernel of the surjective
homomorphism 7p: X +—— TU = (T?)Z is isomorphic to ZL, where Y = Z,
denotes the group of dyadic integers.

If p is replaced by the prime ideal p’ = (1 + 3uy + 2uz) C Ro, then I' and
Q remain unchanged, but the kernel of 7 becomes isomorphic to (Zo x Zs3)',
where Zj3 is the group of tri-adic integers. Finally, if p” = (1 + w3 + uz) C Ra,
and if I’ and Q are as in Example (1), then mp: X%2/?" — (T?9)Z is a group
isomorphism. []

CONCLUDING REMARK 8.6. The material in this section (with the excep-
tion of Proposition 8.1) is taken from [38].
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