Chapter 1
Elliptic problems

An effective method for solving boundary value problems for the Laplace and
Helmoltz equations (in domains possessing a definite symmetry) is the method of
separation of variables. The general idea of this method is to find a set of solutions
of the homogeneous partial differential equation in question that satisfy certain
boundary conditions. These solutions then serve as “atoms”, from which, based
on the linear superposition principle, one constructs the “general” solution. Since
each of these “atoms” is a solution of the corresponding homogeneous equation,
their linear combination is also a solution of the same equation. The solution of our
problem is given by a series > ° | ¢, upn(x) (where u,(x) are the atom solutions,
x = (x1,... ,2n) is the current point of the domain of space under consideration,
and ¢, are arbitrary constants). It remains to find constants ¢, such that the
boundary conditions are satisfied.

1.1. The Dirichlet problem for the Laplace equation in an annulus

Suppose that we are required to solve the Dirichlet problem for the Laplace equa-
tion Au = 0 in the domain bounded by two concentric circles Ly and Lo centered
at the origin, of radii R; and Rs:

{um—i—uyy—o, R%<x2+y2<R§,

uln, = fi, ulr, = fa
Introducing polar coordinates (p, ¢), this Dirichlet problem can be recast as

PP Upp + Uy + Uy = 0, R <p < Ry, 0 << 2m,

u(R1, ) = fi(e), (1.1)
0 << 2m.

u(Ry, ¢) = fa(p),

The boundary functions f1(¢) and fa(¢) will be assumed to be 27-periodic.

To solve the problem we will apply Fourier’s method. Namely, we will seek the
solution in the form u(p, ¢) = R(p)®(p). Substituting this expression in equation
(1.1), we obtain

®p°R" + ®pR' + RY" = 0.

Next, dividing both sides of this equation by R® we get

2 pI / "
p*R" 4+ pR i)
R == 5 (1.2)
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One says that in equation (1.2) the variables are separated, since the left-
[resp., right-] hand side of the equation depends only on p [resp., ¢]. Since the
variables p and ¢ do not depend of one another, each of the two sides of equation
(1.2) must be a constant. Let us denote this constant by A. Then

pQR// + pR/ _ (b//

" —p =N (1.3)

It is clear that when the angle ¢ varies by 27 the single-valued function u(p, ¢) must
return to the initial value, i.e., u(p, ) = u(p, ¢ + 2m). Consequently, R(p)®(¢) =
R(p)®(p + 27), whence ®(p) = P(¢ + 27), i.e., the function ®(y) is 2m-periodic.
From the equation ®” + A\® = 0 it follows that ®(p) = A cos(v/Ap) + Bsin(v/Ap)
(with A and B arbitrary constants), and in view of the periodicity of ®(p) we
necessarily have A = n?, where n > 0 is an integer.

Indeed, the equality

Acos(VAp) + Bsin(VAp) = Acos[VA(p + 27)] + Bsin[VA(¢ + 27)]
implies that
sin(a 4+ V@) = sin(a + Vg + 27V/\),
where we denote
. A B
sina = , cosa = .
VA2 + B2 VA2 4 B2
Therefore, sin(mv/A) cos(a + vV Ap + /) = 0, i.e., VA = 70, or X = n?,
where n > 0 is an integer. Now equation (1.3) yields
p’R" + pR' —n’R = 0. (1.4)
If n # 0, then we seek the solution of this equation in the form R(p) = p".
Substituting this expression in equation (1.4) and simplifying by p*, we get

pr=n% or p=+n (n>0).

For n = 0 equation (1.4) has two solutions: 1 and In p. Thus, we now have an
infinite set of functions (“atom” solutions)
1, Inp, p" cos(ny), p"sin(ny),
p~ " cos(nyp), p~ " sin(nep), n=12...,
which satisfy the given partial differential equation. Since a sum of such solutions

is also a solution, we conclude that in our case the “general” solution of the Laplace
equation has the form

u(p, ) = ag + b In p+

+ Z [(anp™ + bpp™") cos(np) + (cpp™ + dnp™") sin(ne)] . (1.5)
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It remains only to find all the coefficients in the sum (1.5) so that the bound-

ary conditions u(R, ¢) = f1(¢), u(Rz, ) = f2(p) will be satisfied. Setting p = R;
and then p = Ry in (1.5) we obtain

M8

u(Ry,p) = [(an R} + by, RT™) cos(np)+

3
Il
-

+ (enRY + dnRT™) sin(ncp)] +ao+boIn Ry,

U(R27 90) =

WK

[(anRS + bnRQ”) cos(ny)+

3
Il
-

+ (cnRS + an;”) sin(ncp)] + ag + bg In Rs.

Recalling the expressions for the Fourier coefficients of a trigonometric series,
we arrive at the following systems of equations:

27

1
aq +b0 lan = o fl(s) dS,
) 0 (1.61)
ap —|—b0 IDRQ = o fz(s) dS,
0
(to be solved for ag and by);
1 27
apRY + b0, R " = - /0 f1(s) cos(ns)ds,
Lo (1.62)
anRy + b, Ry " = - / fa(s) cos(ns) ds,
0
(to be solved for a,, and b,); and
1 27
cnRY +d R = s f1(s)sin(ns) ds,
(1.63)

1 27
cn Ry +bd, Ry = - f2(s) sin(ns) ds,
0

(to be solved for ¢, and d,,).

Thus, from these systems one can find all the unknown coefficients aq, bg, @,
by, Cn, dpn. Now the problem (1.1) is completely solved. The solution is given by
the expression (1.5), in which the coefficients are obtained from the systems (1.6).
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1.2. Examples of Dirichlet problem in an annulus

Example 1. Let us assume that the potential is equal to zero on the inner circle,
and is equal to cos ¢ on the outer circle. Find the potential in the annulus.
We have to solve the problem

Au =0, 1<p<2, 0<¢<2m,
{U(l»w) =0, u(2,9)=cosp, 0<p<2m,

in order to find determine the potential u(p, ¢) in the annulus.

Generally speaking, to solve this problem we have to calculate all the integrals
in the formulas (1.6), and then solve the corresponding systems of equations to find
the coefficients ag, by, an, bn, cn, d,. However, in the present case it is simpler to
try to choose particular solutions such that a linear combination of them will satisfy
the boundary conditions. Here such a role is played by the linear combination
u(p, ) = aipcosy + byp~tcosp. The boundary conditions yield the system of
equations

a1 +b =0,
by
5 =
from which we find a1 = 2/3, by = —2/3. Therefore, the solution is

2(11 + 1,

2 _
u(p,0) = 5 (p—p7") cose.
Example 2. Let us consider the following problem with constant potentials on the
boundaries of the annulus:
Au =0, 1<p<2, 0<¢<2n,
{U(L@) =2, ul2,p) =1, 0<¢p<2m
In this case we will seek the solution as a function that does not depend on ¢,

ie., u(p) = ap + bp In p. Substituting this expression in the boundary conditions
we obtain the system of equations

ag + b() Inl = 2,
{a0+b01n2— 17
which yields ag = 2, by = —logs e. Therefore, the sought solution is the function

Inp

=2- .
u(p) In 2
Example 3. Let us solve the following Dirichlet problem

Au =0, 1<p<2, 0< <2,
{u(1,¢)=cow7 u(2,p) = sinp, 0<¢<2m.
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One can verify that here all the coefficients ag, by, an, by, ¢n, d, Wwith n > 1
are equal to zero, while the coefficients aq, by, ¢, di are determined from the
systems of equations

a;+b =1, c1+dp =0,
b d
2a1 + 21 =0, 2c1 + 21 =1.
Solving these systems we obtain
1 4 2 2
ay 3 ) 1 3 ) C1 3 ) 1

Thus, the solution of our problem is the function

(p,) 1 n 4 N 2 1\ .

u =|- cos — sin .

PP 3 P 3p 2 3 P 0 4

Since the Dirichlet problem for the Laplace equation in a bounded domain

has a unique solution, in examples 1-3 there are no other solutions besides the
ones found.

1.3. The interior and exterior Dirichlet problems

Let us consider the two very important cases in which the annulus becomes a disc
or the exterior of a disc. The interior Dirichlet problem (R; =0, Ry = R)

U(R,QD) :f(@>7 0<p< 27,

is solved in exactly the same manner as the Dirichlet problem for the annulus,
with the only difference that now we must discard the solution “atoms” that are
not bounded when p approaches 0:

{p2upp+pu,,+uwz(), 0<p<R, 0Zp<2m,

In p, p~ " cos(nep), p~"sin(nep), n=12...
Hence, the solution is given by the remaining terms, i.e.,
(o) p n
u(p, @) = Z (R) [an, cos(np) + by, sin(ny)],

n=0

where the coefficients a,, and b,, are calculated by means of the formulas

1 27
= d
a =, | f(p) de,
1 27
an = _ 1 () cos(ny) do, n >0, (1.7)
0
1 27
by = f (@) sin(nep) dep, n > 0.
0
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In other words, we simply expand the function f(y) in a Fourier series

Z ay, cos(ny) + by, sin(ny)] ,

and then multiply each term of the series by the factor (g)n For example, the
interior problem

Au =0, 0<p<l, 0<Z@<2m,
U(LQP)ZCOS2Q0, 0 < ¢ < 2m,

has the solution

11
ulp,p) = o+, p* cos(2p).

The exterior Dirichlet problem (R; = R, Ry = o)

p2upp+pup+u<p¢=(), R<p<oo, 0<¢p<2m,
u(R, ) = f(p), 0< < 2m,

is solved in much the same way as the preceding problem, with the difference than
now we discard the solution “atoms” that are not bounded when p goes to infinity:

In p, p" cos(ny), p" sin(ny), n=12...

Accordingly, the solution is taken in the form

ulpe) =3 () lancos(ng) + busin(ne)],
n=0

where the coefficients a, and b, are calculated by means of formulas (1.7). For
example, the exterior problem

Au =0, 1<p<oo, 0<p<2m,
u(1, ) = sin® @, 0<yp<2r

has the solution
3 1 . 11 .
u(p, @) = 4 psmgof 4 r sin 3.
Let us note that the Dirichlet problem for the Laplace equations in an un-
bounded two-dimensional domain has only one bounded solution.
We conclude this section by examining another example, one exercise (the
Poisson integral), and a problem connected with the Poisson integral.
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Example [1]. Find the steady temperature distribution in a homogeneous sector
0 <p<a, 0<p<a, which satisfies the boundary conditions u(p,0) = u(p, o) =
0, u(a,p) = Ap, where A is a constant (see Figure 1.1).

Q

4 <

D C
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N A

AuzO\\z

o

0 u(p,0)=0 @ 7

FiGURE 1.1.

Solution. Finding the steady temperature distribution reduces to solving the Di-
richlet problem

p2u,)p—|—,0up—|—u<p<p=07 0<p<a, O0<p<a<?m,
U(p,O) :u(p7oz):07 0<p<a,
u(a,p) =Ap, 0<¢p<a.

Setting u(p, ¢) = R(p)®(p) and separating variables, we obtain two ordinary
differential equations:
p’R’ + pR — AR =0,

1.8
" + NP = 0. (18)

The conditions 0 = u(p,0) = R(p)®(0) and 0 = u(p, ) = R(p)P(«) yield ®(0) =
®(a) = 0. The separation constant A is determined by solving the Sturm-Liouville

AP =0, 0<¢<a,
3(0) = ®(a) = 0.

We get A\, = ("”)2 and

«

whence
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Using the fact that the function R(p) is bounded (according to the meaning
of the problem at hand), we write R,(p) = p"™/®. The atoms from which our
solution is built are the functions

Un(p, ) = p"™/* sin (msO) . =12
(6%

Thus, the solution itself is
> nmw
u(p, @) =D _ enp"™/ sin ( N so) :
n=1

The constants ¢, (n =1,2,...) are found from the condition u(a, ¢) = Ap. Since

oo
. (nw
u(a,p) = Z @™ sin ( N <p) .

n=1

it follows that 5 ro
cpa™™ = / Agpsin (mr go) de,
(6% 0 (6%

2A « nmw 200A
= i dp = (—1)"*1 .
c /0 sosm( N <p) o =(-1)

aa’nﬂr/a nr

and so

Finally, the solution of our problem is written in the form

2ad &,y goyntasin ()
u(p,p) = W§;4> () ol

Notice that the solution has a singularity in the boundary point p = a, ¢ = «
because of the incompatibility of the boundary values.

1.4. The Poisson integral for the disc. Complex form.
Solution of the Dirichlet problem when the
boundary condition is a rational function R(sin ¢, cos ¢)

Recall that the solution of the interior and exterior Dirichlet problem is can be
presented in integral form (the Poisson integral):

0D =g [ f@da, <R
u — a) da, ,
PPI= on o R?*—2pRcos(p —a)+p? r
1 2 P2 — R
L) = da, > R.
(s 0) 27 /0 R? — 2pRcos(p — a) + p? J(a)da, p

Let us show that these formulas are a consequence of the general superposition
method.



1.4. POISSON INTEGRAL. RATIONAL BOUNDARY CONDITION 15

For the sake of definiteness we shall consider the interior problem, and then
write the result for the exterior problem by analogy.
Substituting the expression for the Fourier coefficients in the formula

i ( ) [an, cos(np) + by, sin(ny)],

we obtain

271'

u(p,p) =

Z ( ) cos(ng) cos(na) + sin(nep) Sln(na))} -

1
™ Jo

+Z(2) cos(n @a))] da.

Further, using the relation cos(n(¢—a)) = 3 (e~ + e=in(¢=)) the fact that
g = p/R < 1 and the formula for the sum of an infinite decreasing geometric
progresion, we get

! + i q" cos(n(p —a)) = ! + ! i q" [ei"(“’_“) + e_i”(“’_“)} =
2 n=1 2 2 n=1

1 > . n . n
_ in(p—a) —in(p—a) _
|1 3 o) (o) ] -
1 in(p—a) —in(p—a)
_ 14 qe™ T qe e
2 1-— qe’”(‘{’ a) 1—gqe in(p—a)
1 1—¢? 1 R? — p?
2 1-2qcos(p —a)+q¢> 2 R2—2Rpcos(p—a)+p?
Therefore,
1 2m RZ _ p2
L) = da, < R.
u(p ) 27 /0 R2 —2Rpcos(p — a) + p? J(a)da r

Let us recast the Poisson formula in a different form (complex notation).
Note that

R2 _ p2 R2 _ |Z|2 Reia + 2z

= ) =R .
R?2 —2Rpcos(p —a) +p?  |Ret™ — 2|2 °Reie —
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because

Re'® + 2 _R (Rew + pei‘/’) (Ret> — pet#)

e . e
Re™ — z (Ret™ — pei#) (Ret™ — pei#)
B2~ [2[2 4 pR [e'ee) — cilemo)] g2 _|ap

= R . == . .
¢ | Rete — 2|2 |Reie — 2|2

R

It follows that the Poisson integral can be written in the form

1 [* Rel* 4z
=R . da.

u(z) e 27r/O Reic — 5 fla)da
If in this integral we set ( = Re’® and, accordingly, daw = d(/i¢, we finally obtain
¢
C )
If the boundary function f(¢) is a rational function of sin¢ and cos ¢, then the
integral in formula (1.9) can be calculated by means of residues.

1 21T<+Z

u(z) = Re omi |, ¢z (¢ |z] < R. (1.9)

Example. Solve the Dirichlet problem

Au =0, |z| < 2,
| 2sinp
Ul|sjme = .
21=2 7 5 1 3cos

Solution. We shall use formula (1.9). Let ¢ = 2¢'®; then

1 (¢ 2 S 1(¢ 2
sma—2i<2—<> cosa—2<2+c>

and the boundary function becomes

2.1.C2_4
_ 2sina 2 2( B
U(C)5+3cosa5+3<c+2>

2\2 "¢

2 -4 2 -4
T 03 420¢ 412 0 2\
3(C+6)(C+3>

Let us compute the integral

2 _ z
J_ Q;lm/ o Q(C 4)(%+ ) d¢
I61=2 5. 3(C + 6)(¢ + 3)(C —2)¢
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where the circle |(| = 2 is oriented counter- clockwise. In our case the integrand
F(¢) has in the domain |[¢| > 2 only one finite singular point ( = —6 — a pole
of order one — and the removable singular point ( = oo. By the Cauchy residue
theorem,

J = —res[F(¢)]¢=—6 — res[F(C)]¢=oo-

First let us find the residue at the point ( = —6;

2 32 z—6 4 z—6 2 6—2z

TeS[F(O]<:—6:3Z-'(_136) ’ (z+6)'6:_i ' (z+6)~6:3i'6+z'

Next let us expand F(¢) in a series in the neighborhood of the point ¢ = co:

: (me)(ed)

1 2 1
F() = o= ..
(©) 3i 1_’_6 1+2 17'2 ¢ 3i C+ ’
¢ 3¢ ¢
whence
2
5[ —o = — . ..
res{F(C)emoe = —
Therefore,
2 z—6 2 2 2z 4z
J = + = =

3i 246 3i 3 z+6 3i(z+6)

4 w4y 4 (v4iy)(6+a—iy)
3i 6+x+iy 3 (6 +2)2 + 32

)

which yields

8y
R J: 9
€07 36 4 122 + a2 + 42
or
ReJ — 8psin ¢

36+ 12pcosp + p?

We conclude that the solution of our Dirichlet problem is given by the ex-
pression
8psinp

ulp,p) = 36+ 12pcosp + p?
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1.5. The interior and exterior Neumann problems for a disc

It is clear that in the case of a disc of radius R centered at the origin the exterior
normal derivative is Ou/0n|,—r = Ou/0p|,—r. Accordingly, the solution of the
interior Neumann problem is sought in the form of a series

u(p,p) = Z <g)n [an cos(ng) + by, sin(ny)] .
n=0

The coefficients a,, and b, of this series are determined from the boundary condi-
tion Ou/0p|,=r = f(p), i.e., we have

R 27T‘
an = [ () cos(nyp) dp,
o n=12,... (1.10)
_ R " ] d
b= ; f(p) sin(nyp) dp,

Similarly, the solution of the exterior Neumann problem is sought in the form
of a series

up) =3 (7)) " lan cos(ng) + busin(ne)).

whose coefficients a,, and b,,, determined from the boundary condition du/0p|,=r=
f(p), are calculated by means of the same formulas (1.10) (here we use the fact
that du/On|,—r = —0u/0p|,=r)-

Example. Find the steady temperature inside of an unbounded cylinder of radius
R if on the lateral surface S there is given the heat flux Ou/dn|s = cos® ¢.

Solution. We have to solve the interior Neumann problem

Au =0, 0<p<R, 0<¢p<2nm,
ou

:cos?’ga, 0<p<2m.
ap =R

First of all we need to verify that the condition for the solvability of the Neumann
problem is satisfied, i.e., that fC gz ds = 0, where C' is the circle bounding our
disc.

Indeed, we have

2
/3ud52/ cos® - Rdp =
c on 0

R 27 R 27
= / cospdp + / [cos(3¢p) + cos ] dp = 0.
2 Jo 4 Jo
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Next, since cos® ¢ = 2 cos o+ 411 cos(3¢p), it follows that a; = iR, as = 112 R, and all
the remaining coefficients in the series giving the solution of the interior Neumann
problem are equal to zero. Hence, the solution has the form

P

3p
CoS  + 12R

ulpp)=C+

5 €O8(3p),

where C' is an arbitrary constant.

Remark. The Neumann problem can also be solved for an annulus. In this case
the boundary conditions specify the exterior normal derivative:

ou
dp

(B9 =hie). o (Reg) = o).

Here the solution exists only if the condition

27

2T
R /O ~hielde=Fa [ plo)ds

is satisfied, and is uniquely determined up to an arbitrary constant.

1.6. Boundary value problems for the Poisson equation
in a disc and in an annulus

When we solve the Dirichlet or Neumann problem (or a problem of mixed type) we
need first to find some particular solution u; of the Poisson equation Au = f(z,y)
and then use the change of dependent variables u = u; + v to reduce the task to
that of solving the corresponding boundary value problem for the Laplace equation
Av =0.

Example 1 [18]. Solve the Poisson equation
*u  O*u

Ox? + oy? v

in the disc of radius R centered at the origin, under the condition u(R, ¢) = 0.

Solution. Passing to polar coordinates we obtain the problem

1
2p‘lsin(2<p), 0<p<R, 0<¢p<2m,

u(R, ) =0, 0<p<2m.

p2upp + pup + Upyp = — (1.11)

We shall seek a particular solution in the form

u1(p, ) = w(p)sin(2p).
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Substituting this expression in equation (1.11) and simplifying by sin(2¢) we ob-
tain the equation
1
PP’ + pw' — 4w = - Pt

The substitution p = e! transforms (1.12) into the equation with constant coeffi-
cients

(1.12)

1
11’)7411):72647&7 (1.13)
where the dot denotes differrentiation with respect to t. A particular solution of
equation (1.13) is w(t) = —,, €. Hence, w(p) = —, p* is a particular solution

of equation (1.12). Therefore, we can choose u1(p, @) = —,, p* sin(2p).

Now let us introduce the function v(p,») = u(p, @) — ui(p, ¢). Clearly, to
determine the function v(p, ¢) we must solve the following Dirichlet problem for
the Laplace equation:

P2 Upp + Py + vy = 0, 0<p<R, 0Z¢p<2m,
1
v(R,p) = 94 R*sin(2¢), 0<p<2m.

But we already know the solution of this equation:
2 1 1
v(p,p) = (]p%) " 94 R*sin(2p) = o4 p* R sin(2p).

Therefore, the solution of our problem is given by

1 .
u(p, ) =, PH(R" = p*)sin(2p).

Example 2. Find the distribution of the electric potential in the annulus a < p < b
if in its interior there are electrical charges with density v(z,y) = A(x? — y?), the
inner circle is maintained at the potential 1 and the intensity of the electric field
on the outer circle is 0.

Solution. The problem reduces to that of solving the Poisson equation Au =
A(z? — y?) in the annulus @ < p < b with the boundary conditions u|,—, = 1,
Ou/0p|p,=» = 0. Passing to polar coordinates we obtain the problem

1 1 02
8<8u>+ au:Ap2c0s(2<p) a<p<b 0<p<2m,

pop \"op) " p20p?
ou
u(a,p) =1, ap(b,s0)=0, 0<¢p<2m

Let us seek the solution of this problem in the form u(p, ¢) = v(p, ¢)+w(p), where
the function w(p) is a solution of the auxiliary problem
10 <p ow
pop \" Op
w(a) =1, w'(b) =0,

=0, a<p<b,
) P (1.14)
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and the function v(p, ) is a solution of the problem

10 < 81)) 1 821] 9
P + o0, =4p cos(2¢) a<p<b, 0<¢<2m,
por o i (1.15)

v(a,p) =0, g;a),@) -0, O0<p<om

Obviously, the solution of problem (1.14) is w(p) = 1. We will seck the
solution of problem (1.15) in the form v(p,¢) = R(p) cos(2¢). Substituting this
expression for v(p, ) in the equation (1.15) we obtain

1d 4
cos(2¢p pR") —  Rcos(2¢) = Ap? cos(2yp),
( )pd,o( ) i (2¢) (2¢)

or, simplifying by cos(2¢),
p’R" 4+ pR' — 4R = Ap*,

with the additional conditions R(a) = 0, R'(b) = 0. The substitution p = €'
transform this equation into the equation with constant coefficients

R — 4R = Ae't,

where the dot denotes differentiation with respect to ¢t. The general solution of this
last equation is R(t) = Cye? + Coe™2" + |, Ae*". Back to the variable p we have

C

1
O 2 4t
R(p) = Cip* + 0 + 12Ae .

The constants C; and Cs are found from the conditions R(a) = 0, R'(b) = 0,
namely
—A(a® + 20%) o Aa*b*(20? — a?)

=

C1= 12(a* + b4) T 6(at+bY)

Hence, the sought solution is

6 6 4pd(op2 _ 42
Ala® +26) 5 ACHIE —a®) 1A 4] 00),

:1 —
WP ) =14 1= o i gy P 6(a* +bY)  p2 12
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1.7. Boundary value problems for the Laplace and

Poisson equations in a rectangle
Example 1 [18]. Find the distribution of the electrostatic field u(z,y) inside the
rectangle OAC' B for which the potential along the side B is equal to V| while the

three other sides and grounded. There are no electric charges inside the rectangle
(Figure 1.2).

—0
B(0,b) - C(a,b)
0 =0 A0 %%

FIGURE 1.2.

Solution. The problem reduces to that of solving the Laplace equation ;41 = 0
in the interior of the rectangle with the boundary conditions

u(0,y) =V, wu(a,y) =0, u(z,0)=0, u(x,b)=0.

First we will seek nontrivial particular solutions of the Laplace equation which
satisfy only the boundary conditions

u(z,0) = u(x,b) =b

in the form u(z,y) = X(z)Y (y). Substituting this expression in the equation
Ugg + Uyy = 0 we get XY + XY = 0, which upon dividing by XY gives

Xl/ Y//
=— =\2%
X Y

Using the fact that Y(0) = Y (b) = 0, we obtain the Sturm-Liouville problem

Y + MY =0, 0<y<b,
Y(0)=Y(b) =0,

which yields the eigenvalues and eigenfunctions of our problem. We have

Ai:(ngr)Q’ Yn(y):sin(nbﬂy), n=12,...
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The corresponding functions X,,(z) are solutions of the equation X" — A\2X = 0,
and so nr nr
X, (z) = apcosh ( b x) + b,sinh ( b m)

where a,, and b, are arbitrary constants. It follows that the notrivial particular
solutions (“atoms”) have the form

un(z,y) = [ancosh (n;r sc) + b,sinh (n;r x)} sin (nb7r y) , n=12,...

Now for the sought solution of our problem we take the series

u(z,y) = i {ancosh (nbﬂ- x) + by, sinh (nbﬂ- x)} sin (nbﬂ- y) . (1.16)

The constants a,, and b, (n = 1,2,...) are found from the conditions u(0,y) =V,
u(a,y) = 0. Setting = a in (1.16) we obtain
- nm nm nw
0= [ancosh (7" a) + businh (7o) sin (%" v)
nz:;)acos ba + bpSIn ba sin by

whence nr nr
ancosh< b a)—i—bnsinh( b a) =0, n=12,...

Next, setting 2 = 0 in (1.16) we obtain
> nm
Vznzzoansin( b y) ,
which gives

2 /b Vsi (mr ) J 0, if n is even,
p = sin , or Gy = o
"b o b Y)Y " i‘; if n is odd.

’

Therefore, the solution has the form

. sinh | ZF+ D@ —2)m) o T2+ Dy
u(z,y) = 47‘: kzzo { - i)smh [(Jk _Zl[)ﬂa} b }

Example 2 [18]. Suppose that two sides, AC' and BC, of a rectangular homogeneous
plate (see Figure 1.2) are covered with a heat insulation, and the other two sides
are maintained at temperature zero. Find the stationary temeperature distribution
in the plate under the assumption that a quantity of heat () = const is extracted it.
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Solution. We are dealing with a boundary value problem for the Poisson equation
with boundary conditions of mixed type;

Q
k/_’
u(:zc,O) =0, uy(x7b) =0, 0<z<a

Ugy + Uyy = — O<zx<a, 0<y<hb,

(here k is the internal heat conduction coefficient).
The eigenvalues and eigenfunctions of the problem are found by solving the
auxiliary boundary value problem (Sturm-Liouville problem)

X"+ 22X =0, 0<z<a,
X(0)=0=X'(a) =0.

2
We get \2 = [(2"2'21)”} and X,,(z) = sin [(2";;1)” z}, n=0,1,... We will seek

the solution of the above problem in the form of an expansion in eigenfunctions
(2 1
E Yo Sln[ n )Wac},
2a

where the functions Y;,(y) are subject to determination. Substituting this expres-
sion of the solution in equation (1.17) we obtain

_HZOY 2n+1) n[(Qn;;l)ﬂ'x] HZOY,,() [(27124;1) 4:
_ ian sin [(2"; Lm x} ,

where the Fourier coefficients «, of the function —Q/k are equal to

2 QN . [@n+1)m B 4Q
ania/o <k>s1n[ 2a x] dxiilmr(Qn—i—l)’

This yields the following boundary value problem for the determination of
the function Y, (y), n=10,1,2,...:

2 122
7(n+)7rY

n = - ) 0 bu
4a? W) == ron +1) <y<
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Solving this problem, we obtain

2n+ ) . 2n+ 7w 16Qa?
Ya = Un h bysinh )
(y) = ancos [ 9q Y| TOm 2 k3 (2n + 1)
where
_ 16Qa?
tn = km3(2n +1)3 7
and

2
b, 16Qa tanh [(211 + 1)mwb y] .

B km3(2n + 1)3 an 2a

The final expression of the solution is

oo

cosh [(2n+12)((1b7y)7f} {(Qn ) ]
i x|.

16Qa? 1
kn3 ; (2n +1)3 cosh [(%eral)wb} 2a

Example 3 [18]. Find the solution of the Laplace equation in the strip 0 < z < a,
0 <y < oo which satisfies the boundary conditions

x

u(z,0) =0, wu(a,y)=0, wu(z,0)=A (1 — ) , u(z,00) =0.

a

Solution. Thus, we need to solve the boundary value problem

Uz + Uyy = 0, 0<z<a 0O0<y<oo,
u(0,y) =u(a,y) =0,  0<y<oo, (1.18)
u(a@O)zA(lfx), u(x,00) =0, 0<z<a

a

Let us begin by finding the solution of the auxiliary problem

Vga + Vyy = 0, O<zx<a 0<y<oo,
{U(O,y)—v(my)—& 0 <y < oo,

in the form v(z,y) = X (2)Y (y). We obtain two ordinary differential equations:
(1) X"+ XX =0, and (2) Y = \Y =0.

From the conditions v(0,y) = 0, v(a,y) = 0 it follows that X (0) = X (a) = 0.
Hence, the Sturm-Liouville problem

X"+ 2X =0, 0<z<a,
X(0)=X(a)=0
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yields A\, = (”;)2 and X, (z) = sin (”a” :U), n =1,2,.... Then the corresponding
solutions of the equation Y/ — \Y = 0 are

Y. (y) = Ane” "TY 4 Bhea Y.
‘We conclude that
vp(z,y) = [An(f " Y4 Bhe'a y] sin (mr x) .
a

Therefore, the solution of problem (1.18) is given by a series

WK

u(,y) = 3 [Ane™ TV 4 Bue V] sin (" ). (1.19)

Il
—

n

From the condition u(x,c0) it follows that B, = 0, n = 1,2,.... Setting
y =0in (1.19) we get

A(= 1) =2 Ausin (7).

Anzfl/OaA(l—z)sin(n;x) dm:ij.

We conclude that

2A 1 s nmw
u(z,y) = Z e~ o Ysin ( ;r) .
T “—n a

n=

ie.,

Remark 1. The boundary value problem for the Laplace (Poisson) equation in a
rectangular parallelepiped is solved in a similar manner.

Remark 2. Let us assume that the mathematical model of a given physical phe-
nomenon is such that both the equation itself and the boundary conditions are
inhomogeneous. Then by using the superposition principle the original boundary
value problem can be decomposed into subproblems; one then solves the subprob-
lems and adds their solutions to obtain the solution of the original problem.

For example, the solution of the Dirichlet problem

Au = f in the domain (,
{ u = on the boundary 052,
is the sum of the solutions of the following simpler problems:
) { Au = f in the domain 2, ( { Au =0 in the domain 2,

u =0 on the boundary 9052, u = on the boundary 0f2.
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1.8. Boundary value problems for the Laplace and
Poisson equations in a bounded cylinder

To treat the problems mentioned in the title we must resort to special functions,
more precisely, to Bessel functions.

First let us consider a boundary value problem for the Laplace equation in a
cylinder.

Example 1 [4, Ch. IV, no. 110]. Find the potential of the electrostatic field of a
cylindrical wire of section p < a, 0 < z <[, such that both bases of the cylinder
are grounded and its lateral surface is charged at a potential V{. Calculate the
field intensity on the axis (Figure 1.3).

z
u=0
__v
I
I
I
— Tur
0 ]
uw =0

FIGURE 1.3.

Solution. We need to solve the Laplace equation inside the cylinder with given
boundary conditions:

10 [ ou 0%u
p8p<p8p)+822_0’ O<p<a, 0<z<l,

u(p,()) :u(pvl) =0, 0<p<a,
u(a, z) = Vo, 0<z<l

(the solution u(p, z) does not depend on ¢ since the boundary values are indepen-

dent of ). Using the method of separation of variables, we represent the solution in
the form u(p, z) = R(p)Z(z). Substituting this expression in the Laplace equation

10 ou +82u_0
pOp p@p 022
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we get

0
Zpap(pR/) +RZ"=0

whence, upon dividing both sides by RZ,

0 p
P opPE) g

R +Z—07
or 8
’
Pap(pR) _7Z” , (1 20)
R -z 7 '

where A is the separation constant. Clearly, on physical grounds A > 0: otherwise
the function Z(z), and together with it the potential, would not vanish on the
upper and bottom bases of the cylindrical wire.

Equation (1.20) yields two ordinary differential equations:

(1) Z"+XZ=0,

and

1d
2 R)—AR=0.
@) 5 oR)

Using the fact that Z(0) = Z(I) = 0, we obtain the standard Sturm-Liouville
problem:
{Z”+/\Z:0, 0<z<I,

Z(0)=2Z()=0.
This problem has the eigenfunctions Z,(z) = sin ("l” z)7 corresponding to the
eigenvalues \,, = (”l”)z, n=1,2,.... The function R(p) is determinded from the
equation
1d nm\ 2
R _( ) R=0 1.21
e = () , (121)

which is recognized to be the Bessel equation of index zero and imaginary argu-
ment. Indeed, from equation (1.21) it follows that

nm 2
pQR’/+pR’fp2( | ) R=0.
Passing in this equation to the new independent variable x = p "/ and using
the relations
_dR nrw R

= B f;? (W)Q’

l
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we arrive at the equation

d’R dR
2 — 2 =
da2 +x de z°R = 0.

Its general solution is written in the form
R(ﬂ?) = 01[0($) + CQKQ(I),

where Ip(z) and Ky(z) are the Bessel functions of index zero and imaginary ar-
gument, of the first and second kind, respectively, and C; and Cy are arbitrary
constants. Since (the Macdonald) function Ky(x) — oo when x — 0, we must set
Cs = 0 (otherwise the solution of our problem will be unbounded on the axis of

the cylinder). Therefore,
n

Ry(p) =Cly ( ;T p) :

The “atoms” from which the solution of the original problem will be con-
structed are the functions

Ig(nlwp)sin(n;z), n=12,...

Thus, the solution of our has the series representation
= nm nmw
u(p, z) = cI( )sin( z)

The constants ¢, are found from the boundary condition u(a,z) = V. We

have -
nmw nm
Vo= (7 @)sin (") 2),
0 RZ::IC 0 I a | Sin I z
whence
4
nmw 2 [ . /nmw VO, n is odd,
cnIO( I a):l Vosm( I z) dz = nmw
0 0, n is even.

We conclude that

[(2]{: + 1)m p} <in [(Qk Jlr 1)m z}

4V = 10 l
u(zp) =" :
TS, [(Qk —;— 1)m a} 2k +1

The field on the axis of the cylinder is
2k + 1)m
( ) z

b e [T
E.(0,2) =~ (0,2) = zokzzo ]0{(2k+lma] .

l
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Example 2 [18]. Consider a cylinder with base of radius R and height h. Assume
that the temperature of the lower base and of the lateral surface is equal to zero,
while the temperature of the upper base is a given function of p. Find the steady
temperature distribution in the interior of the cylinder.

Solution. The mathematical formulation of the problems is as follows:

10 ou 0%u
pap<pap>+822—0, 0<p<R, 0<z<h,

u(p,0) =0, wu(p,h)= f(p), 0<p<R,
u(R,z) =0, 0<z<h.

Setting, as before, u(p, z) = r(p)Z(z) and substituting this expression in the
Laplace equation, we obtain two ordinary differential equations:

1d, , o
(1) pdp(pr)+/\r—0, (1.22)

(2) Z"—\Z=0.

We note that here A > 0 (this will be clear once we find the solution). The
boundary condition u(R, z) = 0 implies r(R) = 0. Equation (1.22) can be rewritten
as

P2 + pr’ + \p’r = 0. (1.23)

Passing to the new independent variable 2 = v/Ap we obtain the Bessel equation
of order zero P2 p
o dor r 2
T d? —I—zdx—i—x r =0,

whose general solution has the form
7’(1)) = Cljo(.%') + CQB()(.Z‘),

where Jy(x) and By(x) are the Bessel function of order zero of first and second
kind, respectively, and Cy, Cs are arbitrary constants.
Returning to the old variable p we have

r(p) = C1do(VAp) + CaBo(VAp).
Thus, in the present case solving the Sturm-Liouville problem

p’r" 4 pr’ 4+ NP =0, 0<p<R,
|r(0)] < o0, 7(R)=0

reduces to the solution of the Bessel equation with the indicated boundary con-
ditions. Since By(v/Ap) — oo as p — 0, we must set Cy = 0, and so 7(p) =
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CJo(V/Ap). From the condition 7(R) = 0 it follows that Jo(v/AR) = 0. Denoting by
U1y 42y« -« 5 fins - - - the positive roots of the Bessel function Jy(x) (Figure 1.4), we
obtain the eigenvalues \,, = (’j,g )2 and the corresponding eigenfunctions Jy (‘;‘ ),
n = 1,2,.... Further, from the equation (2) in (1.22) with A = A, = (%)2 we
obtain B p
Z.(z) = A, h( " ) Bn'h( " )
(x) cosh ("p 2 + Bpsin R

where A,, and B,, are arbitrary constants. From the boundary condition u(p,0) = 0
it follows that Z(0) = 0, i.e., A,, = 0 for all n. Therefore, the “atoms” of the sought
solution are the functions

Jo(g’p)sinh(/gz), n=12....

y
1
0.8
0.6

0.4 Jo()
0.2

2.4 5.5 8.7
2 4 6 ] '&0 x

—0.2
—0.4
FIGURE 1.4.

The solution of our problem is given by a series

= fn N o (Hn
2) =Y BuJ ( ) h( .
u(p, z) 2 o pp)sinh (T z)
The constants B, are found from the boundary condition u(p,h) = f(p). Indeed,

we have -
_ P\ ooy (Hn
u(p, h) = nE:1 B, Jo ( R p) sinh ( R h) ,

or

(6 = 32 B ("2 o) sams ("2 1)
n=1
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Multiplying both sides of this equality by pJy (” = p) and integrating the result
over the segment [0, R] we get

/OR pf(p)Jo (”}%” p) dp = By,sinh (”é” h) /OR pJ3 (Mé" p) dp.

R 2
Hom, R,
pJg p)dp="_ Ji(tm),
/0 O(R ) 2 1

where Ji(x) is the Bessel function of first kind and order one. Therefore, the
solution of the problem has the form

00~th J“n
= S ) [foon )

But

Example 3. Find the potential in the interior points of a grounded cylinder of
height i and with base of radius R, given that in the cylinder there is a charge
distribution with density v = AzJy (/3 p) (where A is a constant).

Solution. We must solve the Poisson equation with null boundary conditions:
10 ou 0%u 13
= —arazdy (1 )
pap<p30>+322 TR Y
0<p<R, 0<z<h, (1.24)
u(p,0) = u(p,h) =0, 0<p<R,
u(R,z) =0, 0<z<h.
Let us seck the solution in the form u(p, z) = Jo (3 p) f(2), where the func-

tion f(z) is subject to determination. Substituting this expression of u(p,z) in
equation (1.24) we get

; ;lp {PCZOJO ('L;; P)} f(z)+ Jo (lg p) f(z) = —4mAzJy ('Lg’ p) . (1.25)

Now let us observe that the function Jo (2 p) is an eigenfunction of the
Bessel equation, i.e.,

van i ()] = T () =0

Consequently, (1.25) gives

() (150 1 (5 ) 10 = e ()



1.9. LAPLACE AND POISSON EQUATIONS IN A BALL 33

which in turn yields the following ordinary differential equation for the determi-
nation of f(z):

71— (’g)Bf: —4nAz,  0<z<h,

with f(0) = f(h) = 0. Solving this boundary value problem we find that

inh M3
4rAR%*p S < R Z) 4T AR?
flz) =— 2 Wt T 12
3 3
(1)

Thus, the solution of our problem is given by the expression

wlp.z) = J (/1,3 )47TAR2 sinh('ﬁz) .
‘\R 13 sinh(lgh)

1.9. Boundary value problems for the Laplace and
Poisson equations in a ball

To deal with the problem mentioned in the title we need to use spherical functions
and solid spherical harmonics.

Recall that the general solution of the Laplace equation has the following
form (in spherical coordinates (p, 8, ¢)):

(1) ul(p,0,0) =>", (p)n Y, (0, ¢) in the interior the sphere of radius a;
(2) u(p,0,0) =300 (? )(nH) Y, (0, ¢) in the exterior of the sphere of radius a;
(3) ulp,0,0) =>4 <Anp” + pngl )Yn(Q7 ®) in a spherical layer.

Here

n

Z nm €08(M@) 4+ By sin(me)] P™ (cos 6),
m=0
where P,E"’)(x) are the so-called associated Legendre functions.

Example 1. Find the solution u(p,f,¢) of the interior Dirichlet problem for the
Laplac equation with the boundary condition u(a, 8, ¢) = sin(36) cos .

Solution. In spherical coordinates the problem is written as follows:

1 0 [ 50u n 1 0 Sineau . 1 82u_0
p2ap\” ap) " p2sing 96 90) " p2sin?0 0p2

0<p<a, 0<f<m 0<p<2m,
u(a, 8, p) = sin(36) cos @, 0<O<m 0<¢p<2m.

(1.26)
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Setting u(p,8,9) = R(p)Y (0,¢) and substituting this expression in equation
(1.26), we obtain

d, 5., 1 9 (. oY IR
de(p R)—O—RLine Pye <sm9 30>+sin20 P =0,

which upon dividing both sides by RY yields

2
dd Ry 9 (Smgay)+ 1 8y
D

sinf 00 ol sin § Op? _
R + v =0,
. 0 Y 0%y
1 1
2 ! :
ap ") sing o0 (Sme ao) Tsin?g 0p2
R Y -
where A is the separation constant. This yields two equations:
(1) p*R’ +2pR — AR =0,
1 9 oY 1 9%y (1.27)
2 in@ AY =0;
@ no o0 (Sm ae> T gnzgap TA =0

here the function Y (6, ¢) must be restricted to the sphere.
Moreover, the function Y (6, ) satisfies the conditions

Y(0,0) =Y (0,0 +2m),
{ [Y(0,0) <00, [Y(m,9)] < occ. (1.28)

As is known, the bounded solutions of equation (1.27) that have continuous
derivatives up to and including order two are called spherical functions.

The solution of problem (1.27),(1.28) for Y (6, ¢) will also be sought via sep-
aration of variables, setting Y (0, ¢) = T(0)®(y). Susbtituting this expression in
equation (1.27), we get

1 d 1
(0] in 0T’ Td" T® =
sin@ df (sin 077 + sin? 0 A 0
whence p
sinf | (sin0T") %
d@T +)\sin29:—q; = U.

Thus, the function ®(¢p) is found by solving the problem

& + ud =0,
D(p) = D(p + 2m).
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We have already solved such a problem when we considered the Laplace
equation in a disc, and found that u = m? and ®,,(p) = C} cos(mep) + Cs sin(mep),
where C7 and Cy are arbitrary constants and m =0,1,...

The function T'(6) is found from the equation

1 d,. , m?
sind d9(51n9T)—0—<)\—Sin2 >T—O (1.29)

and the conditions that 7' be bounded at § = 0 and # = 7. Introducing the new
variable z = cos § and observing that

dT dx  dT
' — - _sin®
dz o~ dz S0
T
T da?
equation (1.29) yields the following boundary value problem for eigenvalues and
eigenfunctions:

dr

" sin? 6 — cosd,
dx

da? dx
IT(-1)| < oo, |T(+1)] < co.

ST dT 2
1-23)%" —2z +<)\—1m2>T:0, “l<z<l,
X

The eigenfunctions of this problem,
(m) _ p(m) _ 2\m/2 am
T (@) = P (@) = (1= 2™ . Pa(2),
:L-m

are the associated Legendre functions. Hence, the solutions of equation (1.29) are
the functions T,Em)(z) =p{m (cosB).

Combining the solutions of equation (1.29) with the solutions of the equation
®” + ® = 0, we obtain the 2n + 1 spherical functions

P, (cosh), P{™(cos8)cos(mep), P™ (cos8)sin(mep),
n=0,1,...; m=12,...

The general solution of equation (1.27) for A = n(n + 1) is written in the

form
n

Y.(0,0) = E [A i cos(m) 4 By, sin(mep)] P (cos ).

m=0

Now let us return to the search for the function R(p). Setting R(p) = p°
and substituting this expression in the equation p?R” +2pR’ — AR = 0, we obtain
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o(c+1)—n(n+1) =0, whence o1 = n, 02 = —(n+1). Thus, the solution “atoms”
are the functions
p" P{™ (cos ) cos(m), p"PL™ (cos ) sin(m),
p~ (D P (o5 0) cos(mep), p~ ) PO (cos 0) sin(mep).

However, the solutions p~"+D PI™ (cos 0) cos(mep), p~ "+ P™ (cos ) sin(mep)
must be discarded because they are not bounded when p — 0. Hence, the so-
lution of our problem is given by a series

u(p,0,0) = Z Z P" [Anm cos(mep) + B, sin me)] P(m) (cosB).
n=0m=0

It remains to choose the constants A,,,,, and By, so that the boundary con-
dition
u(a, b, @) = sin(36) cos ¢

will be satisfied. We have

u(a,d,p) = Z Z Apm cos(m@) + Bpm sinme] P™ (cos §),

n=0m=0

i.e., we must satisfy the equality

sin(30) cos p = Z Z Ay c08(mp) + By sinmep] P™ (cos 6).

n=0m=0

It follows that in the sum )" _ -+ we must retain only the term corresponding
to m = 1. This yields

sin(36) = Z a™Ap1 PV (cos h).

n=1

The coefficients A,; can be found from the general formula: if

0) = Z b PV (cosh),

n=1

then
2n+1 (n—1)!

bn = 2 (n+1)!

/ f(B)PV (cos ) sin 6 db.
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However, it is more convenient to proceed as follows: we have

dP, 0
sin(360) = sinf(4cos? 0 — 1), P{V(cos) =sino d(c(cf;) 0 |
1

Pi(z) =2z, Ps(x)= 2(5963 — 3x).
Therefore,

(4C0829— 1)sinf =siné {wAn 1+a®- Ay - ;(1500520—3)} ,

which gives

1 8
Ay =— Az = App =0, =2,4,5,...
11 50 BT 5 1=0, n 5
We conclude that the solution of our problem has the form
1

— (PP eost)cos o+ 5 (P) PD (cos ) cos
u(p,9,4p)f( 5)aP1 (0059)c05<p+15 (a) Py (cos ) cos p.

Example 2. Find a function u, harmonic inside the spherical layer R; < p < Ra,
and such that

Ulp=p, = Pz(l) (cosf)sin p, Ulp=R, = Pé3) (cosB) cos(3p).
Solution. The mathematical formulation of the problem is
Au =0, Ri<p<Rey 0<fO<m 0<p<2m,
u(Ry1,0,p) = PQ(I)(COS 0) sin p,

u(Ra,0,p) = Pr(g)(cos 0) cos(3¢p),

9

(see Figure 1.5).

P2(1) (cos @) sin

FIGURE 1.5.
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The solution of this problem is written in the form
- " n Bnm
u(p, 0, p) = Z Z Anmp” + prtl cos(mep) +

Dnm . m
+ <Cnmp" + an) sm(mgp)} P{™ (cos 8),

where the numbers A, Bnm, Cnm and D, are subject to determination. The
boundary conditions yield the following systems of equations for the coefficients
of the expansion:

D B
2 21 5 53
CQlRl + R% =1, A53R1 + R? =0,
B D
AnRY 4+ =0, CssR} + 1y =0,
) o @ o
2 21 5 53
Cgle + R% =0, A53R2 + Rg =1,
B D=
2 21 5 53
A21R2 + RS = 0, O53R2 + RS 0,

All the remaining coefficients are equal to zero. Solving the above systems
we obtain

R

Ag1 = Ba1 =0, Cs3 = D53 =0, Co = — 5 ;
R3(R3 — RY)

Dy = (FyRa)” Asg = — & Bss = (FaF2)
R Ri(RY - RY)” R Ry

Therefore, the harmonic function sought has the form

21

D
u(p, 0, ) = (02117Jr 2 > P§Y (cos 0) sin ¢ +

B .
+ <A53p5 + ng) Péd)(cos 0) cos(3p).

Example 3 [6, 16.25(1)]. Find a function u, harmonic inside the spherical layer
1 < p < 2, such that
ou ) .
3u+ = 5sin” fsin(2yp) and  ulp=z = —cosb.
dp p=1
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Solution. The problem is formulated mathematically as follows:

Au=0, 1<p<2 0<f<m 0<¢<2m,
ou 9

3u+ = 5sin” 0sin(2¢p), 0<O<m 0<¢p<2nm,

Ip p=1

Ulp—g = —cos b, 0<o<m 0<¢p<2r.

We have

oo o0 . Bnm
u(p,H, 30) = Z Z |:<Anmp + pn+1) COS(ng)—i—

n=0m=0

Dnm . m
+ (Cnmp" + pn+1> sm(mgo)} P{™ (cos ).

From the boundary conditions it follows that in this sum we must retain only
the terms with the indices n = 2, m = 2 and n = 1, m = 0. In other words, it is
convenient to seek the solution in the form

b d
u(p,0,p) = (ap + 2) cos + <0p2 — 3> sin? 0 sin(2).
p p
Using the boundary conditions we obtain the following system of equations for the

determination of the coefficients a, b, ¢, d:

da+b=0,

5¢c =5,
2a + b4 == —1,
4c—d/8 = 0.

Solving this system, we obtain a = —1, b = 4, ¢ = 1, d = 32. Hence, the solution
has the expression

4 2
u(p,0,0) = <—p+ p2) cosf + (p2 - ?;3> sin? @sin(2¢).

Example 4 [4, Ch. IV, no. 125]. Find the solution of the Neumann problem for the
Laplace equation in the interior of the sphere of radius a with the condition

?)z (a,0,¢) = Acos (A = const).
Solution. We are dealing with the case of an axially-symmetric solution of the

Neumann problem for the Laplace equation, since the boundary condition does not
depend on ¢, and consequently the solution also does not depend of ¢: v = u(p, 9).
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First of all, it is readily verified that the necessary condition for the solvability
of our problem is satisfied. Indeed

27 T 27 ™
/ Ou ds =0, or / dap/ Acos@sinfa®df = 0.
0 o On 0 0

In the present case the Laplace equation has the form

0 50U 1 0 /. Ou
= < <60<m.
ap(p 8p>+sin989<sme > 0, 0<p<a, 0<6<m

Setting u(p, ) = R(p)T(0) and substituting this expression in the equation,
we obtain, after separation of variables, two ordinary differential equations:

p*R" 4+ 2pR' — AR =0, (1.30)
and
! d(' 0-T)+ AT =0 (1.31)
sinf do - '

If in the equation (1.31) we pass to the new variable = cosf we arrive at
the Legendre equation

d L dT
_ = —1 .
o [(1 x )dx} + AT =0, <z<l, (1.32)

under the condition |T'(£1)| < co. The bounded solutions of the Legendre equation
(1.32) on the interval (—1, 1) are the Legendre polynomials P, (z) for A,, = n(n+1).
Hence, the bounded solutions of equation (1.31) on the interval (0,7) are the
functions P, (cos). The bounded solutions of equation (1.30) are the functions
R.(p)=p" (n=0,1,2,...). It follows that

u(p,0) = Z Chp" Py (cos ),

n=0

where the constants C, are to be determined from the boundary condition du/dp =
Acosf. We have
ou >

9 (p,0) = ZnC,La"_an(cos 0),
P n=0
or, setting p = a,
Acosf = Z nCpna™ ' P, (cos 0)
n=0

whence, upon applying the formula

M1 [T
o, =t 1/ Acos BP, (cos 0) sin 8 df,
2na™~1 J,
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we find that C1y =1 and C,, =0 for n = 2,3,.... We conclude that
u(p,0) = C + Apcosb,
where C' is an arbitrary constant.

Example 3. Solve the following Dirichlet problem for the Poisson equation in a ball
of radius a centered at the origin:

Awu = xz in the interior of the ball,
{ Ulp=a = 1.

Solution. Passing to spherical coordinates, we will seek the solution as a sum

u(p, 8, ¢) =v(p, 0, 0) +w(p),

where the function v(p, 0, ¢) is defined as the solution of the equation

1 0 2811+1 1 0 Singav+
02 9p \" 9p) " p? sing 00 a0
1 1 9% p? .
+ 2 sin 0 02 =, cosy sin(26), (1.33)
0<p<a, 0<f<a, 0<¢p<2nm,
U(a’707<p):07

and the function w(p) is defined as the solution of the problem

1 d 2,/
w') =0, 0<p<a,
p? dp (o) P (1.34)
w(a) =1, |w(0)] < co.
Let us solve first problem (1.33), seeking the solution in the form
v(p, 0, ) = R(p)Pz(l)(cos 0) cos p,

where PQ(I)(m) is the associated Legendre function with indices n = 2, m = 1.
Substituting this expression of v(p, 6, ¢) in the equation of problem (1.33) and
denoting Pél)(cos ) cosp = Y2(1)(9, ) we get the equation

d 1 0 oYV 1 ov\Y pt
Y(l) 2 ! : 2 2 _ Y(l) )
2 dp (p R ) + Rsin9 69 (Slne 80 + R sin2 9 8()02 6 2 (63 90)

But by the definition of the spherical function Y2(1)(9, ©) one has the identity

1 0 . 8Y(1) 1 82Y(1)
sin@ 00 <Sm9 829 + sin 6 3;2 +6Y2(1) =0, 0<f<m 0<¢p<2r.
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Therefore,
d 4
4 PR — 6RYSY = o,
which yields the equation
d 4
dp(sz’)—éiR: % . O<p<a,

together with the boundary conditions |R(0)] < oo, R(a) = 0. Therefore, the
function R(p) is determined by solving the problem

4
p2R”+2pR/f6R:%7 0<p<a,

IR(0)| < 00, R(a) = 0.
Its solution is R(p) = ¢, p?(p* — a?). The solution of problem (1.34) is w(p) = 1.
We conclude that
1
w(p,0,0) =1+ o p*(0” = a*) P} (cos ) cos o.

Remark 1. In the general case, when one solves the interior Dirichlet problem for
the Laplace equation with the condition u|sg = f(6,¢) (where Q is the ball of
radius a centered at the origin and 052 is its boundary), one can write

Z Z Apm c08(mp) + By sin(mep)] P{™ (cos ),

n=0m=0

where the coefficients A, and B, are given by the formulas

2 T
/ / £(8,0)P{™ (cos 0) cos(mep) sin 6 d6 dyp
o Jo

= ¥ 2ar
and or
/0 /0 £(8,0)P™ (cos 0) sin(me) sin 6 d dy
P ¥ 2an |
also, .
= o G Dy e o= {100

Remark 2. The solution of the aforementioned interior Dirichlet problem for the
Laplace equation at a point (po, 0o, ¢o) admits the integral representation (Poisson
integral)

27 s 2 2
a a=r i
w0, o, N 0, sin 0 df d,
(Po, 0o, ¥0) 47r/0 /0 f(6:¢) (a® — 2apg cosy + p2)3/? ’

where cosy = cos cos 0y + sin 0 sin Oy cos(p — o).
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1.10. Boundary value problems for the Helmholtz equations

The Helmholtz equations Au + k*>u = f and Au — k*u = f, alongside with the
Laplace and Poisson equations, are an important form of second-order elliptic
equation. The homogeneous equation (f = 0), for example, arises naturally (in
the multi-dimensional case) when the method of separation of variables is ap-
plied to hyperbolic and parabolic problems. Finding eigenvalues and eigenfunc-
tions reduced to the solvability of the corresponding boundary value problem for
a Helmholtz equation with f = 0.

Example 1 [4, Ch. VII, no. 29(a)]. Find the natural oscillations of a membrane that
has the shape of a annular sector (a < p < b, 0 < ¢ < ¢p), with free boundary.

Solution. The problem is formulated mathematically as follows:

10 [0u 1 0%u
0 9p \9p +p28902+/\u:07 a<p<b 0<p<pg,
ou ou
3p(a,so)= 8p(b,so)=07 0 < ¢ < o, (1.35)
ou ou
= = < < .
8@(/),0) agO(fupo) 0, a<p<b

We will seek the solution of this problem in the form

u(p, p) = R(p)®@(p).

Inserting this expression in equation (1.35) and separating the variables we obtain
two ordinary differential equations:

(1) " +vd =0,
and p
@) p g, (0R)+ (A\p* = )R =0.
To determine v we have the Sturm-Liouville problem

" +rv® =0, 0<p<ypo,
2'(0) =0, @'(pg)=0.

2
This yields v, = (ZZ}’) ,n=0,1,...,and ®,(p) = cos (ZZ; go). The function R(p)

is obtained from the following boundary value problem for the Bessel equation

d
R+ (A\p?> —vR) =0, a<p<b,
pdp(p )+ (Ao ) p (1.36)

R'(a) = R'(b) = 0.
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The general solution of equation (1.36) has the form
R(p) = C1J 7 (VAp) + C2Nze (VAp),

where C) and C are arbitrary constants and N w (v/Ap) is the Bessel function of
second kind. The values of A are determined by means of the boundary conditions
in (1.36); namely, they provide the system of equations

C1 % (V@) + CoNw (VAa) = 0,
©0 ©0

C1Jen (VAD) + CyN'en (VAD) = 0.
©0 ©0

This system has a nontrivial solution if and only if its determinant
Jen (VAa) Nt (Va)
£0 0
Jhn (VD) N (VD)
Y0 Y0

is equal to zero. In other words, A, , = [uﬁfi’)]?, where us,?) are the roots of the

equation

Jig(\/)\a) N’;g(\/)\a)
Lo (VAD)  Nbw (VD)

Yo Y0

We see that the radial function has the form
Rnn(p) = (M%L)P)N’;g (p)a) — Jon (i @) Nz () p).
Thus, the natural oscillations of our plate are described by the functions

um,n(p7 ‘P) = Rm,n (p)q)n(ﬁo) =

_ |:J7rn (/Lg,rf)p)N;" (M%z)a) —J (’ugg)a)Nm (MSZ)P)} cos <7Tn <,0> .
%0 0 o 7

1.11. Boundary value problem for the Helmoltz equation

in a cylinder

Example [4, Ch. VIIL, no. 10]. Find the steady distribution of the concentration
of an unstable gas inside an infinite cylinder of circular section assuming that a
constant concentration ug is maintained on the surface of the cylinder.

Solution. It is know that the problem of diffusion of an unstable gas that decom-
poses during the diffusion proces is described by the equation

Au — *u =0 (3> 0).
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Hence, in polar coordinates the problem is formulated as

10 [(0u 1 0%u 2
- =0 0 0<p<?2
pap<6p>+p28<p2 ©u =0, <p<a, @ < 2m,

u(a, QO) = Uo, 0 < ® < 271—7

(1.37)

where a denotes the radius of the cylinder.
Let us seek the solution in the form u(p, ) = R(p)®(yp). Substituting this
expression in equation (1.37) we obtain

1d R
b dp (pR)® + 2 " — RO =0,
or L d
p (pR') "
p dp _%2p2:_‘1) -\
R o '
This yields two ordinary differrential equations:
(1) &'+ 20 =0,
and

@ » ;;@R’) ~ G2+ MR =0,

From equation (1), by using the fact that ®(¢) = ®(¢+7), we obtain A = n?
(n =0,1,2,...) and ®,(¢) = A, cos(ny) + By sin(ny), where A,, and B,, are
arbitrary constants.

Further, equation (2) yields

p*R" + pR' — (52p* +n*)R = 0.
After the change of variables x = »p we obtain the equation

d’R dR
2 — 2 2 =
@ e +z i (z*+n*)R =0.

This is recognized as being the Bessel equation of imaginary argument of
order n. Its general solution has the form

R(z) = C1 1, (x) + Co Ky (),

where I,,(z) and K, (x) are the cylindrical functions of imaginary argument of first
and second kind, respectively. Clearly, we must put Cy = 0 because the solution



46 CHAPTER 1. ELLIPTIC PROBLEMS

is required to be bounded on the axis of the cylinder (K, (z) has a logarithmic
singularity as x — 0). Returning to the original variable we write

R(p) = Cl(3p),

where C' is an arbitrary constant.
Thus,

o0
u(p, ) = [An cos(ng) + By sin(ng)] I (sp),
n=0
where the constants A,, are determined from the boundary condition. Namely, we

have
o0

u(a, @) = Y [An cos(ng) + Bnsin(ng)] I (sp),

n=0

and since u(a, @) = up, we see that Ag = ug/Io(sa), while all the remaining terms
of the series are equal to zero. Hence, the solution is

Io(52p)

u(p, ) = uo Io(oea)’

1.12. Boundary value problems for the Helmoltz equation in a disc
Example 1. Solve the following boundary value problem for the Helmholtz equation

in a disc:
u(a, o) = flg),  0<¢<2m

here one assumes that &2 is not equal to any of the eigenvalues A of the homoge-
neous Dirichlet problem for the equation Au + Au = 0.

{Au—l—kQu:O, 0<p<2m, 0<p<a,

Solution. Using again separation of variables, we write u(p, ) = R(p)®(y), which
upon substitution in the Helmoltz equation yields

1d 1
pdp(pR’)-<I>+Rp2<I>”+k2R<I>:O.
Hence,
(o)
pdpp +k22:7¢”:)\
R P ’

where ) is the separation constant.
The eigenvalues and corresponding eigenfunctions are obtained as the solu-
tions of the already familiar problem

o 4+ \® =0, —00 < p < 00,
D(p) = D(p + 2m).
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Hence, A = n? and ®,,(¢) = C; cos(np) + Casin(ng), n =0,1,2,.... Since
d

R/

%Ap)

k2% — )
R ’

we obtain the following equation for the determination of R(p):

d
pdp(pR’) + (k*p? —n*)R = 0. (1.38)

Denoting = = kp, we rewrite (1.38) in the form

d’R dR
2 2 _ 2
xdx2+xdw+(x n“)R =0.

This is the Bessel equation of order n and has the general solution
R(z) = C1Jn(x) + CoY, (),

where J,(z) and Y,,(z) are the nth order Bessel functions of the first and second
kind, respectively, and C7, Cs are arbitrary constants.
Therefore, the solution of equation (1.38) has the form

R(p) = CiJn(kp) + C2Y(kp).

Since Y,,(kp) — oo as p — 0 and we are interested in bounded solutions, we mus
take Cy = 0. Thus, R, (p) = J.(kp) and the solution of our problem is represented

as a series
oo

u(p,p) = Z [A,, cos(np) + By, sin(ne)] J.(kp). (1.39)

n=0

The constants A, and B, are found from the boundary conditions. Setting
p =a in (1.39), we obtain

oo

flo) = Z [A;, cos(np) + By, sin(ny)] Jn(ka),
n=0
whence
1 27
A = =0,1,...
n 2ng(ka)]€ fl@)cos(np)dp,  n=0,1,...,
and

1 2T

Bu= o g ka) J, fl)sin(np)dp, n=1,2,....
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In particular, if f(p) = Asin(3¢), we have
A

B Jg(ka)’
and the solution has the expression

Bs A,=0, n=0,1,...; B,=0, n#3,

e = G Faln)sin3e).

Problem 2. Solve the following Dirichlet problem for the Helmoltz equation:

Au + k*u =0, 0<p<2m, p>a,

ulp=a = f(p), 0<¢p<2m,

u, +ikp = o(p~'/?) as p— occ.
Solution. Here, as in the preceding example, we will use separation of variables to
find the solution. The only difference is that in the present case, in order to make

the solution unique, we must impose for n = 2 the radiation condition (Sommerfeld
condition)

9
az +ikp=o(p~'/?), p— oo

The solution of problem (1.38) takes now . the form
R(p) = CLHD (kp) + CHP (kp),

where HS" (z) and 263 (x) are the Hankel functions of index n of the first and
second kind, respectively. The behavior of the Hankel functions at infinity p — c0)
is given by the asymptotic formulas

HV(z) ~ \/;x eilz=3-1) [1 +0 <i>} ,
HP () ~ \/fx e~ie=73=1) [1 +0 (i)] .

It readily checked directly that the radiation condition is satsified by the function
H? (kp).
We see that the solution of the above exterior Dirichlet problem for the the

Helmholtz equation is given by the series
oo

and

u(p, @) =Y [Ancos(ng) + By sin(p)] HY (kp),
n=0
where the coefficients A,, and B,, are given by the formulas
1 27
n = f(p)cos(np)dp, n=0,1,...
QWHT(LQ)(]C(Z) 0
and
L7 Hesintg) d
A, = fle)sin(np)dp, n=12...
QWHT(LZ)(IC&) 0
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1.13. Boundary value problems for the Helmoltz equation in a ball
Let us consider several examples of solutions for the interior and exterior Dirichlet

and Neumann boundary value problems in a ball.

Example 1 [4, Ch. VII, no. 12]. Find the steady distribution of the concentration
of an unstable gas inside a sphere of radius a if on the surface of the sphere one
maintains the concentration u|gg = ug cos € (ug = const).

Solution. The problem is formulated mathematically as follows:

1 0 ( 50u . 1 7] Smaau CPu—0
p? Op P dp p2sind 96 00 o

O<p<a, 0<O<m,
u(a, ) =wugcosf, 0<6<m.

(1.40)

As before, let us seek the solution in the form
ul(p,0) = R(p)T(9).
Substituting this expression in equation (1.40) we obtain

1 1 0

10
p? sin@R' 89(

2 0p sinf - T') — 5°RT = 0

(P*R)-T +
whence, upon dividing both sides by RT,

9 2 p/ 1 0
p°R ing. T’
25" )7%2p2:7sin9 op S0 T)
R T
This yields two ordinary differential equations:

d

(1) dp(p2R’) — (2" + AR =0,

and
) L0 no. 1)+ 3T =0
sin @ 00 o

Performing the change of variables = cos# in equation (2) (and using the
conditions |T'(0)| < oo, |T'(7)] < 00), we find the eigenvalues and eigenfunctions

An =n(n+1), Tn(0) = Pp(cosf), n=0,1...,

where P, (x) are the Legendre polynomials.
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Equation (1) is readily reduced, via the substitution v(p) = \/pR(p), to the
form (for each n)

2
1
p*u" + pv’ — [(%p)2 + (n + 2> }v =0.
The corresponding bounded solutions of this equations are

Un(p) = CIn+1/2(%p)7

where I,,11/2(x) are the Bessel functions of half-integer order and imaginary ar-
gument. Then
In+1/2(%ﬂ)

VP

Therefore, the solution of our problem is given by the series

Rn(p) =

00 I,
u(p,0) = Z Cy +1/2(49) P, (cos9),
n=0 \/p

where the constants C,, are determined from the boundary conditions. Specifically,

o In
ug cos = E Chp '+1\//2(%a) P, (cos ).
a

n=0
This yields C1 = ug+/a/I3/2(5a) (the remaining coefficients are equal to zero).

Finally,
va I3 s (sp)
VP I3/2(5a)
Example 2 [6, Ch. IV, 18.51]. Solve the Neumann problem for the equation Au +

k*u = 0 in the interior as well as in the exterior of the sphere p = R, under the
condition du/0n|,=r = A, where A is a constant.

u(p, ) = ug

Solution. (a) The interior Neumann problem can be written as follows:

;2£)<p221;>+k2u0, 0<p<R, 0<f<m 0<ep<2m (141)
ou
=A, 0<6<m 0<¢p<om (1.42)
on|,_g

Since p12 aap (p2 gg) = (pu)”, equation (1.41) can be recast as

V' K0 =0, v(p) = pu(p).
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The general solution of this equation is
v(p) = C cos(kp) + Casin(kp),

and consequently

u(p) = O coslikp) e sm(pkp) .

51

Since the solution must be bounded at the center of the ball, we must put C; =0,

and so

_sin(kp)
u(p) =C P

Now let us calculate the normal derivative:

ou _ Ou Ckcos(kp) - p —sin(kp)
on  9p P> '

Further, using the boundary condition (1.42) we obtain

Rk cos(kR) — sin(kR)
C R = A,

whence

o AR?
~ kRcos(kR) —sin(kR)"

We conclude that the solution of the interior problem has the form

_ AR? sin(kp)
ulp) = kRcos(kR) —sin(kR)  p

(b) The exterior Neumann problem reads:

1
2§(ngu>+k2u:0, p>R, 0<0<m 0<¢p<2nm,
p? dp p
ZZ =4, 0<6<m 0<¢p<2m
p=R

u, —iku=o(p~t) asp— oo.

As in item (a), equation (1.43) can be recast as
v+ k=0, v(p) = pu(p).
The general solution of this equation is

v(p) = Che™*P  Che e, p — 0.

(1.43)

(1.44)

(1.45)
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Therefore,

eik

Let us verify that the function u;(p) = pp satisfies the Sommerfeld condition

0
gy~ ik =0l (p = 00)
i.e., that
lim {p (a“ - zkul)} - 0.
p—00 Op
Indeed,
o 1 ikp ikp 1
p( uikm) p(ikul ulikul) __¢ and € < .
dp P P P P

It follows that to pick a unique solution we must set Co = 0, and then u(p) = C eisp .
Now let us calculate the normal derivative:

ou _ Ou_ 0 Ce““”
on  dp  Op '

p
We have ou Coie
on = (1 —ikp),
and the boundary condition (1.44) yields
AR?

¢= ¢ikR(1 — ikR)

Thus, the solution of the exterior Neumann problem is given by the formula
AR? etkp
wP) = Likr(1— ikR)
Example 3 [6, Ch. V, 18.53]. Solve the Dirichlet problem for the equation Au —

k2u = 0 in the interior and in the exterior of the sphere of radius p = R with the
condition u|,—r = A, where A is a constant.

Solution. (a) First let us solve the interior Dirichlet problem

Au — k?u =0, 0<p<R, O0<f<m 0<¢p<?2m,
ulp=r = A, 0<8<7m, 0<¢p<2m
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By analogy with Example 2, we must solve the equation v” — k*v = 0, where
v(p) = pu(p), which has the general solution

v(p) = Cy sinh(kp) 4+ C cosh(kp).

Therefore,
sinh(k cosh(k
ulp) = Cy p(p)+02 p(p).

where C7 and C5 are arbitrary constants.
Note that cosh(kp)/p — oo as p — 0. Hence, we must put Cp = 0, and the

solution has the expression

sinh(kp
u(p) = ¢ SmP)
p
The constant C' is determined from the boundary condition u(R) = A, ie.,
C sinh(kR)/R = A, which yields C' = A R/sinh(kR). We conclude that the solu-

tion of our problem is
R sinh(kp)
=A .
u(p) p sinh(kR)

(b) Now let us solve the exterior Dirichlet problem

p>R, 0<fO<m 0<p<2m,

Au — k*u =0,
0<0<m, 0<¢p<2r,

u|p:R:A,
u(p) = 0 as p — oo.

In this case
ekr e~ ke

u(p) =C + Cy
14 P

Since the solution of the exterior problem must satisfy u(p) — 0 when p — oo, we

must put C; = 0. Therefore,

The boundary condition u|,—p = A yields C = AR/e~*%. We conclude that the

solution of our problem is
R ek

u(p)=A ) ekR
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1.14. Guided electromagnetic waves

In this section we will conisder problem connected with steady processes of prop-
agation of electromagnetic waves in systems that have the property of producing
conditions under which waves propagate essentially in a given direction. Such waves
are know as guided waves, and the systems that guide them are called waveguides.

The basic tool that we will use to simplify the analysis of such problems is
the representation of elecctromagnetic waves as a superposition of waves of several
types.

Let us assume that the xs-axis coincides with the direction of wave prop-
agation. The electromagnetic field of the wave is described by six components,
FEy, Es, E3, Hy, Hy, H3, of the electric and magnetic field vectors. Let us write
them in matrix form:

[0 B, o0 [E, 0 B
A_{Hl 0 Hs] B‘[o H, 0]'

It is clear that the electric field vector (0, F2,0) is orthogonal to the direction
of propagation of the wave, whereas the magnetic field vector (Hy,0, H2) has a
nonzero component along that direction. In the matrix B the vector (E1,0, E3) has
a nonzero component along the zz-axis, whereas the vector (0, H,0) is orthogonal
to the zz-axis. In connection with this circumstance the waves characterized by
the matrix A are referred to as transversally-electric (TE-waves), while those char-
acterized by the matrix B are referred to as transversally-magnetic (TM-waves).

Tt is convenient to consider that an electromagnetic wave is a TE-wave [resp.,
TM-wave] if E5 = 0 [resp., Hz = 0].

There exists also waves of a third type, characterized by the matrix

[E. E 0
C{Hl Hy 0}

These are called transversally- electromagnetic waves, or TEM-waves.

Example. TM-waves in a waveguide of circular cross section.

Let us consider the propagation of TM-waves in an infinitely long cylinder
of radius a. It is known that this problem is connected with the solvability of the
following Dirichlet problem for the Helmholtz equation:

10 ([ OFs 1 02F;
pop \” ap p? O0p?
E3(a7()0) :Oa OS()OS27T7

+0%F5 =0, O0<p<a, 0<yp<2m,

where 62 is a real constant.
Separating the variables by means of the substitution E5 = R(p)®(yp), we
arrive at the equations

{@”+Aq>_o,

1.46
pQR//+pR/+(62p2_)\)R:O7 ( )



1.15. METHOD OF CONFORMAL MAPPINGS 55

where ) is the separation constant. Since ®(¢) = ®(¢+27), it follows that A = n?,
n=20,1,2,...

The change of variables = dp takes the second equation in(1.46) into the
Bessel equation of order n in the new variable z. Since |R(0)| < oo and R(a) =0,
we have

R(p) = Jn(Snmp)-

Here pm = pinm/a, where i, is the mth positive root of the nth order Bessel
function J, ().
Therefore, our problem admits the following particular solutions:

Es3 nm = Jn(0nmp) [Anm cos(ng) + By, sin(ne)] ,

where A,,,,, and B,,,, are arbitrary constants. Each of these solutions corresponds to
a certain TM-wave, which can propagate without damping in the given waveguide.

Remark 1. The propagation of a TE-wave in an infinitely long cylinder is associated
with the solvability of the Neumann problem for the Helmoltz equation:

18 [ 0H 1 0%H.
( 3) S 1 0%H, =0, O<p<a, 0<¢<o2m

pop \" ap p? 0p?
OHs

o7t (a,¢) =0, 0 <y <2m;

here 7 is the unit outer normal of the cylindrical waveguide.
By analogy with the preceding example, we obtain

H3 nm = Jn(0nmp) [Anm cos(ng) + B sin(ne)],

where now 9,,,, = A\nm/a, with A,,, being the mth positive root of the equation
dJ,(z)/dx =0,n=0,1,2,...

Remark. 2 If the component Es5 (or Hj) is known, then the other components of
the electric and magnetic field vectors can be found by only one differentiation
(this follows from the Maxwell equations for the electromagnetic field).

1.15. The method of conformal mappings
(for the solution of boundary value problems in the plane)

Methods of the theory of functions of a complex variables found wide and effec-
tive application in solving a large number of mathematical problems that arise
in various fields of science. In particular, in many cases the application of com-
plex functions yields simple methods for solving boundary value problems for the
Laplace equation. This is the result of the intimate connection between analytic
functions of a complex variable and harmonic functions of two real variables, and
also of the invariance of the Laplace equation under conformal mappings.
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Suppose one wants to solve the Laplace equation uzg + tyy = 0 with some
boundary condition in a domain of complicated shape in the plane of the variables
x, y. This boundary value problem can be transformed into a new boundary value
problem, in which one is required to solve the Laplace quation ug¢ + Uy, = 0 in a
simpler domain of the variables £, 1, and such that the second domain is obtained
from the first one via a comformal mapping ¢ = f(z), where z = z 41y, ( = {+in,
and u(¢) = u(z) for ¢ = f(z) (Figure 1.6).

y A Original boundary nA
condition New bounary
Domain condition
of complex .
Domain
shape .
_ Conformal of simple
Ugg + Uyy = 0 )
mapping shape
Uge + Upy =0
0 T 0 6
Ficure 1.6.

Once the solution u(&,n) of the Laplace equation in a simple domain (disc,
half-space, rectangle) is found, it suffices to substitute in that solution the expres-
sions & = &(x,y), n = n(x,y) in order to obtain the solution u(x,y) of the original
problem, expressed in the original variables.

Let us give several examples to show how to solve boundary value problems
for the Laplace equation (in the plane) by means of conformal mappings.

Example 1 [6, Ch. V, 17.13(4)]. Find the solution of the equation Au = 0 in the first
quadrant z > 0,y > 0, with the boundary conditions u|z=o = 0, u|y=o = 0(z — 1),
where §(z) =1 if z > 0, 8(z) = 0 if < 0 is the Heaviside function.

) n
z=x+1y C=¢&+1in
4 =22
—_
4
3 2 by
2 2 3
6
1 x 3 0 1 13

FIGURE 1.7.
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Solution. Clearly, the function ¢ = 22, defined in the first quadrant of the complex
z-plane, maps this domain into the entire half-plane 1 > 0 of the complex (-plane
(Figure 1.7), in such a manner that:

the positive x-semiaxis is mapped into the positive real {-semiaxis;

the positive y-semiaxis is mapped into the negative real £-semiaxis.

Thus, we arrive at the following conclusion:

Boundary value problem Boundary value problem
in the plane (z,y) in the plane (&, 7)
AUZO, $>an>07 Aﬂ:O, 7]>O,
ulz=0 =0, y >0, — - {1 ife>1,
Ulp—p =
Uly=o =0(x — 1), x>0, =0 0 ife<.

Notice also that from the equality ¢ = 22, i.e., £ +in = (z + iy)?, it follows
that £ = 22 — y? and n = 2xy.
The solution of the Dirichlet problem in the (£,7)- plane is given by the

Poisson integral
_ o [ a(t,0)dt
wen =1 o ter e

Imposing the boundary condition on %(&,0), we obtain

~ n [~ dt 1 t—¢|™°
= = 1 =
u(&,m) 7T/—oo (t_f)2+772 7Tarc an -

1 (77 1— 5) 1 1 1-¢
= — arctan = _— arctan .
2 n 2 7 n

If we now write 22 — 42 instead of ¢ and 2zy instead of 7, we obtain the solution
of the original problem in the form

11 y?—a?+1
u(z,y) = o~ Warctan oy .
Example 2 [6, Ch. V, 17.14(2)]. Find the solution of the Dirichlet problem for
the equation Au = 0 in the strip 0 < y < m, with the boundary conditions
Uly=0 = 0(x), ul|y=r = 0.
Solution. The complex function { = e?, defined in the strip 0 < y < 7, maps this
strip into the entire half-plane 7 > 0 of the complex ¢(-plane (Figure 1.8), in such
a manner that:

the positive z-semiaxis is mapped into the positive {-semiaxis [1, 00);

the negative z-semiaxis is mapper into the interval (0, 1);

the line y = 7 is mapped into the negative ¢-semiaxis.
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Y n
2 =1x+1iy \\\szer
u = Al =0
N N
Au =20 \
1
u=0(x) 0O x =0 u=1 ¢
FiGure 1.8.
Thus, we arrive at the following conclusion:
Boundary value problem Boundary value problem
in the plane (z,y) in the plane (§,7)
Au=0, —oco<z<oo 0<y<m, Au=0, n>0,
Uly=0 = 0(x), —o0o <z <00, — i { 1 ife>1,
Ulp=0 =
Uly=r =0, —00 <z < 00, =0 0 ife<1.

Notice also that £ = e” cosy and n = e siny. As in Example 1, we have

1-¢

~ 1 1
u(&,n) = g~ 71_arctaun

and so the solution has the form

1 1 e —cosy
u(zr,y) = _ — arctan . .
2 siny

Example 3 [6, Ch. V, 17.18]. Find the solution of the Dirichlet problem

{AU—O, Rez >0, |z—5|>3,

U|Rez:0 =0, u|\275|:3 =1

Solution. First let us draw the domain D where we must solve the Dirichlet problem
(Figure 1.9). It can be regarded as a eccentric annulus (indeed, a line is a circle of
infinite radius). Let us find a conformal mapping of D onto a concentric annulus.
To this purpose let us find two points that are simultaneously symmetric with
respect to the line Re z = 0 and with respect to the circle |z — 5| = 3. Clearly, such
points must lie on the common perpendicular to the line and the circle, i.e., on
the real axis. From the symmetry with respect to the line Rez = 0 it follows that
these are precisely the points 1 = a and xo = —a with a > 0. The symmetry with
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z=a+ 1y

NN

<
q
-

FIGURE 1.9. FIGURE 1.10

respect to the circle |z — 5| = 3 translates into the equation (54 a)(5 —a) =9,
which yields a = 4.

Let us show that the conformal transformation we are seeking is given by the
linear-fractional function
z—4
244"

(= (1.47)
Indeed, this mapping takes the line Re z = 0 into a circle . Since symmetry must
be preserved, the points z; = 4 and z; = —4 are taken into the points { = 0
and ¢ = oo, respectively, which are symmetric with respect to the circle v. Hence,
¢ = 0 is the center of . Further, since the point z = 0 is taken into the point
¢ =1, v is the circle [(| = 1 (Figure 1.10).

Now let us show than under the above mapping the circle |z —5| = 3 goes into
the circle |¢| = 1/3. Indeed, the linear-fractional-transformation (1.47) takes the
circle |z — 5] = 3 into a circle, of radius || = |(2 —4)/(2+4)| = 1/3. We see that

1

(1.47) maps the domain D conformally onto the concentric annulus 5 < |¢] < 1.

We conclude that the given boundary value problem in the plane (z,y)

Au=0, Rez>0, |z—5=3,
u‘Rez:OZOa

ulj;—s5)=3 = 1,

is transformed into the following boundary value problem in the plane (£, 7):

1
Ai=0, <<, (1.48)
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Let us solve the problem in the annulus 1/3 < [{] < 1 (in the plane (£,7)).
Since the boundary conditions (1.49) do not depend on the polar angle ¢, it is
natural to assume that the solution %(¢) depends only on the variable p (here
& =pcosp, n = psinp). To find this solution, we rewrite the equation Aw in the

form 68p (p 3? = 0. The general solution of this equation is

u(¢) =c1+c2lnp,

where ¢; and ¢y are arbitrary constants. Imposing the conditions (1.49), we obtain
c¢1 =0, ca = —1/1n 3. Therefore,

~ 1
W(Q) =~ Ilcl,  because p = |¢|.

To find the solution of the original problem it suffices to return to the variable z,
using (1.47), which finally yields

1
w2) =g

z+4
z—4|

1.16. The Green function method

Definition of the Green function. Let us consider the boundary value problem

Au = f in the domain €,

1.50
(alu + asg gz> =g on the boundary 0. ( )

We shall assume that the function u(z) is continuous together with it first-
order derivatives in the closed domain 2 C R", bounded by a sufficiently smooth
hypersurface 952, and has second-order derivatives that are square integrable in
Q). Here 71 is the outward unit normal to 92 and «ay, s are given real numbers
satisfying o2 + a2 # 0; v = (z1,... , o).

The Green function method for solving such problems consists in the follow-
ing. First we solve the auxiliary problem (see [1])

AG = —6(z,x0), x0€Q,

oG
<041G + Q2 8n)

where § = 0(z, ) is the o-function, which can formally be defined by the relations

0, if , 1, ifxg €9,
0(x, o) = 1 z 7 o , / 0(x, xo)dx = 1 o
o0, if z = xg, Q 0, ifxg ¢ Q,

(1.51)

= O’
o0
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where zo = (zo1,... ,Zno) (the notation dz is obvious). The main property of the
o-function is expressed by the equality

[ S, itwen
/Qé(x,xo)f(l')dx = { 0, if zo ¢ Q,

where f(z) is an arbitrary continuous function of the point x.
Definition. The solution of problem (1.51) is called the Green function of problem
(1.50).

We will require that the Green function G(z,zo) be continuous (together
with its first-order partial derivatives) everywhere in the closed domain 2, except
for the point z¢, at which G(z,z() may have a singularity.

Once the function G(z, z¢) is found, one can use it to easily find the solution
of the original problem (1.50). To that end we will use the second Green formula

ou ov
/Q(vAu — ulAv)dx = /39 (v P 8n) ds. (1.52)

This formula is readily obtained from the Gauss-Ostrogradskii formula

/ (d’,ﬁ)ds:/divddz
o9 Q

(where @ is a vector field and (@, ) denotes the scalar product of the vectors @
and 7) if one puts successively @ = vVu and @ = «Vv and subtract the results
from one another. Indeed, we have

/an(Vu,ﬁ)ds = /Qdiv(vVu)dx, (1.53)

and
/ u(Vv,ﬁ)dSZ/div(qu)dx. (1.54)
a0 Q

Since (Vu,n) = du/On, (Vu,@) = Ov/0On, div(vVu) = (Vu,Vv) + vAu and
div(uVu) = (Vu, Vu) + uAv, subtracting (1.54) from (1.53) we get the second
Green formula.

Now let us put v = G in (1.52). Then, since Au = f(z) and AG = —d(z, zo),

we obtain
( G ou 8G> s,

/QG(x,xo)f(x)dm +/Qu(x)5(x,x0)dx :/ on " Yon

o

But, by the main property of the §-function,

/ w(2)d(z, xo)dr = u(xy),
Q
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and so the last equality yields

u(zg) = /89 (G gz — uZi) ds — /QG(x,xo)f(x)d:r.

From this formula we obtain:

(a) the solution of the Dirichlet problem for
a1 =1, az=0, Gloo=0, ulpa=g

in the form

u(zg) = 7/{)(29 Zids f/QG(x,xo)f(x)dx;

(b) the solution of the Neumann problem for

oG
on

ou

= O’ = ]‘7
(e5) Qa9 on

_0’

= =9
90

o0

in the form

u(zo) = /69 Ggds — /m Gl 20 f () da

Remark 1. The integral
G(xz,z0) f(z)dx
Q

admits the following physical interpretation: the right-hand side of the equation is
regarded as an external action on the system and is decomposed into a continual
contribution of source distributed over the domain 2. Then one finds the response
of the system to each such source and one sums all these responses.

Construction of the Green function. One of the methods for constructing the Green
function is the reflection method. For example, the Green function for the Poisson
equation in the case of the half-space (z > 0) has the form

1 1

G(M’ MO) 47TRMM0 4’/’1’R1u]y[1 ’
where Rap denotes the distance between the points A and B, My(zo, Yo, 20) is a
point lying in the uper half-plane z > 0, M; (o, yo, —20) is the point symmetric
to Mo(xo, Yo, 20) with respect to the plane z = 0, and M (z,y, z) is an arbitrary
point of the half-plane z > 0.

Physically the Green function can be interpreted as the potential of the field
produced by point-like charges placed at the point My (over the grounded plane
z = 0) and the point M; (Figure 1.11).
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A

MO('Z.(M Yo, ZO)

h ~
I R/" ~M(z,y,2)
I M My /
| /
0 / -
I Ty
| /RMM1
/
I/

V
M (z0, Y0, —20)

FIGURE 1.11. The potential at the point M (z,y, z) equals
G(M, My) = !

1
T AmRarwg Am R
(z = 0 is a grounded conducting plane)

Notice that in the case of a half-plane (y > 0) the Green function has the
form (Figure 1.12)

1 1 1 1
G(M, My) = 1 — 1 .
( ’ 0) 21 " Rr, 21 . Rara,

yA

J\'/{o(imyo)

I T S M(z,y)
/

|
/

| /

0 | , %

Ly

I/

v

M (z0, —¥0)

FIGURE 1.12. The potential at the point M (z,y) equals
G(M, M) = 217T In , Lo 2177 In !

M My Ry
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Examples of problems solved by means of the Green function. Suppose we want
to solve the Dirichlet problem for the Laplace equation in a half-plane

Au=0, —oco<z<oo, y>0,
{u(x,O)zf(x), —00 < & < 00.

The solution of this problem is

ue) =2 [ 10 G

(we put My = My(z,y), M = M(s,t)), where

1 1 1 1
G(x,y;s,t) = — .
BT o a s -0 2 - s+ (gt 0

Calculating 9G/0t|t—o, we obtain

u(x,y):y/oo UGN (1.55)

T J—c0 (S—.%')2+y2

ds

t=0

Example 1 [3, no. 244]. Find a function u(x, y), harmonic in the half-plane y > 0,

if it is known that .

u(z,0) = 21

Solution. We must calculate the integral

_v [T s s
“%”‘w[ma+ﬁm»mﬁ+ﬂd'

Apparently, the easiest way to do this is to use the method of residues, namely,
the following formula:

/700 (1 + 52)[(8 _ l‘)2 + yg] ds = ZWi[res[f(z)]z=i + res[f(z)]Z=I+iy7
Wheresf(z) =z/((1+2H)[(z — x)? +y%]).
3 ; = ! es[f (= iy = Ty
et = ot gy T Ty @y

it follows that

y [ s B o T+ 1y B

m /_oo (sl —a2+92 P T (G—o2+y?] T+ @t T
_ 1y " T+ 1y

[l —z)+iyl[(i —x) —iy]  (x+iy—1)(x+iy+1)
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1 1 1 ! Lo, B
S 2li—x—iy di—ax+iy| 2|zdiy—1 x+iy+1]|
1 1 1 1 1
= [ - + + . }—
2il—y)—z i(l+y)—z ily—D+x i(l4+y +=

! 1 1 B
2 lil+y)+r i(l+y)—=x]
1l z—i(l+4y) r4+i(l+y) | T
2[22+(1+y? 22+ 1+y?] 22+ (01+y)?>
Therefore, the solution of the problem is given by

xT

BRI

Remark 2. The solution of the problem considered above,

Au=0, —oo<z<oo, y>0,
o

Uly=0 = 241’

can also be obtained without resorting to the Green function.

Indeed, one can use the fact that the function v = ! In J 2+1( a2
z24+(y+a

a > 0, is a solution of the Laplace equation in the upper half-plane y > 0, i.e.,

where

1

Aln =0.
Va2 + (y + a)?

Differentiating this equality with respect to x, we obtain

1 0 1

0
Aln =0, or A_ In
Or— /2> + (y+a)? 0 \/a* + (y + a)?

= O,
i.e., A(x/r?) = 0, where r = /22 + 2.

Thus, the function u = x/[z? + (y + @)?] is harmonic in the upper half-plane.
Imposing the boundary condition, we conclude that the solution of our Dirichlet

problem is the function
x

2?2+ (y+1)2
Example 2 [6, Ch. V, 17.4(2)]. Find the solution of the Dirichlet problem

u(z,y) =

{Au—O, —xo<z,y<oo, z>0,

U|,=0 = cosxcosy, —o0 <,y < oo.
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Solution. It is known that the harmonic function we are asked to find is given by

formula
cos & cosnd€ dn
u(z,y,z) = E—x)2+ (n—y)2+223/2°

To calculate this integral we will make change the variables £ —z =u, n —y = v,
the Jacobian of which is 1. We obtain

//cos u+x)cos(v+y)dudv
~on

u(z,y, 2 u2+v2+z2)3/2 -

oo
oz / (cosucosx — sinusinz)(cos v cosy — sinvsiny) du dv
2 (u2 + v2 + 22)3/2

z // cos u cos v du dv
= COS T COS
2m Y ] (2 42+ 22)302

because the other three integrals vanish thanks to the fact that their integrands
are odd functions.
Now let us calculate the integral

o0
7// cosucosvdudv
- (u2+v2+22)3/2 -
—00

[cos(u + v) +smus1nvdudv cos(u + v) dudv
(u2 + v2 + 22)3/2 (uz + 02 4 22)3/2

because the other integral is equal to zero.
Let us make the change of variables

1 1
p:\/2(u+v), q:\/Q(IL—’U),

which correspond to a counter-clockwise rotation of the plane by 45°. Then we

have
cos(v/2p) dp dgq /°° /‘XJ dq
//(p +¢? + 22)3/2 mcos(\/ P)dp oo (PP G+ 22)3/2
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But the substitution ¢ = \/ p? + z2tant transforms the integral

T f/oo da
e P 223

into

™2 | cost| 2
J1:/ 2+22dt: 2 L2
—7T/2p p z

Finally, the resulting integral

J_ 2/00 cos(v/2p) dp

R

is calculated using the Cauchy residue theorem as follows:

9] i\/2pd
J:QRe/ 62 5:4m'res
s DFt 2

=4 .= e
Therefore the solution is

u(z,y,z) = e~V cosz cos .

Remark 3. Since y/[(t — x)? 4+ y?] = Re[1/(i(t — 2))], where z = = + iy, the Poisson
formula (1.55) can be recast as

u(z) =Re | /oo u(t)dt. (1.56)

T t—z

—0oQ

Now let us consider the Dirichlet problem for the Laplace equation in the
half-plane Im z > 0 (i.e., for y > 0):

{Au:O, —o<xr<oo, y>0,

uly=0 = R(z), —00 < x < 00,

where the rational function R(z) is real, has no poles on the real axis, and R(z) — 0
when z — co. By (1.56), the solution of this problem is the function

w(z) = Re | /°° R(t)dt

m ) o T—2
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This integral can be calculated by using Cauchy’s residue theorem:

u(z) = —2Re Y res {f“)h_q, (1.57)

-z
Im (5, <0
where the residues are taken for all poles of the function R(z) in the lower half-
plane Im z < 0.
Example 3. Solve the Dirichlet problem
Au =0, —xo<xr<oo, y>0,

k

122 k =const, —oo <z < o0.
x

U|y:0 =

Solution. Using formula (1.57), we have

k
(1+¢)(C=2)

k _ ky+1)

u(z) = —2Reres |: 2i(z + 1) T2 4 (y+1)2 .

] = —2Re
C=—i

1.17. Other methods

In this section we will consider methods for solving boundary value problems for
the biharmonic equation and the equations A%y = f, as well as boundary value
problemd for the Laplace and Poisson equations (without employing the Green
function).

Biharmonic equation.

Example 1. Solve the following boundary value problem in the disc {(p,¢) : 0 <
p<a0<ep<2r}

A%y =0 in the disc,
ou

P = Acosgp on the boundary of the disc.
n

p=a

Ulp=q =0,

Here 7i is the unit outward normal to the boundary of the disc.

Solution. What we have is the Dirichlet problem for the biharmonic equation. It
is known that it has a unique solution, given by the formula

_ 1 2 2\2 /27T —gda
ulp,p) = 27a ("= a”) [2 0 pP?P+a?—2apcos(p — ) -
27
fla— peos(p — )] da
1.
) et o o)

(here f = u|y=q and g = Ou/0n|p=q.)
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In our case f =0, g = Acosp, and so the solution is

I PR 1 /2” Acos ada B
ulpy ) = 2ma (p” = a”) 2) Jo p*+a%—2apcos(p—a)

A(pP—ad?)? /27T cos ado
N 4ra o p?+a?—2apcos(p — )

3

or

A

1 [ a® — p?) cos o dox
u(p ) = =, (a* = p%)- /oﬂ( )

27 2+ a2 —2apcos(p —a)
To compute the last integral we remark that it yields a solution of the fol-
lowing Dirichlet problem for the Laplace equation in the disc:
{ Av=20 in the disc,

V]| p=a = COS on the boundary of the disc.

But the solution of this problem is clearly v = ? cos ¢. Then, by the uniqueness of
the solution of the Dirichlet problem for the Laplace equation, we have the identity

1 /27T (a? — p?) cosada _p cos
21 Jo  p?+a?—2apcos(p—a) a ’

Therefore, the solution of our problem is

Ap(p* — a?)
ulpsp) =", 0 T cosy.

Example 2. Solve the following boundary value problem in the disc {(p,¢) : 0 <
p<a,0<p<2r}:

A%y =1 in the disc,
ou

=0 on the boundary of the disc.
on

p=a

Ul p=q =0,

Solution. One can consider that the solution of the problem depends only on the
variable p, i.e., u = u(p). Next, let us remark that

Ao (O 200 LN L 1ou
- \opt  p o> p? Op? p* Op’

and so we obtain a boundary value problem for an ordinary differential equation:

Ou  20% 1 0*u 1 Oou

- =1, 0<p<a, 1.61
ot " popt 2 0p T P ap ree (o0
du
Ulp=a =0, =0. (1.62)
= dp|,_,
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Equation (1.61) can be rewritten in the form
pSU//// + 2p2u/// _ ,ou” + o = pS‘

Let us denote v = ZZ‘ Then we obtain a third-order equation for the function
v =u(p):
p3v/// + 2p21}” _ p?)/ - /)3,
which is recongnized to be the well-known Euler equation. Its general solution is
given by the function

1
v(p) = Cip~' + Coplup+ Ap+ = p°.

16
We must take C7 = 0 and Cy = 0, because otherwise the function v'(p) would
become infinite at the center of the disc (i.e., when p — 0). Therefore, v’ =
Ap + 116p3, and so
Ap? 1 4
B.

2 Tea” T
The constants A and B are found from the boundary conditions (1.62). We con-
clude that the solution is

u(p) =

ulp) = o, (@ = )

or
4

2
. _a (P 2
ip) = 64 {1 (a) }
Example 3. Solve the following boundary value problem in the half-plane {(x,y) :
—00 < x <00,y > 0}:

A’u=e Wsinx in the half-plane, (1.63)
0
uly=0 =0, aZ =0 on the boundary of the half-plane. (1.64)
y=0

Let us rewrite the equation(1.63) in the form

ot ot ot

2
P +2 0220y + ot e “Ysinx. (1.65)

We shall seek for u(z,y) in the form u(x,y) = f(y) sinz, where the function
f(y) is subject to determination. Substituting this expression in equation (1.65)
we obtain

fy)sinz + 2f" (y)(—sinz) + fOV(y)sinz = e~ sinx,
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whence

FO) —2f" + f=e?. (1.66)
The general solution of equation (1.66) has the form
1
f(y) = Cre? + Caye’ + Cae™ + Caye™ + ¢ e~

The constants Cy and Cs are equal to zero: otherwise, f(y) — oo as y — oo.
Hence,

1
fly) = Cse™ + Caye™ + e,

The constants C3 and Cy are found from the boundary conditions (1.64), which
translate into f(0) =0 and f/(0) = 0. We have

1 1 1
fly)=—ge ™+ gy’ + e
Thus, the solution of our problem is
1, 5 _ s
u(x,y)zg(e Y—e Y4 ye Y)sina.

The Laplace and Poisson equations.

Example 4. Solve the following boundary value problem in the half-space {(z,y, 2) :
—00 < x,y < o0,z > 0}:

{ Au = ze *sinxsiny in the half-space,

U|z=0 = 0.
Solution. We will seek the function u = u(x,y, z) in the form
u= f(z)sinxsiny,
where the function f(z) needs to be determined. Then we get

0? 0? 0?
Au = (%‘Z + (?yz + 3;; = —fsinzsiny — fsinzsiny + f’ sinxsiny,

and so our equation becomes
—2fsinzsiny + f’sinxsiny = ze *sin xsin .
Hence, to find f(z) we must solve the ordinary differential equation

[’ =2f =ze %
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Its general solution is
fz)= CreV?* + Che V27 ¢ e *(2—2).
The constants C7 and Cs are found from the boundary conditions. First
notice that C; = 0, because otherwise f(z) — oo when z — oo. Therefore,
F(z) = Coe™ V2 4 e77(2— 2).

Putting here z = 0 we find f(0) = C3 + 2, and since f(0) = 0, it follows that
Co = 2.
Therefore, the solution of our problem is

u(z,y,z) =[e*(2—2) — 267\/2Z] sin z sin .

Example 3. Solve the boundary problem in the half-space {(z,y,2) : —c0 < z,y <
00,z > 0}
Au=0 in the half-space,
| 22 Fy? -2
U]y = .
=0T (14 22 4 y2)5/2
Solution. Notice that the function
1

a Va2 + 2+ (2 4 1)2

satisfies the Laplace equation in the whole half-space z > 0 (is a fundamental
solution), i.e.,

u(z,y, z)

1
=0
V2 +y? + (2 4+ 1)2
Now let us differentiate both sides of this equality with respect to z. We get
A z+1
(02 + 52 + (= + 122
Differentiating one more time with respect to z we have
2?2+ y% —2(z +1)2
(02 + 92 + (s + 122
This suggests to consider the function
2?2+ —2(z + 1)?
22 + 92 + (2 + 1)2]5/2°
This function is harmonic in the whole half-space z > 0 (since Au = 0, as we just
showed), and for z = 0 we have

=0.
=0.

u(x7 Y, Z) = [

22 +y? -2
(1 + z2 +y2)5/2’

which proves that u(z,y, z) is the sought solution.

u|z=0 =
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1.18. Problems for independent study

10.

11.

. Find the distribution of the potential of an infinitely long (—oo < z < 00)

long cylindrical capacitor if its interior plate p = a [resp., exterior plate p = b]
is charged at the potential u; [resp., uz].

Find the distribution of the potential inside a spherical capacitor if the sphere
p = a [resp., p = b] is maintained at the potential u; [resp., us].

One side of a right-angle parallelepiped is subject to a potential V', while the
remaining sides are grounded. Find the distribution of the potential inside
the parallelepiped.

An infinite (—oo < z < 00) conducting cylinder is charged at the potential

Vo 1, f0<p<m,
o, ifr<e<2m

Find the distribution of the potential inside the cylindrical cavity.

Find the temperature distribution in an infinitely long (—co < z < o)
circular cylinder if the a heat flux @) = gcos ¢ per unit of length is given on
its surface.

A constant current J passes through an infinite (—co < z < 00) coaxial
cyclindrical cable (a < p < b). Find the temperature distribution inside the
cable if its inner surface p = a is kept at temperature zero and the outer
surface is thermally insulated.

Find the distribution of the potential in a thin plate shaped as a half-disc
when the diameter of the half-disc is charged at potential Vi, while the re-
maining part of the boundary is charged at potential V5.

Find the temperature distribution inside a thin rectangular plate if a constant
heat flux @ is introduced through one of its sides, whereas the other three
sides are kept at temperature zero.

Find the temperature distribution inside an infinite (—oo < z < 00) circular
cylinder if its surface is mantained at the temperature A cos ¢+ B sin ¢, where
A and B are constants.

Find the distribution of the potential inside an empty cylinder of radius R
and height h whose two bases are grounded, whereas the lateral surface has
the potential V.

Determine the steady temperature distribution inside a circular cylinder of
finite length is a constant heat flux ¢ is introduced through the lower base
z = 0, whereas the lateral surface p = a and the upper base are maintained
at temperature zero.
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12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.
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Find the steady temperature distribution inside a homogeneous and isotropic
ball if its surface is maintained at the temperature Asin® 6 (A = const).

Find the distribution of the potential in a spherical capacitor 1 < r < 2 if the
inner and outer plates have the potential V; = cos?# and Vs = é(COSQ 0+1),
respectively.

Find the temperature distribution inside a spherical layer 1 < r < 2 if the
inner sphere is maintained at the temperature 77 = sin # sin ¢, whereas the
outer sphere is maintained at the temperature of melting ice.

Solve the Dirichlet problem for the Poisson equation Au = e¥sinz in the
square 0 < x <, 0 <y < 7, with null boundary condition.

Solve the Dirichlet problem for the Poisson equation Au = x* — y* in the
disc of radius one, with null boundary condition.

Solve the Dirichlet problem for the Poisson equation Au = z in the ball of
radius one, with null boundary condition.

Solve the Dirichlet problem for the Poisson equation Au = Jy (’E p) in a
cylinder of radius R and height h, with null boundary conditions.

Find the eigenoscillations of a rectangular membrane when two opposite edges
are clamped and the other two are free.

Find the eigenoscillations of a circular cylinder under null boundary condi-
tions of the first kind.

Find the steady concentration distribution of an unstable gas inside a sphere
of radius «a if a constant concentration ug is maintained at the surface of the
sphere.

Solve the Dirichlet problem for the equation Au + k*>u = 0 in the interior
and in the exterior of the sphere p = R under the condition u|,—r = A
(A =const).

Solve the Neumann problem for the equation Au — k?u = 0 in the interior
and in the exterior of the sphere p = R under the condition du/dn|,—r = A
(A =const).

Find the steady distribution of potential in the first quadrant = > 0, y > 0 if
the half-line y = 0 is grounded while the half-line = 0 is maintained at the
potential V.

Find the steady temperature distribution in the strip 0 < y < 7 if the
temperature on the lower boundary y = 0 equals Acosax while the upper
boundary is kept at the temperature of melting ice (A = const).

Find the steady distribution of potential in the strip 0 < y < w, x > 0 if
the horizontal sides of the strip are grounded and the vertical side has the
potential V.



27.

28.

29.

30.

31.

32.

33.

34.

35.

36.
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Find the distribution of potential in an infinitely long eccentric cylindrical
capacitor if the inner plate |z + 1| = 9 has the potential 1 while the outer
plate |z + 6] = 16 is grounded.

Find the solution of the Dirichlet problem Au = 0 in the domain Imz < 0,
|z + 5i] > 3 if
Ultm z=0 = 0, ul|z45i=3 = 1.

Find the temperature distribution in the lower half-plane y < 0 if its bound-
ary y = 0 is maintained at the temperature Asinz (A = const).

Find the temperature distribution in the upper half-plane y > 0 if its bound-
ary y = 0 is maintained at the temperature 6(—x), where 0(z) is Heaviside
function.

Find the distribution of potential in the upper half-space z > 0 if its boundary
z = 0 has the potential (1 + 22 + y?)~%/2.
Solve the Dirichlet problem for the Poisson equation Au = —e™*sinz cosy

in the half-space z > 0 with null boundary condition.

Find the steady temperature distribution in the exterior of a bounded circular
cylinder (p > 1, —o0 < z < 00) if the lateral surface (p = 1) is maintained at
the temperature u|,—1 = A cos(2¢) + B cos(5¢) + C cos(10p), where A, B,C
are constants.

Solve the Dirichlet problem
Ay =0, O<p<l, 0<p<2m,
sin ¢

Ulp=1 = 5+ 4cos

Solve the following Neumann problem for the Laplace equation in the spher-
ical layer 1 < p < 2:

Au=0 inside the layer,

ou

= Py(cos ),
on p
ou

= P;(cos?).
on|,_,

Solve the following boundary value problem in the disc {0 < p < a,0 < p <
21}
A%y = 2% + 42 in the disc,
ou

on =0.

ulp=a =0,

p=a
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37. Solve the following boundary value problem in the disc {0 < p < a,0 < ¢ <
21}
A%y =0 in the disc,
0
Ulp—a =1, OZ = sin® .
p=a
38. Solve the following boundary value problem in the ball {0 < p < a}:
A%y = 2% + % + 22 inside the ball,
ou
Ulp=a =0, =0.
on p—a
39. Solve the following boundary value problem in the half-space:
A%y = e #sinzcosy —oco<z,y<oo, z>0,
ou
u‘z:O - O, =0.
0z|,_,
40. Solve the following boundary value problem in the lower half-plane (y < 0):
Au=0 —oco<r<oo, y<o,
| 2z
Uly=0 = .
U=0T (1 4 22)2
1.19. Answers
Inb/p
1. = — .
w =zt (0 u2>lnb/a,
1/r—1/b
2. u= — .
u=ug + (u u2)1/a71/b
3. u= ;;Anm sin (W;W sc) sin (nb7r y) sinh <7T\/Z2 + TZZ z), where
16V
, if n and m are odd,
Apm = { m2nmsinh (7‘(’ Zi + T; C>

0, if n or m is even,

and a, b, c are the sides of the parallelepiped.



10.

11.

12.

13.

14.

15.

16.

1.19. ANSWERS 7

1 1 2 i
u= _ 4+ arctan ap s1n<p7 where a is the radius of the cylinder.
2 a? — p?
u = fZ pcos p + ¢, where k is the heat conduction coefficient of the cylinder.
b2
u= —q(p2 —a?) - a lnp, where ¢ = —qo/k, qo = 0.24J%R, R is the re-
a

sistance per unit of length of the conductor, and k is the heat conduction
coefficient.

apsin

2

2
u=V,+ (Vo —Vp)arctan -
0 p%—a

dga & sin [(zmzl)ﬂx} sinh{@mil)ﬂy}

km? e= (2m+1)2 o [(2m:1)wb} '

0

u= A" cos v+ B” sin o, where a is the radius of the cylinder.
a a

& sin |:(2n-}',;1)7rzi| T ((Zn-}l;l)ﬂ'p)

U= . )
™ o 2n+1 IO ((2%-}‘;—1)77 R)
0 sinh} Hom (1 — z)} . ,

u = Z A -JO( N p), where A,, = kuEnJi%um)’ k is the

m=0 cosh {“l’" z}
heat conduction coefficient, and p,, is the mth positive root of the equation

Jg(.%') =0.

2 2\ 2 291
u=_A—A (7" > ~3COS o , where a is the radius of the ball.
3 a 3
1 +3cos2971
U= .
3r 3r3
U= . T 2 sin @ sin .
1 (ye? sinh ™ sinhy) si
U= eYsinhm — me™ sin sinz.
2sinh 7 y y

_ 1 a4 :
u= gy P (p7 = 1)cos(2p).
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L o3
17. u= _ _(r° —r)cosé.
10
R2 R2 sin (‘“ z)
18. u:{ 9 {cosh(ulz)—l} + ., {1—cosh<mh)} r }JO ('ulp).
251 R 5] R sin (‘E h) R
m?  n?
19. )xm,n=7r2 ( 5 T b2>,m: 1,2...,n=1,2,..., where a and b are the side
a
lengths of the membrane; u,, , = sin ( Wa:) cos (mr y) .
a a
2
ke \> () n
20. Ak = < ;) + (M ,n=0,1,....,mk= 1,2,...7Whereu£n) is the
a
mth positive root of the equation J,(x) = 0, h is the height of the cylinder,
and a is its radius;
k () cos(n
Vpom.k = Sin 7Tz Jn H p . (<P)
o h a sin(ny)
inh(k
21. u= uoa . s¥n ( p)’ where k is taken from the equation Au — k?u = 0.
sinh(ka)
AR sin(kp) . AR ekr
22. u = : fp<R,and u= - fp>R.
U ) sin(kR)lp_ , and u ) pikr £P 2
AR? sinh(kp) aR?  eFi=p)
23. u= if p<R,and u=— . if p > R.
U7 plkRcosh(kR) — sinh(kR)] = =10 MY p 1+kR "
2V
24. u = arctan 4
™ x
A .
25. u = sinh cos z sinh(m — y).
2 sinh z si
26. u = Varctan( . 51211 x51.ng2J >
us sinh® z — sin“ y
1 z—2
27. u = In2+1 .
“ = In(2/3) (n i z—26’>
1 z+ 41
28. u = .
b In3 " z— 4
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29. u = AeYsinzx.
1 1
30. u= _— arctan
2 7
z+1
31. u = .
u [22 + (2 + 1)2 + y2]3/2
32. u= (e V% — ¢ *)sinzcosy.
A B C
33. u= ,cos(2p) + _ cos(5p)+ | cos(10¢).
P P P
psinp
34. u= .
“ p2+4pcosp+4
1 [(p* 32 3
35. u= a1 <p 2 ) P5(cosb) +y <4p + p4> Ps(cosb) + C,

36.

37.

38.

39.

40.

where C' is an arbitrary constant.

6

U= g {(2)6 _3<2>2+2]'

u=1- a22—ap2 B (Z) sin ¢ — i (Z)Bsin(?)go)}
6

"= g {(2)6 -3 (2)2 +2]'

u = [Ae\/2+‘/2z +(1- A)e*‘/zf‘/zz - ez} sin x cos y, where

1 1
a

2¢(1 —y)
[22 + (1 —y)?*

u =
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