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Basic Representation Theory

of the Jacobi Group

Depending on whether we look at the archimedean, a p-adic or the adelic case,
the methods for studying representations are sometimes very different. In this
chapter we will collect some general material, mainly going back to Mackey,
which will be useful in all three cases. We start by explaining the induction
procedure, and apply it to describe the representations of the Heisenberg group.
We treat the representations of the Jacobi group GJ with trivial central char-
acter and set the way for all further discussions of the cases with non-trivial
central character by introducing a certain projective representation of GJ , the
Schrödinger-Weil representation (others would perhaps call it the oscillator
representation). This fundamental representation will later on be elaborated
thoroughly in the different cases, and will allow to reduce, in a sense to be
made precise later, the GJ -theory to the metaplectic theory.

2.1 Induced representations

There is a general method (studied in detail by Mackey) to construct repre-
sentations of a locally compact group G by an induction process starting from
representations of a subgroup B. As we will apply this method later on at sev-
eral occasions, we sketch here this procedure following essentially Kirillov [Ki]
pp. 183-184.

There are two natural realizations of an induced representation:
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16 2. Basic Representation Theory of the Jacobi Group

1.) in a space of vector valued functions φ on the group G that transform
according to a given representation σ of B under left translations by elements
of the group B,

2.) in a space of vector valued functions F on the coset space X = B\G.

The transition from one model to the other is sometimes a difficult task, as we
will see later on.

The first realization

To describe the first realization, we will consider a closed subgroup B of G
and a representation σ of B in a Hilbert space V = Vσ. We denote by drg and
drb right Haar measure on G resp. B and by ΔG(g) and ΔB(b) the modular
function with

dr(g0g) = ΔG(g0)drg

resp. correspondingly for ΔB(b). Then we induce from σ a representation

π = indG
B σ

of G given by right translation ζ on the space H = Hπ of measurable Vσ-valued
functions φ on G with the two properties

i) φ(bg) =
(

ΔB(b)
ΔG(b)

)1/2

σ(b)φ(g) for all b ∈ B and g ∈ G.

ii)
∫
X

‖φ(s(x))‖2
v dμs(x) < ∞.

Here

s : X = B\G → G

is a Borel section of the projection p : G → B\G given by g 
→ Bg. Then every
g ∈ G can uniquely be written in the form

g = b · s(x), b ∈ B, x ∈ X,

and G (as a set) can be identified with B × X. Under this identification, the
Haar measure on G goes over into a measure equivalent to the product of a
quasi-invariant measure on X and the Haar measure on B. More precisely, if
a quasi-invariant measure μs on X is appropriately chosen, then the following
equalities are valid.

drg =
ΔG(b)
ΔB(b)

dμs(x)drb and
dμs(xg)
dμs(x)

=
ΔB(b(x, g))
ΔG(b(x, g))

,
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where b(x, g) ∈ B is defined by the relation

s(x)g = b(x, g)s(xg).

If G is unimodular, i.e. ΔG ≡ 1, and if it is possible to select a subgroup K
that is complementary to B in the sense that almost every element of G can
uniquely be written in the form

g = b · k, b ∈ B, k ∈ K,

then it is natural to identify X = B\G with K and to chose s as the embedding
of K in G. In this case, we have

dg = ΔB(b)−1drb drk = dlb drk.

If both G and B are unimodular (or more generally, if ΔG(b) and ΔB(b) coincide
for b ∈ B), then there exists a G–invariant measure on X = B\G. If it is possible
to extend ΔB to a multiplicative function on G, then there exists a relatively
invariant measure on X which is multiplied by the factor ΔB(g)ΔG(g)−1 under
translation by g.

It is a fundamental fact that π = indG
B σ is unitary if σ is. In this case B = Bπ

is a Hilbert space with a G-invariant scalar product of the form

〈φ1, φ2〉 =
∫
G

〈φ1(g), φ2(g)〉V dμ(g),

where the measure μ on G is such that∫
G

‖φ(g)‖2
V dμ(g) =

∫
X

‖φ(s(x))‖2
V dμs(x)

holds for all φ ∈ X.

The second realization

Using the section s : X → G, we associate to each φ ∈ X a function f on X
defined by

f(x) := φ(s(x)).

Obviously φ is uniquely determined by f and we have an isomorphism of Bπ

onto the space Bπ = L2(X, μs, V ) of V -valued functions on X having summable
square norm with respect to the measure μs. The problem now is to exhibit
the representation operator corresponding to the right translation ρ on Hπ . It
can be shown that we have

π(g)f(x) = A(g, x)f(xg) for f ∈ Hπ
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where the operator valued function A(g, x) is defined by the equality

A(g, x) =
(

ΔB(g)
ΔG(b)

)1/2

σ(b),

in which the element b ∈ B is defined from the relation

s(x)g = bs(xg).

2.2 The Schrödinger representation

As an example, we will discuss the Heisenberg group and its Schrödinger rep-
resentation. From now on, almost everything depends on the choice of some
additive character of the underlying field. Thus we will now introduce the so-
called additive standard characters, following [Tate], 2.2. For every prime p
(including p = ∞) we can define a homomorphism of additive groups

λ : Qp −→ R/Z

as follows. If Qp = R, then λ(x) = −x mod 1. If p is finite, then we map a
Laurent series in p to its main part:

λ
( ∞∑

i>>−∞
aip

i
)

=
−1∑

i>>−∞
aip

i.

If F is a finite extension of Qp, then the additive standard character

ψ : F 
−→ S1

is defined by

ψ(x) = e−2πiλ(Tr(x)),

where Tr is the trace mapping F → Qp. Hence if F = R, then

ψ(x) = e2πix,

and if F = C, then

ψ(x) = e4πiRe(x).

Caution: Our character is precisely the inverse of the character defined in
[Tate]. We have made our choice of characters analogous to that in the papers
[Be1]-[Be6] in the real case.

For m ∈ F , the notation

ψm(x) = ψ(mx)
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will be used throughout. From [Tate] 2.2 it is known that the map m 
→ ψm

identifies F with its own character group. It is also important to know that if
F is discrete and d denotes the absolute different of F then d−1 is the greatest
ideal of F , on which ψ is trivial. In particular, if F = Qp, then ψ is trivial on
Zp and on no bigger ideal.

Now, let F be a number field, {p} the set of places of F , and Fp the completion
of F at p. We can define a global additive character ψ of the adele ring A of F
by

ψ(x) =
∏
p

ψp(xp) for all x = (xp)p ∈ A,

where ψp are the local standard characters defined above. The adele ring is
also self-dual via the identification A � m 
→ ψm (cf. [Tate] Theorem 4.1.1).
The global character thus defined has the special property that ψ(x) = 1 for
all x ∈ F , i.e., it is a character of A/F . Every other such character is then
of the form ψm with m ∈ F ([Tate] Theorem 4.1.4). We will always consider
these characters in the global theory.

Returning now to local considerations, we let F be a local field of characteristic
0, and consider

G = H = {h = (λ, μ, κ) : λ, μ, κ ∈ F}
B = BH = {b = (0, μ, κ) : μ, κ ∈ F}.

For ψ the additive standard character of F as explained above and m ∈ F ∗, let

σ(b) = σ(0, μ, κ) = ψm(κ) = ψ(mκ).

Here we have the simplest situation, i.e. G and B are unimodular and we have
the decomposition

H = BHAH with AH = {a = (λ, 0, 0) : λ ∈ F}
and

h = (λ, μ, κ) = (0, μ, κ′)(λ, 0, 0) with κ′ = κ + λμ.

This already shows that the first realization of π = indG
B σ is given by right

translation ρ on the space Hπ of measurable C-valued functions φ on H with

φ(bh) = ψ(mκ)φ(h) for all b ∈ BH and h ∈ H

and ∫
F

|φ(λ, 0, 0)|2 dλ < ∞.

This realization is sometimes called the Heisenberg representation.
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The restriction map φ 
→ f given by

f(x) = φ(x, 0, 0)

intertwines this model with the usual Schrödinger representation πm
S

on the
space Hπ = L2(F ). The prescription given above for the representation oper-
ator A(g, x) here means to solve the equation

s(x)h = bs(xh)

for given x, i. e. s(x) = (x, 0, 0), and h = (λ, μ, κ) by

b = (0, μ, κ + 2xμ + λμ).

This means we have for f ∈ L2(F ) the well known formula

(πm
S

(λ, μ, κ)f)(x) = ψm(κ + (2x + λ)μ)f(x + λ). (2.1)

One can see directly that πm
S

is a unitary representation. In case F is non-
archimedean, it is customary to regard πm

S as a representation on the space of
smooth vectors of πm

S
, which is just the Schwartz space S(F ).

The representation theory of the Heisenberg group is very simple, due to the
following theorem which we give in both the real and the p-adic cases. Proofs
can for instance be found in [LV], 1.3 (for the real case) and [MVW], 2.I.2,
2.I.8 (for the p-adic case). The notion of smooth representation appearing in
Theorem 2.2.2 will be explained in Section 5.1.

2.2.1 Theorem. (Archimedean Stone–von Neumann theorem)

i) πm
S

is an irreducible unitary representation of H(R) with central character
ψm, and every such is isomorphic to πm

S .

ii) A unitary representation of H(R) with central character ψm decomposes
into a direct sum of Schrödinger representations πm

S
.

2.2.2 Theorem. (Non-archimedean Stone–von Neumann theorem)
Let F be a p-adic field.

i) The representation πm
S

on S(F ) is an irreducible, smooth representation
of H(F ) with central character ψm, and every such is isomorphic to πm

S .

ii) A smooth representation of H(R) with non-trivial central character ψm

decomposes into a direct sum of Schrödinger representations πm
S

.

It is indeed the Stone–von Neumann theorem which enables much of our treat-
ment of the representation theory of the Jacobi group.
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2.3 Mackey’s method for semidirect products

The aim of the present and the following sections is to compute the unitary dual
of the Jacobi group over a local field or over the adeles of a number field. We
will make a distinction between the representations which have trivial central
character and those which do not. In the first case we impose a general method
of Mackey for determining the unitary dual of certain semidirect products. The
second case can be treated more directly by using only the Stone–von Neumann
theorem. In this section we begin with presenting Mackey’s method in a degree
of generality that suffices for our purposes.

Let G′ be a locally compact topological group and H ′ a commutative closed
normal subgroup, such that the exact sequence

1 −→ H ′ −→ G′ −→ G′/H ′ −→ 1 (2.2)

splits, i.e., G′ is a semidirect product of G := G′/H ′ with H ′:

G′ = G � H ′.

We wish to determine the unitary representations of G′ in terms of those of
G and H ′. The method to be described goes back to Mackey [Ma1] and is
repeated, for instance, in [Ma2], p. 77.

Assume the unitary dual Ĥ ′ is known and has been given the topology of
uniform convergence on compact subsets. G′ operates on H ′ by conjugation,
and this induces an operation of G′ on Ĥ ′:

G′ × Ĥ ′ −→ Ĥ ′,
(g, σ) 
−→ σg,

where the representation σg is given by

σg(h) = σ(ghg−1) for all h ∈ H ′.

Of course, if g ∈ H , then σg is equivalent to σ. Hence H operates trivially on
Ĥ ′, and only the action of G has to be considered.

Mackey’s theory does not work for arbitrary semidirect products. One has to
impose a certain smoothness condition on the orbits of G′ in Ĥ ′. Namely it is
demanded that for every G′-orbit Ω in Ĥ ′ and for every σ ∈ Ω with stabilizer
G′σ ⊂ G′ the canonical bijection

G′σ\G′ −→ Ω

be a homeomorphism. If this condition is fulfilled then H ′ is called regularly
embedded, and G′ = G � H ′ is called a regular semidirect product.

The result of Mackey is now as follows.
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2.3.1 Theorem. Let G′ be a locally compact topological group and H ′ a closed
commutative normal subgroup such that the sequence (2.2) splits. Assume that

H ′ is of type I and regularly embedded. For every σ ∈ Ĥ ′ let G′σ the stabilizer

of σ under the above action of G′ on Ĥ ′, and

Ǧ′σ = {τ ∈ Ĝ′σ : τ
∣∣∣
H′

is a multiple of σ}.
Then the induced representation

IndG′
G′

σ
τ

is irreducible for every τ ∈ Ǧ′σ, and Ĝ′ is a disjoint union

Ĝ′ =
⋃

Ĥ′/G

{IndG′
G′

σ
τ : τ ∈ Ǧ′σ}.

2.4 Representations of GJ with trivial
central character

Let R be a local field of characteristic 0 (R and C included) or the ring of
adeles of a number field, and let GJ be the Jacobi group over R. In this section
we determine the irreducible unitary representations of GJ which have trivial
central character. These representations are obviously in 1-1 correspondence
with the irreducible unitary representations of the group

G′ := GJ/Z � G � H ′, where H ′ := R2.

Now G′ contains H ′ as an abelian normal subgroup which allows determination
of its unitary dual by means of the method described in the last section.

The first step is to determine the irreducible unitary representations of H ′.
This is very easy in our case because R is self-dual. Hence the unitary dual
Ĥ ′ identifies with R2 itself by associating with (m1, m2) ∈ R2 the unitary
character

R2 −→ C∗,
(λ, μ) 
−→ ψm1(λ)ψm2(μ).

G operates on H ′ by conjugation and thus also on Ĥ ′:

G × Ĥ ′ −→ Ĥ ′,
(M, σ) 
−→ (X 
→ σ(XM))

(XM means matrix multiplication). A small calculation shows that under the
above identification Ĥ ′ = R2 this operation goes over to the natural action

G × R2 −→ R2,

(M, Y ) 
−→ MY
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(now think of Y ∈ R2 as a column vector). This makes it obvious that Ĥ ′
decomposes into two G-orbits, one of them consisting only of the trivial repre-
sentation. As a representative for the non-trivial characters we choose

Ψ : H ′ −→ C,

(λ, μ) 
−→ ψ(λ)

(corresponding to the point (1, 0) ∈ R2). The stabilizer of the trivial represen-
tation is certainly G itself, and the stabilizer of Ψ is

G′Ψ =
{(

1 0
c 1

)
(λ, μ) : c, λ, μ ∈ R

}
.

Theorem 2.3.1 gives the following result, where we leave it as an exercise to
check the hypotheses in this theorem.

2.4.1 Proposition. The irreducible unitary representations of G′ are exactly the
following:

i) The representations σ where σ
∣∣∣
H′

is trivial and σ
∣∣∣
G

is an irreducible

unitary representation of G.

ii) The representations IndG′
G′

Ψ
τ , where τ runs through the irreducible uni-

tary representation of G′Ψ whose restriction to H ′ is a multiple of Ψ.

It remains to describe more closely the representations appearing in ii). Sup-
pose τ is an irreducible unitary representation of G′Ψ whose restriction to H ′ is
a multiple of Ψ. Then an element (λ, μ) ∈ H ′ operates by multiplication with

ψ(λ). Thus every subspace which is invariant under the matrices
(

1 ∗
0 1

)
is yet

invariant under G′Ψ. Hence the restriction of τ to the matrix group must be
irreducible. This group being isomorphic to R itself we see that our represen-
tation is one-dimensional and the matrices act through a unitary character of
R. Conversely, given such a unitary character ψr with r ∈ R it is immediately
checked that(

1 c
0 1

)
(λ, μ) 
−→ ψr(c)ψ(μ)

defines a homomorphism G′Ψ → C∗. So the representations τ from which
we start our induction constitute a one-parameter family indexed by r ∈ R.
Putting everything together we have the following result.

2.4.2 Theorem. The irreducible unitary representations of GJ with trivial cen-
tral character are exactly the following.
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i) The representations σ where σ
∣∣∣
H

is trivial and σ
∣∣∣
G

is an irreducible uni-

tary representation of G.

ii) The representations IndGJ

G′
Ψ

τr, where

τr : G′Ψ −→ C∗,(
1 c
0 1

)
(λ, μ) 
−→ ψ(rc + μ).

2.5 The Schrödinger-Weil representation

It will turn out in the following section that every irreducible unitary (respec-
tively smooth) representation π of GJ with non-trivial central character can be
written as a tensor product of two representations, where one factor is a certain
standard representation independent of π. The present section is devoted to
introducing this so-called Schrödinger-Weil representation, which is not really
a representation of GJ but a projective one. The construction is standard and
carried out in much greater generality in [We].

Let R be the real or complex numbers, a p-adic field, or the adele ring of a
number field, and consider GJ = G � H over R. The starting point is the
Schrödinger representation

πm
S : H −→ GL(V )

with central character ψm, m ∈ R∗, which was discussed in Section 2.2. Now
G operates on H by conjugation inside GJ in the following way:

G × H −→ H,

(M, h) 
−→ MhM−1 = (XM−1, κ), h = (X, κ), X ∈ R2, κ ∈ R.

In particular, M leaves the central part of h untouched. Hence the irreducible
unitary representation

H −→ GL(V )
h 
−→ πm

S (MhM−1)

has central character ψm, just like πm
S

. By the Stone–von Neumann theorem,
this conjugated representation must be equivalent to πm

S itself, i.e., there is a
unitary operator

πm
W (M) : V −→ V

such that

πm
S

(MhM−1) = πm
W

(M)πm
S

(h)πm
W

(M)−1 for all h ∈ H. (2.3)
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By Schur’s lemma, πm
W

(M) is determined up to nonzero scalars. We fix one
πm

W (M) for each M ∈ G arbitrarily. Now for M1, M2 ∈ G we have

πm
W (M1)πm

W (M2)πm
S (h)πm

W (M2)−1πm
W (M1)−1

= πm
W

(M1M2)πm
S

(h)πm
W

(M1M2)−1,

and again by Schur’s lemma there must exist a scalar λ(M1, M2) of absolute
value 1 such that

πm
W (M1M2) = λ(M1, M2)πm

W (M1)πm
W (M2). (2.4)

From the associativity law in G it follows that

λ(M1M2, M3)λ(M1, M2) = λ(M1, M2M3)λ(M2, M3),

which just says that λ is a 2-cocycle for the trivial G-modul S1. The freedom
in multiplying the operators πm

W
(M) with scalars of absolute value 1 amounts

to changing λ by a coboundary. Hence the representation πm
S we started with

determines in a unique way an element

λ ∈ H2(G, S1).

From [We] or [Ku1] it is known that

• H2(G(R), S1) is trivial if R = C.

• H2(G(R), S1) consists of exactly two elements if R = R or R = F a
p-adic field.

It is further known that λ represents the non-trivial element of H2(G(R), S1)
if R is real or p-adic. In [Ge2] a version of this cocycle can be found which has
the property that

λ
∣∣∣
O∗×O∗

= 1 if R is p-adic and not an extension of Q2.

We will use in all that follows this cocycle in the real or p-adic case, λ = 1 in
the complex case, and the product of the corresponding local cocycles in the
adelic case. Coming back to the above notations we see that

M 
−→ πm
W

(M)

is a projective representation of G on V with multiplier λ. It is called the Weil
representation with character ψm. Note that πm

W is an ordinary representation
exactly in the complex case. Otherwise we can make πm

W into an ordinary
representation by going over to the metaplectic group Mp (also denoted G̃, or
Mp(R)), which is by definition the topological group extension of G by {±1}
determined by the cocycle λ. In other words, as a set we have

Mp = G × {±1},
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the multiplication is defined by

(M, ε)(M ′, ε′) = (MM ′, λ(M, M ′)εε′),

and there is an exact sequence of topological groups

1 −→ {±1} −→ Mp −→ G −→ 1.

Now the map

(M, ε) 
−→ πm
W

(M)ε

obviously defines a representation of Mp in the ordinary sense. It is also called
the Weil representation.

We put the Schrödinger and the Weil representation together and define

πm
SW

: GJ −→ GL(V ),
hM 
−→ πm

S (h)πm
W (M) for all h ∈ H, M ∈ G.

The defining property (2.3) of πm
W

immediately shows that πm
SW

is a projective
representation of GJ with multiplier λ, the latter extended canonically to GJ .
It is called the Schrödinger-Weil representation of GJ with central character
ψm. We give the same name to the corresponding ordinary representation of
the two-fold cover G̃J of GJ which is defined analogously to GJ . Note that
there is a commutative diagram

G̃J −−−−→ G̃⏐⏐ ⏐⏐ 
GJ −−−−→ G

and that G̃J identifies with the semidirect product of G̃ with H .

Finally we give some explicit formulas for the Weil representation. There will
be the appearence of the so-called Weil constant. This is a function

γ : R∗ −→ S1

which depends on the different cases and on the character ψm.

• If R = C then γ is the constant function 1.

• If R = R then

γ(a) = eπi sgn(m)sgn(a)/4.

• If R = F is a p-adic field, then

γ(a) = lim
n→∞

∫
ω−nO

ψm(ax2) dx

/
| . . . |.

• If R = A then γ is the (well-defined) product of local Weil constants.
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If the dependence on the character ψm is to be emphasized, we write γm instead
of γ. Though not obvious in the non-archimedean case, the Weil constant is
always an eighth root of unity (see [We] or [Sch1]).

As a further ingredient to the explicit formulas below there is the (second)
Hilbert symbol

(·, ·) : R∗ × R∗ −→ {±1}.
If R is a local field then it is defined as

(a, b) = 1 ⇐⇒ b is a norm from R(
√

a).

In particular the Hilbert symbol is constantly 1 in the complex case. The global
Hilbert symbol is defined to be the product of the local symbols. More about
Hilbert symbols can be found in texts on algebraic number theory.

Now we are ready to state the explicit formulas for the Weil representation.
As a model for πm

S
the Schwartz space S(R) is used. Then the associated Weil

representation acts on the same space as follows.(
πm

W

(
1 b
0 1

)
f

)
(x) = ψm(bx2)f(x). (2.5)(

πm
W

(
a 0
0 a−1

)
f

)
(x) = (a,−1)γ(a)γ(1)−1|a|1/2f(ax). (2.6)

πm
W

(
0 1
−1 0

)
f = γ(1)f̂ . (2.7)

Here f̂ denotes the Fourier transformation of f ∈ S(R):

f̂(x) = |2m|1/2

∫
R

f(y)ψm(2xy) dy.

The factor |2m|1/2 normalizes the measure on R to make Fourier inversion hold:

ˆ̂
f(x) = f(−x).

It is not easy to deduce the formulas (2.5)–(2.7), but it is easy to prove them.
It just has to be checked that (2.3) holds with these operators, but we will not
carry this out. For the real case, see [Mum] Lemma 8.2 or [LV] Section 2.5.

Assume now R to be a local field. Since the Schrödinger representation is ir-
reducible, the Schrödinger-Weil representation is also. But if we restrict πm

SW

to SL(2, R), i.e., we consider the Weil representation πm
W , then from the formu-

las (2.5)–(2.7) we immediately find the invariant subspaces S(F )+ and S(F )−

consisting of even resp. odd Schwartz functions. Let πm±
W

denote the subrep-
resentations on these spaces. They are called the positive (resp. negative) or
even (resp. odd) Weil representations.
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2.5.1 Proposition. The positive and negative Weil representations are irreduc-
ible, and we have

πm
W

= πm+
W

⊕ πm−
W

.

Between the irreducible Weil representations there are exactly the following
equivalences:

πm±
W � πm′±

W ⇐⇒ mF ∗2 = m′F ∗2.

Proof: It is easy to see from (2.5) and (2.7) that the isomorphism

S(F ) −→ S(F ),
f 
−→ (x 
→ f(ax)),

intertwines πm
W with πa2m

W , for any a ∈ F ∗. So if R = C, we are done. The case
R = R will follow from our considerations in the first part of Section 3.2. For
the p-adic case, see [MVW] 2.II.1. �

2.6 Representations of GJ with non-trivial

central character

Let again GJ be the real or p-adic Jacobi group. In principle Mackey’s method
could also be used to determine the unitary representations of GJ with non-
trivial central character. Since the Heisenberg group is not commutative, one
would have to check carefully the hypotheses made in [Ma1]. However, we
prefer a direct method similar to the construction in [We]. The procedure is
also described in Kirillov [Ki] pp. 218–219.

When dealing with the real Jacobi group, we are interested in unitary represen-
tations, while for the p-adic Jacobi group, we consider smooth representations.
Both cases can be treated in a very similar way. The decisive point is to have
the Stone–von Neumann theorem at hand. We treat the unitary case and leave
the minor changes for the p-adic case to the reader.

So let π be a unitary representation of the real Jacobi group GJ on a Hilbert
space V with central character ψm, m �= 0. The restriction of π to the Heisen-
berg group decomposes into unitary representations, each of which must be
equivalent to the Schrödinger representation πm

S
with central character ψm, by

the Stone–von Neumann theorem 2.2.1. So this restriction is isotypical, and
consequently we may assume that V is a Hilbert tensor product

V = V1 ⊗ V2,

where H acts trivially on V1 and where V2 is a representation space for πm
S

.
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From the defining property (2.3) of πm
W

, which also acts on V2, it follows easily
that

π(M−1)(1V1 ⊗ πm
W

(M))π(h) = π(h)π(M−1)(1V1 ⊗ πm
W

(M)),

i.e., the operator π(M−1)(1V1 ⊗ πm
W

(M)) commutes with the action of the
Heisenberg group. Hence it must be of the form

π(M−1)(1V1 ⊗ πm
W

(M)) = π̃(M) ⊗ 1V2 with π̃(M) ∈ Aut(V1).

As a result we were able to separate the action of G in one on V1 and one on
V2:

π(M) = π̃(M) ⊗ πm
W (M). (2.8)

More generally, for every element g = hM of the Jacobi group with M ∈ G
and h ∈ H we have

π(hM) = π̃(M) ⊗ πm
SW

(hM),

where πm
SW

is the Schrödinger-Weil representation introduced in the last chap-
ter. From (2.4) it follows that for M1, M2 ∈ G

π̃(M1M2) = λ(M1, M2)−1π̃(M1)π̃(M2).

In other words, π̃ and πm
SW are both projective representations of G resp. GJ

with multiplier λ−1 resp. λ. After tensorizing the cocycles cancel and the result
is an ordinary representation of GJ . Summarizing we obtain the following
result.

2.6.1 Theorem. The above construction gives a 1-1 correspondence

π̃ 
−→ π̃ ⊗ πm
SW

between the irreducible unitary projective representations of SL(2, R) with mul-
tiplier λ and the irreducible unitary representations of GJ(R) with non-trivial
central character ψm.

The corresponding non-archimedean result is as follows.

2.6.2 Theorem. Let F be a p-adic field. There is a 1-1 correspondence

π̃ 
−→ π̃ ⊗ πm
SW

between the irreducible smooth projective representations of SL(2, F ) with mul-
tiplier λ and the irreducible smooth representations of GJ(F ) with non-trivial
central character ψm.
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The only difference in the complex case is that πm
SW

is a representation, not a
projective one. Then π̃ will also turn out to be a representation of G, and we
get the following result:

2.6.3 Theorem. The map

π̃ 
−→ π̃ ⊗ πm
SW

establishes a 1-1 correspondence between irreducible, unitary representation of
SL(2, C) and irreducible, unitary representations of GJ(C) with central char-
acter ψm (m ∈ C∗).

We refer the reader to Knapp [Kn] II, §4, for a classification of the irreducible,
unitary representations of SL(2, C), and thus for a classification of irreducible,
unitary representations of GJ (C).

Much more will be said in the following chapters about the correspondence
π̃ 
→ π̃ ⊗ πm

SW , with specific reference to the underlying field.
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