
Chapter 1
Elliptic problems

An effective method for solving boundary value problems for the Laplace and
Helmoltz equations (in domains possessing a definite symmetry) is the method of
separation of variables. The general idea of this method is to find a set of solutions
of the homogeneous partial differential equation in question that satisfy certain
boundary conditions. These solutions then serve as “atoms”, from which, based
on the linear superposition principle, one constructs the “general” solution. Since
each of these “atoms” is a solution of the corresponding homogeneous equation,
their linear combination is also a solution of the same equation. The solution of our
problem is given by a series

∑∞
n=1 cnun(x) (where un(x) are the atom solutions,

x = (x1, . . . , xN ) is the current point of the domain of space under consideration,
and cn are arbitrary constants). It remains to find constants cn such that the
boundary conditions are satisfied.

1.1. The Dirichlet problem for the Laplace equation in an annulus

Suppose that we are required to solve the Dirichlet problem for the Laplace equa-
tion Δu = 0 in the domain bounded by two concentric circles L1 and L2 centered
at the origin, of radii R1 and R2:{

uxx + uyy = 0, R2
1 < x2 + y2 < R2

2,

u|L1 = f1, u|L2 = f2.

Introducing polar coordinates (ρ, ϕ), this Dirichlet problem can be recast as⎧⎪⎪⎨⎪⎪⎩
ρ2uρρ + ρuρ + uϕϕ = 0, R1 < ρ < R2, 0 ≤ ϕ < 2π,

u(R1, ϕ) = f1(ϕ),

u(R2, ϕ) = f2(ϕ),
0 ≤ ϕ < 2π.

(1.1)

The boundary functions f1(ϕ) and f2(ϕ) will be assumed to be 2π-periodic.
To solve the problem we will apply Fourier’s method. Namely, we will seek the

solution in the form u(ρ, ϕ) = R(ρ)Φ(ϕ). Substituting this expression in equation
(1.1), we obtain

Φρ2R′′ + ΦρR′ + RΦ′′ = 0.

Next, dividing both sides of this equation by RΦ we get

ρ2R′′ + ρR′

R
= −Φ′′

Φ
. (1.2)
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8 CHAPTER 1. ELLIPTIC PROBLEMS

One says that in equation (1.2) the variables are separated, since the left-
[resp., right-] hand side of the equation depends only on ρ [resp., ϕ]. Since the
variables ρ and ϕ do not depend of one another, each of the two sides of equation
(1.2) must be a constant. Let us denote this constant by λ. Then

ρ2R′′ + ρR′

R
= −Φ′′

Φ
= λ. (1.3)

It is clear that when the angle ϕ varies by 2π the single-valued function u(ρ, ϕ) must
return to the initial value, i.e., u(ρ, ϕ) = u(ρ, ϕ + 2π). Consequently, R(ρ)Φ(ϕ) =
R(ρ)Φ(ϕ + 2π), whence Φ(ϕ) = Φ(ϕ + 2π), i.e., the function Φ(ϕ) is 2π-periodic.
From the equation Φ′′ + λΦ = 0 it follows that Φ(ϕ) = A cos(

√
λϕ) + B sin(

√
λϕ)

(with A and B arbitrary constants), and in view of the periodicity of Φ(ϕ) we
necessarily have λ = n2, where n ≥ 0 is an integer.

Indeed, the equality

A cos(
√

λϕ) + B sin(
√

λϕ) = A cos[
√

λ(ϕ + 2π)] + B sin[
√

λ(ϕ + 2π)]

implies that
sin(α +

√
λϕ) = sin(α +

√
λϕ + 2π

√
λ),

where we denote

sinα =
A√

A2 + B2
, cosα =

B√
A2 + B2

.

Therefore, sin(π
√

λ) cos(α +
√

λϕ + π
√

λ) = 0, i.e., π
√

λ = πn, or λ = n2,
where n ≥ 0 is an integer. Now equation (1.3) yields

ρ2R′′ + ρR′ − n2R = 0. (1.4)

If n �= 0, then we seek the solution of this equation in the form R(ρ) = ρμ.
Substituting this expression in equation (1.4) and simplifying by ρμ, we get

μ2 = n2, or μ = ±n (n > 0).

For n = 0 equation (1.4) has two solutions: 1 and ln ρ. Thus, we now have an
infinite set of functions (“atom” solutions)

1, ln ρ, ρn cos(nϕ), ρn sin(nϕ),

ρ−n cos(nϕ), ρ−n sin(nϕ), n = 1, 2 . . . ,

which satisfy the given partial differential equation. Since a sum of such solutions
is also a solution, we conclude that in our case the “general” solution of the Laplace
equation has the form

u(ρ, ϕ) = a0 + b0 ln ρ+

+
∞∑

n=1

[(
anρn + bnρ−n

)
cos(nϕ) +

(
cnρn + dnρ−n

)
sin(nϕ)

]
.

(1.5)
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It remains only to find all the coefficients in the sum (1.5) so that the bound-
ary conditions u(R,ϕ) = f1(ϕ), u(R2, ϕ) = f2(ϕ) will be satisfied. Setting ρ = R1

and then ρ = R2 in (1.5) we obtain

u(R1, ϕ) =
∞∑

n=1

[(
anRn

1 + bnR−n
1

)
cos(nϕ)+

+
(
cnRn

1 + dnR−n
1

)
sin(nϕ)

]
+ a0 + b0 lnR1,

u(R2, ϕ) =
∞∑

n=1

[(
anRn

2 + bnR−n
2

)
cos(nϕ)+

+
(
cnRn

2 + dnR−n
2

)
sin(nϕ)

]
+ a0 + b0 lnR2.

Recalling the expressions for the Fourier coefficients of a trigonometric series,
we arrive at the following systems of equations:⎧⎪⎪⎪⎨⎪⎪⎪⎩

a0 + b0 lnR1 =
1
2π

∫ 2π

0

f1(s) ds,

a0 + b0 lnR2 =
1
2π

∫ 2π

0

f2(s) ds,

(1.61)

(to be solved for a0 and b0);⎧⎪⎪⎪⎨⎪⎪⎪⎩
anRn

1 + bnR−n
1 =

1
π

∫ 2π

0

f1(s) cos(ns) ds,

anRn
2 + bnR−n

2 =
1
π

∫ 2π

0

f2(s) cos(ns) ds,

(1.62)

(to be solved for an and bn); and

⎧⎪⎪⎪⎨⎪⎪⎪⎩
cnRn

1 + dnR−n
1 =

1
π

∫ 2π

0

f1(s) sin(ns) ds,

cnRn
2 + bdnR−n

2 =
1
π

∫ 2π

0

f2(s) sin(ns) ds,

(1.63)

(to be solved for cn and dn).
Thus, from these systems one can find all the unknown coefficients a0, b0, an,

bn, cn, dn. Now the problem (1.1) is completely solved. The solution is given by
the expression (1.5), in which the coefficients are obtained from the systems (1.6).
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1.2. Examples of Dirichlet problem in an annulus
Example 1. Let us assume that the potential is equal to zero on the inner circle,
and is equal to cosϕ on the outer circle. Find the potential in the annulus.

We have to solve the problem{Δu = 0, 1 < ρ < 2, 0 ≤ ϕ < 2π,

u(1, ϕ) = 0, u(2, ϕ) = cos ϕ, 0 ≤ ϕ ≤ 2π,

in order to find determine the potential u(ρ, ϕ) in the annulus.
Generally speaking, to solve this problem we have to calculate all the integrals

in the formulas (1.6), and then solve the corresponding systems of equations to find
the coefficients a0, b0, an, bn, cn, dn. However, in the present case it is simpler to
try to choose particular solutions such that a linear combination of them will satisfy
the boundary conditions. Here such a role is played by the linear combination
u(ρ, ϕ) = a1ρ cos ϕ + b1ρ

−1 cos ϕ. The boundary conditions yield the system of
equations ⎧⎨⎩

a1 + b1 = 0,

2a1 +
b1

2
= 1,

from which we find a1 = 2/3, b1 = −2/3. Therefore, the solution is

u(ρ, θ) =
2
3
(
ρ − ρ−1

)
cos ϕ.

Example 2. Let us consider the following problem with constant potentials on the
boundaries of the annulus:{Δu = 0, 1 < ρ < 2, 0 ≤ ϕ < 2π,

u(1, ϕ) = 2, u(2, ϕ) = 1, 0 ≤ ϕ < 2π.

In this case we will seek the solution as a function that does not depend on ϕ,
i.e., u(ρ) = a0 + b0 ln ρ. Substituting this expression in the boundary conditions
we obtain the system of equations{

a0 + b0 ln 1 = 2,
a0 + b0 ln 2 = 1,

which yields a0 = 2, b0 = −log2 e. Therefore, the sought solution is the function

u(ρ) = 2 − ln ρ

ln 2
.

Example 3. Let us solve the following Dirichlet problem{Δu = 0, 1 < ρ < 2, 0 ≤ ϕ < 2π,

u(1, ϕ) = cos ϕ, u(2, ϕ) = sinϕ, 0 ≤ ϕ ≤ 2π.
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One can verify that here all the coefficients a0, b0, an, bn, cn, dn with n > 1
are equal to zero, while the coefficients a1, b1, c1, d1 are determined from the
systems of equations ⎧⎨⎩

a1 + b1 = 1,

2a1 +
b1

2
= 0,

⎧⎨⎩
c1 + d1 = 0,

2c1 +
d1

2
= 1.

Solving these systems we obtain

a1 = −1
3
, b1 =

4
3
, c1 =

2
3
, d1 = −2

3
.

Thus, the solution of our problem is the function

u(ρ, ϕ) =
(
−1

3
ρ +

4
3ρ

)
cos ϕ +

2
3

(
ρ − 1

ρ

)
sinϕ.

Since the Dirichlet problem for the Laplace equation in a bounded domain
has a unique solution, in examples 1–3 there are no other solutions besides the
ones found.

1.3. The interior and exterior Dirichlet problems
Let us consider the two very important cases in which the annulus becomes a disc
or the exterior of a disc. The interior Dirichlet problem (R1 = 0, R2 = R){

ρ2uρρ + ρuρ + uϕϕ = 0, 0 ≤ ρ < R, 0 ≤ ϕ < 2π,

u(R,ϕ) = f(ϕ), 0 ≤ ϕ ≤ 2π,

is solved in exactly the same manner as the Dirichlet problem for the annulus,
with the only difference that now we must discard the solution “atoms” that are
not bounded when ρ approaches 0:

ln ρ, ρ−n cos(nϕ), ρ−n sin(nϕ), n = 1, 2, . . .

Hence, the solution is given by the remaining terms, i.e.,

u(ρ, ϕ) =
∞∑

n=0

( ρ

R

)n

[an cos(nϕ) + bn sin(nϕ)] ,

where the coefficients an and bn are calculated by means of the formulas

a0 =
1
2π

∫ 2π

0

f(ϕ) dϕ,

an =
1
π

∫ 2π

0

f(ϕ) cos(nϕ) dϕ, n > 0,

bn =
1
π

∫ 2π

0

f(ϕ) sin(nϕ) dϕ, n > 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
(1.7)
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In other words, we simply expand the function f(ϕ) in a Fourier series

f(ϕ) =
∞∑

n=0

[an cos(nϕ) + bn sin(nϕ)] ,

and then multiply each term of the series by the factor
(

ρ
R

)n. For example, the
interior problem {

Δu = 0, 0 ≤ ρ < 1, 0 ≤ ϕ < 2π,

u(1, ϕ) = cos2 ϕ, 0 ≤ ϕ < 2π,

has the solution
u(ρ, ϕ) =

1
2

+
1
2

ρ2 cos(2ϕ).

The exterior Dirichlet problem (R1 = R, R2 = ∞){
ρ2uρρ + ρuρ + uϕϕ = 0, R ≤ ρ < ∞, 0 ≤ ϕ < 2π,

u(R,ϕ) = f(ϕ), 0 ≤ ϕ ≤ 2π,

is solved in much the same way as the preceding problem, with the difference than
now we discard the solution “atoms” that are not bounded when ρ goes to infinity:

ln ρ, ρn cos(nϕ), ρn sin(nϕ), n = 1, 2, . . .

Accordingly, the solution is taken in the form

u(ρ, ϕ) =
∞∑

n=0

( ρ

R

)−n

[an cos(nϕ) + bn sin(nϕ)] ,

where the coefficients an and bn are calculated by means of formulas (1.7). For
example, the exterior problem{

Δu = 0, 1 ≤ ρ < ∞, 0 ≤ ϕ < 2π,

u(1, ϕ) = sin3 ϕ, 0 ≤ ϕ ≤ 2π

has the solution
u(ρ, ϕ) =

3
4
· 1
ρ

sinϕ − 1
4
· 1
ρ3

sin 3ϕ.

Let us note that the Dirichlet problem for the Laplace equations in an un-
bounded two-dimensional domain has only one bounded solution.

We conclude this section by examining another example, one exercise (the
Poisson integral), and a problem connected with the Poisson integral.
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Example [1]. Find the steady temperature distribution in a homogeneous sector
0 ≤ ρ ≤ a, 0 ≤ ϕ ≤ α, which satisfies the boundary conditions u(ρ, 0) = u(ρ, α) =
0, u(a, ϕ) = Aϕ, where A is a constant (see Figure 1.1).

a x

y

u(
ρ,

α
) =

0
α

u(ρ, 0) = 00

Δu = 0

u(a, ϕ) =
A
ϕ

Figure 1.1.

Solution. Finding the steady temperature distribution reduces to solving the Di-
richlet problem⎧⎪⎨⎪⎩

ρ2uρρ + ρuρ + uϕϕ = 0, 0 ≤ ρ < a, 0 < ϕ < α < 2π,

u(ρ, 0) = u(ρ, α) = 0, 0 ≤ ρ ≤ a,

u(a, ϕ) = Aϕ, 0 ≤ ϕ ≤ α.

Setting u(ρ, ϕ) = R(ρ)Φ(ϕ) and separating variables, we obtain two ordinary
differential equations:

ρ2R′′ + ρR′ − λR = 0,

Φ′′ + λΦ = 0.
(1.8)

The conditions 0 = u(ρ, 0) = R(ρ)Φ(0) and 0 = u(ρ, α) = R(ρ)Φ(α) yield Φ(0) =
Φ(α) = 0. The separation constant λ is determined by solving the Sturm-Liouville{

Φ′′ + λΦ = 0, 0 < ϕ < α,

Φ(0) = Φ(α) = 0.

We get λn =
(

nπ
α

)2 and

μ(μ − 1) + μ −
(nπ

α

)2

= 0,

whence
μ = ± nπ

α
.
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Using the fact that the function R(ρ) is bounded (according to the meaning
of the problem at hand), we write Rn(ρ) = ρnπ/α. The atoms from which our
solution is built are the functions

un(ρ, ϕ) = ρnπ/α sin
(nπ

α
ϕ
)

, n = 1, 2, . . .

Thus, the solution itself is

u(ρ, ϕ) =
∞∑

n=1

cnρnπ/α sin
(nπ

α
ϕ
)

.

The constants cn (n = 1, 2, . . . ) are found from the condition u(a, ϕ) = Aϕ. Since

u(a, ϕ) =
∞∑

n=1

cnanπ/α sin
(nπ

α
ϕ
)

.

it follows that
cnanπ/α =

2
α

∫ α

0

Aϕ sin
(nπ

α
ϕ
)

dϕ,

and so
cn =

2A
αanπ/α

∫ α

0

ϕ sin
(nπ

α
ϕ
)

dϕ = (−1)n+1 2αA

nπ
.

Finally, the solution of our problem is written in the form

u(ρ, ϕ) =
2αA

π

∞∑
n=1

(−1)n+1
( ρ

α

)nπ/α sin
(nπ

α

)
ϕ

n
.

Notice that the solution has a singularity in the boundary point ρ = a, ϕ = α
because of the incompatibility of the boundary values.

1.4. The Poisson integral for the disc. Complex form.
Solution of the Dirichlet problem when the
boundary condition is a rational function R(sin ϕ, cos ϕ)

Recall that the solution of the interior and exterior Dirichlet problem is can be
presented in integral form (the Poisson integral):

u(ρ, ϕ) =
1
2π

∫ 2π

0

R2 − ρ2

R2 − 2ρR cos(ϕ − α) + ρ2 f(α) dα, ρ < R,

u(ρ, ϕ) =
1
2π

∫ 2π

0

ρ2 − R2

R2 − 2ρR cos(ϕ − α) + ρ2 f(α) dα, ρ > R.

Let us show that these formulas are a consequence of the general superposition
method.
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For the sake of definiteness we shall consider the interior problem, and then
write the result for the exterior problem by analogy.

Substituting the expression for the Fourier coefficients in the formula

u(ρ, ϕ) =
∞∑

n=0

( ρ

R

)n

[an cos(nϕ) + bn sin(nϕ)] ,

we obtain

u(ρ, ϕ) =
1
π

∫ 2π

0

f(α)

[
1
2

+
∞∑

n=0

( ρ

R

)n

(cos(nϕ) cos(nα) + sin(nϕ) sin(nα))

]
=

=
1
π

∫ 2π

0

f(α)

[
1
2

+
∞∑

n=0

( ρ

R

)n

cos(n(ϕ − α))

]
dα.

Further, using the relation cos(n(ϕ−α)) = 1
2

(
ein(ϕ−α) + e−in(ϕ−α)

)
, the fact that

q = ρ/R < 1 and the formula for the sum of an infinite decreasing geometric
progresion, we get

1
2

+
∞∑

n=1

qn cos(n(ϕ − α)) =
1
2

+
1
2

∞∑
n=1

qn
[
ein(ϕ−α) + e−in(ϕ−α)

]
=

=
1
2

[
1 +

∞∑
n=1

[(
qein(ϕ−α)

)n

+
(
qe−in(ϕ−α)

)n]]
=

=
1
2

[
1 +

qein(ϕ−α)

1 − qein(ϕ−α)
+

qe−in(ϕ−α)

1 − qe−in(ϕ−α)

]
=

=
1
2
· 1 − q2

1 − 2q cos(ϕ − α) + q2
=

1
2
· R2 − ρ2

R2 − 2Rρ cos(ϕ − α) + ρ2
.

Therefore,

u(ρ, ϕ) =
1
2π

∫ 2π

0

R2 − ρ2

R2 − 2Rρ cos(ϕ − α) + ρ2
f(α) dα, ρ < R.

Let us recast the Poisson formula in a different form (complex notation).
Note that

R2 − ρ2

R2 − 2Rρ cos(ϕ − α) + ρ2
=

R2 − |z|2
|Reiα − z|2 = Re

Reiα + z

Reiα − z
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because

Re
Reiα + z

Reiα − z
= Re

(
Reiα + ρeiϕ

)
(Reiα − ρeiϕ)

(Reiα − ρeiϕ) (Reiα − ρeiϕ)

= Re
R2 − |z|2 + ρR

[
ei(ϕ−α) − ei(ϕ−α)

]
|Reiα − z|2 =

R2 − |z|2
|Reiα − z|2 .

It follows that the Poisson integral can be written in the form

u(z) = Re
1
2π

∫ 2π

0

Reiα + z

Reiα − z
f(α) dα.

If in this integral we set ζ = Reiα and, accordingly, dα = dζ/iζ, we finally obtain

u(z) = Re
1

2πi

∫ 2π

0

ζ + z

ζ − z
f(ζ)

dζ

ζ
, |z| < R. (1.9)

If the boundary function f(ζ) is a rational function of sinϕ and cos ϕ, then the
integral in formula (1.9) can be calculated by means of residues.

Example. Solve the Dirichlet problem⎧⎨⎩
Δu = 0, |z| < 2,

u||z|=2 =
2 sinϕ

5 + 3 cos ϕ
.

Solution. We shall use formula (1.9). Let ζ = 2eiα; then

sinα =
1
2i

(
ζ

2
− 2

ζ

)
cosα =

1
2

(
ζ

2
+

2
ζ

)
and the boundary function becomes

u(ζ) =
2 sin α

5 + 3 cos α
=

2 · 1
2i

· ζ2 − 4
2ζ

5 +
3
2

(
ζ

2
+

2
ζ

) =

=
2
i
· ζ2 − 4
3ζ2 + 20ζ + 12

=
2
i
· ζ2 − 4

3(ζ + 6)
(

ζ +
2
3

) .

Let us compute the integral

J =
1

2πi

∫
|ζ|=2

2(ζ2 − 4)(ζ + z)

i · 3(ζ + 6)(ζ +
2
3
)(ζ − z)ζ

dζ
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where the circle |ζ| = 2 is oriented counter- clockwise. In our case the integrand
F (ζ) has in the domain |ζ| > 2 only one finite singular point ζ = −6 – a pole
of order one – and the removable singular point ζ = ∞. By the Cauchy residue
theorem,

J = −res[F (ζ)]ζ=−6 − res[F (ζ)]ζ=∞.

First let us find the residue at the point ζ = −6;

res[F (ζ)]ζ=−6 =
2
3i

· 32(−16
3

) · z − 6
(z + 6) · 6 = −4

i
· z − 6
(z + 6) · 6 =

2
3i

· 6 − z

6 + z
.

Next let us expand F (ζ) in a series in the neighborhood of the point ζ = ∞:

F (ζ) =
2
3i

·

(
1 − 4

ζ2

)(
1 +

z

ζ

)
(

1 +
6
ζ

)(
1 +

2
3ζ

) · 1

1 − z

ζ

· 1
ζ

=
2
3i

· 1
ζ

+ . . . ,

whence

res[F (ζ)]ζ=∞ = − 2
3i

.

Therefore,

J =
2
3i

· z − 6
z + 6

+
2
3i

=
2
3i

· 2z
z + 6

=
4z

3i(z + 6)
=

=
4
3i

· x + iy

6 + x + iy
=

4
3i

· (x + iy)(6 + x − iy)
(6 + x)2 + y2

,

which yields

Re J =
8y

36 + 12x + x2 + y2
,

or

Re J =
8ρ sinϕ

36 + 12ρ cosϕ + ρ2
.

We conclude that the solution of our Dirichlet problem is given by the ex-
pression

u(ρ, ϕ) =
8ρ sinϕ

36 + 12ρ cosϕ + ρ2
.
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1.5. The interior and exterior Neumann problems for a disc
It is clear that in the case of a disc of radius R centered at the origin the exterior
normal derivative is ∂u/∂n|ρ=R = ∂u/∂ρ|ρ=R. Accordingly, the solution of the
interior Neumann problem is sought in the form of a series

u(ρ, ϕ) =
∞∑

n=0

( ρ

R

)n

[an cos(nϕ) + bn sin(nϕ)] .

The coefficients an and bn of this series are determined from the boundary condi-
tion ∂u/∂ρ|ρ=R = f(ϕ), i.e., we have

an =
R

nπ

∫ 2π

0

f(ϕ) cos(nϕ) dϕ,

bn =
R

nπ

∫ 2π

0

f(ϕ) sin(nϕ) dϕ,

n = 1, 2, . . . (1.10)

Similarly, the solution of the exterior Neumann problem is sought in the form
of a series

u(ρ, ϕ) =
∞∑

n=0

( ρ

R

)−n

[an cos(nϕ) + bn sin(nϕ)] .

whose coefficients an and bn, determined from the boundary condition ∂u/∂ρ|ρ=R=
f(ϕ), are calculated by means of the same formulas (1.10) (here we use the fact
that ∂u/∂n|ρ=R = −∂u/∂ρ|ρ=R).

Example. Find the steady temperature inside of an unbounded cylinder of radius
R if on the lateral surface S there is given the heat flux ∂u/∂n|S = cos3 ϕ.
Solution. We have to solve the interior Neumann problem⎧⎪⎨⎪⎩

Δu = 0, 0 < ρ < R, 0 ≤ ϕ < 2π,

∂u

∂ρ

∣∣∣∣
ρ=R

= cos3 ϕ, 0 ≤ ϕ ≤ 2π.

First of all we need to verify that the condition for the solvability of the Neumann
problem is satisfied, i.e., that

∫
C

∂u
∂n ds = 0, where C is the circle bounding our

disc.
Indeed, we have ∫

C

∂u

∂n
ds =

∫ 2π

0

cos3 ϕ · R dϕ =

=
R

2

∫ 2π

0

cosϕdϕ +
R

4

∫ 2π

0

[cos(3ϕ) + cos ϕ] dϕ = 0.
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Next, since cos3 ϕ = 3
4 cos ϕ+ 1

4 cos(3ϕ), it follows that a1 = 3
4R, a3 = 1

12R, and all
the remaining coefficients in the series giving the solution of the interior Neumann
problem are equal to zero. Hence, the solution has the form

u(ρ, ϕ) = C +
3ρ
4

cos ϕ +
ρ3

12R2
cos(3ϕ),

where C is an arbitrary constant.

Remark. The Neumann problem can also be solved for an annulus. In this case
the boundary conditions specify the exterior normal derivative:

−∂u

∂ρ
(R1, ϕ) = f1(ϕ),

∂u

∂ρ
(R2, ϕ) = f2(ϕ).

Here the solution exists only if the condition

R1

∫ 2π

0

−f1(ϕ) dϕ = R2

∫ 2π

0

f2(ϕ) dϕ

is satisfied, and is uniquely determined up to an arbitrary constant.

1.6. Boundary value problems for the Poisson equation
in a disc and in an annulus

When we solve the Dirichlet or Neumann problem (or a problem of mixed type) we
need first to find some particular solution u1 of the Poisson equation Δu = f(x, y)
and then use the change of dependent variables u = u1 + v to reduce the task to
that of solving the corresponding boundary value problem for the Laplace equation
Δv = 0.

Example 1 [18]. Solve the Poisson equation

∂2u

∂x2
+

∂2u

∂y2
= −xy

in the disc of radius R centered at the origin, under the condition u(R,ϕ) = 0.
Solution. Passing to polar coordinates we obtain the problem⎧⎨⎩ ρ2uρρ + ρuρ + uϕϕ = −1

2
ρ4 sin(2ϕ), 0 ≤ ρ < R, 0 ≤ ϕ < 2π,

u(R,ϕ) = 0, 0 ≤ ϕ ≤ 2π.
(1.11)

We shall seek a particular solution in the form

u1(ρ, ϕ) = w(ρ) sin(2ϕ).
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Substituting this expression in equation (1.11) and simplifying by sin(2ϕ) we ob-
tain the equation

ρ2w′′ + ρw′ − 4w = −1
2

ρ4. (1.12)

The substitution ρ = et transforms (1.12) into the equation with constant coeffi-
cients

ẅ − 4w = −1
2

e4t, (1.13)

where the dot denotes differrentiation with respect to t. A particular solution of
equation (1.13) is w(t) = − 1

24 e4t. Hence, w(ρ) = − 1
24 ρ4 is a particular solution

of equation (1.12). Therefore, we can choose u1(ρ, ϕ) = − 1
24 ρ4 sin(2ϕ).

Now let us introduce the function v(ρ, ϕ) = u(ρ, ϕ) − u1(ρ, ϕ). Clearly, to
determine the function v(ρ, ϕ) we must solve the following Dirichlet problem for
the Laplace equation:⎧⎨⎩

ρ2uρρ + ρvρ + vϕϕ = 0, 0 < ρ < R, 0 ≤ ϕ < 2π,

v(R,ϕ) =
1
24

R4 sin(2ϕ), 0 ≤ ϕ ≤ 2π.

But we already know the solution of this equation:

v(ρ, ϕ) =
( ρ

R

)2

· 1
24

R4 sin(2ϕ) =
1
24

ρ2R4 sin(2ϕ).

Therefore, the solution of our problem is given by

u(ρ, ϕ) =
1
24

ρ2(R4 − ρ2) sin(2ϕ).

Example 2. Find the distribution of the electric potential in the annulus a < ρ < b
if in its interior there are electrical charges with density γ(x, y) = A(x2 − y2), the
inner circle is maintained at the potential 1 and the intensity of the electric field
on the outer circle is 0.
Solution. The problem reduces to that of solving the Poisson equation Δu =
A(x2 − y2) in the annulus a < ρ < b with the boundary conditions u|ρ=a = 1,
∂u/∂ρ|ρ=b = 0. Passing to polar coordinates we obtain the problem⎧⎪⎪⎨⎪⎪⎩

1
ρ

∂

∂ρ

(
ρ
∂u

∂ρ

)
+

1
ρ2

∂2u

∂ϕ2
= Aρ2 cos(2ϕ) a < ρ < b, 0 ≤ ϕ < 2π,

u(a, ϕ) = 1,
∂u

∂ρ
(b, ϕ) = 0, 0 ≤ ϕ ≤ 2π.

Let us seek the solution of this problem in the form u(ρ, ϕ) = v(ρ, ϕ)+w(ρ), where
the function w(ρ) is a solution of the auxiliary problem⎧⎪⎨⎪⎩

1
ρ

∂

∂ρ

(
ρ
∂w

∂ρ

)
= 0, a < ρ < b,

w(a) = 1, w′(b) = 0,
(1.14)
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and the function v(ρ, ϕ) is a solution of the problem

⎧⎪⎪⎨⎪⎪⎩
1
ρ

∂

∂ρ

(
ρ
∂v

∂ρ

)
+

1
ρ2

∂2v

∂ϕ2
= Aρ2 cos(2ϕ) a < ρ < b, 0 ≤ ϕ < 2π,

v(a, ϕ) = 0,
∂v

∂ρ
(b, ϕ) = 0, 0 ≤ ϕ ≤ 2π.

(1.15)

Obviously, the solution of problem (1.14) is w(ρ) ≡ 1. We will seek the
solution of problem (1.15) in the form v(ρ, ϕ) = R(ρ) cos(2ϕ). Substituting this
expression for v(ρ, ϕ) in the equation (1.15) we obtain

cos(2ϕ)
1
ρ

d

dρ
(ρR′) − 4

ρ4
R cos(2ϕ) = Aρ2 cos(2ϕ),

or, simplifying by cos(2ϕ),

ρ2R′′ + ρR′ − 4R = Aρ4,

with the additional conditions R(a) = 0, R′(b) = 0. The substitution ρ = et

transform this equation into the equation with constant coefficients

R̈ − 4R = Ae4t,

where the dot denotes differentiation with respect to t. The general solution of this
last equation is R(t) = C1e

2t + C2e
−2t + 1

12 Ae4t. Back to the variable ρ we have

R(ρ) = C1ρ
2 +

C2

ρ2
+

1
12

Ae4t.

The constants C1 and C2 are found from the conditions R(a) = 0, R′(b) = 0,
namely

C1 =
−A(a6 + 2b6)
12(a4 + b4)

, C2 =
Aa4b4(2b2 − a2)

6(a4 + b4)

Hence, the sought solution is

u(ρ, ϕ) = 1 +
[
−A(a6 + 2b6)

12(a4 + b4)
ρ2 +

Aa4b4(2b2 − a2)
6(a4 + b4)

1
ρ2

+
A

12
ρ4

]
cos(2ϕ).
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1.7. Boundary value problems for the Laplace and
Poisson equations in a rectangle

Example 1 [18]. Find the distribution of the electrostatic field u(x, y) inside the
rectangle OACB for which the potential along the side B is equal to V , while the
three other sides and grounded. There are no electric charges inside the rectangle
(Figure 1.2).

y

B(0, b)

u = V

0

u = 0

u = 0

u = 0Δu = 0

C(a, b)

A(a, 0) x

Figure 1.2.

Solution. The problem reduces to that of solving the Laplace equation uxx+uyy = 0
in the interior of the rectangle with the boundary conditions

u(0, y) = V, u(a, y) = 0, u(x, 0) = 0, u(x, b) = 0.

First we will seek nontrivial particular solutions of the Laplace equation which
satisfy only the boundary conditions

u(x, 0) = u(x, b) = b

in the form u(x, y) = X(x)Y (y). Substituting this expression in the equation
uxx + uyy = 0 we get X ′′Y + XY ′′ = 0, which upon dividing by XY gives

X ′′

X
= −Y ′′

Y
= λ2.

Using the fact that Y (0) = Y (b) = 0, we obtain the Sturm-Liouville problem{
Y ′′ + λ2Y = 0, 0 < y < b,

Y (0) = Y (b) = 0,

which yields the eigenvalues and eigenfunctions of our problem. We have

λ2
n =

(nπ

b

)2

, Yn(y) = sin
(nπ

b
y
)

, n = 1, 2, . . .
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The corresponding functions Xn(x) are solutions of the equation X ′′ − λ2X = 0,
and so

Xn(x) = ancosh
(nπ

b
x
)

+ bnsinh
(nπ

b
x
)

where an and bn are arbitrary constants. It follows that the notrivial particular
solutions (“atoms”) have the form

un(x, y) =
[
ancosh

(nπ

b
x
)

+ bnsinh
(nπ

b
x
)]

sin
(nπ

b
y
)

, n = 1, 2, . . .

Now for the sought solution of our problem we take the series

u(x, y) =
∞∑

n=0

[
ancosh

(nπ

b
x
)

+ bnsinh
(nπ

b
x
)]

sin
(nπ

b
y
)

. (1.16)

The constants an and bn (n = 1, 2, . . . ) are found from the conditions u(0, y) = V ,
u(a, y) = 0. Setting x = a in (1.16) we obtain

0 =
∞∑

n=0

[
ancosh

(nπ

b
a
)

+ bnsinh
(nπ

b
a
)]

sin
(nπ

b
y
)

,

whence
ancosh

(nπ

b
a
)

+ bnsinh
(nπ

b
a
)

= 0, n = 1, 2, . . .

Next, setting x = 0 in (1.16) we obtain

V =
∞∑

n=0

an sin
(nπ

b
y
)

,

which gives

an =
2
b

∫ b

0

V sin
(nπ

b
y
)

dy, or an =
{

0, if n is even,
4V
nπ , if n is odd.

Therefore, the solution has the form

u(x, y) =
4V
π

∞∑
k=0

sinh
[
(2k + 1)(a − x)π

b

]
sin
[
(2k + 1)πy

b

]
(2k + 1)sinh

[
(2k + 1)πa

b

] .

Example 2 [18]. Suppose that two sides, AC and BC, of a rectangular homogeneous
plate (see Figure 1.2) are covered with a heat insulation, and the other two sides
are maintained at temperature zero. Find the stationary temeperature distribution
in the plate under the assumption that a quantity of heat Q =const is extracted it.
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Solution. We are dealing with a boundary value problem for the Poisson equation
with boundary conditions of mixed type;⎧⎪⎪⎨⎪⎪⎩

uxx + uyy = −Q

k
, 0 < x < a, 0 < y < b,

u(0, y) = 0, ux(a, y) = 0, 0 ≤ y ≤ b,

u(x, 0) = 0, uy(x, b) = 0, 0 ≤ x ≤ a

(1.17)

(here k is the internal heat conduction coefficient).
The eigenvalues and eigenfunctions of the problem are found by solving the

auxiliary boundary value problem (Sturm-Liouville problem){
X ′′ + λ2X = 0, 0 < x < a,

X(0) = 0 = X ′(a) = 0.

We get λ2
n =

[
(2n+1)π

2a

]2
and Xn(x) = sin

[
(2n+1)π

2a x
]
, n = 0, 1, . . . We will seek

the solution of the above problem in the form of an expansion in eigenfunctions

u(x, y) =
∞∑

n=0

Yn(y) sin
[
(2n + 1)π

2a
x

]
,

where the functions Yn(y) are subject to determination. Substituting this expres-
sion of the solution in equation (1.17) we obtain

−
∞∑

n=0

Yn(y)
(2n + 1)2π2

4a2
sin
[
(2n + 1)π

2a
x

]
+

∞∑
n=0

Y ′′
n (y) sin

[
(2n + 1)π

2a
x

]
=

=
∞∑

n=0

αn sin
[
(2n + 1)π

2a
x

]
,

where the Fourier coefficients αn of the function −Q/k are equal to

αn =
2
a

∫ a

0

(
−Q

k

)
sin
[
(2n + 1)π

2a
x

]
dx = − 4Q

kπ(2n + 1)
.

This yields the following boundary value problem for the determination of
the function Yn(y), n = 0, 1, 2, . . . :⎧⎪⎨⎪⎩Y ′′

n − (2n + 1)2π2

4a2
Yn(y) = − 4Q

kπ(2n + 1)
, 0 < y < b,

Yn(0) = 0, Y ′
n(b) = 0.
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Solving this problem, we obtain

Yn(y) = ancosh
[
(2n + 1)π

2a
y

]
+ bnsinh

[
(2n + 1)π

2a
y

]
+

16Qa2

kπ3(2n + 1)3
,

where

an = − 16Qa2

kπ3(2n + 1)3
,

and

bn =
16Qa2

kπ3(2n + 1)3
tanh

[
(2n + 1)πb

2a
y

]
.

The final expression of the solution is

u(x, y) =
16Qa2

kπ3

∞∑
n=0

1
(2n + 1)3

⎛⎝1 −
cosh

[
(2n+1)(b−y)π

2a

]
cosh

[
(2n+1)πb

2a

]
⎞⎠ sin

[
(2n + 1)π

2a
x

]
.

Example 3 [18]. Find the solution of the Laplace equation in the strip 0 ≤ x ≤ a,
0 ≤ y < ∞ which satisfies the boundary conditions

u(x, 0) = 0, u(a, y) = 0, u(x, 0) = A
(
1 − x

a

)
, u(x,∞) = 0.

Solution. Thus, we need to solve the boundary value problem⎧⎪⎪⎨⎪⎪⎩
uxx + uyy = 0, 0 < x < a, 0 < y < ∞,

u(0, y) = u(a, y) = 0, 0 ≤ y < ∞,

u(x, 0) = A
(
1 − x

a

)
, u(x,∞) = 0, 0 ≤ x ≤ a

(1.18)

Let us begin by finding the solution of the auxiliary problem{
vxx + vyy = 0, 0 < x < a, 0 < y < ∞,

v(0, y) = v(a, y) = 0, 0 ≤ y < ∞,

in the form v(x, y) = X(x)Y (y). We obtain two ordinary differential equations:
(1) X ′′ + λX = 0, and (2) Y ′′ − λY = 0.

From the conditions v(0, y) = 0, v(a, y) = 0 it follows that X(0) = X(a) = 0.
Hence, the Sturm-Liouville problem{

X ′′ + λX = 0, 0 < x < a,

X(0) = X(a) = 0
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yields λn =
(

nπ
a

)2 and Xn(x) = sin
(

nπ
a x
)
, n = 1, 2, . . . . Then the corresponding

solutions of the equation Y ′′ − λY = 0 are

Yn(y) = Ane−
nπ
a y + Bne

nπ
a y.

We conclude that

vn(x, y) =
[
Ane−

nπ
a y + Bne

nπ
a y
]
sin
(nπ

a
x
)

.

Therefore, the solution of problem (1.18) is given by a series

u(x, y) =
∞∑

n=1

[
Ane−

nπ
a y + Bne

nπ
a y
]
sin
(nπ

a
x
)

. (1.19)

From the condition u(x,∞) it follows that Bn = 0, n = 1, 2, . . . . Setting
y = 0 in (1.19) we get

A
(
1 − x

a

)
=

∞∑
n=1

An sin
(nπ

a
x
)

,

i.e.,

An =
2
a

∫ a

0

A
(
1 − x

a

)
sin
(nπ

a
x
)

dx =
2A
πn

.

We conclude that

u(x, y) =
2A
π

∞∑
n=1

1
n

e−
nπ
a y sin

(nπ

a
x
)

.

Remark 1. The boundary value problem for the Laplace (Poisson) equation in a
rectangular parallelepiped is solved in a similar manner.

Remark 2. Let us assume that the mathematical model of a given physical phe-
nomenon is such that both the equation itself and the boundary conditions are
inhomogeneous. Then by using the superposition principle the original boundary
value problem can be decomposed into subproblems; one then solves the subprob-
lems and adds their solutions to obtain the solution of the original problem.

For example, the solution of the Dirichlet problem{Δu = f in the domain Ω,

u = ϕ on the boundary ∂Ω,

is the sum of the solutions of the following simpler problems:

(1)
{Δu = f in the domain Ω,

u = 0 on the boundary ∂Ω,
(2)

{Δu = 0 in the domain Ω,

u = ϕ on the boundary ∂Ω.
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1.8. Boundary value problems for the Laplace and
Poisson equations in a bounded cylinder

To treat the problems mentioned in the title we must resort to special functions,
more precisely, to Bessel functions.

First let us consider a boundary value problem for the Laplace equation in a
cylinder.

Example 1 [4, Ch. IV, no. 110]. Find the potential of the electrostatic field of a
cylindrical wire of section ρ ≤ a, 0 ≤ z ≤ l, such that both bases of the cylinder
are grounded and its lateral surface is charged at a potential V0. Calculate the
field intensity on the axis (Figure 1.3).

l

x

y

z

0
a

u = 0

u = 0

Δu = 0 u = V0

Figure 1.3.

Solution. We need to solve the Laplace equation inside the cylinder with given
boundary conditions:⎧⎪⎪⎪⎨⎪⎪⎪⎩

1
ρ

∂

∂ρ

(
ρ
∂u

∂ρ

)
+

∂2u

∂z2
= 0, 0 < ρ < a, 0 < z < l,

u(ρ, 0) = u(ρ, l) = 0, 0 ≤ ρ ≤ a,

u(a, z) = V0, 0 ≤ z ≤ l

(the solution u(ρ, z) does not depend on ϕ since the boundary values are indepen-
dent of ϕ). Using the method of separation of variables, we represent the solution in
the form u(ρ, z) = R(ρ)Z(z). Substituting this expression in the Laplace equation

1
ρ

∂

∂ρ

(
ρ
∂u

∂ρ

)
+

∂2u

∂z2
= 0
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we get

Z ρ
∂

∂ρ
(ρR′) + RZ ′′ = 0

whence, upon dividing both sides by RZ,

ρ
∂

∂ρ
(ρR′)

R
+

Z ′′

Z
= 0,

or

ρ
∂

∂ρ
(ρR′)

R
= −Z ′′

Z
= λ, (1.20)

where λ is the separation constant. Clearly, on physical grounds λ > 0: otherwise
the function Z(z), and together with it the potential, would not vanish on the
upper and bottom bases of the cylindrical wire.

Equation (1.20) yields two ordinary differential equations:

(1) Z ′′ + λZ = 0,

and

(2)
1
ρ

d

dρ
(ρR′) − λR = 0.

Using the fact that Z(0) = Z(l) = 0, we obtain the standard Sturm-Liouville
problem: {

Z ′′ + λZ = 0, 0 < z < l,

Z(0) = Z(l) = 0.

This problem has the eigenfunctions Zn(z) = sin
(

nπ
l z
)
, corresponding to the

eigenvalues λn =
(

nπ
l

)2, n = 1, 2, . . . . The function R(ρ) is determinded from the
equation

1
ρ

d

dρ
(ρR′) −

(nπ

l

)2

R = 0, (1.21)

which is recognized to be the Bessel equation of index zero and imaginary argu-
ment. Indeed, from equation (1.21) it follows that

ρ2R′′ + ρR′ − ρ2
(nπ

l

)2

R = 0.

Passing in this equation to the new independent variable x = ρ nπ
l and using

the relations

R′ =
dR

dx

nπ

l
, R′′ =

d2R

dx2

(nπ

l

)2

,
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we arrive at the equation

x2 d2R

dx2
+ x

dR

dx
− x2R = 0.

Its general solution is written in the form

R(x) = C1I0(x) + C2K0(x),

where I0(x) and K0(x) are the Bessel functions of index zero and imaginary ar-
gument, of the first and second kind, respectively, and C1 and C2 are arbitrary
constants. Since (the Macdonald) function K0(x) → ∞ when x → 0, we must set
C2 = 0 (otherwise the solution of our problem will be unbounded on the axis of
the cylinder). Therefore,

Rn(ρ) = CI0

(nπ

l
ρ
)

.

The “atoms” from which the solution of the original problem will be con-
structed are the functions

I0

(nπ

l
ρ
)

sin
(nπ

l
z
)

, n = 1, 2, . . .

Thus, the solution of our has the series representation

u(ρ, z) =
∞∑

n=1

cnI0

(nπ

l
ρ
)

sin
(nπ

l
z
)

.

The constants cn are found from the boundary condition u(a, z) = V0. We
have

V0 =
∞∑

n=1

cnI0

(nπ

l
a
)

sin
(nπ

l
z
)

,

whence

cnI0

(nπ

l
a
)

=
2
l

∫ l

0

V0 sin
(nπ

l
z
)

dz =

{ 4V0

nπ
, n is odd,

0, n is even.

We conclude that

u(z, ρ) =
4V0

π

∞∑
k=0

I0

[ (2k + 1)π
l

ρ
]

I0

[ (2k + 1)π
l

a
] · sin

[ (2k + 1)π
l

z
]

2k + 1
.

The field on the axis of the cylinder is

Ez(0, z) = −∂u

∂z
(0, z) = −4V0

l

∞∑
k=0

cos
[ (2k + 1)π

l
z
]

I0

[ (2k + 1)π
l

a
] .
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Example 2 [18]. Consider a cylinder with base of radius R and height h. Assume
that the temperature of the lower base and of the lateral surface is equal to zero,
while the temperature of the upper base is a given function of ρ. Find the steady
temperature distribution in the interior of the cylinder.
Solution. The mathematical formulation of the problems is as follows:⎧⎪⎪⎪⎨⎪⎪⎪⎩

1
ρ

∂

∂ρ

(
ρ

∂u

∂ρ

)
+

∂2u

∂z2
= 0, 0 < ρ < R, 0 < z < h,

u(ρ, 0) = 0, u(ρ, h) = f(ρ), 0 ≤ ρ ≤ R,

u(R, z) = 0, 0 ≤ z ≤ h.

Setting, as before, u(ρ, z) = r(ρ)Z(z) and substituting this expression in the
Laplace equation, we obtain two ordinary differential equations:

(1)
1
ρ

d

dρ
(ρr′) + λr = 0;

(2) Z ′′ − λZ = 0.
(1.22)

We note that here λ > 0 (this will be clear once we find the solution). The
boundary condition u(R, z) = 0 implies r(R) = 0. Equation (1.22) can be rewritten
as

ρ2r′′ + ρr′ + λρ2r = 0. (1.23)

Passing to the new independent variable x =
√

λρ we obtain the Bessel equation
of order zero

x2 d2r

dx2
+ x

dr

dx
+ x2r = 0,

whose general solution has the form

r(x) = C1J0(x) + C2B0(x),

where J0(x) and B0(x) are the Bessel function of order zero of first and second
kind, respectively, and C1, C2 are arbitrary constants.

Returning to the old variable ρ we have

r(ρ) = C1J0(
√

λρ) + C2B0(
√

λρ).

Thus, in the present case solving the Sturm-Liouville problem{
ρ2r′′ + ρr′ + λρ2r = 0, 0 < ρ < R,

|r(0)| < ∞, r(R) = 0

reduces to the solution of the Bessel equation with the indicated boundary con-
ditions. Since B0(

√
λρ) → ∞ as ρ → 0, we must set C2 = 0, and so r(ρ) =
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CJ0(
√

λρ). From the condition r(R) = 0 it follows that J0(
√

λR) = 0. Denoting by
μ1, μ2, . . . , μn, . . . the positive roots of the Bessel function J0(x) (Figure 1.4), we
obtain the eigenvalues λn =

(
μn

R

)2 and the corresponding eigenfunctions J0

(
μn

R ρ
)
,

n = 1, 2, . . . . Further, from the equation (2) in (1.22) with λ = λn =
(

μn

R

)2 we
obtain

Zn(x) = Ancosh
(μn

R
z
)

+ Bnsinh
(μn

R
z
)

,

where An and Bn are arbitrary constants. From the boundary condition u(ρ, 0) = 0
it follows that Z(0) = 0, i.e., An = 0 for all n. Therefore, the “atoms” of the sought
solution are the functions

J0

(μn

R
ρ
)

sinh
(μn

R
z
)

, n = 1, 2 . . . .

x

y

1

0.8

0.6

0.4

0.2

−0.2

−0.4

J0(x)

2
2.4

4
5.5

6 8
8.7

10

Figure 1.4.

The solution of our problem is given by a series

u(ρ, z) =
∞∑

n=1

BnJ0

(μn

R
ρ
)

sinh
(μn

R
z
)

.

The constants Bn are found from the boundary condition u(ρ, h) = f(ρ). Indeed,
we have

u(ρ, h) =
∞∑

n=1

BnJ0

(μn

R
ρ
)

sinh
(μn

R
h
)

,

or

f(ρ) =
∞∑

n=1

BnJ0

(μn

R
ρ
)

sinh
(μn

R
h
)

.
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Multiplying both sides of this equality by ρJ0

(
μm

R ρ
)

and integrating the result
over the segment [0, R] we get∫ R

0

ρf(ρ)J0

(μm

R
ρ
)

dρ = Bmsinh
(μm

R
h
)∫ R

0

ρJ2
0

(μm

R
ρ
)

dρ.

But ∫ R

0

ρJ2
0

(μm

R
ρ
)

dρ =
R2

2
J2

1 (μm),

where J1(x) is the Bessel function of first kind and order one. Therefore, the
solution of the problem has the form

u(ρ, z) =
2

R2

∞∑
n=1

sinh
(μn

R
z
)

sinh
(μn

R
h
) J0

(μn

R
ρ
)

J2
1 (μn)

∫ R

0

ρf(ρ)J0

(μn

R
ρ
)

dρ.

Example 3. Find the potential in the interior points of a grounded cylinder of
height h and with base of radius R, given that in the cylinder there is a charge
distribution with density γ = AzJ0

(
μ3
R ρ
)

(where A is a constant).
Solution. We must solve the Poisson equation with null boundary conditions:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1
ρ

∂

∂ρ

(
ρ

∂u

∂ρ

)
+

∂2u

∂z2
= −4πAzJ0

(μ3

R
ρ
)

,

0 < ρ < R, 0 < z < h,

u(ρ, 0) = u(ρ, h) = 0, 0 ≤ ρ ≤ R,

u(R, z) = 0, 0 ≤ z ≤ h.

(1.24)

Let us seek the solution in the form u(ρ, z) = J0

(
μ3
R ρ
)
f(z), where the func-

tion f(z) is subject to determination. Substituting this expression of u(ρ, z) in
equation (1.24) we get

1
ρ

d

dρ

[
ρ

d

dρ
J0

(μ3

R
ρ
)]

f(z) + J0

(μ3

R
ρ
)

f ′′(z) = −4πAzJ0

(μ3

R
ρ
)

. (1.25)

Now let us observe that the function J0

(
μ3
R ρ
)

is an eigenfunction of the
Bessel equation, i.e.,

1
ρ

d

dρ

[
ρ

d

dρ
J0

(μ3

R
ρ
)]

+
μ2

3

R2
J0

(μ3

R
ρ
)

= 0.

Consequently, (1.25) gives

−
(μ3

R

)2

J0

(μ3

R
ρ
)

f(z) + J0

(μ3

R
ρ
)

f ′′(z) = −4πAzJ0

(μ3

R
ρ
)

,
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which in turn yields the following ordinary differential equation for the determi-
nation of f(z):

f ′′ −
(μ3

R

)3

f = −4πAz, 0 < z < h,

with f(0) = f(h) = 0. Solving this boundary value problem we find that

f(z) = −4πAR2h

μ2
3

·
sinh

(μ3

R
z
)

sinh
(μ3

R
h
) +

4πAR2

μ2
3

z.

Thus, the solution of our problem is given by the expression

u(ρ, z) = J0

(μ3

R
ρ
) 4πAR2

μ2
3

⎡⎣h
sinh

(μ3

R
z
)

sinh
(μ3

R
h
) − z

⎤⎦ .

1.9. Boundary value problems for the Laplace and
Poisson equations in a ball

To deal with the problem mentioned in the title we need to use spherical functions
and solid spherical harmonics.

Recall that the general solution of the Laplace equation has the following
form (in spherical coordinates (ρ, θ, ϕ)):

(1) u(ρ, θ, ϕ) =
∑∞

n=0

(
ρ
a

)n
Yn(θ, ϕ) in the interior the sphere of radius a;

(2) u(ρ, θ, ϕ) =
∑∞

n=0

(
ρ
a

)(n+1)
Yn(θ, ϕ) in the exterior of the sphere of radius a;

(3) u(ρ, θ, ϕ) =
∑∞

n=0

(
Anρn + Bn

ρn+1

)
Yn(θ, ϕ) in a spherical layer.

Here

Yn(θ, ϕ) =
n∑

m=0

[Anm cos(mϕ) + Bnm sin(mϕ)]P (m)
n (cos θ),

where P
(m)
n (x) are the so-called associated Legendre functions.

Example 1. Find the solution u(ρ, θ, ϕ) of the interior Dirichlet problem for the
Laplac equation with the boundary condition u(a, θ, ϕ) = sin(3θ) cos ϕ.
Solution. In spherical coordinates the problem is written as follows:⎧⎪⎪⎪⎨⎪⎪⎪⎩

1
ρ2

∂

∂ρ

(
ρ2 ∂u

∂ρ

)
+

1
ρ2 sin θ

∂

∂θ

(
sin θ

∂u

∂θ

)
+

1
ρ2 sin2 θ

∂2u

∂ϕ2
= 0,

0 < ρ < a, 0 < θ < π, 0 ≤ ϕ < 2π,

u(a, θ, ϕ) = sin(3θ) cos ϕ, 0 ≤ θ ≤ π, 0 ≤ ϕ ≤ 2π.

(1.26)
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Setting u(ρ, θ, ϕ) = R(ρ)Y (θ, ϕ) and substituting this expression in equation
(1.26), we obtain

Y
d

dρ
(ρ2R′) + R

[
1

sin θ

∂

∂θ

(
sin θ

∂Y

∂θ

)
+

1
sin2 θ

∂2Y

∂ϕ2

]
= 0,

which upon dividing both sides by RY yields

d

dρ
(ρ2R′)

R
+

1
sin θ

∂

∂θ

(
sin θ

∂Y

∂θ

)
+

1
sin2 θ

∂2Y

∂ϕ2

Y
= 0,

or
d

dρ
(ρ2R′)

R
= −

1
sin θ

∂

∂θ

(
sin θ

∂Y

∂θ

)
+

1
sin2 θ

∂2Y

∂ϕ2

Y
= λ,

where λ is the separation constant. This yields two equations:

(1) ρ2R′′ + 2ρR′ − λR = 0,

(2)
1

sin θ

∂

∂θ

(
sin θ

∂Y

∂θ

)
+

1
sin2 θ

∂2Y

∂ϕ2
+ λY = 0;

(1.27)

here the function Y (θ, ϕ) must be restricted to the sphere.
Moreover, the function Y (θ, ϕ) satisfies the conditions{

Y (θ, ϕ) = Y (θ, ϕ + 2π),

|Y (0, ϕ)| < ∞, |Y (π, ϕ)| < ∞.
(1.28)

As is known, the bounded solutions of equation (1.27) that have continuous
derivatives up to and including order two are called spherical functions.

The solution of problem (1.27),(1.28) for Y (θ, ϕ) will also be sought via sep-
aration of variables, setting Y (θ, ϕ) = T (θ)Φ(ϕ). Susbtituting this expression in
equation (1.27), we get

Φ
1

sin θ

d

dθ
(sin θT ′) +

1
sin2 θ

TΦ′′ + λTΦ = 0,

whence
sin θ

d

dθ
(sin θT ′)

T
+ λ sin2 θ = −Φ′′

Φ
= μ.

Thus, the function Φ(ϕ) is found by solving the problem{
Φ′′ + μΦ = 0,

Φ(ϕ) = Φ(ϕ + 2π).
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We have already solved such a problem when we considered the Laplace
equation in a disc, and found that μ = m2 and Φm(ϕ) = C1 cos(mϕ)+C2 sin(mϕ),
where C1 and C2 are arbitrary constants and m = 0, 1, . . .

The function T (θ) is found from the equation

1
sin θ

d

dθ
(sin θT ′) +

(
λ − m2

sin2 θ

)
T = 0 (1.29)

and the conditions that T be bounded at θ = 0 and θ = π. Introducing the new
variable x = cos θ and observing that

T ′ =
dT

dx

dx

dθ
=

dT

dx
(− sin θ),

T ′′ =
d2T

dx2
sin2 θ − dT

dx
cos θ,

equation (1.29) yields the following boundary value problem for eigenvalues and
eigenfunctions:⎧⎨⎩ (1 − x2)

d2T

dx2
− 2x

dT

dx
+
(

λ − m2

1 − x2

)
T = 0, −1 < x < 1,

|T (−1)| < ∞, |T (+1)| < ∞.

The eigenfunctions of this problem,

T (m)
n (x) = P (m)

n (x) = (1 − x2)m/2 dm

dxm
Pn(x),

are the associated Legendre functions. Hence, the solutions of equation (1.29) are
the functions T

(m)
n (x) = P

(m)
n (cos θ).

Combining the solutions of equation (1.29) with the solutions of the equation
Φ′′ + μΦ = 0, we obtain the 2n + 1 spherical functions

Pn(cos θ), P (m)
n (cos θ) cos(mϕ), P (m)

n (cos θ) sin(mϕ),
n = 0, 1, . . . ; m = 1, 2, . . .

The general solution of equation (1.27) for λ = n(n + 1) is written in the
form

Yn(θ, ϕ) =
n∑

m=0

[Anm cos(mϕ) + Bnm sin(mϕ)] P (m)
n (cos θ).

Now let us return to the search for the function R(ρ). Setting R(ρ) = ρσ

and substituting this expression in the equation ρ2R′′ +2ρR′ −λR = 0, we obtain
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σ(σ+1)−n(n+1) = 0, whence σ1 = n, σ2 = −(n+1). Thus, the solution “atoms”
are the functions

ρnP (m)
n (cos θ) cos(mϕ),

ρ−(n+1)P (m)
n (cos θ) cos(mϕ),

ρnP (m)
n (cos θ) sin(mϕ),

ρ−(n+1)P (m)
n (cos θ) sin(mϕ).

However, the solutions ρ−(n+1)P
(m)
n (cos θ) cos(mϕ), ρ−(n+1)P

(m)
n (cos θ) sin(mϕ)

must be discarded because they are not bounded when ρ → 0. Hence, the so-
lution of our problem is given by a series

u(ρ, θ, ϕ) =
∞∑

n=0

n∑
m=0

ρn [Anm cos(mϕ) + Bnm sinmϕ]P (m)
n (cos θ).

It remains to choose the constants Anm and Bnm so that the boundary con-
dition

u(a, θ, ϕ) = sin(3θ) cos ϕ

will be satisfied. We have

u(a, θ, ϕ) =
∞∑

n=0

n∑
m=0

an [Anm cos(mϕ) + Bnm sinmϕ]P (m)
n (cos θ),

i.e., we must satisfy the equality

sin(3θ) cos ϕ =
∞∑

n=0

n∑
m=0

an [Anm cos(mϕ) + Bnm sinmϕ]P (m)
n (cos θ).

It follows that in the sum
∑n

m=0 · · · we must retain only the term corresponding
to m = 1. This yields

sin(3θ) =
∞∑

n=1

anAn1P
(1)
n (cos θ).

The coefficients An1 can be found from the general formula: if

f(θ) =
∞∑

n=1

bnP (1)
n (cos θ),

then

bn =
2n + 1

2
· (n − 1)!
(n + 1)!

∫ π

0

f(θ)P (1)
n (cos θ) sin θ dθ.
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However, it is more convenient to proceed as follows: we have

sin(3θ) = sin θ(4 cos2 θ − 1), P (1)
n (cos θ) = sin θ

dPn(cos θ)
d(cos θ)

,

P1(x) = x, P3(x) =
1
2
(5x3 − 3x).

Therefore,

(4 cos2 θ − 1) sin θ = sin θ

[
a · A11 · 1 + a3 · A31 · 1

2
(15 cos2 θ − 3)

]
,

which gives

A11 = − 1
5a

, A31 =
8

15a3
, An1 = 0, n = 2, 4, 5, . . .

We conclude that the solution of our problem has the form

u(ρ, θ, ϕ) =
(
− 1

5

)ρ

a
P

(1)
1 (cos θ) cos ϕ +

8
15

(ρ

a

)3

P
(1)
3 (cos θ) cos ϕ.

Example 2. Find a function u, harmonic inside the spherical layer R1 < ρ < R2,
and such that

u|ρ=R1 = P
(1)
2 (cos θ) sin ϕ, u|ρ=R2 = P

(3)
5 (cos θ) cos(3ϕ).

Solution. The mathematical formulation of the problem is⎧⎪⎪⎨⎪⎪⎩
Δu = 0, R1 < ρ < R2, 0 < θ < π, 0 < ϕ < 2π,

u(R1, θ, ϕ) = P
(1)
2 (cos θ) sin ϕ,

u(R2, θ, ϕ) = P
(3)
5 (cos θ) cos(3ϕ),

0 ≤ θ ≤ π, 0 ≤ ϕ ≤ 2π

(see Figure 1.5).

x

y

z

Δu = 0

O

P
(1)
2 (cos θ) sinϕ

P
(3)
5 (cos θ) cos(3ϕ)

R1 R2

Figure 1.5.
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The solution of this problem is written in the form

u(ρ, θ, ϕ) =
∞∑

n=0

n∑
m=0

[(
Anmρn +

Bnm

ρn+1

)
cos(mϕ)+

+
(

Cnmρn +
Dnm

ρn+1

)
sin(mϕ)

]
P (m)

n (cos θ),

where the numbers Anm, Bnm, Cnm and Dnm are subject to determination. The
boundary conditions yield the following systems of equations for the coefficients
of the expansion:

(1)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C21R
2
1 +

D21

R3
1

= 1,

A21R
2
1 +

B21

R3
1

= 0,

C21R
2
2 +

D21

R3
2

= 0,

A21R
2
2 +

B21

R3
2

= 0,

(2)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A53R
5
1 +

B53

R6
1

= 0,

C53R
5
1 +

D53

R6
1

= 0,

A53R
5
2 +

B53

R6
2

= 1,

C53R
5
2 +

D53

R6
2

= 0,

All the remaining coefficients are equal to zero. Solving the above systems
we obtain

A21 = B21 = 0, C53 = D53 = 0, C21 = − R3
1

R2
2(R

5
2 − R5

1)
,

D21 =
(R1R2)3

R5
2 − R5

1

, A53 = − R6
2

R5
1(R11

2 − R11
1 )

, B53 =
(R1R2)6

R11
2 − R11

1

.

Therefore, the harmonic function sought has the form

u(ρ, θ, ϕ) =
(

C21ρ +
D21

ρ2

)
P

(1)
2 (cos θ) sin ϕ+

+
(

A53ρ
5 +

B53

ρ6

)
P

(3)
5 (cos θ) cos(3ϕ).

Example 3 [6, 16.25(1)]. Find a function u, harmonic inside the spherical layer
1 < ρ < 2, such that(

3u +
∂u

∂ρ

)∣∣∣∣
ρ=1

= 5 sin2 θ sin(2ϕ) and u|ρ=2 = − cos θ.
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Solution. The problem is formulated mathematically as follows:⎧⎪⎪⎪⎨⎪⎪⎪⎩
Δu = 0, 1 < ρ < 2, 0 < θ < π, 0 ≤ ϕ < 2π,(

3u +
∂u

∂ρ

)∣∣∣∣
ρ=1

= 5 sin2 θ sin(2ϕ), 0 ≤ θ ≤ π, 0 ≤ ϕ ≤ 2π,

u|ρ=2 = − cos θ, 0 ≤ θ ≤ π, 0 ≤ ϕ < 2π.

We have

u(ρ, θ, ϕ) =
∞∑

n=0

∞∑
m=0

[(
Anmρn +

Bnm

ρn+1

)
cos(mϕ)+

+
(

Cnmρn +
Dnm

ρn+1

)
sin(mϕ)

]
P (m)

n (cos θ).

From the boundary conditions it follows that in this sum we must retain only
the terms with the indices n = 2, m = 2 and n = 1, m = 0. In other words, it is
convenient to seek the solution in the form

u(ρ, θ, ϕ) =
(

aρ +
b

ρ2

)
cos θ +

(
cρ2 − d

ρ3

)
sin2 θ sin(2ϕ).

Using the boundary conditions we obtain the following system of equations for the
determination of the coefficients a, b, c, d:⎧⎪⎪⎪⎨⎪⎪⎪⎩

4a + b = 0,
5c = 5,

2a + b/4 == −1,

4c − d/8 = 0.

Solving this system, we obtain a = −1, b = 4, c = 1, d = 32. Hence, the solution
has the expression

u(ρ, θ, ϕ) =
(
−ρ +

4
ρ2

)
cos θ +

(
ρ2 − 32

ρ3

)
sin2 θ sin(2ϕ).

Example 4 [4, Ch. IV, no. 125]. Find the solution of the Neumann problem for the
Laplace equation in the interior of the sphere of radius a with the condition

∂u

∂n
(a, θ, ϕ) = A cos θ (A = const).

Solution. We are dealing with the case of an axially-symmetric solution of the
Neumann problem for the Laplace equation, since the boundary condition does not
depend on ϕ, and consequently the solution also does not depend of ϕ: u = u(ρ, θ).
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First of all, it is readily verified that the necessary condition for the solvability
of our problem is satisfied. Indeed∫ 2π

0

∫ π

0

∂u

∂n
ds = 0, or

∫ 2π

0

dϕ

∫ π

0

A cos θ sin θa2 dθ = 0.

In the present case the Laplace equation has the form

∂

∂ρ

(
ρ2 ∂u

∂ρ

)
+

1
sin θ

∂

∂θ

(
sin θ

∂u

∂θ

)
= 0, 0 ≤ ρ < a, 0 ≤ θ ≤ π.

Setting u(ρ, θ) = R(ρ)T (θ) and substituting this expression in the equation,
we obtain, after separation of variables, two ordinary differential equations:

ρ2R′′ + 2ρR′ − λR = 0, (1.30)

and
1

sin θ

d

dθ
(sin θ · T ′) + λT = 0. (1.31)

If in the equation (1.31) we pass to the new variable x = cos θ we arrive at
the Legendre equation

d

dx

[
(1 − x2)

dT

dx

]
+ λT = 0, −1 < x < 1, (1.32)

under the condition |T (±1)| < ∞. The bounded solutions of the Legendre equation
(1.32) on the interval (−1, 1) are the Legendre polynomials Pn(x) for λn = n(n+1).
Hence, the bounded solutions of equation (1.31) on the interval (0, π) are the
functions Pn(cos θ). The bounded solutions of equation (1.30) are the functions
Rn(ρ) = ρn (n = 0, 1, 2, . . . ). It follows that

u(ρ, θ) =
∞∑

n=0

CnρnPn(cos θ),

where the constants Cn are to be determined from the boundary condition ∂u/∂ρ =
A cos θ. We have

∂u

∂ρ
(ρ, θ) =

∞∑
n=0

nCnan−1Pn(cos θ),

or, setting ρ = a,

A cos θ =
∞∑

n=0

nCnan−1Pn(cos θ)

whence, upon applying the formula

Cn =
2n + 1
2nan−1

∫ π

0

A cos θPn(cos θ) sin θ dθ,
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we find that C1 = 1 and Cn = 0 for n = 2, 3, . . . . We conclude that

u(ρ, θ) = C + Aρ cos θ,

where C is an arbitrary constant.

Example 3. Solve the following Dirichlet problem for the Poisson equation in a ball
of radius a centered at the origin:{Δu = xz in the interior of the ball,

u|ρ=a = 1.

Solution. Passing to spherical coordinates, we will seek the solution as a sum

u(ρ, θ, ϕ) = v(ρ, θ, ϕ) + w(ρ),

where the function v(ρ, θ, ϕ) is defined as the solution of the equation⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1
ρ2

∂

∂ρ

(
ρ2 ∂v

∂ρ

)
+

1
ρ2

1
sin θ

∂

∂θ

(
sin θ

∂v

∂θ

)
+

+
1
ρ2

1
sin2 θ

∂2v

∂ϕ2
=

ρ2

2
cos ϕ sin(2θ),

0 < ρ < a, 0 < θ < a, 0 ≤ ϕ < 2π,

v(a, θ, ϕ) = 0,

(1.33)

and the function w(ρ) is defined as the solution of the problem⎧⎨⎩
1
ρ2

d

dρ
(ρ2w′) = 0, 0 < ρ < a,

w(a) = 1, |w(0)| < ∞.
(1.34)

Let us solve first problem (1.33), seeking the solution in the form

v(ρ, θ, ϕ) = R(ρ)P (1)
2 (cos θ) cos ϕ,

where P
(1)
2 (x) is the associated Legendre function with indices n = 2, m = 1.

Substituting this expression of v(ρ, θ, ϕ) in the equation of problem (1.33) and
denoting P

(1)
2 (cos θ) cos ϕ = Y

(1)
2 (θ, ϕ) we get the equation

Y
(1)
2

d

dρ
(ρ2R′) + R

1
sin θ

∂

∂θ

(
sin θ

∂Y
(1)
2

∂θ

)
+ R

1
sin2 θ

∂2Y
(1)
2

∂ϕ2
=

ρ4

6
Y

(1)
2 (θ, ϕ).

But by the definition of the spherical function Y
(1)
2 (θ, ϕ) one has the identity

1
sin θ

∂

∂θ

(
sin θ

∂Y
(1)
2

∂θ

)
+

1
sin2 θ

∂2Y
(1)
2

∂ϕ2
+ 6Y (1)

2 = 0, 0 < θ < π, 0 < ϕ < 2π.
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Therefore,
d

dρ
(ρ2R′)Y (1)

2 − 6RY
(1)
2 =

ρ4

6
Y

(1)
2 ,

which yields the equation

d

dρ
(ρ2R′) − 6R =

ρ4

6
, 0 < ρ < a,

together with the boundary conditions |R(0)| < ∞, R(a) = 0. Therefore, the
function R(ρ) is determined by solving the problem⎧⎨⎩ ρ2R′′ + 2ρR′ − 6R =

ρ4

6
, 0 < ρ < a,

|R(0)| < ∞, R(a) = 0.

Its solution is R(ρ) = 1
84ρ2(ρ2 − a2). The solution of problem (1.34) is w(ρ) = 1.

We conclude that

w(ρ, θ, ϕ) = 1 +
1
84

ρ2(ρ2 − a2)P (1)
2 (cos θ) cos ϕ.

Remark 1. In the general case, when one solves the interior Dirichlet problem for
the Laplace equation with the condition u|∂Ω = f(θ, ϕ) (where Ω is the ball of
radius a centered at the origin and ∂Ω is its boundary), one can write

f(θ, ϕ) =
∞∑

n=0

n∑
m=0

an [Anm cos(mϕ) + Bnm sin(mϕ)] P (m)
n (cos θ),

where the coefficients Anm and Bnm are given by the formulas

Anm =

∫ 2π

0

∫ π

0

f(θ, ϕ)P (m)
n (cos θ) cos(mϕ) sin θ dθ dϕ

‖Y (m)
n ‖2an

and

Bnm =

∫ 2π

0

∫ π

0

f(θ, ϕ)P (m)
n (cos θ) sin(mϕ) sin θ dθ dϕ

‖Y (m)
n ‖2an

;

also,

‖Y (m)
n ‖2 =

2πεm

2n + 1
(n + m)!
(n − m)!

, where εm =
{

2, if m = 0,
1, if m > 0.

Remark 2. The solution of the aforementioned interior Dirichlet problem for the
Laplace equation at a point (ρ0, θ0, ϕ0) admits the integral representation (Poisson
integral)

u(ρ0, θ0, ϕ0) =
a

4π

∫ 2π

0

∫ π

0

f(θ, ϕ)
a2 − ρ2

(a2 − 2aρ0 cos γ + ρ2
0)

3/2
sin θ dθ dϕ,

where cos γ = cos θ cos θ0 + sin θ sin θ0 cos(ϕ − ϕ0).
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1.10. Boundary value problems for the Helmholtz equations
The Helmholtz equations Δu + k2u = f and Δu − k2u = f , alongside with the
Laplace and Poisson equations, are an important form of second-order elliptic
equation. The homogeneous equation (f = 0), for example, arises naturally (in
the multi-dimensional case) when the method of separation of variables is ap-
plied to hyperbolic and parabolic problems. Finding eigenvalues and eigenfunc-
tions reduced to the solvability of the corresponding boundary value problem for
a Helmholtz equation with f ≡ 0.

Example 1 [4, Ch. VII, no. 29(a)]. Find the natural oscillations of a membrane that
has the shape of a annular sector (a ≤ ρ ≤ b, 0 ≤ ϕ ≤ ϕ0), with free boundary.
Solution. The problem is formulated mathematically as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1
ρ

∂

∂ρ

(
∂u

∂ρ

)
+

1
ρ2

∂2u

∂ϕ2
+ λu = 0, a < ρ < b, 0 < ϕ < ϕ0,

∂u

∂ρ
(a, ϕ) =

∂u

∂ρ
(b, ϕ) = 0, 0 ≤ ϕ ≤ ϕ0,

∂u

∂ϕ
(ρ, 0) =

∂u

∂ϕ
(ρ, ϕ0) = 0, a ≤ ρ ≤ b.

(1.35)

We will seek the solution of this problem in the form

u(ρ, ϕ) = R(ρ)Φ(ϕ).

Inserting this expression in equation (1.35) and separating the variables we obtain
two ordinary differential equations:

(1) Φ′′ + νΦ = 0,

and
(2) ρ

d

dρ
(ρR′) + (λρ2 − ν)R = 0.

To determine ν we have the Sturm-Liouville problem{
Φ′′ + νΦ = 0, 0 < ϕ < ϕ0,

Φ′(0) = 0, Φ′(ϕ0) = 0.

This yields νn =
(

πn
ϕ0

)2

, n = 0, 1, . . . , and Φn(ϕ) = cos
(

πn
ϕ0

ϕ
)
. The function R(ρ)

is obtained from the following boundary value problem for the Bessel equation⎧⎨⎩ ρ
d

dρ
(ρR′) + (λρ2 − νR) = 0, a < ρ < b,

R′(a) = R′(b) = 0.
(1.36)
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The general solution of equation (1.36) has the form

R(ρ) = C1Jπn
ϕ0

(
√

λρ) + C2Nπn
ϕ0

(
√

λρ),

where C1 and C2 are arbitrary constants and Nπn
ϕ0

(
√

λρ) is the Bessel function of
second kind. The values of λ are determined by means of the boundary conditions
in (1.36); namely, they provide the system of equations⎧⎨⎩C1J

′
πn
ϕ0

(
√

λa) + C2N
′
πn
ϕ0

(
√

λa) = 0,

C1J
′
πn
ϕ0

(
√

λb) + C2N
′
πn
ϕ0

(
√

λb) = 0.

This system has a nontrivial solution if and only if its determinant∣∣∣∣∣J
′
πn
ϕ0

(
√

λa) N ′
πn
ϕ0

(
√

λa)

J ′
πn
ϕ0

(
√

λb) N ′
πn
ϕ0

(
√

λb)

∣∣∣∣∣
is equal to zero. In other words, λm,n =

[
μ

(n)
m

]2, where μ
(n)
m are the roots of the

equation
J ′

πn
ϕ0

(
√

λa)

J ′
πn
ϕ0

(
√

λb)
=

N ′
πn
ϕ0

(
√

λa)

N ′
πn
ϕ0

(
√

λb)
.

We see that the radial function has the form

Rm,n(ρ) = Jπn
ϕ0

(μ(n)
m ρ)N ′

πn
ϕ0

(μ(n)
m a) − J ′

πn
ϕ0

(μ(n)
m a)Nπn

ϕ0
(μ(n)

m ρ).

Thus, the natural oscillations of our plate are described by the functions

um,n(ρ, ϕ) = Rm,n(ρ)Φn(ϕ) =

=
[
Jπn

ϕ0
(μ(n)

m ρ)N ′
πn
ϕ0

(μ(n)
m a) − J ′

πn
ϕ0

(μ(n)
m a)Nπn

ϕ0
(μ(n)

m ρ)
]
cos
(

πn

ϕ0
ϕ

)
.

1.11. Boundary value problem for the Helmoltz equation
in a cylinder

Example [4, Ch. VII, no. 10]. Find the steady distribution of the concentration
of an unstable gas inside an infinite cylinder of circular section assuming that a
constant concentration u0 is maintained on the surface of the cylinder.
Solution. It is know that the problem of diffusion of an unstable gas that decom-
poses during the diffusion proces is described by the equation

Δu − κ2u = 0 (κ > 0).
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Hence, in polar coordinates the problem is formulated as⎧⎨⎩
1
ρ

∂

∂ρ

(
∂u

∂ρ

)
+

1
ρ2

∂2u

∂ϕ2
− κ2u = 0, 0 < ρ < a, 0 < ϕ < 2π,

u(a, ϕ) = u0, 0 ≤ ϕ ≤ 2π,

(1.37)

where a denotes the radius of the cylinder.
Let us seek the solution in the form u(ρ, ϕ) = R(ρ)Φ(ϕ). Substituting this

expression in equation (1.37) we obtain

1
ρ

d

dρ
(ρR′)Φ +

R

ρ2
Φ′′ − κ2RΦ = 0,

or

ρ
1
ρ

d

dρ
(ρR′)

R
− κ2ρ2 = −Φ′′

Φ
= λ.

This yields two ordinary differrential equations:

(1) Φ′′ + λΦ = 0,

and

(2) ρ
d

dρ
(ρR′) − (κ2ρ2 + λ)R = 0.

From equation (1), by using the fact that Φ(ϕ) = Φ(ϕ+π), we obtain λ = n2

(n = 0, 1, 2, . . . ) and Φn(ϕ) = An cos(nϕ) + Bn sin(nϕ), where An and Bn are
arbitrary constants.

Further, equation (2) yields

ρ2R′′ + ρR′ − (κ2ρ2 + n2)R = 0.

After the change of variables x = κρ we obtain the equation

x2 d2R

dx2
+ x

dR

dx
− (x2 + n2)R = 0.

This is recognized as being the Bessel equation of imaginary argument of
order n. Its general solution has the form

R(x) = C1In(x) + C2Kn(x),

where In(x) and Kn(x) are the cylindrical functions of imaginary argument of first
and second kind, respectively. Clearly, we must put C2 = 0 because the solution
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is required to be bounded on the axis of the cylinder (Kn(x) has a logarithmic
singularity as x → 0). Returning to the original variable we write

R(ρ) = CIn(κρ),

where C is an arbitrary constant.
Thus,

u(ρ, ϕ) =
∞∑

n=0

[An cos(nϕ) + Bn sin(nϕ)] In(κρ),

where the constants An are determined from the boundary condition. Namely, we
have

u(a, ϕ) =
∞∑

n=0

[An cos(nϕ) + Bn sin(nϕ)] In(κρ),

and since u(a, ϕ) = u0, we see that A0 = u0/I0(κa), while all the remaining terms
of the series are equal to zero. Hence, the solution is

u(ρ, ϕ) = u0
I0(κϕ)
I0(κa)

.

1.12. Boundary value problems for the Helmoltz equation in a disc
Example 1. Solve the following boundary value problem for the Helmholtz equation
in a disc: {

Δu + k2u = 0, 0 ≤ ϕ < 2π, 0 < ρ < a,

u(a, ϕ) = f(ϕ), 0 ≤ ϕ ≤ 2π;

here one assumes that k2 is not equal to any of the eigenvalues λ of the homoge-
neous Dirichlet problem for the equation Δu + λu = 0.
Solution. Using again separation of variables, we write u(ρ, ϕ) = R(ρ)Φ(ϕ), which
upon substitution in the Helmoltz equation yields

1
ρ

d

dρ
(ρR′) · Φ + R

1
ρ2

Φ′′ + k2RΦ = 0.

Hence,

ρ
d

dρ
(ρR′)

R
+ k2ρ2 = −Φ′′

Φ
= λ,

where λ is the separation constant.
The eigenvalues and corresponding eigenfunctions are obtained as the solu-

tions of the already familiar problem{
Φ′′ + λΦ = 0, −∞ < ϕ < ∞,

Φ(ϕ) = Φ(ϕ + 2π).
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Hence, λ = n2 and Φn(ϕ) = C1 cos(nϕ) + C2 sin(nϕ), n = 0, 1, 2, . . . . Since

ρ
d

dρ
(ρR′)

R
+ k2ρ2 = λ,

we obtain the following equation for the determination of R(ρ):

ρ
d

dρ
(ρR′) + (k2ρ2 − n2)R = 0. (1.38)

Denoting x = kρ, we rewrite (1.38) in the form

x2 d2R

dx2
+ x

dR

dx
+ (x2 − n2)R = 0.

This is the Bessel equation of order n and has the general solution

R(x) = C1Jn(x) + C2Yn(x),

where Jn(x) and Yn(x) are the nth order Bessel functions of the first and second
kind, respectively, and C1, C2 are arbitrary constants.

Therefore, the solution of equation (1.38) has the form

R(ρ) = C1Jn(kρ) + C2Yn(kρ).

Since Yn(kρ) → ∞ as ρ → 0 and we are interested in bounded solutions, we mus
take C2 = 0. Thus, Rn(ρ) = Jn(kρ) and the solution of our problem is represented
as a series

u(ρ, ϕ) =
∞∑

n=0

[An cos(nϕ) + Bn sin(nϕ)] Jn(kρ). (1.39)

The constants An and Bn are found from the boundary conditions. Setting
ρ = a in (1.39), we obtain

f(ϕ) =
∞∑

n=0

[An cos(nϕ) + Bn sin(nϕ)] Jn(ka),

whence

An =
1

2πJn(ka)

∫ 2π

0

f(ϕ) cos(nϕ) dϕ, n = 0, 1, . . . ,

and

Bn =
1

2πJn(ka)

∫ 2π

0

f(ϕ) sin(nϕ) dϕ, n = 1, 2, . . . .
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In particular, if f(ϕ) = A sin(3ϕ), we have

B3 =
A

J3(ka)
, An = 0, n = 0, 1, . . . ; Bn = 0, n �= 3,

and the solution has the expression

u(ρ, ϕ) =
A

J3(ka)
J3(kρ) sin(3ϕ).

Problem 2. Solve the following Dirichlet problem for the Helmoltz equation:⎧⎪⎨⎪⎩
Δu + k2u = 0, 0 ≤ ϕ < 2π, ρ > a,

u|ρ=a = f(ϕ), 0 ≤ ϕ ≤ 2π,

uρ + ikρ = o(ρ−1/2) as ρ → ∞.

Solution. Here, as in the preceding example, we will use separation of variables to
find the solution. The only difference is that in the present case, in order to make
the solution unique, we must impose for n = 2 the radiation condition (Sommerfeld
condition)

∂u

∂ρ
+ ikρ = o(ρ−1/2), ρ → ∞.

The solution of problem (1.38) takes now . the form

R(ρ) = C1H
(1)
n (kρ) + C2H

(2)
n (kρ),

where H
(1)
n (x) and H

(2)
n (x) are the Hankel functions of index n of the first and

second kind, respectively. The behavior of the Hankel functions at infinity ρ → ∞)
is given by the asymptotic formulas

H(1)
n (x) ∼

√
2

πx
ei(x−πn

2 −π
4 )
[
1 + O

(
1
x

)]
,

and

H(2)
n (x) ∼

√
2

πx
e−i(x−πn

2 −π
4 )
[
1 + O

(
1
x

)]
.

It readily checked directly that the radiation condition is satsified by the function
H

(2)
n (kρ).

We see that the solution of the above exterior Dirichlet problem for the the
Helmholtz equation is given by the series

u(ρ, ϕ) =
∞∑

n=0

[An cos(nϕ) + Bn sin(ϕ)] H(2)
n (kρ),

where the coefficients An and Bn are given by the formulas

An =
1

2πH
(2)
n (ka)

∫ 2π

0

f(ϕ) cos(nϕ) dϕ, n = 0, 1, . . .

and

An =
1

2πH
(2)
n (ka)

∫ 2π

0

f(ϕ) sin(nϕ) dϕ, n = 1, 2, . . .
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1.13. Boundary value problems for the Helmoltz equation in a ball

Let us consider several examples of solutions for the interior and exterior Dirichlet
and Neumann boundary value problems in a ball.

Example 1 [4, Ch. VII, no. 12]. Find the steady distribution of the concentration
of an unstable gas inside a sphere of radius a if on the surface of the sphere one
maintains the concentration u|∂Ω = u0 cos θ (u0 =const).

Solution. The problem is formulated mathematically as follows:⎧⎪⎪⎪⎨⎪⎪⎪⎩
1
ρ2

∂

∂ρ

(
ρ2 ∂u

∂ρ

)
+

1
ρ2 sin θ

∂

∂θ

(
sin θ

∂u

∂θ

)
− κ2u = 0,

0 < ρ < a, 0 < θ < π,

u(a, θ) = u0 cos θ, 0 ≤ θ ≤ π.

(1.40)

As before, let us seek the solution in the form

u(ρ, θ) = R(ρ)T (θ).

Substituting this expression in equation (1.40) we obtain

1
ρ2

∂

∂ρ
(ρ2R′) · T +

1
ρ2

1
sin θ

R · ∂

∂θ
(sin θ · T ′) − κ2RT = 0

whence, upon dividing both sides by RT ,

∂

∂ρ
(ρ2R′)

R
− κ2ρ2 = −

1
sin θ

∂

∂θ
(sin θ · T ′)

T
= λ.

This yields two ordinary differential equations:

(1)
d

dρ
(ρ2R′) − (κ2ρ2 + λ)R = 0,

and

(2)
1

sin θ

∂

∂θ
(sin θ · T ′) + λT = 0.

Performing the change of variables x = cos θ in equation (2) (and using the
conditions |T (0)| < ∞, |T (π)| < ∞), we find the eigenvalues and eigenfunctions

λn = n(n + 1), Tn(θ) = Pn(cos θ), n = 0, 1 . . . ,

where Pn(x) are the Legendre polynomials.
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Equation (1) is readily reduced, via the substitution v(ρ) =
√

ρR(ρ), to the
form (for each n)

ρ2v′′ + ρv′ −
[
(κρ)2 +

(
n +

1
2

)2 ]
v = 0.

The corresponding bounded solutions of this equations are

vn(ρ) = CIn+1/2(κρ),

where In+1/2(x) are the Bessel functions of half-integer order and imaginary ar-
gument. Then

Rn(ρ) =
In+1/2(κρ)√

ρ
.

Therefore, the solution of our problem is given by the series

u(ρ, θ) =
∞∑

n=0

Cn

In+1/2(κρ)√
ρ

Pn(cos θ),

where the constants Cn are determined from the boundary conditions. Specifically,

u0 cos θ =
∞∑

n=0

Cn

In+1/2(κa)√
a

Pn(cos θ).

This yields C1 = u0
√

a/I3/2(κa) (the remaining coefficients are equal to zero).
Finally,

u(ρ, θ) = u0

√
a√
ρ

I3/2(κρ)
I3/2(κa)

cos θ.

Example 2 [6, Ch. IV, 18.51]. Solve the Neumann problem for the equation Δu +
k2u = 0 in the interior as well as in the exterior of the sphere ρ = R, under the
condition ∂u/∂n|ρ=R = A, where A is a constant.
Solution. (a) The interior Neumann problem can be written as follows:

1
ρ2

∂

∂ρ

(
ρ2 ∂u

∂ρ

)
+ k2u = 0, 0 < ρ < R, 0 < θ < π, 0 ≤ ϕ < 2π, (1.41)

∂u

∂n

∣∣∣∣
ρ=R

= A, 0 ≤ θ ≤ π, 0 ≤ ϕ < 2π. (1.42)

Since 1
ρ2

∂
∂ρ

(
ρ2 ∂u

∂ρ

)
= (ρu)′′, equation (1.41) can be recast as

v′′ + k2v = 0, v(ρ) = ρu(ρ).
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The general solution of this equation is

v(ρ) = C1 cos(kρ) + C2 sin(kρ),

and consequently

u(ρ) = C1
cos(kρ)

ρ
+ C2

sin(kρ)
ρ

.

Since the solution must be bounded at the center of the ball, we must put C1 = 0,
and so

u(ρ) = C
sin(kρ)

ρ
.

Now let us calculate the normal derivative:

∂u

∂n
=

∂u

∂ρ
= C

k cos(kρ) · ρ − sin(kρ)
ρ2

.

Further, using the boundary condition (1.42) we obtain

C
Rk cos(kR) − sin(kR)

R2
= A,

whence

C =
AR2

kR cos(kR) − sin(kR)
.

We conclude that the solution of the interior problem has the form

u(ρ) =
AR2

kR cos(kR) − sin(kR)
· sin(kρ)

ρ
.

(b) The exterior Neumann problem reads:

1
ρ2

∂

∂ρ

(
ρ2 ∂u

∂ρ

)
+ k2u = 0, ρ > R, 0 ≤ θ ≤ π, 0 ≤ ϕ < 2π, (1.43)

∂u

∂n

∣∣∣∣
ρ=R

= A, 0 ≤ θ ≤ π, 0 ≤ ϕ < 2π, (1.44)

uρ − iku = o(ρ−1) as ρ → ∞. (1.45)

As in item (a), equation (1.43) can be recast as

v′′ + k2v = 0, v(ρ) = ρu(ρ).

The general solution of this equation is

v(ρ) = C1e
ikρ + C2e

−ikρ, ρ → ∞.
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Therefore,

u(ρ) = C1
eikρ

ρ
+ C2

e−ikρ

ρ
.

Let us verify that the function u1(ρ) = eikρ

ρ satisfies the Sommerfeld condition

∂u1

∂ρ
− iku1 = o(ρ−1) (ρ → ∞),

i.e., that

lim
ρ→∞

[
ρ

(
∂u

∂ρ
− iku1

)]
= 0.

Indeed,

ρ

(
∂u

∂ρ
− iku1

)
= ρ

(
iku1 − 1

ρ
u1 − iku1

)
= −eikρ

ρ
and

∣∣∣∣eikρ

ρ

∣∣∣∣ ≤ 1
ρ
.

It follows that to pick a unique solution we must set C2 = 0, and then u(ρ) = C eikρ

ρ .
Now let us calculate the normal derivative:

∂u

∂n
= −∂u

∂ρ
= − ∂

∂ρ

(
C

eikρ

ρ

)
.

We have
∂u

∂n
=

Ceikρ

ρ2
(1 − ikρ),

and the boundary condition (1.44) yields

C =
AR2

eikR(1 − ikR)
.

Thus, the solution of the exterior Neumann problem is given by the formula

u(ρ) =
AR2

eikR(1 − ikR)
eikρ

ρ
.

Example 3 [6, Ch. V, 18.53]. Solve the Dirichlet problem for the equation Δu −
k2u = 0 in the interior and in the exterior of the sphere of radius ρ = R with the
condition u|ρ=R = A, where A is a constant.
Solution. (a) First let us solve the interior Dirichlet problem{

Δu − k2u = 0, 0 < ρ < R, 0 < θ < π, 0 ≤ ϕ < 2π,

u|ρ=R = A, 0 ≤ θ ≤ π, 0 ≤ ϕ < 2π.
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By analogy with Example 2, we must solve the equation v′′ − k2v = 0, where
v(ρ) = ρu(ρ), which has the general solution

v(ρ) = C1 sinh(kρ) + C2 cosh(kρ).

Therefore,

u(ρ) = C1
sinh(kρ)

ρ
+ C2

cosh(kρ)
ρ

.

where C1 and C2 are arbitrary constants.

Note that cosh(kρ)/ρ → ∞ as ρ → 0. Hence, we must put C2 = 0, and the
solution has the expression

u(ρ) = C
sinh(kρ)

ρ
.

The constant C is determined from the boundary condition u(R) = A, i.e.,
C sinh(kR)/R = A, which yields C = AR/ sinh(kR). We conclude that the solu-
tion of our problem is

u(ρ) = A
R

ρ

sinh(kρ)
sinh(kR)

.

(b) Now let us solve the exterior Dirichlet problem

⎧⎪⎨⎪⎩
Δu − k2u = 0, ρ > R, 0 < θ < π, 0 ≤ ϕ < 2π,

u|ρ=R = A, 0 ≤ θ ≤ π, 0 ≤ ϕ < 2π,

u(ρ) → 0 as ρ → ∞.

In this case

u(ρ) = C1
ekρ

ρ
+ C2

e−kρ

ρ
.

Since the solution of the exterior problem must satisfy u(ρ) → 0 when ρ → ∞, we
must put C1 = 0. Therefore,

u(ρ) = C
e−kρ

ρ
.

The boundary condition u|ρ=R = A yields C = AR/e−kR. We conclude that the
solution of our problem is

u(ρ) = A
R

ρ

e−kρ

e−kR
.
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1.14. Guided electromagnetic waves
In this section we will conisder problem connected with steady processes of prop-
agation of electromagnetic waves in systems that have the property of producing
conditions under which waves propagate essentially in a given direction. Such waves
are know as guided waves, and the systems that guide them are called waveguides.

The basic tool that we will use to simplify the analysis of such problems is
the representation of elecctromagnetic waves as a superposition of waves of several
types.

Let us assume that the x3-axis coincides with the direction of wave prop-
agation. The electromagnetic field of the wave is described by six components,
E1, E2, E3, H1, H2, H3, of the electric and magnetic field vectors. Let us write
them in matrix form:

A =
[

0 E2 0
H1 0 H3

]
, B =

[
E1 0 E3

0 H2 0

]
.

It is clear that the electric field vector (0, E2, 0) is orthogonal to the direction
of propagation of the wave, whereas the magnetic field vector (H1, 0,H2) has a
nonzero component along that direction. In the matrix B the vector (E1, 0, E3) has
a nonzero component along the x3-axis, whereas the vector (0,H2, 0) is orthogonal
to the x3-axis. In connection with this circumstance the waves characterized by
the matrix A are referred to as transversally-electric (TE-waves), while those char-
acterized by the matrix B are referred to as transversally-magnetic (TM-waves).

It is convenient to consider that an electromagnetic wave is a TE-wave [resp.,
TM-wave] if E3 = 0 [resp., H3 = 0].

There exists also waves of a third type, characterized by the matrix

C =
[

E1 E2 0
H1 H2 0

]
.

These are called transversally- electromagnetic waves, or TEM-waves.

Example. TM-waves in a waveguide of circular cross section.
Let us consider the propagation of TM-waves in an infinitely long cylinder

of radius a. It is known that this problem is connected with the solvability of the
following Dirichlet problem for the Helmholtz equation:⎧⎨⎩

1
ρ

∂

∂ρ

(
ρ

∂E3

∂ρ

)
+

1
ρ2

∂2E3

∂ϕ2
+ δ2E3 = 0, 0 < ρ < a, 0 ≤ ϕ < 2π,

E3(a, ϕ) = 0, 0 ≤ ϕ ≤ 2π,

where δ2 is a real constant.
Separating the variables by means of the substitution E3 = R(ρ)Φ(ϕ), we

arrive at the equations {
Φ′′ + λΦ = 0,

ρ2R′′ + ρR′ + (δ2ρ2 − λ)R = 0,
(1.46)
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where λ is the separation constant. Since Φ(ϕ) = Φ(ϕ+2π), it follows that λ = n2,
n = 0, 1, 2, . . .

The change of variables x = δρ takes the second equation in(1.46) into the
Bessel equation of order n in the new variable x. Since |R(0)| < ∞ and R(a) = 0,
we have

R(ρ) = Jn(δnmρ).

Here δnm = μnm/a, where μnm is the mth positive root of the nth order Bessel
function Jn(x).

Therefore, our problem admits the following particular solutions:

E3,nm = Jn(δnmρ) [Anm cos(nϕ) + Bnm sin(nϕ)] ,

where Anm and Bnm are arbitrary constants. Each of these solutions corresponds to
a certain TM-wave, which can propagate without damping in the given waveguide.

Remark 1. The propagation of a TE-wave in an infinitely long cylinder is associated
with the solvability of the Neumann problem for the Helmoltz equation:⎧⎪⎪⎨⎪⎪⎩

1
ρ

∂

∂ρ

(
ρ

∂H3

∂ρ

)
+

1
ρ2

∂2H3

∂ϕ2
+ δ2H3 = 0, 0 < ρ < a, 0 ≤ ϕ < 2π,

∂H3

∂�n
(a, ϕ) = 0, 0 ≤ ϕ ≤ 2π;

here �n is the unit outer normal of the cylindrical waveguide.
By analogy with the preceding example, we obtain

H3,nm = Jn(δnmρ) [Anm cos(nϕ) + Bnm sin(nϕ)] ,

where now δnm = λnm/a, with λnm being the mth positive root of the equation
dJn(x)/dx = 0, n = 0, 1, 2, . . .

Remark. 2 If the component E3 (or H3) is known, then the other components of
the electric and magnetic field vectors can be found by only one differentiation
(this follows from the Maxwell equations for the electromagnetic field).

1.15. The method of conformal mappings
(for the solution of boundary value problems in the plane)

Methods of the theory of functions of a complex variables found wide and effec-
tive application in solving a large number of mathematical problems that arise
in various fields of science. In particular, in many cases the application of com-
plex functions yields simple methods for solving boundary value problems for the
Laplace equation. This is the result of the intimate connection between analytic
functions of a complex variable and harmonic functions of two real variables, and
also of the invariance of the Laplace equation under conformal mappings.
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Suppose one wants to solve the Laplace equation uxx + uyy = 0 with some
boundary condition in a domain of complicated shape in the plane of the variables
x, y. This boundary value problem can be transformed into a new boundary value
problem, in which one is required to solve the Laplace quation ũξξ + ũηη = 0 in a
simpler domain of the variables ξ, η, and such that the second domain is obtained
from the first one via a comformal mapping ζ = f(z), where z = x+ iy, ζ = ξ+ iη,
and ũ(ζ) = u(z) for ζ = f(z) (Figure 1.6).

Domain
of complex
shape
uxx + uyy = 0 Conformal

mapping

Original boundary
condition

x

y

0 0 ξ

η

Domain
of simple
shape

ξξ + ηη = 0

New bounary
condition

ũ ũ

Figure 1.6.

Once the solution ũ(ξ, η) of the Laplace equation in a simple domain (disc,
half-space, rectangle) is found, it suffices to substitute in that solution the expres-
sions ξ = ξ(x, y), η = η(x, y) in order to obtain the solution u(x, y) of the original
problem, expressed in the original variables.

Let us give several examples to show how to solve boundary value problems
for the Laplace equation (in the plane) by means of conformal mappings.

Example 1 [6, Ch. V, 17.13(4)]. Find the solution of the equation Δu = 0 in the first
quadrant x > 0, y > 0, with the boundary conditions u|x=0 = 0, u|y=0 = θ(x− 1),
where θ(x) = 1 if x > 0, θ(x) = 0 if x ≤ 0 is the Heaviside function.

ζ = z2

x

y

0 11

2
2

3

3
4

4
z = x + iy

π
6

η

ξ

ζ = ξ + iη

π
3

Figure 1.7.
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Solution. Clearly, the function ζ = z2, defined in the first quadrant of the complex
z-plane, maps this domain into the entire half-plane η > 0 of the complex ζ-plane
(Figure 1.7), in such a manner that:

the positive x-semiaxis is mapped into the positive real ξ-semiaxis;
the positive y-semiaxis is mapped into the negative real ξ-semiaxis.
Thus, we arrive at the following conclusion:

Boundary value problem

in the plane (x, y)⎧⎪⎪⎨⎪⎪⎩
Δu = 0, x > 0, y > 0,

u|x=0 = 0, y ≥ 0,

u|y=0 = θ(x − 1), x ≥ 0,

−→

Boundary value problem

in the plane (ξ, η)⎧⎪⎨⎪⎩
Δũ = 0, η > 0,

ũ|η=0 =
{

1 if ξ > 1,
0 if ξ < 1.

Notice also that from the equality ζ = z2, i.e., ξ + iη = (x + iy)2, it follows
that ξ = x2 − y2 and η = 2xy.

The solution of the Dirichlet problem in the (ξ, η)- plane is given by the
Poisson integral

ũ(ξ, η) =
η

π

∫ ∞

−∞

ũ(t, 0) dt

(t − ξ)2 + η2
.

Imposing the boundary condition on ũ(ξ, 0), we obtain

ũ(ξ, η) =
η

π

∫ ∞

−∞

dt

(t − ξ)2 + η2
=

1
π

arctan
t − ξ

η

∣∣∣∣∞
1

=

=
1
π

(
π

2
− arctan

1 − ξ

η

)
=

1
2
− 1

π
arctan

1 − ξ

η
.

If we now write x2 − y2 instead of ξ and 2xy instead of η, we obtain the solution
of the original problem in the form

u(x, y) =
1
2
− 1

π
arctan

y2 − x2 + 1
2xy

.

Example 2 [6, Ch. V, 17.14(2)]. Find the solution of the Dirichlet problem for
the equation Δu = 0 in the strip 0 < y < π, with the boundary conditions
u|y=0 = θ(x), u|y=π = 0.
Solution. The complex function ζ = ez, defined in the strip 0 < y < π, maps this
strip into the entire half-plane η > 0 of the complex ζ-plane (Figure 1.8), in such
a manner that:

the positive x-semiaxis is mapped into the positive ξ-semiaxis [1,∞);
the negative x-semiaxis is mapper into the interval (0, 1);
the line y = π is mapped into the negative ξ-semiaxis.
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0 x

y

u = θ(x)

Δu = 0

z = x + iy
π ζ = ez

η

ξũ = 0 ũ = 1
1

Δũ = 0

ζ = ξ + iη

Figure 1.8.

Thus, we arrive at the following conclusion:

Boundary value problem

in the plane (x, y)⎧⎪⎪⎨⎪⎪⎩
Δu = 0, −∞ < x < ∞, 0 < y < π,

u|y=0 = θ(x), −∞ < x < ∞,

u|y=π = 0, −∞ < x < ∞,

−→

Boundary value problem

in the plane (ξ, η)⎧⎪⎨⎪⎩
Δũ = 0, η > 0,

ũ|η=0 =
{

1 if ξ > 1,
0 if ξ < 1.

Notice also that ξ = ex cos y and η = ex sin y. As in Example 1, we have

ũ(ξ, η) =
1
2
− 1

π
arctan

1 − ξ

η
,

and so the solution has the form

u(x, y) =
1
2
− 1

π
arctan

e−x − cos y

sin y
.

Example 3 [6, Ch. V, 17.18]. Find the solution of the Dirichlet problem{
Δu = 0, Re z > 0, |z − 5| > 3,

u|Re z=0 = 0, u||z−5|=3 = 1.

Solution. First let us draw the domain D where we must solve the Dirichlet problem
(Figure 1.9). It can be regarded as a eccentric annulus (indeed, a line is a circle of
infinite radius). Let us find a conformal mapping of D onto a concentric annulus.
To this purpose let us find two points that are simultaneously symmetric with
respect to the line Re z = 0 and with respect to the circle |z−5| = 3. Clearly, such
points must lie on the common perpendicular to the line and the circle, i.e., on
the real axis. From the symmetry with respect to the line Re z = 0 it follows that
these are precisely the points x1 = a and x2 = −a with a > 0. The symmetry with
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Figure 1.9. Figure 1.10

respect to the circle |z − 5| = 3 translates into the equation (5 + a)(5 − a) = 9,
which yields a = 4.

Let us show that the conformal transformation we are seeking is given by the
linear-fractional function

ζ =
z − 4
z + 4

. (1.47)

Indeed, this mapping takes the line Re z = 0 into a circle γ. Since symmetry must
be preserved, the points z1 = 4 and z2 = −4 are taken into the points ζ = 0
and ζ =∞, respectively, which are symmetric with respect to the circle γ. Hence,
ζ = 0 is the center of γ. Further, since the point z = 0 is taken into the point
ζ = 1, γ is the circle |ζ| = 1 (Figure 1.10).

Now let us show than under the above mapping the circle |z−5| = 3 goes into
the circle |ζ| = 1/3. Indeed, the linear-fractional-transformation (1.47) takes the
circle |z − 5| = 3 into a circle, of radius |ζ| = |(2− 4)/(2 + 4)| = 1/3. We see that
(1.47) maps the domain D conformally onto the concentric annulus 1

3 < |ζ| < 1.
We conclude that the given boundary value problem in the plane (x, y)

∆u = 0, Re z > 0, |z − 5| = 3,

u|Re z=0 = 0,

u||z−5|=3 = 1,

is transformed into the following boundary value problem in the plane (ξ, η):

∆ũ = 0,
1
3
< |ζ| < 1, (1.48)

ũ||ζ|=1 = 0, ũ||ζ|= 1
3
= 1. (1.49)
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Let us solve the problem in the annulus 1/3 < |ζ| < 1 (in the plane (ξ, η)).
Since the boundary conditions (1.49) do not depend on the polar angle ϕ, it is
natural to assume that the solution ũ(ζ) depends only on the variable ρ (here
ξ = ρ cos ϕ, η = ρ sinϕ). To find this solution, we rewrite the equation Δũ in the
form ∂

∂ρ

(
ρ ∂ũ

∂ρ

)
= 0. The general solution of this equation is

ũ(ζ) = c1 + c2 ln ρ,

where c1 and c2 are arbitrary constants. Imposing the conditions (1.49), we obtain
c1 = 0, c2 = −1/ ln 3. Therefore,

ũ(ζ) = − 1
ln 3

ln |ζ|, because ρ = |ζ|.

To find the solution of the original problem it suffices to return to the variable z,
using (1.47), which finally yields

u(z) =
1

ln 3
ln
∣∣∣∣z + 4
z − 4

∣∣∣∣ .
1.16. The Green function method
Definition of the Green function. Let us consider the boundary value problem⎧⎨⎩

Δu = f in the domain Ω,(
α1u + α2

∂u

∂n

)
= g on the boundary ∂Ω.

(1.50)

We shall assume that the function u(x) is continuous together with it first-
order derivatives in the closed domain Ω ⊂ Rn, bounded by a sufficiently smooth
hypersurface ∂Ω, and has second-order derivatives that are square integrable in
Ω. Here �n is the outward unit normal to ∂Ω and α1, α2 are given real numbers
satisfying α2

1 + α2
2 �= 0; x = (x1, . . . , xn).

The Green function method for solving such problems consists in the follow-
ing. First we solve the auxiliary problem (see [1])⎧⎪⎨⎪⎩

ΔG = −δ(x, x0), x0 ∈ Ω,(
α1G + α2

∂G

∂n

)∣∣∣∣
∂Ω

= 0,
(1.51)

where δ = δ(x, x0) is the δ-function, which can formally be defined by the relations

δ(x, x0) =
{

0, if x �= x0,
∞, if x = x0,

,

∫
Ω

δ(x, x0)dx =
{

1, if x0 ∈ Ω,
0, if x0 /∈ Ω,
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where x0 = (x01, . . . , xn0) (the notation dx is obvious). The main property of the
δ-function is expressed by the equality∫

Ω

δ(x, x0)f(x)dx =
{

f(x0), if x0 ∈ Ω,
0, if x0 /∈ Ω,

where f(x) is an arbitrary continuous function of the point x.

Definition. The solution of problem (1.51) is called the Green function of problem
(1.50).

We will require that the Green function G(x, x0) be continuous (together
with its first-order partial derivatives) everywhere in the closed domain Ω, except
for the point x0, at which G(x, x0) may have a singularity.

Once the function G(x, x0) is found, one can use it to easily find the solution
of the original problem (1.50). To that end we will use the second Green formula∫

Ω

(vΔu − uΔv)dx =
∫

∂Ω

(
v

∂u

∂n
− u

∂v

∂n

)
ds. (1.52)

This formula is readily obtained from the Gauss-Ostrogradskĭı formula∫
∂Ω

(�a, �n)ds =
∫

Ω

div�a dx

(where �a is a vector field and (�a, �n) denotes the scalar product of the vectors �a
and �n) if one puts successively �a = v∇u and �a = u∇v and subtract the results
from one another. Indeed, we have∫

∂Ω

v(∇u, �n)ds =
∫

Ω

div(v∇u)dx, (1.53)

and ∫
∂Ω

u(∇v, �n)ds =
∫

Ω

div(u∇v)dx. (1.54)

Since (∇u, �n) = ∂u/∂n, (∇v, �n) = ∂v/∂n, div(v∇u) = (∇u,∇v) + vΔu and
div(u∇u) = (∇u,∇v) + uΔv, subtracting (1.54) from (1.53) we get the second
Green formula.

Now let us put v = G in (1.52). Then, since Δu = f(x) and ΔG = −δ(x, x0),
we obtain∫

Ω

G(x, x0)f(x)dx +
∫

Ω

u(x)δ(x, x0)dx =
∫

∂Ω

(
G

∂u

∂n
− u

∂G

∂n

)
ds.

But, by the main property of the δ-function,∫
Ω

u(x)δ(x, x0)dx = u(x0),
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and so the last equality yields

u(x0) =
∫

∂Ω

(
G

∂u

∂n
− u

∂G

∂n

)
ds −

∫
Ω

G(x, x0)f(x)dx.

From this formula we obtain:
(a) the solution of the Dirichlet problem for

α1 = 1, α2 = 0, G|∂Ω = 0, u|∂Ω = g

in the form
u(x0) = −

∫
∂Ω

g
∂G

∂n
ds −

∫
Ω

G(x, x0)f(x)dx;

(b) the solution of the Neumann problem for

α1 = 0, α2 = 1,
∂G

∂n

∣∣∣∣
∂Ω

= 0,
∂u

∂n

∣∣∣∣
∂Ω

= g

in the form
u(x0) =

∫
∂Ω

Gg ds −
∫

∂Ω

G(x, x0)f(x)dx.

Remark 1. The integral ∫
∂Ω

G(x, x0)f(x)dx

admits the following physical interpretation: the right-hand side of the equation is
regarded as an external action on the system and is decomposed into a continual
contribution of source distributed over the domain Ω. Then one finds the response
of the system to each such source and one sums all these responses.

Construction of the Green function. One of the methods for constructing the Green
function is the reflection method . For example, the Green function for the Poisson
equation in the case of the half-space (z > 0) has the form

G(M,M0) =
1

4πRMM0

− 1
4πRMM1

,

where RAB denotes the distance between the points A and B, M0(x0, y0, z0) is a
point lying in the uper half-plane z > 0, M1(x0, y0,−z0) is the point symmetric
to M0(x0, y0, z0) with respect to the plane z = 0, and M(x, y, z) is an arbitrary
point of the half-plane z > 0.

Physically the Green function can be interpreted as the potential of the field
produced by point-like charges placed at the point M0 (over the grounded plane
z = 0) and the point M1 (Figure 1.11).
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x

y

z

0

M1(x0, y0,−z0)

M0(x0, y0, z0)

M(x, y, z)
RMM0

RMM1

Figure 1.11. The potential at the point M(x, y, z) equals
G(M,M0) = 1

4πRMM0
− 1

4πRMM1

(z = 0 is a grounded conducting plane)

Notice that in the case of a half-plane (y > 0) the Green function has the
form (Figure 1.12)

G(M,M0) =
1
2π

ln
1

RMM0

− 1
2π

ln
1

RMM1

.

0 x

y

M0(x0, y0)

M(x, y)

M1(x0,−y0)

Figure 1.12. The potential at the point M(x, y) equals
G(M,M0) = 1

2π ln 1
RMM0

− 1
2π ln 1

RMM1
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Examples of problems solved by means of the Green function. Suppose we want
to solve the Dirichlet problem for the Laplace equation in a half-plane{Δu = 0, −∞ < x < ∞, y > 0,

u(x, 0) = f(x), −∞ < x < ∞.

The solution of this problem is

u(x, y) = − y

π

∫ ∞

−∞
f(s)

∂G

∂t

∣∣∣∣
t=0

ds

(we put M0 = M0(x, y), M = M(s, t)), where

G(x, y; s, t) =
1
2π

1√
(x − s)2 + (y − t)2

− 1
2π

1√
(x − s)2 + (y + t)2

.

Calculating ∂G/∂t|t=0, we obtain

u(x, y) =
y

π

∫ ∞

−∞

f(s)
(s − x)2 + y2

ds. (1.55)

Example 1 [3, no. 244]. Find a function u(x, y), harmonic in the half-plane y > 0,
if it is known that

u(x, 0) =
x

x2 + 1
.

Solution. We must calculate the integral

u(x, y) =
y

π

∫ ∞

−∞

s

(1 + s2)[(s − x)2 + y2]
ds.

Apparently, the easiest way to do this is to use the method of residues, namely,
the following formula:∫ ∞

−∞

s

(1 + s2)[(s − x)2 + y2]
ds = 2πi[res[f(z)]z=i + res[f(z)]z=x+iy,

where f(z) = z/
(
(1 + z2)[(z − x)2 + y2]

)
.

Since

res[f ]z=i =
1

2[(i − x)2 + y2]
, res[f(z)]z=x+iy =

x + iy

2iy[1 + (x + iy)2]
,

it follows that

y

π

∫ ∞

−∞

s

(1 + s2)[(s − x)2 + y2]
ds =

iy

[(i − x)2 + y2]
+

x + iy

[1 + (x + iy)2]
=

=
iy

[(i − x) + iy][(i − x) − iy]
+

x + iy

(x + iy − 1)(x + iy + 1)
=
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=
1
2

[
1

i − x − iy
− 1

i − x + iy

]
+

1
2

[
1

x + iy − 1
+

1
x + iy + 1

]
=

=
1
2

[
1

i(1 − y) − x
− 1

i(1 + y) − x
+

1
i(y − 1) + x

+
1

i(1 + y) + x

]
=

=
1
2

[
1

i(1 + y) + x
− 1

i(1 + y) − x

]
=

=
1
2

[
x − i(1 + y)
x2 + (1 + y)2

+
x + i(1 + y)
x2 + (1 + y)2

]
=

x

x2 + (1 + y)2
.

Therefore, the solution of the problem is given by

u(x, y) =
x

x2 + (1 + y)2
.

Remark 2. The solution of the problem considered above,⎧⎨⎩
Δu = 0, −∞ < x < ∞, y > 0,

u|y=0 =
x

x2 + 1
,

can also be obtained without resorting to the Green function.
Indeed, one can use the fact that the function u = 1

2π ln 1√
x2+(y+a)2

, where

a ≥ 0, is a solution of the Laplace equation in the upper half-plane y > 0, i.e.,

Δ ln
1√

x2 + (y + a)2
= 0.

Differentiating this equality with respect to x, we obtain

∂

∂x
Δln

1√
x2 + (y + a)2

= 0, or Δ
∂

∂x
ln

1√
x2 + (y + a)2

= 0,

i.e., Δ(x/r2) = 0, where r =
√

x2 + y2.
Thus, the function u = x/[x2 +(y + a)2] is harmonic in the upper half-plane.

Imposing the boundary condition, we conclude that the solution of our Dirichlet
problem is the function

u(x, y) =
x

x2 + (y + 1)2
.

Example 2 [6, Ch. V, 17.4(2)]. Find the solution of the Dirichlet problem{Δu = 0, −∞ < x, y < ∞, z > 0,

u|z=0 = cos x cos y, −∞ < x, y < ∞.
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Solution. It is known that the harmonic function we are asked to find is given by
formula

u(x, y, z) =
z

2π

∞∫∫
−∞

cos ξ cos η dξ dη

[(ξ − x)2 + (η − y)2 + z2]3/2
.

To calculate this integral we will make change the variables ξ − x = u, η − y = v,
the Jacobian of which is 1. We obtain

u(x, y, z) =
z

2π

∞∫∫
−∞

cos(u + x) cos(v + y) du dv

(u2 + v2 + z2)3/2
=

=
z

2π

∞∫∫
−∞

(cos u cosx − sinu sinx)(cos v cos y − sin v sin y) du dv

(u2 + v2 + z2)3/2
=

=
z

2π
cos x cos y

∞∫∫
−∞

cos u cos v du dv

(u2 + v2 + z2)3/2

because the other three integrals vanish thanks to the fact that their integrands
are odd functions.

Now let us calculate the integral

J =

∞∫∫
−∞

cos u cos v du dv

(u2 + v2 + z2)3/2
=

=

∞∫∫
−∞

[cos(u + v) + sinu sin v]du dv

(u2 + v2 + z2)3/2
=

∞∫∫
−∞

cos(u + v) du dv

(u2 + v2 + z2)3/2
,

because the other integral is equal to zero.
Let us make the change of variables

p =
1√
2
(u + v), q =

1√
2
(u − v),

which correspond to a counter-clockwise rotation of the plane by 45◦. Then we
have

∞∫∫
−∞

cos(
√

2p) dp dq

(p2 + q2 + z2)3/2
=
∫ ∞

−∞
cos(

√
2p) dp

∫ ∞

−∞

dq

(p2 + q2 + z2)3/2
.
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But the substitution q =
√

p2 + z2 tan t transforms the integral

J1 =
∫ ∞

−∞

dq

(p2 + q2 + z2)3/2

into

J1 =
∫ π/2

−π/2

| cos t|
p2 + z2

dt =
2

p2 + z2
.

Finally, the resulting integral

J = 2
∫ ∞

−∞

cos(
√

2p) dp

p2 + z2

is calculated using the Cauchy residue theorem as follows:

J = 2Re
∫ ∞

−∞

ei
√

2pdp

p2 + z2
= 4πi res

[
ei

√
2p

p2 + z2

]
p=zi

=

= 4πi
e−

√
2z

2zi
=

2π
z

e−
√

2z.

Therefore the solution is

u(x, y, z) = e−
√

2z cosx cos y.

Remark 3. Since y/[(t−x)2 +y2] = Re[1/(i(t− z))], where z = x+ iy, the Poisson
formula (1.55) can be recast as

u(z) = Re
1
πi

∫ ∞

−∞

u(t) dt

t − z
. (1.56)

Now let us consider the Dirichlet problem for the Laplace equation in the
half-plane Im z > 0 (i.e., for y > 0):{Δu = 0, −∞ < x < ∞, y > 0,

u|y=0 = R(x), −∞ < x < ∞,

where the rational function R(z) is real, has no poles on the real axis, and R(z) → 0
when z → ∞. By (1.56), the solution of this problem is the function

u(z) = Re
1
πi

∫ ∞

−∞

R(t) dt

t − z
.
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This integral can be calculated by using Cauchy’s residue theorem:

u(z) = −2Re
∑

Im ζk<0

res
[

R(ζ)
ζ − z

]
ζ=ζk

, (1.57)

where the residues are taken for all poles of the function R(z) in the lower half-
plane Im z < 0.

Example 3. Solve the Dirichlet problem⎧⎨⎩
Δu = 0, −∞ < x < ∞, y > 0,

u|y=0 =
k

1 + x2
, k = const, −∞ < x < ∞.

Solution. Using formula (1.57), we have

u(z) = −2Re res
[

k

(1 + ζ2)(ζ − z)

]
ζ=−i

= −2Re
k

2i(z + i)
=

k(y + 1)
x2 + (y + 1)2

.

1.17. Other methods
In this section we will consider methods for solving boundary value problems for
the biharmonic equation and the equations Δ2u = f , as well as boundary value
problemd for the Laplace and Poisson equations (without employing the Green
function).

Biharmonic equation.

Example 1. Solve the following boundary value problem in the disc {(ρ, ϕ) : 0 ≤
ρ ≤ a, 0 ≤ ϕ < 2π}:

⎧⎪⎨⎪⎩
Δ2u = 0 in the disc,

u|ρ=a = 0,
∂u

∂n

∣∣∣∣
ρ=a

= A cos ϕ on the boundary of the disc.

Here �n is the unit outward normal to the boundary of the disc.
Solution. What we have is the Dirichlet problem for the biharmonic equation. It
is known that it has a unique solution, given by the formula

u(ρ, ϕ) =
1

2πa
(ρ2 − a2)2

[
1
2

∫ 2π

0

−g dα

ρ2 + a2 − 2aρ cos(ϕ − α)
+

+
∫ 2π

0

f [a − ρ cos(ϕ − α)] dα

[ρ2 + a2 − 2aρ cos(ϕ − α)]2

]
(1.58)

(here f = u|ρ=a and g = ∂u/∂n|ρ=a.)
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In our case f = 0, g = A cos ϕ, and so the solution is

u(ρ, ϕ) =
1

2πa
(ρ2 − a2)2

(
−1

2

)∫ 2π

0

A cos αdα

ρ2 + a2 − 2aρ cos(ϕ − α)
=

= −A(ρ2 − a2)2

4πa

∫ 2π

0

cos αdα

ρ2 + a2 − 2aρ cos(ϕ − α)
,

or

u(ρ, ϕ) = − A

2a
(a2 − ρ2) · 1

2π

∫ 2π

0

(a2 − ρ2) cos α dα

ρ2 + a2 − 2aρ cos(ϕ − α)
.

To compute the last integral we remark that it yields a solution of the fol-
lowing Dirichlet problem for the Laplace equation in the disc:{Δv = 0 in the disc,

v|ρ=a = cos ϕ on the boundary of the disc.

But the solution of this problem is clearly v = ρ
a cos ϕ. Then, by the uniqueness of

the solution of the Dirichlet problem for the Laplace equation, we have the identity

1
2π

∫ 2π

0

(a2 − ρ2) cos α dα

ρ2 + a2 − 2aρ cos(ϕ − α)
=

ρ

a
cosϕ .

Therefore, the solution of our problem is

u(ρ, ϕ) =
Aρ(ρ2 − a2)

2a2
cos ϕ .

Example 2. Solve the following boundary value problem in the disc {(ρ, ϕ) : 0 ≤
ρ ≤ a, 0 ≤ ϕ < 2π}:⎧⎪⎨⎪⎩

Δ2u = 1 in the disc,

u|ρ=a = 0,
∂u

∂n

∣∣∣∣
ρ=a

= 0 on the boundary of the disc.

Solution. One can consider that the solution of the problem depends only on the
variable ρ, i.e., u = u(ρ). Next, let us remark that

Δ2u =
(

∂4

∂ρ4
+

2
ρ

∂3

∂ρ3
− 1

ρ2

∂2

∂ρ2

)
u +

1
ρ3

∂u

∂ρ
,

and so we obtain a boundary value problem for an ordinary differential equation:⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂4u

∂ρ4
+

2
ρ

∂3u

∂ρ3
− 1

ρ2

∂2u

∂ρ2
+

1
ρ3

∂u

∂ρ
= 1, 0 < ρ < a, (1.61)

u|ρ=a = 0,
du

dρ

∣∣∣∣
ρ=a

= 0. (1.62)
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Equation (1.61) can be rewritten in the form

ρ3u′′′′ + 2ρ2u′′′ − ρu′′ + u′ = ρ3.

Let us denote v = du
dρ . Then we obtain a third-order equation for the function

v = v(ρ):
ρ3v′′′ + 2ρ2v′′ − ρv′ + v = ρ3,

which is recongnized to be the well-known Euler equation. Its general solution is
given by the function

v(ρ) = C1ρ
−1 + C2ρ lnρ + Aρ +

1
16

ρ3.

We must take C1 = 0 and C2 = 0, because otherwise the function v′(ρ) would
become infinite at the center of the disc (i.e., when ρ → 0). Therefore, u′ =
Aρ + 1

16ρ3, and so

u(ρ) =
Aρ2

2
+

1
64

ρ4 + B.

The constants A and B are found from the boundary conditions (1.62). We con-
clude that the solution is

u(ρ) =
1
64

(a2 − ρ2)2,

or

u̇(ρ) =
a4

64

[
1 −
(ρ

a

)2
]2

.

Example 3. Solve the following boundary value problem in the half-plane {(x, y) :
−∞ < x < ∞, y > 0}:

Δ2u = e−2y sinx in the half-plane, (1.63)

u|y=0 = 0,
∂u

∂y

∣∣∣∣
y=0

= 0 on the boundary of the half-plane. (1.64)

Let us rewrite the equation(1.63) in the form

∂4u

∂x4
+ 2

∂4u

∂x2∂y2
+

∂4u

∂y4
= e−2y sinx. (1.65)

We shall seek for u(x, y) in the form u(x, y) = f(y) sin x, where the function
f(y) is subject to determination. Substituting this expression in equation (1.65)
we obtain

f(y) sin x + 2f ′′(y)(− sin x) + f (iv)(y) sin x = e−2y sinx,
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whence
f (iv) − 2f ′′ + f = e−2y. (1.66)

The general solution of equation (1.66) has the form

f(y) = C1e
y + C2yey + C3e

−y + C4ye−y +
1
9

e−2y.

The constants C1 and C2 are equal to zero: otherwise, f(y) → ∞ as y → ∞.
Hence,

f(y) = C3e
−y + C4ye−y +

1
9

e−2y.

The constants C3 and C4 are found from the boundary conditions (1.64), which
translate into f(0) = 0 and f ′(0) = 0. We have

f(y) = −1
9

e−y +
1
9

ye−y +
1
9

e−2y.

Thus, the solution of our problem is

u(x, y) =
1
9
(e−2y − e−y + ye−y) sinx.

The Laplace and Poisson equations.

Example 4. Solve the following boundary value problem in the half-space {(x, y, z) :
−∞ < x, y < ∞, z > 0}:{

Δu = ze−z sinx sin y in the half-space,

u|z=0 = 0.

Solution. We will seek the function u = u(x, y, z) in the form

u = f(z) sinx sin y,

where the function f(z) needs to be determined. Then we get

Δu =
∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂y2
= −f sinx sin y − f sinx sin y + f ′′ sinx sin y,

and so our equation becomes

−2f sinx sin y + f ′′ sinx sin y = ze−z sinx sin y.

Hence, to find f(z) we must solve the ordinary differential equation

f ′′ − 2f = ze−z.
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Its general solution is

f(z) = C1e
√

2z + C2e
−√

2z + e−z(2 − z).

The constants C1 and C2 are found from the boundary conditions. First
notice that C1 = 0, because otherwise f(z) → ∞ when z → ∞. Therefore,

f(z) = C2e
−√

2z + e−z(2 − z).

Putting here z = 0 we find f(0) = C2 + 2, and since f(0) = 0, it follows that
C2 = −2.

Therefore, the solution of our problem is

u(x, y, z) = [e−z(2 − z) − 2e−
√

2z] sinx sin y.

Example 3. Solve the boundary problem in the half-space {(x, y, z) : −∞ < x, y <
∞, z > 0} ⎧⎨⎩

Δu = 0 in the half-space,

u|z=0 =
x2 + y2 − 2

(1 + x2 + y2)5/2
.

Solution. Notice that the function

u(x, y, z) =
1√

x2 + y2 + (z + 1)2

satisfies the Laplace equation in the whole half-space z > 0 (is a fundamental
solution), i.e.,

Δ
1√

x2 + y2 + (z + 1)2
= 0.

Now let us differentiate both sides of this equality with respect to z. We get

Δ
z + 1

[x2 + y2 + (z + 1)2]3/2
= 0.

Differentiating one more time with respect to z we have

Δ
x2 + y2 − 2(z + 1)2

[x2 + y2 + (z + 1)2]5/2
= 0.

This suggests to consider the function

u(x, y, z) =
x2 + y2 − 2(z + 1)2

[x2 + y2 + (z + 1)2]5/2
.

This function is harmonic in the whole half-space z > 0 (since Δu = 0, as we just
showed), and for z = 0 we have

u|z=0 =
x2 + y2 − 2

(1 + x2 + y2)5/2
,

which proves that u(x, y, z) is the sought solution.
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1.18. Problems for independent study

1. Find the distribution of the potential of an infinitely long (−∞ < z < ∞)
long cylindrical capacitor if its interior plate ρ = a [resp., exterior plate ρ = b]
is charged at the potential u1 [resp., u2].

2. Find the distribution of the potential inside a spherical capacitor if the sphere
ρ = a [resp., ρ = b] is maintained at the potential u1 [resp., u2].

3. One side of a right-angle parallelepiped is subject to a potential V , while the
remaining sides are grounded. Find the distribution of the potential inside
the parallelepiped.

4. An infinite (−∞ < z < ∞) conducting cylinder is charged at the potential

V =
{

1, if 0 < ϕ < π,
0, if π < ϕ < 2π.

Find the distribution of the potential inside the cylindrical cavity.

5. Find the temperature distribution in an infinitely long (−∞ < z < ∞)
circular cylinder if the a heat flux Q = q cos ϕ per unit of length is given on
its surface.

6. A constant current J passes through an infinite (−∞ < z < ∞) coaxial
cyclindrical cable (a < ρ < b). Find the temperature distribution inside the
cable if its inner surface ρ = a is kept at temperature zero and the outer
surface is thermally insulated.

7. Find the distribution of the potential in a thin plate shaped as a half-disc
when the diameter of the half-disc is charged at potential V1, while the re-
maining part of the boundary is charged at potential V2.

8. Find the temperature distribution inside a thin rectangular plate if a constant
heat flux Q is introduced through one of its sides, whereas the other three
sides are kept at temperature zero.

9. Find the temperature distribution inside an infinite (−∞ < z < ∞) circular
cylinder if its surface is mantained at the temperature A cos ϕ+B sinϕ, where
A and B are constants.

10. Find the distribution of the potential inside an empty cylinder of radius R
and height h whose two bases are grounded, whereas the lateral surface has
the potential V .

11. Determine the steady temperature distribution inside a circular cylinder of
finite length is a constant heat flux q is introduced through the lower base
z = 0, whereas the lateral surface ρ = a and the upper base are maintained
at temperature zero.
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12. Find the steady temperature distribution inside a homogeneous and isotropic
ball if its surface is maintained at the temperature A sin2 θ (A =const).

13. Find the distribution of the potential in a spherical capacitor 1 < r < 2 if the
inner and outer plates have the potential V1 = cos2 θ and V2 = 1

8 (cos2 θ + 1),
respectively.

14. Find the temperature distribution inside a spherical layer 1 < r < 2 if the
inner sphere is maintained at the temperature T1 = sin θ sinϕ, whereas the
outer sphere is maintained at the temperature of melting ice.

15. Solve the Dirichlet problem for the Poisson equation Δu = ey sinx in the
square 0 ≤ x ≤ π, 0 ≤ y ≤ π, with null boundary condition.

16. Solve the Dirichlet problem for the Poisson equation Δu = x4 − y4 in the
disc of radius one, with null boundary condition.

17. Solve the Dirichlet problem for the Poisson equation Δu = z in the ball of
radius one, with null boundary condition.

18. Solve the Dirichlet problem for the Poisson equation Δu = J0

(
μ1
R ρ
)

in a
cylinder of radius R and height h, with null boundary conditions.

19. Find the eigenoscillations of a rectangular membrane when two opposite edges
are clamped and the other two are free.

20. Find the eigenoscillations of a circular cylinder under null boundary condi-
tions of the first kind.

21. Find the steady concentration distribution of an unstable gas inside a sphere
of radius a if a constant concentration u0 is maintained at the surface of the
sphere.

22. Solve the Dirichlet problem for the equation Δu + k2u = 0 in the interior
and in the exterior of the sphere ρ = R under the condition u|ρ=R = A
(A =const).

23. Solve the Neumann problem for the equation Δu − k2u = 0 in the interior
and in the exterior of the sphere ρ = R under the condition ∂u/∂n|ρ=R = A
(A =const).

24. Find the steady distribution of potential in the first quadrant x > 0, y > 0 if
the half-line y = 0 is grounded while the half-line x = 0 is maintained at the
potential V .

25. Find the steady temperature distribution in the strip 0 < y < π if the
temperature on the lower boundary y = 0 equals A cos x while the upper
boundary is kept at the temperature of melting ice (A =const).

26. Find the steady distribution of potential in the strip 0 < y < π, x > 0 if
the horizontal sides of the strip are grounded and the vertical side has the
potential V .



1.18. PROBLEMS FOR INDEPENDENT STUDY 75

27. Find the distribution of potential in an infinitely long eccentric cylindrical
capacitor if the inner plate |z + 1| = 9 has the potential 1 while the outer
plate |z + 6| = 16 is grounded.

28. Find the solution of the Dirichlet problem Δu = 0 in the domain Im z < 0,
|z + 5i| > 3 if

u|Im z=0 = 0, u||z+5i|=3 = 1.

29. Find the temperature distribution in the lower half-plane y < 0 if its bound-
ary y = 0 is maintained at the temperature A sinx (A =const).

30. Find the temperature distribution in the upper half-plane y > 0 if its bound-
ary y = 0 is maintained at the temperature θ(−x), where θ(x) is Heaviside
function.

31. Find the distribution of potential in the upper half-space z > 0 if its boundary
z = 0 has the potential (1 + x2 + y2)−3/2.

32. Solve the Dirichlet problem for the Poisson equation Δu = −e−z sinx cos y
in the half-space z > 0 with null boundary condition.

33. Find the steady temperature distribution in the exterior of a bounded circular
cylinder (ρ > 1, −∞ < z < ∞) if the lateral surface (ρ = 1) is maintained at
the temperature u|ρ=1 = A cos(2ϕ) + B cos(5ϕ) + C cos(10ϕ), where A,B,C
are constants.

34. Solve the Dirichlet problem⎧⎨⎩
Δu = 0, 0 < ρ < 1, 0 ≤ ϕ ≤ 2π,

u|ρ=1 =
sinϕ

5 + 4 cos ϕ
0 ≤ ϕ ≤ 2π.

35. Solve the following Neumann problem for the Laplace equation in the spher-
ical layer 1 < ρ < 2: ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Δu = 0 inside the layer,

∂u

∂n

∣∣∣∣
ρ=1

= P2(cos θ),

∂u

∂n

∣∣∣∣
ρ=2

= P3(cos θ).

36. Solve the following boundary value problem in the disc {0 ≤ ρ ≤ a, 0 ≤ ϕ <
2π}: ⎧⎪⎨⎪⎩

Δ2u = x2 + y2 in the disc,

u|ρ=a = 0,
∂u

∂n

∣∣∣∣
ρ=a

= 0.
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37. Solve the following boundary value problem in the disc {0 ≤ ρ ≤ a, 0 ≤ ϕ <
2π}: ⎧⎪⎨⎪⎩

Δ2u = 0 in the disc,

u|ρ=a = 1,
∂u

∂n

∣∣∣∣
ρ=a

= sin3 ϕ.

38. Solve the following boundary value problem in the ball {0 ≤ ρ ≤ a}:⎧⎪⎨⎪⎩
Δ2u = x2 + y2 + z2 inside the ball,

u|ρ=a = 0,
∂u

∂n

∣∣∣∣
ρ=a

= 0.

39. Solve the following boundary value problem in the half-space:⎧⎪⎨⎪⎩
Δ2u = e−z sinx cos y −∞ < x, y < ∞, z > 0,

u|z=0 = 0,
∂u

∂z

∣∣∣∣
z=0

= 0.

40. Solve the following boundary value problem in the lower half-plane (y < 0):⎧⎨⎩
Δu = 0 −∞ < x < ∞, y < 0,

u|y=0 =
2x

(1 + x2)2
.

1.19. Answers

1. u1 = u2 + (u1 − u2)
ln b/ρ

ln b/a
.

2. u = u2 + (u1 − u2)
1/r − 1/b
1/a − 1/b

.

3. u =
∞∑

n=1

∞∑
m=1

Anm sin
(mπ

a
x
)

sin
(nπ

b
y
)

sinh

(
π

√
n2

a2
+

m2

b2
z

)
, where

Anm =

⎧⎪⎪⎨⎪⎪⎩
16V

π2nm sinh
(

π
√

n2

a2 + m2

b2 c

) , if n and m are odd,

0, if n or m is even,

and a, b, c are the sides of the parallelepiped.
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4. u =
1
2

+
1
π

arctan
2aρ sinϕ

a2 − ρ2
, where a is the radius of the cylinder.

5. u = − q

k
ρ cos ϕ + c, where k is the heat conduction coefficient of the cylinder.

6. u = −q

4
(ρ2 − a2) − qb2

2
ln

ρ

a
, where q = −q0/k, q0 = 0.24J2R, R is the re-

sistance per unit of length of the conductor, and k is the heat conduction
coefficient.

7. u = V1 +
2
π

(V2 − V1) arctan
aρ sinϕ

ρ2 − a2
.

8. u = − 4qa
kπ2

∞∑
m=0

sin
[

(2m+1)π
a x

]
(2m + 1)2

·
sinh

[
(2m+1)π

a y
]

cosh
[

(2m+1)π
a b

] .
9. u = A

ρ

a
cos ϕ + B

ρ

a
sinϕ, where a is the radius of the cylinder.

10. u =
4V
π

∞∑
n=0

sin
[

(2n+1)π
h z

]
2n + 1

·
I0

(
(2n+1)π

h ρ
)

I0

(
(2n+1)π

h R
) .

11. u =
∞∑

m=0

Am

sinh
]

μm

a (l − z)
]

cosh
[

μm

l z
] · J0

(μm

a
ρ
)
, where Am = 2aq

kμ2
mJ1(μm) , k is the

heat conduction coefficient, and μm is the mth positive root of the equation
J0(x) = 0.

12. u =
2
3
A − A

(
r

a

2
)2

· 3 cos2 θ − 1
3

, where a is the radius of the ball.

13. u =
1
3r

+
3 cos2 θ − 1

3r3
.

14. u =
1
7

(
−r +

8
r2

)
sin θ sinϕ.

15. u =
1

2 sinhπ
(yey sinhπ − πeπ sinh y) sin x.

16. u =
1
32

ρ2(ρ4 − 1) cos(2ϕ).
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17. u =
1
10

(r3 − r) cos θ.

18. u =
{R2

μ2
1

[
cosh

(μ1

R
z
)
− 1
]

+
R2

μ2
1

[
1 − cosh

(μ1

R
h
)] sin

(
μ1
R z
)

sin
(

μ1
R h
)}J0

(μ1

R
ρ
)

.

19. λm,n = π2

(
m2

a2
+

n2

b2

)
, m = 1, 2 . . . , n = 1, 2, . . . , where a and b are the side

lengths of the membrane; um,n = sin
(mπ

a
x
)

cos
(nπ

a
y
)

.

20. λm,n,k =
(

kπ

h

)2

+

(
μ

(n)
m

a

)2

, n = 0, 1, . . . , m,k = 1, 2, . . . , where μ
(n)
m is the

mth positive root of the equation Jn(x) = 0, h is the height of the cylinder,
and a is its radius;

vn,m,k = sin
(

kπ

h
z

)
Jn

(
μ

(n)
m

a
ρ

){
cos(nϕ)

sin(nϕ)
.

21. u = u0
a

ρ
· sinh(kρ)
sinh(ka)

, where k is taken from the equation Δu − k2u = 0.

22. u =
AR

ρ
· sin(kρ)
sin(kR)

if ρ ≤ R, and u =
AR

ρ
· eikρ

eikR
if ρ ≥ R.

23. u =
AR2 sinh(kρ)

ρ[kR cosh(kR) − sinh(kR)]
if ρ ≤ R, and u = −aR2

ρ
· ek(R−ρ)

1 + kR
if ρ ≥ R.

24. u =
2V
π

arctan
y

x
.

25. u =
A

sinhπ
cosx sinh(π − y).

26. u =
V

π
arctan

(
2 sinhx sin y

sinh2 x − sin2 y

)
.

27. u =
1

ln(2/3)

(
ln 2 + ln

∣∣∣∣ z − 2
z − 26

∣∣∣∣).

28. u =
1

ln 3
ln
∣∣∣∣z + 4i
z − 4i

∣∣∣∣.
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29. u = Aey sinx.

30. u =
1
2
− 1

π
arctan

x

y
.

31. u =
z + 1

[x2 + (z + 1)2 + y2]3/2
.

32. u = (e−
√

2z − e−z) sinx cos y.

33. u =
A

ρ2
cos(2ϕ) +

B

ρ5
cos(5ϕ) +

C

ρ10
cos(10ϕ).

34. u =
ρ sinϕ

ρ2 + 4ρ cos ϕ + 4
.

35. u =
1
31

(
ρ2

2
+

32
2

· 1
ρ3

)
P2(cos θ) +

1
47

(
4ρ3 +

3
ρ4

)
P3(cos θ) + C,

where C is an arbitrary constant.

36. u =
a6

576

[(ρ

a

)6

− 3
(ρ

a

)2

+ 2
]
.

37. u = 1 − a2 − ρ2

2a

[
3
4

(ρ

a

)
sinϕ − 1

4

(ρ

a

)3

sin(3ϕ)
]
.

38. u =
a6

840

[(ρ

a

)6

− 3
(ρ

a

)2

+ 2
]
.

39. u =
[
Ae−

√
2+

√
2z + (1 − A)e−

√
2−√

2z − e−z

]
sinx cos y, where

A =
1
2

√
1 +

1√
2

+
1
2

√
1 − 1√

2
− 1√

2
.

40. u =
2x(1 − y)

[x2 + (1 − y)2]2
.



http://www.springer.com/978-3-0348-0267-3


	Chapter 1 Elliptic problems
	1.1. The Dirichlet problem for the Laplace equation in an annulus
	1.2. Examples of Dirichlet problem in an annulus
	1.3. The interior and exterior Dirichlet problems
	1.4. The Poisson integral for the disc. Complex form. Solution of the Dirichlet problem when the boundary condition is a rationa
	1.5. The interior and exterior Neumann problems for a disc
	1.6. Boundary value problems for the Poisson equation in a disc and in an annulus
	1.7. Boundary value problems for the Laplace and Poisson equations in a rectangle
	1.8. Boundary value problems for the Laplace and Poisson equations in a bounded cylinder
	1.9. Boundary value problems for the Laplace and Poisson equations in a ball
	1.10. Boundary value problems for the Helmholtz equations
	1.11. Boundary value problem for the Helmoltz equation in a cylinder
	1.12. Boundary value problems for the Helmoltz equation in a disc
	1.13. Boundary value problems for the Helmoltz equation in a ball
	1.14. Guided electromagnetic waves
	1.15. The method of conformal mappings (for the solution of boundary value problems in the plane)
	1.16. The Green function method
	1.17. Other methods
	1.18. Problems for independent study
	1.19. Answers




