
Chapter 2
Artin L-Functions

§1 Group-theoretic background

In this section, we shall collect together a few group theoretic preliminaries. We
begin by reviewing the basic aspects of characters and class functions.

Let G be a finite group. If f1, f2 : G → C are two C-valued functions on G,
we define their inner product by

(f1, f2) =
1
|G|
∑
g∈G

f1(g)f2(g).

If f : G → C is a C-valued function on G, and σ ∈ G, we define fσ : G → C by
fσ(g) = f(σgσ−1). We say f is a class function if fσ = f for all σ ∈ G.

Let H ⊆ G be a subgroup and f : H → C a class function on H. We define
a class function

IndG
H f : G → C

on G as follows. Let g1, . . . , gr (r = [G : H]) be coset representatives for H in G
(so that G = ∪giH). Extend f to a function ḟ on G by setting

ḟ(g) =
{

f(g) g ∈ H
0 g �∈ H

Then

(IndG
H f)(g) =

r∑
i=1

ḟ(g−1
i ggi) =

1
|H|

∑
s∈G

ḟ(s−1gs).

Let f1 be a class function on the subgroup H and f2 a class function on G.
The Frobenius reciprocity theorem tells us that

(f1, f2 |H) = (IndG
H f1, f2).
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Let H1, H2 be subgroups of G and let f be a class function on H2. Suppose
that G = H1H2. Then one of Mackey’s theorems tells us that

G/ ∖
H1 H2∖ /
H1

⋂
H2

(IndG
H2

f)|H1 = IndH1
H1∩H2

(f |H1∩H2).

Let ρ : G → GLn(C) be an irreducible representation of G and set χ = Tr ρ,
the character of ρ. Then χ is a class function on G and every class function is a C-
linear combination of characters χ of irreducible representations. A class function
which is a Z-linear combination of characters will be called a generalized character.

For each g ∈ G, define a symbol xg and consider the C-vector space

V = ⊕gεGCxg.

If |G| = n, then dimV = n. The regular representation regG of G

regG : G → GL(V )

is defined by
σ �→ (xg �→ xσg) .

Its character will be denoted by the same letter and we easily see that

regG(σ) =

{
n σ = e (identity)
0 σ �= e.

In terms of characters
regG =

∑
χ

χ(1)χ

where the sum is over all irreducible characters of G. In terms of induction,

regG = IndG
{e} 1

where 1 denotes the (trivial) character of the identity subgroup {e}.
The reader is referred to Serre [Se1] for an excellent introduction to the

representation theory of finite groups.



§2 Definition and basic properties of Artin L-functions 27

§2 Definition and basic properties of Artin L-functions

Now let L/K be a Galois extension of number fields, with group G. For each
prime p of K, and a prime q of L with q|p, we define the decomposition group
Dq to be Gal(Lq/Kp) where Lq (resp. Kp) is the completion of L (resp. K) at q
(resp. p). We have a map from Dq to Gal(kq/kp) (the Galois group of the residue
field extension) which by Hensel’s lemma is surjective. The kernel Iq is the inertia
group. We thus have an exact sequence

1 → Iq → Dq → Gal(kq/kp) → 1.

The group Gal(kq/kp) is cyclic with a generator x �→ xNp where Np is the car-
dinality of kp. We can choose an element σq ∈ Dq whose image in Gal(kq/kp) is
this generator. We call σq a Frobenius element at q and it is only defined mod Iq.
We have Iq = 1 for all unramified p (and in particular, these are all but finitely
many p) and so for these p, σq is well-defined. If we choose another prime q′ above
p,then Iq′ and Dq′ are conjugates of Iq and Dq. For p unramified, we denote by
σp the conjugacy class of Frobenius elements at primes q above p.

Let ρ be a representation of G :

ρ : G → GLn(C).

Let χ denote its character. For Re(s) > 1, we define the partial L-function by

Lunramified(s, χ,K) =
∏

p unramified

det(I − ρ(σp)(Np)−s)−1

where the product is over primes p of K with Iq = 1 for any q of L with q|p.
To obtain an L-function which has good analytic properties (such as functional
equation), it is necessary to also define Euler factors at the primes p which are
ramified in L and also at infinite primes of K.

Let p be a prime of K which is ramified in L, and q a prime of L above p. Let
V be the underlying complex vector space on which ρ acts. Then we may restrict
this action to the decomposition group Dq and we see that the quotient Dq/Iq

acts on the subspace V Iq of V on which Iq acts trivially. Now we see that any σq

will have the same characteristic polynomial on this subspace and we define the
Euler factor at p to be this polynomial:

Lp(s, χ,K) = det(I − ρ(σq)|V Iq(Np)−s)−1.

This is well-defined and gives the Euler factors at all finite primes.

Remark. Since G is a finite group, once ρ is given, there are only a finite number of
characteristic polynomials that can occur. For example, if we take the trivial one-
dimensional representation, only the polynomial (1 − T ) occurs. But the subtlety
in the Artin L-function is the assignment p �→ σp. In other words, which one
of the finite number of characteristic polynomials is assigned to a given prime p
determines and is determined by the arithmetic of the field extension, in particular
the splitting of primes.
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We have also to define the Archimedean Euler factors. For each Archimedean
prime v of K we set

Lv(s, χ,K) =
{

((2π)−sΓ(s))χ(1) if v is complex
((π−s/2Γ(s/2))a(π−(s+1)/2Γ((s + 1)/2))b if v is real.

Here
a + b = χ(1)

and a (resp. b) is the dimension of the +1 eigenspace (resp. −1 eigenspace) of
complex conjugation.

We shall write
γ(s, χ,K) =

∏
v infinite

Lv(s, χ,K).

The Artin L-function L(s, χ,K) satisfies a functional equation of the follow-
ing type. First, one defines the Artin conductor fχ associated to χ. It is an ideal
of K and is defined in terms of the restriction of χ to the inertia groups and its
various subgroups.

More precisely, let ν be a place of K. Let w be a place of L dividing ν and
let G0 denote the inertia group Iw at w. We have a descending filtration of higher
ramification groups (see [CF], p. 33]).

G0 ⊇ G1 ⊇ · · · .
Let V be the underlying representation space for ρ. Define

n(χ, ν) =
∞∑

i=0

|Gi|
|G0| codim(V Gi).

Then n(χ, ν) is an integer and is well-defined (that is, it is independent of the
choice of w above ν). Moreover, it is equal to zero apart from a finite number of
ν. This allows us to define the ideal

fχ =
∏
ν

pn(χ,ν)
ν .

We also set
Aχ = d

χ(1)
K NK/Qfχ.

Let us set
Λ(s, χ,K) = As/2

χ γ(s, χ,K)L(s, χ,K).

Then we have the functional equation

Λ(s, χ,K) = W (χ)Λ(1 − s, χ̄,K)

where W (χ) is a complex number of absolute value 1.
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The number W (χ) itself carries deep arithmetic information. For example,
it is related to Galois module structure. The reader is referred to the monograph
[Fr] of Fröhlich for an introduction to this subject.

We now recall some of the formalism of Artin L-functions and their basic
properties. It is summarized in the two properties:

L(s,
∑

χ

aχχ,K) =
∏
χ

L(s, χ,K)aχ for any aχ ∈ Z (1)

L(s, IndG
H χ,K) = L(s, χ, LH) where LH is the subfield of L fixed by H. (2)

Using (1) and (2), we find that∏
χ irred

L(s, χ,K)χ(1) =L(s, regG,K) = L(s, 1, L) = ζL(s)

=
∏
q

(1 − (Nq)−s)−1.

There is a theorem of Brauer which says that for any irreducible χ, there are
subgroups {Hi}, one-dimensional characters ψi of Hi and integers miε Z with

χ =
∑

i

mi IndG
Hi

ψi.

Using (1) and (2), we see that

L(s, χ,K) =
∏

i

L(s, ψi, L
Hi)mi .

If χ is one-dimensional, then Artin’s reciprocity theorem identifies L(s, χ,K)
with a Hecke L-series for a ray class character. By Hecke and Tate, we know the
analytic continuation of these L-series (see Chapters 13 and 14 of [La]).

From the Brauer induction theorem, it follows that any Artin L-function has
a meromorphic continuation. Artin’s conjecture asserts that every Artin L function
L(s, χ,K) associated to a character χ of Gal(K̄/K) has an analytic continuation
for all s except possibly for a pole at s = 1 of order equal to the multiplicity of
the trivial representation in ρ. (Note that χ determines ρ up to isomorphism and
so our notation is justified).

This is a very central and important conjecture in number theory. It is part
of a general reciprocity law. The conjecture of Artin is known to hold in many
cases. Most of these arise from a combination of the one-dimensional case and
group theory. Some examples are given in the exercises.

Returning to the general case, we see from the factorization

ζL(s) =
∏

χ irred

L(s, χ,K)χ(1)
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that Artin’s conjecture implies that ζL(s)/ζK(s) is entire. In fact, let L/K be a
(not necessarily Galois) finite extension and let K̃/K be its normal closure. Say
G = Gal(K̃/K) and H = Gal(K̃/L). Then

L(s, IndG
H(1H),K) = L(s, 1H , L) = ζL(s).

On the other hand,
IndG

H 1H = 1G +
∑

1�=χ irred

aχχ

with 0 ≤ aχ ∈ Z. So,

L(s, IndG
H 1H ,K) = ζK(s)

∏
L(s, χ,K)aχ .

Putting these together, we see that Artin’s conjecture implies that ζL(s)/ζK(s)
is entire, whether L/K is Galois or not. This special case of Artin’s conjecture
is called Dedekind’s conjecture. Below, we shall discuss it in several cases. In
particular, it is known to hold in the case L/K is Galois (Aramata-Brauer) and
in case L̃/K is solvable (Uchida-van der Waall).

§3 The Aramata-Brauer Theorem

Let L/K be Galois with group G.

Theorem 3.1 The quotient ζL(s)/ζK(s) is entire.

By the properties of Artin L-functions described in §2, the Theorem follows
from the following result.

Proposition 3.2 There are subgroups {Hi}, 1-dimensional character ψi of Hi and
0 ≤ mi ∈ Z so that

regG −1G =
∑

mi IndG
Hi

ψi.

(Note that (regG, 1G) = (IndG
{e} 1, 1G) = (1, 1G|{e}) = 1 by Frobenius reciprocity).

For any cyclic subgroup A define θA : A → C by

θA(σ) =
{ |A| if σ generates A

0 else

and
λA = φ(|A|) regA −θA,

where φ denotes Euler’s function.

Thus,

λA(σ) =
{

φ(|A|)|A| if σ = 1
−θA(σ) if σ �= 1
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Proposition 3.2 will be proved in two steps.

Step 1. λA =
∑

mχχ with mχ ≥ 0, mχ ∈ Z and χ ranges over the characters of A.

Step 2. regG −1G = 1
|G|
∑

A IndG
A λA where the sum is over all cyclic subgroups A

of G.

To prove Step 1, it is enough to show that (λA, χ) ≥ 0 for any irreducible χ
of A. But

(λA, χ) = φ(|A|) − (θA, χ)

= φ(|A|) −
∑
σ∈A

<σ>=A

χ(σ) =
∑
σ∈A

<σ>=A

(1 − χ(σ))

= Tr(1 − χ(σ)) ∈ Z (for any generator σ of A)

Now for χ �= 1,Re(1−χ(σ)) > 0 if σ �= e and = 0 if σ = e. Then, if A �= {1},
(λA, χ) is positive for all χ �= 1 and = 0 if χ = 1. If A = {1} then λA = 0. This
proves Step 1.

To prove the equality of Step 2, it is enough to show that for any irreducible
character ψ of G, both sides have the same inner product with ψ. Now

(|G|(regG −1G), ψ) =
∑

(regG −1G)(g)ψ(g)

= |G|ψ(1) −
∑
gεG

ψ(g)

Also, by Frobenius reciprocity,

∑
A

(IndG
A λA, ψ) =

∑
A

(λA, ψ|A)

=
∑
A

{φ(|A|)ψ(1) −
∑
σ∈A

<σ>=A

ψ(σ)}

= ψ(1)
∑
A

φ(|A|) −
∑
σεG

ψ(σ).

Now ∑
A

φ(|A|) =
∑
A

∑
σ∈A

<σ>=A

1 =
∑
σεG

1 = |G|.

This completes Step 2 and the proof of Proposition 3.2.
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We illustrate the equality of Step 2 above with an example. Let L/Q be a
biquadratic extension (Galois). Then the identity is

L/∣∣∣∣
∖

K1 K2 K3∖∣∣∣∣
/

Q

(
ζL(s)
ζ(s)

)4

=
(

ζL(s)
ζK1(s)

)2(
ζL(s)
ζK2(s)

)2(
ζL(s)
ζK3(s)

)2

which when unwound, gives the usual factorization

ζL(s) = ζ(s)L(s, χ1)L(s, χ2)L(s, χ3).

§4 Dedekind’s conjecture in the non-Galois case

As explained in §2, Artin’s holomorphy conjecture implies that the quotient
ζK(s)/ζF (s) is entire even when K/F is not normal. This latter assertion, called
Dedekind’s conjecture, is still an open problem in general.

Dedekind’s conjecture has been settled in a few cases, notably for extensions
K/F whose normal closure has solvable Galois group. This is due to Uchida [Uc]
and van der Waall [vdW]. In fact, their method allows us to prove the following.

Theorem 4.1 Let K/F be a finite extension of number fields and suppose that
the normal closure K̃/F has Galois group G which is the semidirect product of
H = Gal(K̃/K) by an abelian normal subgroup A of G. Then Dedekind’s conjecture
is true for K/F . That is,

ζK(s)/ζF (s)

is entire.

Proof. Let us write
IndG

H(1H) =
∑

mχχ

where 0 ≤ mχ ∈ Z, m1 = 1 and χ ranges over the irreducible characters of G.
Consider

IndG
H(1H)|A =

∑
mχχ|A.

By Mackey’s theorem,

IndG
H(1H)|A = IndA

H∩A(1H |H∩A) = IndA
{1} 1 = regA .
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Thus,
IndG

H(1H)|A =
∑

ε

where ε ranges over all the irreducible characters of A. Thus, for all χ,

mχ = 0 or 1 and (χ|A, ε) = 0 or 1 for any ε ∈ Irr(A).

Now, take an ε ∈ Irr(A) such that there is a χ ∈ Irr(G) with mχ �= 0 and
(χ|A, ε) = 1. Let Tε be the inertia group of ε :

Tε = {σ ∈ G : εσ = ε}.
(Here, εσ is the character a �→ ε(σaσ−1).) Of course, Tε ⊇ A and we can write it
as Tε = HεA where Hε ⊆ H. We can extend ε to a character ε̃ of Tε by setting

ε̃(ha) = ε(a) for any h ∈ Hε, a ∈ A.

Let us write
IndTε

A ε = IndTε

A ε̃|A =
∑

ψ∈Irr(Tε)

mψψ.

Notice that
IndTε

A ε(g) =
{

[Tε : A]ε(g) if g ∈ A
0 otherwise

.

Thus,
[Tε : A]ε = (IndTε

A ε)|A =
∑

mψψ|A.

Thus for every ψ ∈ Irr(Tε), with mψ �= 0, ψ|A is a multiple of ε. In fact,

mψ = (ψ, IndTε

A ε) = (ψ|A, ε),

and so ψ|A = mψε. It follows that∑
m2

ψ = [Tε : A].

From this, we deduce that the characters {IndG
Tε

ψ} are distinct and irreducible.
Indeed, we have

[Tε : A] =
∑

m2
ψ ≤ (IndG

A ε, IndG
A ε) = (ε, (IndG

A ε)|A)

and
IndG

A ε|A = [Tε : A]
∑

εg

where the sum on the right is over a set of coset representatives for Tε in G. By
definition of Tε, the conjugates εg are distinct and our claim follows. Now,

1 = (χ|A, ε) = (χ, IndG
A ε) =

∑
ψ∈Irr(Tε)

mψ(χ, IndG
Tε

ψ).

Thus, there is a unique φ = φ(χ) ∈ Irr(Tε) with mφ = 1 and (χ, IndG
Tε

φ) = 1.
By the irreducibility of both characters, it follows that χ = IndG

Tε
φ. Also, as

ψ|A = mψε, we have φ(1) = mφ = 1. Hence, χ is the induction of a linear
character. This proves that IndG

H 1H is a sum of monomial characters and the
proposition follows.
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Corollary 4.2 (Uchida, van der Waall) Let K/F be an extension of number
fields and K̃ a normal closure of K/F . Suppose that Gal(K̃/F ) is solvable. Then
ζK(s)/ζF (s) is entire.

Proof. As above, we set G = Gal(K̃/F ) and H = Gal(K̃/K), We proceed by
induction on the order of |G|. We may assume that H is a maximal subgroup of
G. For if J is a maximal subgroup of G with H ⊂ J ⊂ G, and M is the fixed field
of J, then

ζK(s)/ζF (s) = (ζK(s)/ζM (s)) (ζM (s)/ζF (s))

where the first factor on the right is entire by the induction hypothesis and the
second by the maximality of J .

Also, since G corresponds to the normal closure of K/F, we may assume
that H does not contain any proper non-trivial normal subgroup of G. Now let
A be a minimal normal subgroup of G. As G is solvable, such an A exists and
is (elementary) abelian. Moreover, A is not contained in H. Then HA = G and
H ∩A = {1}. Indeed, the first equality is just the maximality of H and the second
follows from the minimality of A and the observation that H ∩A is again a normal
subgroup. Thus, G is the semidirect product of A by H and Theorem 4.1 applies.

Finally in this section, we can ask the following variant of Dedekind’s con-
jecture. Let L/K be an extension with group G, and let H be a subgroup. Let ρ
be an irreducible representation of G. Then, is the quotient

L(s, IndG
H(ρ|H),K)/L(s, ρ,K) (‡)

entire? This includes the general case of Dedekind’s conjecture (if we take ρ = 1G).
(‡) can be proved by the method of the Proposition above, if G is solvable and ρ
is an abelian character. Indeed, we need only make two observations. First, if we
write

IndG
H(ρ|H) − ρ =

∑
mχχ

then restricting to A shows that

∑
mχχ|A = ρ(1)

∑
ε.

Moreover, if G is any group and A is an abelian normal subgroup, and ε is an
(irreducible) character of A, then

IndG
A ε =

∑
mi IndG

Tε
ψi

where ψi(1) = mi and Tε is the inertia subgroup of ε. Thus, if ρ(1) = 1, and
(χ|A, ε) �= 0, then

1 = (χ|A, ε) = (χ, IndG
A ε) =

∑
mi(χ, IndG

Tε
ψi)
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and as before, this implies that there is an i with mi = 1 and χ = IndG
Tε

ψi. Even
without assuming ρ(1) = 1, we get χ = IndG

Tε
ψi for some ε and i. But we may

not know the holomorphy of L(s, ψi). (Notice also, that we can restrict to the case
H is a maximal subgroup. For if J ⊇ H is a maximal subgroup, (M = fixed field
of J)

L(s, IndG
H(ρ|H),K)/L(s, IndG

J (ρ|J),K) = L(s, IndJ
H(ρ|H),M)/L(s, ρ|J ,M).

and so

L(s, IndG
H(ρ|H),K)

L(s, ρ,K)
=

L(s, IndJ
H(ρ|H),M)

L(s, ρ|J ,M)
· L(s, IndG

J (ρ|J),K)
L(s, ρ,K)

.

§5 Zeros and poles of Artin L-functions

There is another approach to the Aramata-Brauer theorem which does not explic-
itly use the decomposition of regG −χ into monomial characters. To describe it,
let us set

nχ = nχ(s0) = ords=s0L(s, χ, F ).

Then, in [St], the inequality

∑
χ∈Irr(G)

n2
χ ≤ r2, r = ords=s0ζK(s)

is proved. From this, it follows for example that ζK(s)/L(s, χ, F ) is entire except
possibly at s = 1, and that the same holds for the product ζK(s)L(s, χ, F ). This
raises the question of whether regG −χ can be decomposed as a non-negative sum
of monomial characters. This was answered in the affirmative by Rhoades [R].
Some special cases were computed in [Mu1].

Our approach applies in a wider context of an L-function formalism which is
satisfied by a variety of objects in number theory and algebraic geometry. Let G
be a finite group. For every subgroup H of G and complex character ψ of H, we
attach a complex number n(H,ψ) satisfying the following properties:

(1) Additivity: n(H,ψ + ψ′) = n(H,ψ) + n(H,ψ′),
(2) Invariance under induction: n(G, IndG

H ψ) = n(H,ψ).

The formalism can be applied to the above case when G is the Galois group
of a normal extension K/k and n(H,ψ) is the order of the zero at s = s0 of the
Artin L-series attached to ψ corresponding to the Galois extension K/KH . It can
also be applied to the situation when E is an elliptic curve over k and n(H,ψ)
corresponds to the order of the zero at s = s0 of the “twist” by ψ of the L-function
of E over KH (see [MM] for definitions and details).
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We consider the following generalized character introduced by Heilbronn:

θH =
∑
ψ

n(H,ψ)ψ

where the sum is over all irreducible characters ψ of H. Our first step is to show
that

Proposition 5.1 θG|H = θH .

Proof.
θG|H =

∑
χ

n(G,χ)χ|H

=
∑

χ

n(G,χ)

⎛
⎝∑

ψ

(χ|H , ψ)ψ

⎞
⎠

where the inner sum is over all irreducible characters of H and the outer sum is over
all irreducible characters of G. By Frobenius reciprocity, (χ|H , ψ) = (χ, IndG

H ψ)
and so

θG|H =
∑
ψ

(∑
χ

n(G,χ)(χ, IndG
H ψ)

)
ψ.

But now, by property (1), the inner sum is n(G, IndG
H ψ) which equals n(H,ψ) by

property (2). Thus, θG|H = θH .

This immediately implies:

Proposition 5.2 Let reg denote the regular representation of G. Suppose for every
cyclic subgroup H of G, we have n(H,ψ) ≥ 0. Then n(G,χ) is real for every
irreducible character χ of G and

∑
χ

n(G,χ)2 ≤ n(G, reg)2.

Proof. By Artin’s theorem, every character can be written as a rational linear
combination of characters induced from cyclic subgroups and so n(G,χ) is real.
By the orthogonality relations,

(θG, θG) =
∑

χ

n(G,χ)2.

On the other hand,

(θG, θG) =
1
|G|
∑
g∈G

|θG(g)|2.
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By Proposition 5.1,

θG(g) = θ〈g〉(g) =
∑
ψ

n(〈g〉, ψ)ψ(g)

which is bounded by n(G, reg) in absolute value by our hypothesis and property
(1). This completes the proof.

Similar reasoning implies

Proposition 5.3 Let ρ be an arbitrary character of G. Suppose for every cyclic
subgroup H of G, and irreducible character ψ of H, we have n(H, ρ|H ⊗ ψ) ≥ 0,
then n(G, ρ ⊗ χ) is real for every irreducible character χ of G and

∑
χ

n(G, ρ ⊗ χ)2 ≤ n(G, ρ ⊗ reg)2.

These results can also be generalized to the context of automorphic forms.
Some preliminary work in this direction can be found in [MM].

§6 Low order zeros of Dedekind zeta functions

By analogy with the conjecture that the zeros of the Riemann zeta function are
simple, one expects that the nχ are bounded. One might ask whether

nχ � χ(1)

or even the stronger
nχ � 1

holds.
We begin by establishing a zero-free region for Dedekind zeta functions. This

is due to Stark [St]. This in turn gives a region where Artin L-functions are zero-
free except possibly for a simple exceptional zero.

Proposition 6.1 Let M be an algebraic number field of degree n = r1 + 2r2 where
M has r1 real embeddings and 2r2 complex conjugate embeddings. For σ > 1 we
have

−ζ ′M
ζM

(σ) <
1
σ

+
1

σ − 1
+

1
2

log
( |dm|

22r2πn

)
+

r1

2
Γ′

Γ
(σ/2) + r2

Γ′

Γ
(σ).

Also, if M �= Q, ζM has at most one zero in the region

σ ≥ 1 − 1
4 log |dm| , |t| ≤ 1

4 log |dm| .
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Proof. Consider f(s) = s(s − 1)ζM (s). By logarithmically differentiating the
Hadamard factorization, we get the relation

∑
ρ

1
s − ρ

=
1

s − 1
+

1
2

log |dm|

+
(

1
s
− n

2
log π

)
+

r1

2
Γ′

Γ
(
s

2
) + r2

(
Γ′

Γ
(s) − log 2

)
+

ζ ′M
ζM

(s).

The sum on the left runs over zeros ρ of ζM (s) in the strip o < σ < 1 and the
terms with ρ and ρ̄ are grouped together.

For s = σ > 1 we have

1
σ − ρ

+
1

σ − ρ̄
> 0.

Thus for σ > 1 we have ∑
ρ

′ 1
σ − ρ

≤
∑

ρ

1
σ − ρ

where the sum on the left denotes summation over any convenient subset of the
zeros ρ which is closed under complex conjugation. In particular, the sum

∑ 1
σ − ρ

is positive and we deduce the inequality of the Proposition.
Now take s = σ with 1 < σ < 2. All the terms on the right of the above

inequality after 1
2 log |dm| are negative and thus

∑
ρ

′ 1
σ − ρ

<
1

σ − 1
+

1
2

log |dm|.

If ρ = β + iγ is in the rectangle specified in the statement, (with γ �= 0) then ρ̄ is
also in the same rectangle and taking the contribution from ρ and ρ̄ only, we get
the inequality

2(σ − β)
(σ − β)2 + γ2

<
1

σ − 1
+

1
2

log |dm|.

But this is false for M �= Q at σ = 1 + 1
log |dm| < 2. The same value of σ gives a

contradiction if there are two real zeroes in this rectangle (or a single real multiple
zero). This completes the proof of the Proposition.

The following consequence is also due to Stark [St].
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Corollary 6.2 Let K/F be a Galois extension. For any Artin L-function L(s, χ, F )
of this extension, the region

σ ≥ 1 − 1
4 log |dk| , |t| ≤ 1

4 log |dk| .

is free of zeros except possibly for a simple zero. This zero exists only if χ is a real
Abelian character of a quadratic subfield of K.

Next, we examine the case when the Dedekind zeta function may in fact
vanish, but the order of zero is small. We shall study this under the assumption
that K/F itself is a solvable Galois extension. If we are at a point s = s0 where
ζK(s) has a “small” order zero, then it is possible to show more than just the
analyticity of ζK(s)/ζF (s) at s0. We have the following result due to Foote and
K. Murty [FM].

Theorem 6.3 Let K/F be a solvable extension and write

[K : F ] = pα1
1 · · · pαt

t , p1 < p2 < · · · < pt

for the prime power decomposition of the degree. Suppose that at s = s0, we have

r = ords=s0ζK(s) ≤ p2 − 2.

Then for each χ ∈ Irr(G), the Artin L-series L(s, χ, F ) is analytic at s = s0.

This has the following immediate corollary.

Corollary 6.4 If K/F is a Galois extension of odd degree and ζK(s) has a zero
of order ≤ 3 at a point s0 then all Artin L-functions of K/F are analytic at s0.

This represents a partial generalization of the result Corollary 6.2 of Stark.
Of course, Stark’s result makes no assumption on the Galois group of K/F .

We give a brief outline of the proof. Assume the theorem is false, and take
G to be a minimal counterexample for which Artin’s conjecture fails, at a point
s = s0 where the order of ζK(s) is small as explained in the statement. We want
to prove that the generalized character θG defined above is an actual character.
We repeatedly use the two key properties of θG namely,

θG|H = θH for any subgroup H of G

and
θG(1) = ords=s0ζK(s).

The first follows from Proposition 5.1 and the second follows from the factorization
of ζK into the L(s, χ, F ). Moreover, by our assumption of minimality, we may
suppose that θH is a character for every proper subgroup H of G. In addition, the
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induction hypothesis and the invariance of L-functions under induction allow us
to assume that χ is not induced from any proper subgroup of G. Also, we may
assume that χ is faithful. For if Kerχ is non-trivial and M (say) denotes its fixed
field, then by the Aramata-Brauer theorem (Theorem 3.1), ζM (s) divides ζK(s).
In particular, ords=s0ζM (s) ≤ r and the second smallest prime divisor of [M : F ]
is ≥ p2. Since L(s, χ, F ) is the same whether viewed as an L-function of K or M,
the analyticity of this L-function at s0 would follow from the induction hypothesis.

We now decompose θG into three parts θ1, θ2, θ3 as follows. Let θ3 be the
sum of all terms nλλ such that λ is not a faithful character of G. Let −θ2 be the
sum of all terms nχχ for which nχ is negative. Finally, let θ1 be the sum of all
terms nψψ where ψ is a faithful character with nψ > 0. Again by the assumption
of minimality, we see that (θ2, θ3) = 0 and by definition, θ1 is orthogonal to θ2 and
θ3. Thus, we get the decomposition

θG = θ1 − θ2 + θ3.

We will now get further information about the constituents of θ2 by restricting
to an appropriate subgroup. As we shall see, a key tool in this is Clifford’s theorem.
It provides us with two pieces of information.

Firstly, since G is solvable and non-abelian, it has a normal subgroup N of
prime index, p say, which contains the center Z(G) of G. Clifford’s theorem tells
us that for any χ ∈ Irr(G), χ|N is either irreducible or χ is the induction of a
character from N . In particular, if we take for χ a summand of θ2, it follows that
χ|N is irreducible.

Secondly, it tells us that any abelian normal subgroup must be central (that
is, contained in the center), for otherwise every χ ∈ Irr(G) would be induced from
a proper subgroup contradicting the non-triviality of θ2.

Now, every non-trivial normal subgroup of a solvable group contains a non-
trivial abelian subgroup which is normal in G. Thus, no irreducible constituent λ
of θ3 is faithful on the center. We must therefore have

(θ2|N , θ3|N ) = 0.

Since
θG|N = θ1|N − θ2|N + θ3|N

is a character of N, it follows that

either θ1|N = θ2|N or θ1|N = θ2|N + φ

for some character φ of N . A further argument using Clifford’s theorem in fact
eliminates the second possibility. Indeed, choose an irreducible component α of
φ = θ1|N − θ2|N and let ψ be an irreducible component of θ1 − θ2 such that ψ|N
contains α. Notice that the G conjugates of α are also contained in θ1|N − θ2|N
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and hence also in ψ|N . It follows that the sum of the distinct conjugates form a
character of degree ≤ φ(1). Clifford’s theorem tells us that ψ|N is equal to this
sum and so ψ(1) ≤ φ(1) ≤ r. Also, ψ is a constituent of θ1 and so it is faithful by
definition.

Now, a theorem of Ito tells us that in a solvable group, a p-Sylow subgroup
is abelian and normal if there is a faithful character of degree smaller than p − 1.
Thus, the conclusion of the previous paragraph and our assumption that r ≤ p2−2
imply that G has an abelian normal subgroup of order n/pα1

1 . This would force G
to be nilpotent and Artin’s conjecture is known to hold for such groups as every
irreducible character is monomial. This again contradicts the nontriviality of θ2.
We conclude that θ1|N = θ2|N . This is the only step in which the assumed bound
on r is used.

The final contradiction now comes by showing that θ1 = θ2. To do this, take
x ∈ G\N . Denote by H the subgroup generated by x and the center of G. As H is
abelian, it is a proper subgroup of G. As we observed earlier, every irreducible com-
ponent λ of θ3 has the property that its kernel Kerλ meets the center non-trivially.
Thus, the same holds for IndG

H(λ|H). Now, taking an irreducible component χ of
θ2, we know that χ is faithful and so

(χ, IndG
H(λ|H)) = 0.

By Frobenius reciprocity, (χ|H , λ|H) = 0 and so

(θ2|H , θ3|H) = 0.

Now,
θG|H = θ1|H − θ2|H + θ3|H

and again θG|H is a character of H. Thus, θ1|H −θ2|H is either zero or a character.
By our earlier argument, we know that θ1(1) = θ2(1) and so we must have θ1|H =
θ2|H . Combined with our earlier result for N it follows that

θ1 = θ2.

This contradiction completes the proof.
The argument suggests that the condition r ≤ p2 − 2 be replaced by a bound

on r involving the least degree of a faithful character. Results in this direction
have in fact now been obtained by Foote [Fo] and by Foote and Wales [FW].

§7 Chebotarev density theorem

Let K/F be a finite Galois extension of number fields with group G. Let C be
a subset of G which is stable under conjugation. Thus C is a union of conjugacy
classes. Define

πC(x) = #{ν a place of F unramified in K, NF/Q(pν) ≤ x and σν ⊂ C}.
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The Chebotarev density theorem asserts that

πC(x) ∼ |C|
|G|πF (x)

where πF (x) denotes the number of primes of F of norm ≤ x. Effective versions
of this theorem were given by Lagarias and Odlyzko [LO]. We state two of their
results. The first of these assumes the Riemann Hypothesis for Dedekind zeta
functions. The second is unconditional.

Theorem 7.1 Suppose the Dedekind zeta function ζK(s) satisfies the Riemann
hypothesis. Then

πC(x) =
|C|
|G|πF (x) + O(

|C|
|G| · x

1
2 (log dL + nL log x)).

This version of their result is only slightly more refined than the statement
given in [LO] and is due to Serre [Se2, p. 133]. The proof of Theorem 7.1 is very
analogous to the classical proof of the prime number theorem in arithmetic pro-
gressions, as presented, for example, in the monograph of Davenport [D]. However,
there are some points of difference and we now briefly discuss them.

As in the classical case, the proof begins by expressing the characteristic
function of the conjugacy class C in terms of characters of G. However, we have
to deal with the fact that G is non-abelian and that we do not know the analytic
properties of Artin L-functions. In particular, we do not know Artin’s conjecture.
We have

δC =
|C|
|G|
∑

χ

χ(gC)χ

where δC denotes the characteristic function of the class C and gC is any element
in this class. Hence

π(x, δC) =
|C|
|G|
∑

χ

χ(gC)π(x, χ)

where for any class function φ we set

π(x, φ) =
∑

Nν≤x

φ(σν).

Here the sum is over places ν of F unramified in K and of norm ≤ x.
If we want to include ramified primes and also prime powers in the sums, we

introduce the function
π̃(x, φ) =

∑
Nνm≤x

φ(σm
ν )
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where in the case ν is a ramified prime, we define

φ(σm
ν ) =

1
|Iw|

∑
φ(g)

where Iw is the inertia group at a prime w of K dividing ν and the sum is over
elements g in the decomposition group Dw whose image in the quotient Dw/Iw

maps to σm
ν . The advantage in this sum π̃ is that it is closely related to the

logarithmic derivative of the Artin L function.
At this point, we use some group theory to replace the Artin L-functions

with Hecke L-functions. Indeed, let H be a subgroup of G and h an element of H.
Let CH denote its conjugacy class in H and C its conjugacy class in G. Let

δ : H −→ {0, 1}
denote the characteristic function of CH . Now set

φ = IndG
H δ.

By definition, we see that φ is supported only on the conjugacy class C and so
φ = λδC . The value of λ is easily computed by Frobenius reciprocity:

λ
|C|
|G| = (φ, 1G) = (δ, 1H) =

|CH |
|H| .

Thus
λ =

|CH | · |G|
|H| · |C| .

From the inductive property of L-functions, it is not hard to see that

π̃(x, φ) = π̃(x, δ).

Now the right hand side is written as a sum involving the characters of H. In
particular, if we are given C and we let H be the cyclic subgroup generated by gC

then we are able to express π̃(x, δC) in terms of Hecke L-functions. As we know the
analytic properties of these L-functions, we are now able to follow rather closely
the classical method as developed in [D] to prove Theorem 7.1.

Though the above technique has the advantage of replacing the non-abelian
L-functions with abelian ones, it does so at some cost. The estimates will now
involve the field constants (that is, degree, discriminant, etc.) of the fixed field M
(say) of H. In general, as we do not have any information about M we are forced
to majorize its field constants by those of K and this magnifies the error terms
significantly.

This problem could be avoided if we were able to deal directly with the Artin
L-functions. This theme is developed in the next section. We conclude this section
by stating some unconditional results developed in [LO] and in [LMO].
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Theorem 7.2 If log x � nL(log dL)2, then

|πC(x) − |C|
|G| Li(x)| ≤ |C|

|G| Li(xβ) + O(|C̃|x exp(−cn
− 1

2
L (log x)

1
2 ))

where |C̃| is the number of conjugacy classes contained in C, β is the exceptional
zero of Proposition 6.1, and the term |C|

|G| Li(xβ) is to be suppressed if the excep-
tional zero β does not exist.

Sometimes it is useful to have an inequality rather than an explicit error
term. Such a bound is provided by the following result of Lagarias, Odlyzko and
Montgomery [LMO].

Theorem 7.3 We have
πC(x) � |C|

|G| Li(x)

provided
log x � (log dL)(log log dL)(log log log e20dL).

In applying these results, it is very useful to have some estimates for the
discriminant of a field. These upper bounds are consequences of an inequality due
to Hensel, and are developed in [Se2]. Let DK/F denote the different of K/F .
It is an ideal of OK and its norm dK/F from K to F is the discriminant of the
extension. Let ν be a place of F and w a place of K dividing it. Let pν denote the
residue characteristic of ν. Hensel’s estimate states

w(DK/F ) = ew/ν − 1 + sw/ν

where
0 ≤ sw/ν ≤ w(ew/ν).

Here ew/ν is the ramification index of pν in K. Using this, one can get an estimate
for the norm of the relative discriminant. Let us set

nK = [K : Q], nF = [F : Q]

and
n = [K : F ] = nK/nF .

Let us also set P (K/F ) to be the set of rational primes p for which there is a
prime p of F with p|p and p is ramified in K. Then,

log NF/QdK/F ≤ (nK − nF )
∑

p∈P (K/F )

log p + nK(log n)|P (K/F )|.

This bound does not assume that K/F is Galois. If we know in addition that K/F
is Galois, the following slightly stronger estimate holds:

log NF/QdK/F ≤ (nK − nF )
∑

p∈P (K/F )

log p + nK(log n).

There is an analogue of this for Artin conductors also. This analogue is needed
in the proofs of the results of the next section.
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Proposition 7.4 Suppose that K/F is Galois with group G. Let χ denote an
irreducible character of G and denote by fχ its Artin conductor. Then

log NF/Qfχ ≤ 2χ(1)nF {
∑

p∈P (K/F )

log p + log n}.

Proof. Firstly, we observe that for each i ≥ 0,

dimV Gi =
1

|Gi|
∑

a∈Gi

χ(a),

where Gi is as in Section 2.

Thus, for each finite ν,

n(χ, ν) =
∑

i

|Gi|
|G0|

(
χ(1) − 1

|Gi|
∑

a∈Gi

χ(a)

)
.

Denote by Oν (respectively Ow) the ring of integers of Fν (resp. Kw). Define a
function iG on G by

iG(g) = w(gx − x) = max{i : g ∈ Gi−1}

where Ow = Oν [x]. Rearranging gives

n(χ, ν) =
χ(1)
|G0|

∑
i

(|Gi| − 1) − 1
|G0|

∑
1�=a∈G0

χ(a)iG(a).

Applying this formula for χ the trivial character, and the character of the regular
representation of G0, we find that

∑
1�=a∈G0

iG(a) =
∑

i

(|Gi| − 1) = w(DK/F ).

Hence,

n(χ, ν) =
1

|G0|
∑

1�=a∈G0

iG(a)(χ(1) − χ(a)) ≤ 2χ(1)w(DK/F )
ew/ν

.

Now using the above stated estimate for w(DK/F ) we deduce that

log Nfχ ≤ 2χ(1)
∑ 1

ew/ν
(ew/ν − 1 + sw/ν)fν log pν
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and this is

≤ 2χ(1)
{∑

fν

(
1 − eν

ew

)
log pν +

∑
fν

eν

ew
w(ew/ν) log pν

}

where eν (resp. ew) denotes absolute ramification index at ν (resp. w) and we have
used ew/ν = ew/eν . Also, as w(ew/ν) = ewνp(ew/ν) and as K/F is Galois, ew/ν

divides n. Thus

log Nfχ ≤ 2χ(1)nF

⎧⎨
⎩

∑
p∈P (K/F )

log p + log n

⎫⎬
⎭ .

This completes the proof.
We remark that there is no analogue of Hensel’s estimate in the function

field case. This is one source of difficulty in extending to this case the effective
versions of the Chebotarev density theorem discussed in this and the next section.
The reader is referred to [MS] and the references therein for the function field
analogues.

§8 Consequences of Artin’s conjecture

These estimates can be significantly improved if we know Artin’s conjecture on
the holomorphy of L-series. The improvement is in the dependence of the error
term on C. The results of this section are from the paper [MMS]. We shall only
discuss the conditional result Proposition 7.1.

Let χ be a character of G and denote by π(x, χ) the function

π(x, χ) =
∑

Nν≤x

χ(σν).

Let δ(χ) denote the multiplicity of the trivial character in χ.
As before (see §2)

Aχ = d
χ(1)
K NF/Q(fχ)

and
Λ(s, χ) = Λ(s, χ, F ) = As/2

χ γ(s, χ, F )L(s, χ)

Proposition 8.1 Suppose that the Artin L-series L(s, χ) is analytic for all s �= 1
and is nonzero for Re(s) �= 1

2 , 0 < Re(s) < 1. Then

π(x, χ) = δ(χ) Li(x) + O(x
1
2 ((log Aχ) + χ(1)nF log x)) + O(χ(1)nF log M(K/F ))

where
M(K/F ) = nd

1/nF

F

∏
p∈P (K/F )

p.
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Proof. The argument proceeds along standard lines and so we just sketch it here.
Artin proved the functional equation

Λ(s, χ) = W (χ)Λ(1 − s, χ̄)

where W (χ) is a complex number of absolute value 1 and χ̄ is the complex conju-
gate of χ. We know that

(s(s − 1))δ(χ)Λ(s, χ)

is entire and we have the Hadamard factorization

Λ(s, χ) = ea(χ)+b(χ)s
∏

(1 − s

ρ
)es/ρ(s(s − 1))−δ(χ)

where a(χ), b(χ) ∈ C and the product runs over all zeroes ρ of Λ(s, χ) (ncecessarily
0 ≤ Re(ρ) ≤ 1.) From the equality

Λ(s, χ) = Λ(s̄, χ̄)

we deduce the relation
Λ′

Λ
(s, χ) =

Λ′

Λ
(s̄, χ̄).

Moreover, the functional equation implies the relation

Λ′

Λ
(s, χ) = −Λ′

Λ
(1 − s, χ̄).

From these two relations, we deduce that

Re
Λ′

Λ
(
1
2
, χ) = 0.

Also, if ρ is a zero of Λ(s, χ) then so is 1 − ρ̄. Hence,

Re
∑

(
1
2
− ρ)−1 = 0

as is seen by grouping together the terms corresponding to ρ and 1 − ρ̄ in the
absolutely convergent sum. Logarithmically differentiating the product formula at
s = 1

2 and taking real parts, we deduce that

Re(b(χ) +
∑ 1

ρ
) = 0.

Hence,

Re
Λ′

Λ
(s, χ) =

∑
ρ

Re(
1

s − ρ
) − δ(χ)Re(

1
s

+
1

s − 1
).



48 Chapter 2 Artin L-Functions

Let N(t, χ) denote the number of zeros ρ = β + iγ of L(s, χ) with 0 < β < 1 and
|γ − t| ≤ 1. Evaluating the above formula at s = 2 + it and observing that

Re(
1

2 + it − ρ
) =

2 − β

(2 − β)2 + (t − γ)2

is non-negative for all ρ and is atleast 1/5 if |t − γ| ≤ 1 we deduce that

N(t, χ) � Re
Λ′

Λ
(2 + it, χ).

Since the Dirichlet series for L(s, χ) converges at 2 + it, the right hand side is
easily estimated, the essential contribution coming from log Aχ and the number of
Γ factors. We get

N(t, χ) � log Aχ + χ(1)nF log(|t| + 5).

By developing an explicit formula as in [LO] or [Mu2] we find that

∑
Nν≤x

′ χ(σν) log Nν = δ(χ)x−
∑
|γ|<x

xρ

ρ
+ O(χ(1)nF log M(K/F ))

+ O(x
1
2 (log x)(log Aχ + χ(1)nF log x)),

where the prime on the sum indicates that we only include places ν that are
unramified in K. The sum over zeros can be estimated by observing that

∑
|γ|<x

1
ρ
�
∑
j<x

N(j, χ)
j

and using the above estimate for N(t, χ). The estimate for π(x, χ) can be deduced
by partial summation.

Proposition 8.2 Suppose that all Artin L-series of the extension K/F are analytic
at s �= 1 and that GRH holds. Then

∑
C

1
|C|
(

πC(x) − |C|
|G| Lix

)2

� xn2
F (log M(K/F )x)2.

Proof. We first observe that

∑
C

1
|C|
( |C|
|G|π(x, 1G) − |C|

|G| Lix
)2

=
1
|G| (π(x, 1G) − Lix)2.



§8 Consequences of Artin’s conjecture 49

Expressing π(x, 1G) in terms of characters, we see that this is

≤ 1
|G|

⎛
⎝∑

χ�=1

|π(x, χ)|2 + (π(x, 1G) − Lix)2

⎞
⎠

where the sum is over the non-trivial irreducible characters of G. By Propositions
7.4 and 8.1,

π(x, χ) − δ(χ) Lix � χ(1)nF x
1
2 (log(M(K/F )x).

The result follows on noting that

∑
χ

χ(1)2 = |G|.

Proposition 8.3 Let D be a union of conjugacy classes. Under the same hypotheses
as in Proposition 8.2, we have

πD(x) =
|D|
|G| Lix + O(|D| 12 x

1
2 nF log M(K/F )x).

Proof. We have

πD(x) − |D|
|G| Lix =

∑
C

(
πC(x) − |C|

|G| Lix
)

where the sum is taken over all conjugacy classes C contained in D. Now applying
the Cauchy-Schwarz inequality we deduce that

∑
C

∣∣∣∣πC(x) − |C|
|G| Lix

∣∣∣∣� (
∑
C

|C|) 1
2

(∑
C

1
|C|
∣∣∣∣πC(x) − |C|

|G| Lix
∣∣∣∣
2
) 1

2

.

The result now follows from Proposition 8.2.

Remark. Using Hensel’s estimate for the discriminant, it is possible to write the
error term in Theorem 7.1 as

O(|C|x 1
2 nF log M(K/F )x).

Thus Artin’s conjecture allows us to replace |C| with |C| 12 . In some cases, we can
also improve Theorem 7.1 even without assuming Artin’s conjecture. We give two
such results below.
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Proposition 8.4 Let D be a union of conjugacy classes in G and let H be a
subgroup of G satisfying
(i) Artin’s conjecture is true for the irreducible characters of H

(ii) H meets every class in D.
Suppose the GRH holds. Then

πD(x) =
|D|
|G| Lix + O

⎛
⎜⎝x

1
2

⎛
⎝∑

C⊆D

|C|2
|CH |

⎞
⎠

1
2

nF log Mx

⎞
⎟⎠

where M = M(K/F ) and CH = CH(γ) for some γ ∈ H ∩ C.

Proof. Firstly, we have the relation

πD(x) = π̃D(x) + O(
1
|G| log dK + nF x

1
2 ).

Using the estimate from Hensel’s bound, we have
1
|G| log dK � nF log Mx.

Also,

π̃D(x) =
∑

C⊆D

π̃C(x) =
∑

C⊆D

|C|
|G| ·

|H|
|CH | π̃CH (x). (8.1)

Now, ∑
C⊆D

|C|
|G| ·

|H|
|CH | (π̃CH (x) − πCH (x))

≤ |H|
|G|

∑
C⊆D

|C|
|CH |

⎛
⎜⎝ ∑

Nνm≤x
m≥2

δCH (σm
ν ) +

∑
Nν≤x

ν ramified in L/K

δCH (σν)

⎞
⎟⎠

≤ |H|
|G|
(

maxC⊆D
|C|
|CH |

)
·
{ |G|
|H|nF x

1
2 +

2
log 2

1
|H| log dK

}

≤
(

max
|C|
|CH |

)
(nF x

1
2 + nF log Mx)

and this can be absorbed into the error term. Therefore, we can replace π̃CH by
πCH in the equation (8.1). Now,∑

C⊆D

|C|
|G| ·

|H|
|CH |πCH (x)

=
|D|
|G| Lix + O

⎛
⎝ |H|

|G| ·
∑

C⊆D

|C|
|CH | 12

1
|CH | 12

∣∣∣∣πCH (x) − |CH |
|H| Lix

∣∣∣∣
⎞
⎠ .
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Now applying the Cauchy-Schwarz inequality and using Proposition 8.2, we find
that the error term above is

� |H|
|G| ·

⎛
⎝∑

C⊆D

|C|2
|CH |

⎞
⎠

1
2

x
1
2 nF

|G|
|H| log M(K/F ′)x

where F ′ is the fixed field of H. This proves the proposition since M(K/F ′) �
M(K/F ).

We state one immediate corollary of this result.

Corollary 8.5 Under the same hypotheses as above,

πD(x) =
|D|
|G| Lix + O

(
|D| 12 x

1
2

( |G|
|H|
) 1

2

nF log Mx

)
.

The corollary follows immediately on noting that

|C|
|CH | ≤

|G|
|H| .

We now present one further result in this direction. This estimate has the
feature that in some cases, it gives a better result than what one deduces from
Artin’s conjecture.

Proposition 8.6 Suppose the GRH holds. Let D be a nonempty union of conjugacy
classes in G and let H be a normal subgroup of G such that Artin’s conjecture is
true for the irreducible characters of G/H and HD ⊆ D. Then

πD(x) =
|D|
|G| Lix + O

(( |D|
|H|
) 1

2

x
1
2 nF log Mx

)

where M is as in the previous proposition.

Proof. Let D̄ be the image of D in G/H. It is a union of conjugacy classes in G/H
and

πD̄(x) =
|D̄| · |H|

|G| Lix + O(|D̄| 12 x
1
2 nF log M(F ′/F )x)

where F ′ is the fixed field of H. As HD ⊆ D,

|D̄| · |H| = |D|

and
πD(x) = πD̄(x) + O((log dK)/|G|).

Also, M(F ′/F ) � M(K/F ). The result follows.
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Finally, we can ask what the true order of the error term in the Chebotarev
theorem should be. Let α(G) denote the number of conjugacy classes of G.
Question. Is it true that for any conjugacy set D ⊆ G,

πD(x) =
|D|
|G| Lix + O

(( |D|
α(G)

) 1
2

x
1
2 nF log Mx

)
?

This would be implied by the Proposition 8.2 if all the terms are of the same order.
In the case F = Q and K/F is Abelian, our question is a well-known conjecture
of Montgomery.

§9 The least prime in a conjugacy class

Let L/K be a finite non-trivial Galois extension of number fields with group G.
Our main result is an estimate, assuming the Riemann Hypothesis for Dedekind
zeta functions (GRH), for the least norm of a prime ideal of K which is unramified
in L and which does not split completely. The results of this section are from [Mu3].

If C is any subset of G stable under conjugation, Lagarias and Odlyzko [LO,
pp. 461–462] showed, assuming (GRH) that there is a prime ideal p with

NK/Qp � (log |dL|)2 (9.1)

for which the Frobenius conjugacy class σp of p lies in C. Here, dL (resp. dK)
denotes the (absolute) discriminant of L (resp. K). In this estimate, an important
tool was the effective version of the Chebotarev density theorem proved in [LO].
By the results of the previous section, it follows that the assumption of Artin’s
conjecture (AC) on the holomorphy of Artin L- series allows one to prove a sharper
version of this theorem. In particular, the assumption of AC implies that the
estimate (9.1) may be improved to

NK/Qp � (log |dL|)2(log |G|)2
|C| . (9.2)

In fact, the term (log |G|)2 may also be removed by using a more detailed argument.
The purpose of this section is to show, assuming the GRH, that in the special case
C = G − {1}, there is a prime ideal p of K of degree 1 which is unramified in L
which does not split completely and which satisfies

NK/Qp �
(

log |dL|
|G| − 1

)2

�
(

nK

nL
log |dL|

)2

. (9.3)

where nK = [K : Q] and nL = [L : Q]. Thus, the estimate (9.3) shows that for the
special set C = G − {1}, one can do substantially better than (9.1).
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Next, we shall show that for certain subgroups H of G the bound (9.3) may
be extended for the least norm of a prime ideal p for which σp does not intersect
H. The precise statement is given in Theorem 9.3.

We apply these last results to the group of points on an elliptic curve over a
finite field. Let E be an elliptic curve without complex multiplication and defined
over Q. Denote by N the conductor of E.

Let us set
T = lcmE′ |E′(Q)tors|

where the lcm ranges over elliptic curves E′ which are defined over Q and are
Q-isogenous to E. In [K, Th. 2] Katz proved that

gcd |E(Fp)| = T

where the gcd is taken over primes p of good reduction. It is well known and easily
proved that both sides are divisible by the same primes. Using our results, we can
make this effective in the following sense. Let l ≥ 5 be a prime and assume the
GRH. If l does not divide T then we show (Theorem 9.4) that there is a prime p
so that

p � (� logN �)2

and E(Fp) does not have a point of order �.

We begin by proving the estimate (9.3). We recall that L/K is a non-trivial
Galois extension.

Theorem 9.1 Assume the GRH. Then, there exists a prime ideal p of K

(i) p is of degree 1 over Q and unramified in L

(ii) p does not split completely in L
and

NK/Qp � (
nK

nL
log |dL|)2

where nK = [K : Q] and nL = [L : Q].

Proof. We consider the kernel function of [LMO, §2], namely

k(s) = k(s;x, y) =
(

ys−1 − xs−1

s − 1

)2

.

For y > x > 1 and u > 0, it has the property that the inverse Mellin transform

k̂(u) =
1

2πi

∫
(2)

k(s)u−sds

is given by the formulae

k̂(u;x, y) =

⎧⎪⎨
⎪⎩

0 if u > y2

1
u log y2

u if xy < u < y2

1
u log u

x2 if x2 < u < xy
0 if u < x2.
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Now consider the integral

JK =
1

2πi

∫
(2)

(
−ζ ′K

ζK
(s)
)

k(s;x, y)ds.

On the one hand, it is equal to

(log y/x)2 −
∑

ρ

k(ρ;x, y)

where ρ runs over all zeroes of ζK(s). Write ρ = β + iγ. If NK(r; s0) denotes the
number of zeroes ρ of ζK(s) with |ρ − s0| ≤ r then ([LMO, Lemma 2.2])

NK(r; s0) � 1 + r(log |dK | + nK log(|s0| + 2)).

Since

|k(ρ;x, y)| ≤ x−2(1−β)

|ρ − 1|2
it follows that ∑

β≤1−δ

k(ρ;x, y) � x−2δ

∫ ∞

δ

1
r2

dNK(r; 1)

� x−2δ(δ−2 + δ−1 log |dK |).
As we are assuming the GRH, we may take δ = 1

2 and we see that

JK = (log
y

x
)2 + O(x−1 log |dK |).

On the other hand, the integral is equal to the sum∑
p,m

Λ((Np)n)k̂((Np)n;x, y).

The contribution to this sum of ideals pn for which Npn is not a rational prime is

� nK(log y)(log y/x)
x log x

as in [LMO, (2.6)]. Moreover, the contribution of primes p which ramify in L is

�
∑

p|dL/K

(log Np)x−2 log
y

x

as in [LMO, (2.27)]. (Recall that dL/K is the norm to Q of the discriminant of the
extension L/K.) Since [Se2, p. 129]

∑
p|dL/K

log Np ≤ 2
n

log |dL|,
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the contribution of primes p which ramify in L is

� 1
n

(log |dL|)x−2 log
y

x
.

Let us set
J̃K =

∑ ∗(log Np)k̂(Np;x, y)

where the sum ranges over primes p of K of degree 1 which are unramified in L.
Then the above estimates imply that

J̃K = (log
y

x
)2+O

(
x−1 log |dK |+nK(log y)(log

y

x
)

1
x log x

+(
1
n

log |dL|)x−2(log
y

x
)
)
.

On the other hand, by an argument similar to that given above,

JL = (log
y

x
)2 + O(x−1 log |dL|).

Now if we suppose that every prime ideal p of K with Np ≤ y2 either ramifies or
splits completely in L, then

JL ≥ nJ̃K .

Putting this together with the above estimates, and choosing

x = (
α

n
log |dL|)

and
y = bx

for some b > 1 and α > (log b)2 we deduce the inequality

(n − 1)(log b)2 � n

α
+

nnL(log bx)(log b)
α(log |dL|)(log x)

+
n2(log b)

α2(log |dL|) � n.

For a sufficiently large value of b, we get a contradiction. This completes the proof.

Remarks. 1. This method can also be used to produce an unconditional bound.
In terms of its dependence on L the main term is |dL|1/2(n−1).

2. Note that we used the normality of the extension L/K in asserting that a prime
of K which splits completely in L has [L : K] prime divisors in L.

3. We note an interesting consequence of the above. Assume the GRH. Suppose
the class number h of K is larger than 1. There exists a non-principal prime ideal
p of K of degree 1 over Q with

NK/Qp � (log |dK |)2.

Indeed, choose for L the Hilbert class field of K, and use the fact that dL = dh
K .
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We describe two variants of Theorem 9.1.

(A) Consider the following diagram of fields.
F// ∖

L1L2 ... Lr∖∖ /
K∣∣∣∣
M∣∣∣∣
Q

Theorem 9.2 Assume the GRH. Let L1, . . . , Lr be distinct non-trivial Galois
extensions of K. Let F be an extension of K containing all the Li and M a
subfield of K so that F/M is Galois. Set

m = min[Li : K]
f = [F : K]

and assume that
r < m.

Then, there exists a prime ideal p of K satisfying
(i′) p is of degree 1 over Q and NK/Mp does not ramify in F

(ii′) p does not split completely in any of the Li, 1 ≤ 1 ≤ r
with

NK/Qp � B2

where

B = max
(∑r

i=1(log |dLi |)
m − r

,

√
m

f(m − r)
log |dF |

)
.

Proof. Let S denote the set of degree 1 prime ideals p of K with Np ≤ y2 for which
p ∩ OM does not ramify in F . Suppose that every element of S splits completely
in some Li. Then, with notation as in the proof of Theorem 9.1, we have

∑
JLi ≥ m

∑
p∈S

(log Np)k̂(Np;x, y).
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Using the estimate for JL and J̃K given in the proof of Theorem 9.1, we deduce
that

r(log
y

x
)2 + O(

1
x

∑
i

log |dLi |)

≥ m(log
y

x
)2 + O(

m

x
log |dK |) + O(

mnK(log y)(log y/x)
x log x

)

+ O(
m

f
(log |dF |) 1

x2
log y/x).

Simplifying, and choosing x = αB and y = βx with some β > 1 and α > (log β)2,
we get the inequality

(m − r)(log β)2 ≤ O((m − r)(log β))

which is a contradiction if β is sufficiently large.

(B) With L/K a normal extension and G = Gal(L/K) as before, we take a sub-
group H of G. We want to find a prime p of K so that σp is disjoint from H.
Theorem 9.1 had to do with H = {1}.
Theorem 9.3. Assume the GRH. Denote by N = NG(H) the normalizer of H in
G and let R be the fixed field of N . Let H1, . . . ,Hr be a set of normal subgroups
of N and L1, . . . , Lr their respective fixed fields. Suppose that
(1) for each g ∈ G, gHg−1 ∩ N is contained in some Hi(1 ≤ i ≤ r).
(2) if m = min[Li : R] then r < m.

Then, there exists a prime ideal p of K with

NK/Qp � B2
H

and satisfying
(a) p is of degree one and does not ramify in L

(b) σp is disjoint from H.
Here,

BH = max
{

1
m − r

(∑ 1
|Hi|

)
log |dL|,

√
m

|N |(m − r)
(log |dL|)

}
.

Proof. Each Li is a Galois extension of R and L is a Galois extension of R containing
all the Li. By Theorem 9.2, we can find a prime ideal P of R of degree one (over
Q) so that p = NR/KP does not ramify in L, P does not split completely in any
of the Li and

NR/QP � B2

where

B = max

{
1

m − r

r∑
i=1

log |dLi |,
√

m

[L : R](m − r)
(log |dL|)

}
.
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The splitting completely condition means that

σP ∩ Hi = φ 1 ≤ i ≤ r.

Now
σp = ∪ττσPτ−1

where the union is over a set of coset representatives {τ} for N in G. It follows
that

σp ∩ H = φ.

Hence p satisfies (a) and (b). Now as

|dLi | ≤ |dL|1/|Hi|,

we deduce the stated bound.

Remarks. 1. In the case r = 1, the assumptions (1) and (2) may be stated as
(1′) for any g ∈ G, gHg−1 ∩ N is nonempty ⇒ g ∈ N

(2′) H is a proper subgroup of N .
2. If we are only interested in finding a prime p so that σp = (p, L/K) is not
contained in H, then we do not need to consider the conjugates of H at all.
Rather, it suffices to take a degree one prime P of R such that p = P ∩ OK does
not ramify in L and (P, L/R) is not contained in H. But as H is normal in N ,
this just means that P does not split completely in M = the fixed field of H. We
can find such a P with

NR/QP �
(

log |dL|
|N | − |H|

)2

.

Corollary 9.4. Let the notation and hypotheses be as in Theorem 9.3. If C is a
subset of G stable under conjugation and H intersects every conjugacy class in C
nontrivially, then there is a prime p of K satisfying

NK/Qp � B2
H

as well as (a) and
(b′) σp is not contained in C.

Let E be an elliptic curve defined over Q and let N denote its conductor.
For p � N , we may consider the group |E(Fp)| of Fp-rational points on E. Its
cardinality is given by |E(Fp)| = p + 1 − a(p) for some integer a(p).

The action of Gal(Q̄/Q) on points of E(Q̄) which are in the kernel of multi-
plication by � gives a representation

ρ� : Gal(Q̄/Q) → GL2(F�).

It has the property that for p � �N , ρ�(σp) has trace a(p) and determinant p
modulo �.

Recall that we have set

T = lcmE′ |E′(Q)tors|
where the lcm ranges over elliptic curves E′ which are Q-isogenous to E.
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Theorem 9.5 Suppose that E does not have complex multiplication and let � ≥ 5
be a prime which does not divide T . Denote by N the conductor of E. Assume the
GRH. Then, there is a prime

p � (� log �N )2

such that E(Fp) does not have a point of order �.

Proof. Let us denote by G the image of ρ�. It is known that the fixed field of the
kernel of ρ� contains the field of �-th roots of unity. Let PG denote the image of G
under the natural map GL2(F�) → PGL2(F�). It is well known (See [Se2, p. 197])
that one of the following holds:
(i) PG contains PSL2(F�)
(ii) G is contained in a Borel subgroup of GL2(F�)
(iii) G is contained in a non-split Cartan subgroup of GL2(F�)
(iv) PG 	 A4, S4 or A5

(v) G is contained in the normalizer of a Cartan subgroup C but is not contained
in C.
We shall consider each in turn.

(i): Consider the Borel subgroup (see [Se2, p. 197])

B =
{( ∗ ∗

0 ∗
)}

⊆ G = GL2(F�)

and the subgroups

H =
{(

1 ∗
0 ∗

)}
, H ′ =

{( ∗ ∗
0 1

)}

of B. A simple calculation shows that

NG(H) = NG(H ′) = B.

We also have that for any g ∈ G,

gHg−1 ∩ B ⊆ H ′ or H.

We apply Theorem 9.3 to get a prime p which is unramified in L, the fixed field
of the kernel of ρ� and which has the property that σp ∩ H = φ and

p � x2

where

x =
{

1
� − 1 − 2

2
�(� − 1)

(log |dL|),
√

� − 1
�4

(log |dL|)
}

.
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Now by Hensel’s inequality,

log |dL| � nL log �N � �4 log �N

and so
p � (� log �N )2.

Now consider
D = {g ∈ G : trg = 1 + det g}.

Clearly, every conjugacy class in D intersects H non-trivially. Hence σp is not
contained in D, or in other words σp ∩ D = φ. Thus

a(p) �≡ 1 + p(mod �)

and this means that

|E(Fp)| = p + 1 − a(p) �≡ 0(mod �).

(ii): We may suppose (after a suitable choice of basis) that G ⊆ B (with B as
above).

We are again looking for a prime p such that σp ∩ H = φ where

H = G ∩
{(

1 ∗
0 ∗

)}
.

If G = H, then it is clear that � divides T and this is excluded by assumption.
Thus, we may suppose that G �= H.

Since H is a normal subgroup of G, it follows from Theorem 9.1 that there
exists a prime p with the desired property and

p � ( 1
[G : H]

log dF

)2
where F is the fixed field of H. Since F is a Galois extension of Q ramified only
at primes dividing �N , we have

p � (log �N )2.

(iii): This is impossible if � > 2 since G contains the image of complex conjuga-
tion, a matrix with distinct F�-rational eigenvalues (namely +1, −1), whereas the
eigenvalues of every element of a nonsplit Cartan subgroup are either equal or lie
in F�2\F�.
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(iv): In this case |G| � �. By the result of Lagarias and Odlyzko , quoted as (9.1)

at the beginning of this section, there exists a prime p whose σp is
{(

2
2

)}
(say) and

p < (|G| log �N )2 � (� log �N )2.

Such a prime has
a(p) ≡ 4 �≡ 1 + 4 ≡ 1 + p (mod �).

(v): In this case, there is a quadratic character ε with the property that

p � N and ε(p) = −1 ⇒ a(p) ≡ 0(mod �).

Let K be the quadratic extension of Q corresponding to ε. This field has the
property [Se2, p. 198] that it is unramified at � and can only ramify at primes
dividing N . Hence, we can find a prime p such that p ≡ 1(mod �) and ε(p) = −1
with

p � (log |dK(ζ�)|)2 � (� log �N )2

where ζ� is a primitive �-th root of unity. For such a prime, a(p) ≡ 0 �≡ 2 ≡
1 + p(mod �). This proves the theorem.

Exercises

1. Let χ be an irreducible character of a finite group G. If χ is a linear com-
bination with positive real coefficients of monomial characters, then mχ is
monomial for some integer m ≥ 1.

2. Let A be a normal subgroup of the group G and let χ be an irreducible
character of G. Then either the restriction of χ to A is isotypic (that is, a
multiple of one character) or there is a subgroup H containing A and an
irreducible character σ of H such that χ = IndG

H σ. (See [Se1, Prop. 24]).

3. A finite group G is called supersolvable if there is a sequence of subgroups

{1} = G0 ⊆ G1 ⊆ · · ·Gn = G

with each Gi normal in G and with successive quotients Gi/Gi−1 cyclic.
(a) Prove that a nonabelian supersolvable group has a normal abelian sub-

group which is not contained in the center.
(b) Use (a) and Exercise 2 to prove that an irreducible character of a super-

solvable group is monomial (that is, the induction of a one-dimensional
character of some subgroup).

Exercises 4–7 are based on the paper [R] of Rhoades.
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4. Let F be a set of characters of the finite group G. We say that a class function
θ is semi-orthogonal to F if (θ, φ) ≥ 0 for all φ ∈ F .
(a) If F is the set of all characters of G, then a generalized character θ is

semi-orthogonal to F if and only if θ is a character.
(b) Let

F̃ = {
∑

xφφ : 0 < xφ ∈ R, φ ∈ F}.
Then a class function θ is semi-orthogonal to F if and only if it is semi-
orthogonal to F̃ .

5. If
F = {IndG

Hψ : H an Abelian subgroup of G}
then
(a) the generalized character θG is semi-orthogonal to F .
(b) if a generalized character θ =

∑
mχχ is semi-orthogonal to F then

|mχ| ≤ |θ(1)|.
6. Let F be a subset of Rk and define

H(F ) = {x ∈ Rk : (f, x) ≥ 0 for all f ∈ F}

and
C(F ) = {

∑
xifi : 0 < xi ∈ R, fi ∈ F}

where ( , ) denotes the standard inner product.
(a) If F is a subspace, then H(F ) is the subspace of Rk orthogonal to F

and H(H(F )) = F and C(F ) ⊂ F .
∗(b) [R, Lemma 1] If F does not contain the zero vector and all elements of

F have non-negative coordinates, then H(H(F )) = C(F ).

7. Let G be a finite group and F a subset of characters of G. Expressing the
elements of F as a sum of irreducible characters of G, identify F as a subset
of Rk for some k. Using Exercise 6(b), show that a generalized character ψ of
G can be written as a positive rational linear combination of characters in F
if and only if (ψ, θ) ≥ 0 for all θ semi-orthogonal to F . Deduce that for any
irreducible character χ of G, regG ±χ can be written as a positive rational
linear combination of monomial characters.

8. Let L/K be a finite Galois extension with group G. Show that the Artin
L-functions L(s, χ,K) (as χ ranges over the irreducible characters of G) are
multiplicatively independent over Q. That is, if∏

χ

L(s, χ,K)cχ = 1

for some rational numbers cχ then cχ = 0 for all χ.
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9. Let F/Q be a finite Galois extension with group G and let H, H ′ be two
subgroups. Denote by K and K ′ the corresponding fixed fields.
(a) Show that ζK(s) = ζK′(s) if and only if for every conjugacy class C of

G, we have #(H ∩ C) = #(H ′ ∩ C).
(b) Let G = S6 (the symmetric group on 6 letters) and consider the sub-

groups
H = {(1), (12)(34), (12)(56), (34)(56)}

and
H ′ = {(1), (12)(34), (13)(24), (14)(23)}.

Prove that the above condition is satisfied and deduce that the Dedekind
zeta functions of the corresponding fixed fields coincide. (This is due to
Gassman, 1926.)

10. Let 1 < a ∈ Z be a squarefree integer and q a prime. Set K = Q(a1/q) and
prove directly that ζK(s)/ζ(s) is entire.

11. Let f(T ) ∈ Z[T ] be an irreducible polynomial of degree larger than 1. Show
that the set

{p : f(T ) ≡ 0(mod p) has a solution}
has positive density.

12. Let E be a biquadratic extension of Q and let K1,K2,K3 be the three
quadratic subfields. Show that

ζ(s)2ζE(s) = ζK1(s)ζK2(s)ζK3(s).

Deduce a relation amongst the class numbers of the Ki.
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