
Chapter 2

Classical Polygons

2.1 Introduction

The notion of a generalized polygon arose from the classification of trialities of the
geometry of the quadric Q(7,K) in PG(7,K), K any field (see Subsection 2.4.2
below) in Tits [1959]. But already in Tits [1954], [1955] generalized polygons
arise as a geometrical interpretation of complex Lie groups. This generalized the
well-known connection between the classical complex Lie groups and the complex
projective spaces and quadrics. It was noticed by Tits [1959] that an axiomat-
ization of these geometries in the relative rank 2 case gave rise to geometries
(generalized polygons) corresponding to the exceptional groups of Lie type G2

(Dickson’s groups). Also the geometries related to twisted versions of groups of
Lie type are covered; in particular the Ree groups of type 2F4 produce generalized
octagons (see Tits [1960]). The projective planes and generalized quadrangles cor-
responding to classical groups were called classical polygons (see Kantor [1986a]).
Soon the term classical became a synonym of corresponding to a group of Lie type
for some authors, but others stuck to the corresponding group notion, i.e., classi-
cal polygons correspond to classical groups. When Tits [1974], [1976a] introduced
his ideas on the Moufang condition and Moufang polygons, the term classical was
sometimes indistinguishable from the term Moufang. The situation at this moment
is that the class of Moufang polygons is a well-defined class of generalized poly-
gons, but the proof of Tits’ (and Weiss’) enumeration has not yet been completely
published; see Chapter 5 for more details. On the other hand, the class of classi-
cal polygons is not so well defined, but once a point of view is taken, all classical
polygons can usually be enumerated. For instance, in Payne & Thas [1984], a
finite classical quadrangle is one that can be fully embedded in a finite projective
space. All of them are known (see Chapter 8, in particular Theorem 8.5.16).
We will take the following point of view. Roughly, the generalized polygons which
will be defined in this chapter will be called classical. This term is motivated by
the fact that these polygons are studied much more than others and hence serve
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as the classical objects (in the sense of standard examples). One exception will
be the Ree–Tits octagons, which we will only explicitly introduce in Chapter 3
and which we also want to call classical; another exception is the projective plane
related to a non-associative alternative division ring, which we introduce in this
chapter, but which will not be called classical for historical reasons. In this way,
all finite Moufang polygons will be called classical. In addition to these classical
examples, there are other examples of Moufang polygons, and we will define some in
Chapter 3, the notable examples being the mixed quadrangles and mixed hexagons.
Finally, when discussing the Moufang property in Chapter 5, we will meet other
polygons, and we will give them names, too. The main thing is that we will have a
name for large classes of polygons sharing some important common group-theoretic
(and geometric) properties. This enables one to state propositions in an elegant
way. Note that the classes that we will define will not necessarily be disjoint.
For instance, we will see that some symplectic quadrangles are both classical and
mixed.
It is worth remarking that, by definition, the dual of a classical polygon is always
itself a classical polygon, unlike in Payne & Thas [1984] and unlike the other
names that we will assign to subclasses of classical polygons. So if it matters
what the points are, then we call a classical polygon by its specific name, such
as orthogonal quadrangle, twisted triality hexagon. If it doesn’t matter, then we
simply say “classical polygon”.
Concerning notation, we have chosen to follow Payne & Thas [1984] for the finite
generalized quadrangles, and one class of hexagons. This implies that we do not use
the group notation used by Kantor [1986a]. A table with “translations” (Table
2.1) can be found at the end of this chapter.

2.2 Classical and alternative projective planes

Since we want to emphasize generalized n-gons for n > 3, we will be brief in this
section. The classical projective planes are in fact the Desarguesian planes. Other,
related, planes are the alternative planes. Among the Desarguesian planes, one has
the more restricted class of Pappian planes.

Desarguesian projective planes

2.2.1 Construction

Let V be a three-dimensional right vector space over a skew field K (i.e., the scalars
are written on the right of the vectors). We define Γ = PG(2,K) = (P ,L, I) as
follows. The points of Γ are the 1-spaces of V ; the lines of Γ are the 2-spaces
of V ; incidence is symmetrized inclusion (here, an i-space is just an i-dimensional
subspace, i = 1, 2; we will use this terminology later for arbitrary i in n-dimensional
vector spaces, n ≥ i).
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Another way of seeing PG(2,K) is as follows. The elements of P are the triples
(x, y, z) ∈ K×K×K up to a right non-zero scalar, (x, y, z) �= (0, 0, 0); the elements
of L are the triples [u, v, w] up to a left non-zero scalar, [u, v, w] �= [0, 0, 0]; the
point represented by (x, y, z) is incident with the line represented by [u, v, w] if
and only if ux + vy + wz = 0.

A third way of seeing this geometry is the following. The points are of three types:
the pairs (x, y) ∈ K × K, the elements (m), m ∈ K and a symbol (∞). The lines
are dually also of three types: the pairs [m, k] ∈ K × K, the elements [x], x ∈ K
and the symbol [∞]. Incidence is defined as follows: the point (∞) is incident with
[∞] and [x], for all x ∈ K; the point (m), m ∈ K, is incident with [∞] and [m, k]
for all k ∈ K; the point (x, y), x, y ∈ K, is incident with [x], for all x ∈ K, and
with [m, k] if and only if mx + y = k.

It is an easy exercise to show that these three ways produce isomorphic projective
planes (in particular, the second description arises from the first by introducing
coordinates in V ). We call them the Desarguesian planes (over K). They have the
following well-known characterizing property (see Hilbert [1899], Baer [1942]):

2.2.2 Theorem. A projective plane Γ is Desarguesian if and only if the following
holds: for all triples (a1, a2, a3) and (b1, b2, b3) of pairwise distinct points, with
ai �= bi and aibi �= ajbj, i, j ∈ {1, 2, 3}, i �= j, the lines a1b1, a2b2 and a3b3 are
concurrent if and only if the points a1a2 ∩ b1b2, a2a3 ∩ b2b3 and a1a3 ∩ b1b3 are
collinear. �

The configuration formed by the ten points ai, bi, aiaj ∩ bibj , a1b1 ∩ b1b2, i, j ∈
{1, 2, 3}, i �= j, and the ten lines aibi, aiaj, bibj and the line containing the points
a1a2 ∩ b1b2 and a2a3 ∩ b2b3, i, j ∈ {1, 2, 3}, i �= j, in a Desarguesian projective
plane (but also in any plane whenever the two conditions of the previous theorem
are satisfied for these points and lines) is usually called a Desargues configuration.

If the skew field K is commutative, i.e., if K is a field, then we sometimes call
PG(2,K) a Pappian plane. All Pappian planes share the following well-known
characterizing property (see e.g. Hughes & Piper [1973]):

2.2.3 Theorem. A projective plane Γ is Pappian if and only if for all triples
(a1, a2, a3) and (b1, b2, b3) of distinct collinear points, with ai /∈ b1b2 and bi /∈ a1a2,
i = 1, 2, 3, the points a1b2 ∩ b1a2, a2b3 ∩ b2a3 and a1b3 ∩ b1a3 are collinear. �

The configuration induced by the points and lines in the statement of the previous
theorem is, similarly as above with the Desargues configuration, usually called a
Pappus configuration.

Desarguesian planes are also called classical planes.
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Alternative projective planes

2.2.4 Construction

Let D be an alternative field, also called an alternative division ring, i.e., addition
in D defines a commutative group; multiplication in D×, where D× denotes D
without the neutral element 0 with respect to addition, has a neutral element 1;
there is a two-sided inverse x−1 for every element x �= 0; both distributive laws
hold; and (yx)x−1 = y, y = x−1(xy) for all x, y ∈ D. We define the following
geometry Γ. The points of Γ are of three types: the pairs (x, y) ∈ D × D, the
elements (m), m ∈ D and a symbol (∞). The lines are dually also of three types:
the pairs [m, k] ∈ D × D, the elements [x], x ∈ D and the symbol [∞]. Incidence
is defined as follows: the point (∞) is incident with [∞] and [x], for all x ∈ D;
the point (m), m ∈ D, is incident with [∞] and [m, k] for all k ∈ D; the point
(x, y), x, y ∈ D, is incident with [x], for all x ∈ D, and with [m, k] if and only if
mx + y = k.
This is completely similar to the third construction of a Desarguesian plane above.
Hence, if D is a skew field, then Γ is the Desarguesian plane over D. If D is not
a skew field, then we call Γ an alternative plane (over D). Alternative planes and
Desarguesian planes share the following characterizing property (see again e.g.
Hughes & Piper [1973]):

2.2.5 Theorem. A projective plane is alternative or classical if and only if for every
point p and every line L incident with p, for all triples of pairwise distinct points
(a1, a2, a3) and (b1, b2, b3) with ai �= bi and aibi �= ajbj, i, j ∈ {1, 2, 3}, i �= j,
such that p is incident with akbk, k = 1, 2, and a1a2 ∩ b1b2 and a2a3 ∩ b2b3 are
incident with L, we have that p is incident with a3b3 if and only if L is incident
with a1a3 ∩ b1b3. �

The configuration induced by the elements in the previous theorem is a special case
of the Desargues configuration; it is often called the little Desargues configuration
(see Hughes & Piper [1973]).
The reason why we mention these characterizations is the following. From the de-
scription of alternative planes, one might get the impression that one flag, namely
{(∞), [∞]}, plays a special role. But that is not true. It only plays a special role in
the construction. The characterization theorems make this clear because no special
flag is hypothesized there.
We classify non-associative alternative fields in Appendix B.

2.3 Classical generalized quadrangles

In this section, we define the classical generalized quadrangles. Our definition is
based on Chapter 10 of Bruhat & Tits [1972], modified slightly by Tits [1995];
see also Chapter 8 of Tits [1974].
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2.3.1 σ-quadratic forms

Let K be a skew field and σ an anti-automorphism of order at most 2. This
implies in particular that K is a field if σ is the identity because in that case
ab = (ab)σ = bσaσ = ba, for all a, b ∈ K. Let V be a — not necessarily finite-
dimensional — right vector space over K and let g : V × V → K be a (σ, 1)-linear
form, i.e., for all v1, v2, w1, w2 ∈ V and all a1, a2, b1, b2 ∈ K, we have

g(v1a1 + v2a2, w1b1 + w2b2) =
aσ
1 g(v1, w1)b1 + aσ

1 g(v1, w2)b2 + aσ
2g(v2, w1)b1 + aσ

2g(v2, w2)b2.

We define f : V × V → K as follows:

f(x, y) = g(x, y) + g(y, x)σ.

It is clear that f is also (σ, 1)-linear and moreover f satisfies f(x, y)σ = f(y, x),
for all x, y ∈ V . Therefore we say that f is a (σ-)Hermitian form. Denote Kσ :=
{tσ − t : t ∈ K}. We define q : V → K/Kσ as

q(x) = g(x, x) +Kσ,

for all x ∈ V . We call q a σ-quadratic form (over K). Let W be a subspace of V .
We say that q is anisotropic over W if q(w) = 0 if and only if w = 0, for all w ∈ W
(where we have written the zero vector as 0, and the element 0+Kσ also as 0; the
context always makes it clear which zero is meant by “0”). It is non-degenerate
if it is anisotropic over the subspace {v ∈ V : f(v, w) = 0, for all w ∈ V }. From
now on we assume that q is non-degenerate.
Note that, if q(v) = 0, then q(vk) = 0, for all k ∈ K. Indeed, q(v) = 0 is equivalent
to g(v, v) ∈ Kσ, so put g(v, v) = tσ − t. But then g(vk, vk) = kσg(v, v)k =
(kσtk)σ − (kσtk). Hence the inverse image q−1(0) is a union of 1-spaces. We say
that q has Witt index 2, if q−1(0) contains 2-spaces, but no higher-dimensional
subspaces.
For a non-degenerate σ-quadratic form q over K with Witt index 2, we define the
following geometry Γ = Q(V, q). The points of Γ are the 1-spaces in q−1(0); the
lines are the 2-spaces in q−1(0); and incidence is symmetrized inclusion.

Before showing that Q(V, q) is a weak generalized quadrangle, we start with a
lemma.

2.3.2 Lemma. With the above notation, we have K �= Kσ.

Proof. The lemma is clear if σ is the identity. If σ is not the identity, then
we remark that every element x of Kσ satisfies the relation xσ = −x. Hence if
K = Kσ, then xσ = −x for all x ∈ K. If the characteristic of K is equal to 2,
then this implies that σ = 1; if the characteristic of K is not equal to 2, then this
implies that 1σ = −1 �= 1, a contradiction as well. �
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2.3.3 Theorem (Bruhat & Tits [1972]). The geometry Q(V, q) defined above is a
weak generalized quadrangle.

Proof. We first show that, given a point p and a line L of Q(V, q), with p not
incident with L, there exists a unique point p′ incident with L and collinear with
p. Since the line pp′ will then be well defined (because two distinct 1-spaces in V
define a unique 2-space), this implies that there is also a unique line pp′ incident
with p and concurrent with L. Let v be a vector on the 1-space corresponding to
p, and let a, b be two non-proportional vectors in the 2-space corresponding to L.
To show that there is at least one such a point p′, we may assume that p is not
collinear with the points of Q(V, q) represented by a and b.
Now we investigate what it means algebraically for two vectors v and a to represent
collinear points. By definition, this means that q(vk1+ak2) = 0, for all k1, k2 ∈ K.
Since q(v) = q(a) = 0, this is equivalent to

g(vk1 + ak2, vk1 + ak2) = kσ
1 g(v, a)k2 + kσ

2 g(a, v)k1
= kσ

1 f(v, a)k2 + (kσ
1 g(a, v)σk2)σ − kσ

1 g(a, v)σk2 ∈ Kσ,

hence to kσ
1 f(v, a)k2 ∈ Kσ, for all k1, k2 ∈ K. If f(v, a) �= 0, then this implies

K = Kσ, contradicting Lemma 2.3.2. Hence f(v, a) = 0. Conversely, it follows
from f(v, a) = 0 that the points vK and aK of Q(V, q) are collinear (use the same
equality above).
Hence we may assume that f(v, a) �= 0 �= f(v, b), and we know that f(a, b) = 0.
We are looking for a scalar k ∈ K such that f(v, a + bk) = 0. Clearly

k = −f(v, b)−1f(v, a)

satisfies that condition. Hence we have shown that there is at least one point
p′ on L collinear with p. Suppose there are two such points. Without loss of
generality, we may take the points aK and bK. Hence f(v, a) = f(v, b) = 0. Note
that f(v, v) = 0; indeed, q(v) = 0 by definition, so g(v, v) ∈ Kσ, hence we can put
g(v, v) = tσ − t. But f(v, v) = g(v, v) + g(v, v)σ = tσ − t + t − tσ = 0. So by the
linearity f(vk1+ak2+bk3, v�1+a�2+b�3) = 0, for all ki, �i ∈ K, i ∈ {1, 2, 3}. This
readily implies that the subspace of V generated by v, a, b is contained in q−1(0).
Since the Witt index equals 2, we necessarily have p IL, a contradiction.
So we have shown condition (i) of Lemma 1.4.1 (page 15). We now show condi-
tion (ii)′ of that same lemma.
It is clear that every line in Q(V, q) contains |K|+1 points, hence all lines are thick.
Also, it is clear that two distinct points of Q(V, q) are contained in at most one
line, since two different 1-spaces of V are contained in exactly one 2-space of V .
All that is left to show is that every point is incident with at least two lines. To
that end, we first claim that for every point p in Q(V, q), there is at least one point
p′ of Q(V, q) not collinear with p in Q(V, q). Indeed, suppose p = vK. Let w be
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any vector of V and suppose that wK is not a point of Q(V, q). Note that wK
certainly exists since we may otherwise assume that every 1-space of V is a point
of Q(V, q) collinear with p. This would imply f(v, w) = 0, for every vector w, and
since q(v) = 0, this contradicts the non-degeneracy of q. Note that this argument
implies also that we may assume that f(v, w) �= 0. Now the vector v + wk, k ∈ K,
defines a point of Q(V, q) if and only if q(v +wk) = 0. This condition is equivalent
to

kσg(w, w)k + g(v, w)k + kσg(w, v) ∈ Kσ.

Noting that kσg(w, v)− g(w, v)σk ∈ Kσ, we deduce that, by dividing on the right
by k,

k = −g(w, w)−σf(w, v)

is a non-zero solution, since f(v, w) �= 0. Hence the claim.
Now let p be any point of Q(V, q). Since the Witt index is equal to 2, there is at
least one line L in Q(V, q). By the first part of the proof, we may assume that L I p.
Let p′ be a point of Q(V, q) not collinear with p, then there is a line M through
p′ meeting L in some point p′′ �= p. There is some point p′′′ not collinear with p′′

in Q(V, q). Hence there is a line M ′ through p′′′ meeting M in a point distinct
from p′′. But now there is a line L′ through p meeting M ′, and clearly L′ �= L
(otherwise we violate condition (i) of Lemma 1.4.1 that we showed above). So we
have at least two lines L, L′ in Q(V, q) through p.
The theorem now follows from Lemma 1.4.1. �
Next, we look for a standard equation for q.

2.3.4 Proposition. Let q be a non-degenerate σ-quadratic form over K on the
vector space V . Then there exist four vectors ei, i ∈ {−2,−1, 1, 2}, a direct sum
decomposition

V = e−2K
⊕

e−1K
⊕

V0

⊕
e1K
⊕

e2K

and a non-degenerate anisotropic σ-quadratic form q0 : V0 → K/Kσ such that for
all v = e−2x−2 + e−1x−1 + v0 + e1x1 + e2x2, with xi ∈ K, i ∈ {−2,−1, 1, 2} and
v0 ∈ V0,

q(v) = xσ
−2x2 + xσ

−1x1 + q0(v0).

Proof. We already know that Q(V, q) is a weak quadrangle. Let e−2K, e−1K, e1K
and e2K be four points of Q(V, q) such that eiK and ejK are opposite if and only if
i+j = 0. It is readily seen that these four 1-spaces cannot be contained in a 3-space
(otherwise there arise triangles in Q(V, q)). Hence the sum e−2K+e−1K+e1K+e2K
is direct. Now note that by the previous proof, we have

f(ei, ej) = 0, i + j �= 0.

Upon replacing ei by a multiple, we may assume that f(ei, e−i) = 1, for all i ∈
{−2,−1, 1, 2}. Now we define the subspace

V0 := {v ∈ V : f(v, ei) = 0, for all i = −2,−1, 1, 2}.
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For any v ∈ V , it is an elementary exercise to check that the vector

v − e−2f(e2, v)− e−1f(e1, v)− e1f(e−1, v)− e2f(e−2, v)

belongs to V0. Also, no non-zero vector v∗ generated by e−2, e−1, e1 and e2 belongs
to V0. Indeed, such a vector v∗ would satisfy by assumption f(v∗, ei) = 0, for all
i ∈ {−2,−1, 1, 2}, which implies, putting v∗ = e−2a−2 + e−1a−1 + e1a1 + e2a2,
ai ∈ K, that all ai are equal to 0, i ∈ {−2,−1, 1, 2}, a contradiction. Therefore,
the following sum is indeed direct:

V = e−2K
⊕

e−1K
⊕

V0

⊕
e1K
⊕

e2K.

Now let v = e−2x−2 + e−1x−1 + v0 + e1x1 + e2x2, with xi ∈ K and v0 ∈ V0,
i ∈ {−2,−1, 1, 2}. Then one calculates easily that, using a +Kσ = aσ +Kσ,

q(v) = xσ
−2f(e−2, e2)x2 + xσ

−1f(e−1, e1)x1 + q(v0)
= xσ

−2x2 + xσ
−1x1 + q(v0).

Now let q0 : V0 → K/Kσ be the restriction of q to V0. Suppose q0(v) = 0, for some
non-zero vector v ∈ V0. Since we also have f(v, ei) = 0, the point vK of Q(V, q) is
collinear with eiK, for all i ∈ {−2,−1, 1, 2}, a contradiction.
The proposition is proved. �
To determine the order of Q(V, q), we still need to know how many lines there are
through any point. The next proposition gives the answer.

2.3.5 Proposition. Let Q(V, q) be a classical weak quadrangle and suppose q has
the standard equation of Proposition 2.3.4. Define the set

X̂ = {(v, k) ∈ V0 ×K : k ∈ −q0(v)}.

Then Q(V, q) contains exactly |X̂|+ 1 lines through each point.

Proof. Without loss of generality, we may consider the point e1K. We already
know that all points of Q(V, q) collinear with e1K are represented by vectors v
such that f(v, e1) = 0. Also, the number of lines through e1K is equal to the
number of points of Q(V, q) collinear with both e1K and e−1K. Such points have
representatives satisfying in addition f(v, e−1) = 0. It is now readily seen that
v ∈ e−2K+V0+e2K, so we can put (with obvious notation) v = e−2x−2+v0+e2x2.
If x−2 = 0, then 0 = q(v) = q0(v0), so v0 = 0 (since q0 is anisotropic) and v = e2.
This already gives one point of Q(V, q) collinear with both e1K and e−1K.
Suppose now x−2 �= 0, then we may take x−2 = 1. We have 0 = q(v) = x2+q0(v0).
Hence x2 ∈ −q0(v0). Conversely, if x2 ∈ −q0(v0), then the vector v = e−2+v0+e2x2
defines a point of Q(V, q) collinear with both e1K and e−1K.
The proposition now follows easily. �
There is an interesting corollary to Proposition 2.3.5.
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2.3.6 Corollary. The weak quadrangle Q(V, q) is a generalized quadrangle if and
only if V has dimension at least 5 or σ is not the identity.

Proof. According to Proposition 2.3.5, the weak quadrangle Q(V, q) is not thick
if and only if the set X̂ has only one element, i.e., if 0 ∈ V is the only element of
V0 and if 0 ∈ K is the only element of Kσ. Hence Q(V, q) is non-thick if and only
if V0 = {0} and σ = 1. The corollary follows. �
The points and lines of the quadrangle Q(V, q) can be seen as living in the projec-
tive space PG(V ) associated to V in the standard way. Therefore we sometimes
refer to that representation of Q(V, q) as a standard embedding of Q(V, q).

For a discussion of the regular points and lines of the classical quadrangles, we
refer to Proposition 3.4.8 on page 106. Also, in the subsections following Subsec-
tion 3.4.7, we prove that some classical quadrangles with σ = 1 are anti-isomorphic
to certain other classical quadrangles with σ �= 1.

2.3.7 Definitions. Members of the special class of classical quadrangles with σ = 1
are called orthogonal quadrangles. The rest is called Hermitian quadrangles. The
duals of the classical quadrangles are also called classical.

Sometimes we also denote the orthogonal quadrangle Q(V, q) by Q(d − 1,K, q),
where V is d-dimensional over K. And the Hermitian quadrangle Q(V, q) with
anti-automorphism σ is also sometimes denoted by H(d − 1,K, q, σ), where V is
d-dimensional over K.

In the finite case, a σ-quadratic form q of Witt index 2 is, up to isomorphism
and up to a scalar factor, determined by the dimension, the field and the kind (=
orthogonal or Hermitian). Hence we delete the q and the σ from the notation. For
K ∼= GF(s), we then use Q(d, s) for the orthogonal quadrangle in d-dimensional
projective space over GF(s) (and d = 4, 5, see below), and H(d, s) is the Hermi-
tian quadrangle in d-dimensional projective space over GF(s) with corresponding
involutory field automorphism x 	→ x

√
s (and here, d = 3, 4, see also below).

2.3.8 Quadrics as orthogonal quadrangles

Let V be a right (d+1)-dimensional vector space over a (commutative) field K and
let PG(V ) denote the corresponding d-dimensional projective space. Let Q be a
quadric in PG(V ) of Witt index 2, i.e., Q contains lines but no planes of PG(V ).
Then the points and lines of Q are, with the natural incidence relation, the points
and lines of a generalized quadrangle Γ. We show that there is a 1-quadratic form
q : V → K such that Γ is isomorphic to Q(d,K, q).

Let Q have equation
d∑

i≤j=0

aijxixj = 0,
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with aij ∈ K, with respect to a basis in PG(V ), or equivalently, in V . Put

g((x0, x1, . . . , xd), (y0, y1, . . . , yd)) =
d∑

i≤j=0

aijxiyj .

This is clearly a bilinear form. The corresponding 1-quadratic form

q((x0, x1, . . . , xd)) =
d∑

i≤j=0

aijxixj

is zero precisely on the 1-spaces of V which correspond to points of Q (noting that
Kσ = {0} here).
Conversely, it is easily seen that any orthogonal quadrangle Q(d,K, q) arises from
a quadric with equation q(v) = 0. Hence the class of orthogonal quadrangles
coincides with the class of quadrics of Witt index 2 in projective space.

2.3.9 Hermitian varieties as Hermitian quadrangles

Let V be a vector space over the skew field K and suppose that f : V ×V → K is a
σ-Hermitian form, i.e., f is (σ, 1)-linear and f(v, w) = f(w, v)σ, with σ non-trivial.
The corresponding Hermitian variety H in PG(V ) is a generalized quadrangle
Γ(H) if and only if H contains lines but no planes.
Recall that the points of H correspond to the 1-spaces of V with representatives
v such that f(v, v) = 0.
Suppose that the characteristic of K is not equal to 2. We choose a basis (ei)i∈J

in V and we put an arbitrary order on J . We define

g(ei, ej) = f(ei, ej) if i < j,
g(ei, ei) = 1

2f(ei, ei)
g(ei, ej) = 0 if i > j.

One can check easily that the associated σ-quadratic form q of the thus defined
(σ, 1)-linear form reads

q(v) =
1
2

f(v, v) +Kσ.

It is clear that, if f(v, v) = 0, then also q(v) = 0. Suppose now q(v) = 0. This means
that, since 2σ = 2, f(v, v) ∈ Kσ. Write f(v, v) = kσ − k. Since f(x, x) = f(x, x)σ ,
we have kσ = k, hence f(v, v) = 0. Consequently Q(V, q) defines a quadrangle
which is isomorphic to the quadrangle Γ(H) defined above.
Suppose now that the characteristic of K is 2. We choose a basis (ei)i∈J in V such
that f(ei, ei) = 0, for all i ∈ J (this can easily be done since we may assume that
the points of H generate PG(V )). Now we can define g : V × V → K as above
(deleting the factor 1

2 of course). One checks that f(x, y) = g(x, y) + g(y, x)σ.
Define

q : V → K/Kσ : v 	→ g(v, v) +Kσ.
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If k is a representative of q(v) in K, then k = g(v, v) + lσ + l. Hence

f(v, v) = g(v, v) + g(v, v)σ = g(v, v) + lσ + l + g(v, v)σ + l + lσ = k + kσ.

In general, however (i.e., when K is not commutative; see below for the commu-
tative case), the quadrangle Q(V, q) is only a subquadrangle of Γ(H). Indeed, if
q(v) = 0, then 0 is a representative of q(v), and hence by the above, f(v, v) =
0 + 0σ = 0. To obtain Γ(H), we have to consider another σ-quadratic form. De-
fine V∗ = K(σ)/Kσ, with K(σ) the set of fixed points of σ in K (and note that, if
k ∈ Kσ, then kσ = k so that this expression makes sense). We turn V∗ into a (not
necessarily finite-dimensional) right vector space over K by defining v · k = kσvk,
for all v ∈ V∗ and k ∈ K. We choose a basis (e∗i )i∈J∗ in V∗, choose a representative
gi in K(σ) for every e∗i and define g∗(e∗i , e∗j ) = 0 for i �= j, and g∗(e∗i , e∗i ) = gi.
It is readily checked that this determines a (σ, 1)-linear form g∗ with g∗(v∗, v∗) a
representative of v∗ in K(σ). We put V ′ = V

⊕
V∗ and define, with the obvious

notation,
q′(v + v∗) = g∗(v∗, v∗) + q(v) = v∗ + q(v).

So q′ is by definition a σ-quadratic form. We claim that the canonical projection
onto V of q′(0)−1 is bijective and coincides with H.
Indeed, first suppose that q′(v+v∗) = 0. Then any representative k of q(v) belongs
to K(σ) and hence f(v, v) = kσ + k = k + k = 0 (see above). Now suppose that
f(v, v) = 0. Then putting v∗ = q(v), we obtain q′(v + v∗) = q(v) + v∗ = 0. Clearly
if q′(v + v′∗) = 0, then q(v) = v′∗ and hence v∗ = v′∗. The claim is proved.
Hence we have shown that every Hermitian variety H containing lines but no
planes gives rise to a classical quadrangle Γ(H). The representation of Γ(H) as the
Hermitian varietyH in a projective space will also be called a standard embedding
of Γ(H).
Finally, we would like to introduce the following notation. Since the σ-quadratic
form q does not play any role in H(3,K, q, σ) (simply look at the standard equation
for q), we may denote that quadrangle by H(3,K, σ). In particular, inequivalent
σ-quadratic forms have inequivalent associated anti-automorphisms σ.

2.3.10 D�-quadrangles

In general, the Witt index of a σ-quadratic form q defined on some vector space
V is the dimension of the subspaces of highest dimension in q−1(0). For a fixed
dimension and a fixed field, a lot of cases can occur. For instance, there may be
several non-equivalent σ-quadratic forms (of different Witt index, for different σ).
The corresponding geometries are (classical) polar spaces (of rank r), where r is
the Witt index of the σ-quadratic form. So the classical generalized quadrangles
are in fact (up to duality) classical polar spaces of rank 2. Polar spaces (we will
not need the precise definition of such geometries) can be viewed as spherical
buildings and thus they are assigned a diagram and a type (see Subsection 1.3.7
on page 8). For one particular such type and diagram (namely, D�), the polar



60 Chapter 2. Classical Polygons

space is completely and uniquely determined by the field and the dimension of the
vector space (or alternatively, the rank of the polar space), and this gives rise to
an important subclass of classical quadrangles, as we will now explain. However,
we take the projective point of view.
Consider the projective space PG(2�− 1,K) and let Q be a quadric in that space,
i.e., the null set of a (homogeneous) quadratic equation in the coordinates in
PG(2�−1,K). We say the Q is non-degenerate if no point of Q is collinear (on Q,
i.e., the joining line has all its points on Q) with all other points of Q. The Witt
index of Q is said to be k if the (projective) dimension of the projective subspace
of highest dimension contained in Q is equal to k − 1. For arbitrary � and K,
there always exists a quadric Q� of Witt index � (the “split case”, or, in French,
“forme déployée”) in PG(2� − 1,K) and it is projectively unique (which means
that one such quadric can always be transformed into any other by a collineation
of the projective space, and this collineation can be chosen to come from a linear
map in the underlying vector space). The standard equation is given by X0X1 +
X2X3 + · · ·+X2l−2X2l−1 = 0 and one can see that for instance the subspace with
equations X0 = X2 = · · · = X2l−2 = 0 of projective dimension �−1 is contained in
Q. The corresponding polar space is of type D�. Note that Q is never a generalized
quadrangle; weak quadrangles appear for � = 2. Now let Q′ be any non-degenerate
quadric in PG(2�− 1,K) with equation F (X1, . . . , X2�) = 0. Then by extending
the field K to its quadratic closure (or algebraic closure) K and considering the
equation F (X1, . . . , X2�) = 0 over K, we obtain a polar space of type D� over K.
If � > 1 and Q′ has Witt index 2, then we say that the corresponding generalized
quadrangle is of type (D�), or a D�-quadrangle. If the characteristic of K is not
equal to 2, then every orthogonal quadrangle in odd-dimensional projective space
over K is a D�-quadrangle; if K has characteristic 2, then the quadric over K might
be degenerate and if it is, we do not have a D�-quadrangle.
Some quadrangles of type (D�) will turn up as ideal subquadrangles of the so-called
exceptional Moufang quadrangles; see Chapter 5.

Classical quadrangles over special fields

2.3.11 Commutative fields

We already know that, if σ = 1, then Q(V, q), with q a σ-quadratic form as above,
is isomorphic to the quadrangle arising from a quadric of Witt index 2 in PG(V ).
Suppose now that K is commutative and σ �= 1. Let q be a σ-quadratic form and f
the associated σ-Hermitian form. If the characteristic of K is not equal to 2, then

q−1(0) = {v ∈ V : f(v, v) = 0}.

This can be shown as in Subsection 2.3.9 above. If the characteristic of K is equal
to 2, then clearly Kσ = K(σ). Indeed, Kσ ⊆ K(σ) because (kσ + k)σ = k + kσ;
K(σ) ⊆ Kσ because l(kσ + k) = (lk)σ + (lk) for all l ∈ K(σ), and hence, since
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Kσ is non-trivial (σ �= 1), we deduce K(σ) · Kσ ⊆ Kσ. Let g be the (σ, 1)-linear
form associated with q, i.e., g(x, y) + g(y, x)σ = f(x, y). If f(v, v) = 0, then
g(v, v) = g(v, v)σ ∈ K(σ) = Kσ, hence q(v) = 0. Conversely, if q(v) = 0, then
g(v, v) ∈ Kσ = K(σ), so f(v, v) = 0.
This shows that in the commutative case any classical quadrangle arises from a
quadric or a Hermitian variety containing lines but no planes, in some projective
space.
Also remark that in PG(4,K), all non-degenerate quadrics are projectively equiv-
alent (this follows from Proposition 2.3.4). Hence we denote such an orthogonal
quadrangle by Q(4,K), without referring to the (unique) 1-quadratic form.

2.3.12 Finite fields

Since finite skew fields are fields, all finite classical quadrangles arise from quadrics
or Hermitian varieties. Let K = GF(s). It is well known (see e.g. Artin [1957],
page 144, or O’Meara [1971], page 157) that for d odd there are exactly two
isomorphism classes of (non-degenerate) quadrics in PG(d, s): members of one
class have Witt index d−1

2 , members of the other class have Witt index d+1
2 (and

are of type (D d+1
2

)). This is essentially due to the fact that every element of
GF(s) can be written as a sum of two squares. Hence the dimension determines
the quadrangle and the cases are: d = 3 (weak non-thick quadrangle) and d =
5. The classical quadrangle corresponding to the latter is a D3-quadrangle and
is denoted by Q(5, s), since the quadratic form is — up to isomorphism and a
factor — determined by the dimension. If d is even, there is a unique isomorphism
class of non-degenerate quadrics in PG(d, s) and they contain maximal projective
subspaces of dimension d−2

2 . So only d = 4 produces generalized quadrangles, and
we denote such a quadrangle by Q(4, s).

The situation for Hermitian varieties is even simpler: for every dimension d, there
is — up to isomorphism — just one example over GF(s) (with s a perfect square;
the involutory field automorphism x 	→ x

√
s is uniquely determined) and it has

maximal projective subspaces of dimension d−1
2 (for d odd) or d−2

2 (for d even),
see Scharlau [1985], page 39. So only d = 3 and d = 4 give us quadrangles and
we denote them, respectively, by H(3, s) and H(4, s), in conformity with previous
notation.

2.3.13 Algebraically closed fields

Not surprisingly, in any algebraically closed field K of characteristic not equal to
2, or, more generally, in any quadratically closed field of characteristic not equal
to 2, a quadric of Witt index 2 has the standard equation

X2
0 + X2

1 + · · ·+ X2
� = 0,

with � = 3, 4 (see O’Meara [1971], Section 61B), but the case � = 3 corresponds
to a weak non-thick quadrangle (see Corollary 2.3.6 above). So there is a unique
orthogonal quadrangle over K, namely Q(4,K).
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2.3.14 The classical (skew) fields R,C and H

Sylvester’s theorem implies that for any ordered field K where each positive
element is a square, coordinates can be chosen in such a way that any quadric of
Witt index 2 in PG(�,K) is given by the equation

−X2
0 −X2

1 + X2
2 + X2

3 + · · ·+ X2
� = 0,

with � ≥ 4 (see for instance Artin [1957], page 149 or O’Meara [1971], Sec-
tion 61A). Hence every orthogonal quadrangle over R is uniquely determined by
the dimension �. Therefore we can denote this orthogonal quadrangle by Q(�,R).
Of course, there are no Hermitian quadrangles over R since there are no non-trivial
field automorphisms in R.
Every involutory field automorphism in C is conjugate (in AutC) to the standard
conjugation map a + ib 	→ (a + ib)∗ = a − ib, where i =

√
−1 and a, b ∈ R. It

follows that, unlike the finite case, for every dimension � ≥ 3, there is a unique
Hermitian quadrangle over C in PG(�,C) and we briefly denote it by H(�,C). The
corresponding Hermitian form is equivalent to

f(x, y) = −x∗0y0 − x∗1y1 +
�∑

r=2

x∗ryr,

where x = (x0, x1, . . . , x�) and similarly for y.
Since C is algebraically closed, it follows from the previous subsection that there
is only one orthogonal quadrangle over C, namely Q(4,C).
Every involutory anti-automorphism of H, the standard quaternions R + iR +
jR + kR over R, is conjugate (in AutH) to either the standard conjugation a +
ib + jc + kd 	→ (a + ib + jc + kd)∗ = a − ib − jc − kd, or the skew conjugation
a + ib + jc + kd 	→ (a + ib + jc + kd)� = a− ib + jc + kd, where a, b, c, d ∈ R. If σ
is the standard conjugation, then for every dimension � ≥ 3, there exists a unique
σ-Hermitian form

f(x, y) = −x∗0y0 − x∗1y1 +
�∑

r=2

x∗ryr,

where x = (x0, x1, . . . , x�) and similarly for y. The corresponding quadrangle only
depends on � and hence can be denoted by H(�,H,R), where the presence of R
replaces the notation σ in that R is the field of fixed elements of σ. This quadrangle
will sometimes be referred to as a real quaternion Hermitian quadrangle.
If σ is the skew conjugation, then every σ-Hermitian form in PG(�,H) can be
written as

f(x, y) =
�∑

r=0

x�ryr,

where again x = (x0, x1, . . . , x�) and similarly for y. It is readily checked that the
Witt index is equal to 2 if and only if � = 3 or � = 4. In this case we obtain the
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Hermitian quadrangles H(3,H,C) and H(4,H,C), using similar notation to that
above, and they will be called the complex quaternion Hermitian quadrangles,
because the centre R together with the set Hσ generate a complex subfield of H.

Certain generalized quadrangles discussed in this subsection are dual to others; for
a complete account on this matter, see Subsection 9.6.4 on page 417 in Chapter 9.

2.3.15 Local fields

Quadrics in PG(�,K) of Witt index 2, and with K a finite extension of Qp (the
field of p-adic numbers) or GF(q)((t)) (the field of Laurent series over GF(q)),
exist only for � ∈ {3, 4, 5} and they can all be classified; see O’Meara [1971],
Section 63C (compare also Scharlau [1985], pages 91, 185, 217).

2.3.16 Number fields

Here, the situation is much more complicated. We simply refer toO’Meara [1971],
Section 66 and Lam [1973], Chapter 6. We will not need those results in the rest
of the book.

The symplectic quadrangle

We are now going to define a very important class of classical quadrangles sepa-
rately and in a way different from that above. We will indicate the proof of the fact
that the quadrangle is classical (and postpone a detailed proof to the next chapter;
see Proposition 3.4.13 on page 109). The construction below has also some nice
applications to the theory of projective spaces (for instance, to the construction
of ovoids; see Subsection 7.6.25 on page 340), and it is similar to the construction
of a class of classical hexagons.

2.3.17 Symplectic polarities and their quadrangles

Let K be any (commutative) field and consider in PG(3,K), with respect to some
chosen basis, the symplectic polarity τ which maps the point (y0, y1, y2, y3) to the
plane with equation y1X0−y0X1+y3X2−y2X3 = 0. A line L of PG(3,K) is called
totally isotropic if Lτ = L. We define the following geometry W(K). The points
of W(K) are the points of PG(3,K); the lines of W(K) are the totally isotropic
lines of τ . We show that W(K) is a generalized quadrangle. Note that every point
of PG(3,K) is incident with its image (that is what a symplectic polarity is all
about).

If L is a line of PG(3,K) such that Lτ = L, and p is a point on L, then, since
p IL in PG(3,K), also L I pτ . Conversely, if L is a line of PG(3,K) through some
point p and incident with pτ , then for any other point x IL, xτ is incident with
x (since every point is incident with its image) and with p (since x I pτ ), hence
Lτ = (xp)τ = xp = L. We have shown that a line L is totally isotropic if and only
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if for every point p on L, it is incident with pτ if and only if this property holds
for at least one point p on L.
Now let p be a point ofW(K) not incident with some line L ofW(K). Then there is
a unique line M ofW(K) through p meeting L. Indeed, M must be incident with p,
it must be contained in pτ and it must meet L, so M joins p with L∩pτ ; the latter
is a singleton since L is not contained in pτ (otherwise p IL, a contradiction).
Furthermore, the points (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0) and (0, 0, 0, 1) form an
ordinary 4-gon. This shows that W(K) is a weak generalized quadrangle.
Noting that each line contains |K|+1 points and each point is incident with |K|+1
lines, we conclude that W(K) is a (thick) generalized quadrangle, the symplectic
quadrangle (over K). The polarity τ defines an anti-symmetric bilinear form q as
follows:

q((x0, x1, x2, x3), (y0, y1, y2, y3)) = x0y1 − x1y0 + x2y3 − x3y2.

By previous remarks, it is clear that two points x and y of PG(3,K), and hence
of W(K), are collinear in W(K) if and only if q(x, y) = 0. We call the form q the
bilinear form associated with W(K). It defines W(K) completely.
As for Q(V, q) above, we will sometimes refer to the representation of W(K) in
PG(3,K) just described as the standard embedding.

2.3.18 Grassmann coordinates

We now introduce Grassmann coordinates (in the special case d = 3: Plücker
coordinates) for the lines of a projective space PG(d,K) over a field K. Choose
a basis and coordinates and let L be a line of PG(d,K), d ≥ 2. Consider two
arbitrary points x and y on L with respective coordinates (x0, x1, . . . , xd) and
(y0, y1, . . . , yd). Then one can easily verify that the

(
d+1
2

)
-tuple (pij)0≤i<j≤d, where

pij =
∣∣∣∣ xi xj

yi yj

∣∣∣∣ = xiyj − xjyi,

is, up to a non-zero scalar multiple, independent of the points x and y on L.
Hence the line L defines a unique point pL = (pij)0≤i<j≤d of PG(

(
d+1
2

)
− 1,K).

The coordinates of the point pL are the Grassmann coordinates of L. For d = 3,
all these points constitute a quadric, the so-called Klein quadric (see e.g. Chap-
ter 12 of Taylor [1992]), and the Grassmann coordinates are then called Plücker
coordinates.
Now, from the expression of the bilinear form associated with τ , one immediately
sees that the Grassmann coordinates of a line of W(K) satisfy p01 + p23 = 0, and
conversely, every line whose Grassmann coordinates satisfy p01 + p23 = 0 is a line
of W(K). This is thus another way to describe W(K).
This description has the advantage of making apparent the isomorphism of W(K)
and the dual of Q(4,K). Indeed, the quadrangle Q(4,K) is nothing other than a
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quadric Q of Witt index 2 in PG(4,K). The relation p01 + p23 = 0 determines a
hyperplane in PG(5,K) which meets the Klein quadric exactly in a non-degenerate
quadric containing lines (the pencils of W(K)) but no planes (because of the non-
degeneracy). Since there is essentially only one such quadric, it must be isomorphic
to Q.

Recall from Definition 1.9.4 (see page 39) that a projective point in a generalized
quadrangle is a regular point for which the perp-geometry is a projective plane.

2.3.19 Theorem. All points of the symplectic quadrangle W(K) over any field K
are projective.

Proof. Let τ be a symplectic polarity in PG(3,K) corresponding to the symplectic
quadrangle W(K). All traces are of the form xτ ∩ yτ for x and y two non-collinear
points in W(K), viewed as points of PG(3,K). So every trace is a line of PG(3,K)
and hence determined by any two of its points. Therefore, every point is regular.
It is now easily seen that the perp-geometry in a point p is nothing other than the
projective plane pτ . �

2.3.20 Corollary. No proper full or ideal subquadrangle Γ of a symplectic quadran-
gle W(K) can be isomorphic to a symplectic quadrangle.

Proof. Using Proposition 1.9.18 on page 46, we see that the perp-geometry in a
point x of Γ is a proper subgeometry of the corresponding perp-geometry ofW(K),
except that all lines through x in both perp-geometries are the same (if Γ is an
ideal subquadrangle), or all points on some line through x are the same (if Γ is a
full subquadrangle). So they cannot be both projective planes by Corollary 1.8.3
(see page 34). �
Later on, we will define certain subquadrangles of the symplectic quadrangles over
a field of characteristic 2, the so-called mixed quadrangles; see Subsection 3.4.2 on
page 100. Some of these will be full or ideal proper subquadrangles of W(K).

2.4 Classical generalized hexagons

From the point of view of group theory, there are no such things as classical
hexagons, except maybe for an example of order (2, 2), because no classical group
is naturally associated with a generalized hexagon. The exception noted is related
to the group PSU3(3). This group is (sporadically) isomorphic to the exceptional
group of type G2 over GF(2) and a construction of a generalized hexagon of order
(2, 2) related to the group PSU3(3) is given in Subsection 1.3.12. However, we will
introduce a class of classical hexagons, the name “classical” being motivated by
the fact that they naturally live on classical objects like quadrics (in particular,
we will see that they all live on the quadric (of type D4) in seven-dimensional
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space (hence containing projective 3-spaces), whereas other important examples
are related to exceptional groups of type E6 and E8 (see Appendix C); these only
exist in the infinite case). We will also see that there is a great similarity between
the symplectic quadrangle and one of the classes of classical hexagons, namely, the
so-called split Cayley hexagons. This is an extra motivation for the name classical
hexagons.
We start with an important definition in the theory of buildings and, in particular,
the theory of polar spaces.

2.4.1 Definition. Let Γ = (P ,L, I ) be a geometry of rank 2. Then we say that
Γ satisfies the Buekenhout–Shult one-or-all axiom if for every point p ∈ P and
every line L ∈ L not incident with p, either all points of L are collinear with p, or
exactly one point on L is collinear with p.
If the gonality of Γ is at least 3, then together with some non-degeneracy con-
ditions, the Buekenhout–Shult one-or-all axiom characterizes the class of all po-
lar spaces and thus provides a definition for these objects. For more details, see
Buekenhout & Shult [1974].

2.4.2 The quadric Q(7,K)
For the definition of the classical hexagons, we will need some understanding of
the geometry of the quadric Q(7,K) of type D4 over a field K in PG(7,K). It
is by definition the quadric containing projective 3-spaces. Recall that there is
essentially only one such for any field K. A standard equation is given by X0X1 +
X2X3 + X4X5 + X6X7 = 0. We will give some general properties below. Our goal
is to understand geometrically how triality produces hexagons. The classification
of trialities will not be carried out, but we will explicitly describe the examples
giving rise to hexagons.
The quadric Q(7,K) has as characteristic property that every plane contained
in it is itself contained in exactly two projective three-dimensional subspaces of
Q(7,K). The set of three-dimensional subspaces on Q(7,K) can be subdivided in
two subsets in the following way. Two 3-subspaces belong to the same subset if and
only if their intersection is a projective space of odd dimension (empty, a line or a
3-space). Each subset is called a set of generators. It follows that there is a unique
element of each set of generators through a plane of Q(7,K). The D4-geometry
Ω(K) attached to Q(7,K) is defined as follows. There are four different types of
elements. The 0-points are the points of Q(7,K); the lines are the lines of Q(7,K),
and we denote this set by L; the 1-points are the elements of one set of generators;
the 2-points are the elements of the other set of generators. We denote the set of
i-points by P(i), i = 0, 1, 2. Incidence is symmetrized containment for i-points and
lines, i = 0, 1, 2; also for 0-points and j-points, j = 1, 2; and a 1-point is incident
with a 2-point if the corresponding 3-spaces meet in a plane of Q(7,K). The key
property is that every permutation of the set {P(0),P(1),P(2)} defines a geometry
which is isomorphic to Ω(K). For i = 0, 1, 2, we call two i-points p and q collinear
when they are incident with a common line.
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Let p be a point, and let L be a line on Q(7,K). Then, since Q(7,K) is a quadric,
either there is exactly one point on L collinear on Q(7,K) with p, or p and L are
contained in a plane of Q(7,K). In the latter case, all points of L are collinear
on Q(7,K) with p. Thus the geometry of points and lines on Q(7,K) satisfies the
Buekenhout–Shult one-or-all axiom (and indeed Q(7,K) is a polar space, one of
type D4). An immediate consequence is that for a point p and a projective 3-space
S (plane π) either p is collinear with all points of a plane of S (line of π), or p
is contained in S (p and π generate a projective 3-space of Q(7,K) or p belongs
to π).

2.4.3 Definition. Let Ω(K) be the geometry defined from Q(7,K) as above. A
triality of Ω(K) is a map

θ : L → L,P(0) → P(1),P(1) → P(2),P(2) → P(0)

preserving incidence in Ω(K) and such that θ3 is the identity.
Let a triality θ be given. An absolute i-point p is an element of P(i) which is
incident with pθ, i = 0, 1, 2. An absolute line is a line which is fixed by θ. There
is some similarity with polarities in three-dimensional projective space, as pointed
out by Tits [1959], and we will come back to that matter in Subsection 2.4.18.

2.4.4 Theorem (Tits [1959]). Let θ be a triality of Ω(K). Suppose that one of the
following hypotheses is satisfied:

(i) there exists at least one absolute i-point, for some i ∈ {0, 1, 2}, and every
absolute i-point is incident with at least two absolute lines;

(ii) there exists a cycle (L0, L1, . . . , Ld), d > 2, of absolute lines (with Li con-
current with Li+1 �= Li; subscripts modulo d).

Then for every i ∈ {0, 1, 2}, the geometry Γ(i) with point set P(i)
abs the set of absolute

i-points, with line set Labs the set of absolute lines and with the natural incidence,
is a weak generalized hexagon with thick lines (and hence with some order). Also,
the isomorphism class of this geometry is independent of i ∈ {0, 1, 2}.

Proof. We prove this in several steps. Without loss of generality, we take i = 0
and we briefly talk about points instead of 0-points. Also, we use the symbol ∈ to
denote incidence between a point and some other element, i.e., we consider Ω(K)
as Q(7,K). In particular, we will also talk about planes, and these are the planes
of Q(7,K). There is no loss of generality in doing so. In fact, a plane can abstractly
be viewed as a pair of incident 1- and 2-points. Note that everything we prove for
θ also holds for θ2, since θ2 is also a triality with obviously the same absolute lines
and the same absolute i-points, for all i ∈ {0, 1, 2}.

Lemma 1 Every point p of any absolute line L is an absolute point.
Proof. Indeed, p ∈ L = Lθ ⊆ pθ and similarly for θ2. QED
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Lemma 2. Whenever two distinct absolute points p and q are such that p ∈ qθ,
then p is collinear with q and pq is an absolute line.

Proof. Since q is absolute, q ∈ qθ and so there is a unique line pq incident with both
p and q. The line pq is in qθ, so (pq)θ belongs to qθ2 . Also, (pq)θ is the intersection
(viewed in Q(7,K)) of pθ and qθ, both of which contain p. Therefore, p is incident
with (pq)θ and hence p also belongs to qθ2 .

Also, p ∈ qθ implies q ∈ pθ2 . Hence similarly as we showed p ∈ qθ2 , this implies that
q ∈ pθ. Interchanging the roles of p and q, we infer from the previous paragraph
that q ∈ (pq)θ. Therefore pq = (pq)θ. QED

Lemma 3. If an absolute point p is collinear with an absolute point q, but p /∈ qθ

and hence q /∈ pθ, then there is an absolute point x such that px and qx are absolute
lines.

Proof. We first claim that the planes πp := pθ ∩ pθ2 and πq := qθ ∩ qθ2 meet in
a unique point. Suppose first that they meet in at least two points, say x and
y. Then p is collinear with x, y, q and there are two possibilities. First, q belongs
to xy. In that case q ∈ pθ, contrary to our assumptions. Second, x, y, q forms a
triangle. Then x, y, q, p are contained in a 3-space containing πq. But there are only
two 3-spaces containing x, y, q and these are qθ and qθ2 . These give, respectively,
p ∈ qθ and q ∈ pθ, a contradiction. So we have shown that πp and πq meet in at
most one point.

Suppose now that πp and πq are disjoint. We consider L := (pq)θ. This line is
contained in pθ ∩qθ and hence it meets the planes πp and πq, necessarily in unique
distinct points u and v, respectively, for otherwise πp and πq share a common point.
Similarly Lθ meets πp and πq in unique distinct points u′ and v′, respectively. So
qθ is generated by πq and u; qθ2 is generated by πq and u′, with u and u′ collinear
(because they belong to πp). But that implies that u′ is collinear with all points of
a plane πq of qθ plus an extra point u, in contradiction with the consequences of
the Buekenhout–Shult one-or-all axiom (see above), remembering that qθ �= qθ2 .
Hence this situation cannot occur and our first claim is proved.

Our next claim is that whenever a line L is incident with p and contained in πp,
with πp as above, then Lθ is also incident with p and contained in πp. Indeed, as
L is incident with πp, it is incident with pθ and with pθ2 . So Lθ is incident with
pθ2 , with p and with pθ. Hence with πp as well (on Q(7,K)).

Now let x be the unique point in the intersection of πp and πq. If we denote by I the
incidence relation in Ω(K), then from pIpxIxIxqIq follows pI(px)θ Ixθ I(xq)θ Iq.
Therefore xθ contains both p and q and hence the line pq. Now (pq)θ is the inter-
section of pθ and qθ. Since this intersection also contains x, we see that x I (pq)θ. It
follows that xθ2 I (pq)θ Ix. Hence x I xθ2 and applying θ, we conclude xθ Ix. Thus,
x is an absolute point and the lines px and qx are absolute lines by Lemma 2.
Therefore, Lemma 3 is proved. QED
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Lemma 4. The diameter of the incidence graph (G, ∗) of Γ(0) is less than or equal
to 6.
Proof. If δ denotes distance (as usual), then we have to prove that δ(v, w) ≤ 6,
for all points and lines v, w of Γ(0). If v is a point and w is a line, then by the
Buekenhout–Shult one-or-all axiom, there is at least one point x on w collinear
in Ω(K) with v. By Lemma 1, x is an absolute point at distance no more than
4 from v by Lemma 2 and Lemma 3. Hence δ(v, w) ≤ 5. If v, w are both points
or both lines, then by considering an element z incident with w, we see that
δ(v, w) ≤ δ(v, z) + δ(z, w) ≤ 5 + 1 = 6. Hence the diameter of (G, ∗) is 6 or less.

QED

Lemma 5. The gonality of (G, ∗) is larger than 3.
Proof. Suppose the lines L, M, N form a triangle, i.e., L, M, N are absolute lines
and {x} = L∩M �= {y} = M ∩N . The 3-space xθ is the unique element of the set
of generators corresponding to 1-points containing the lines L and M . Similarly,
yθ contains M and N , so yθ = xθ implying x = y. The lemma is proved. QED

Lemma 6. The gonality of (G, ∗) is larger than 4.
Proof. Suppose the lines L, M, N, P form a quadrilateral. If they are contained in a
plane ofQ(7,K), then any three of them form a triangle, contradicting Lemma 5. If
{x} = L∩M , then L∪M ⊆ xθ∩xθ2 , hence the four “vertices” of the quadrilateral
are two by two collinear (in Q(7,K)). Hence they are contained in a 3-space U of
Q(7,K). Since U contains the plane 〈L, M〉, and since there are only two 3-spaces
through that plane, we must have U = xθ or U = xθ2 . We may assume without
loss of generality U = xθ. But then also yθ = U with {y} = N∩P , a contradiction.

QED

Lemma 7. The gonality of (G, ∗) is larger than 5.
Proof. Suppose we have a pentagon L, M, N, P, Q of lines. Let x again be the
intersection of L and M . Let y and z be the intersection point of, respectively,
N and P , and of P and Q. As above, M and N lie in a plane of Q(7,K), hence
x is collinear with y and similarly with z. So by the Buekenhout–Shult one-or-
all axiom, x is collinear with all points of the space generated by N, P, Q. We
conclude that the pentagon lies entirely in a 3-space U (since a 2-space is ruled
out by Lemma 5). Without loss of generality, we may again assume that xθ = U ;
compare Lemma 6. But then also U = yθ = zθ, a contradiction. QED

Lemma 8. The gonality of (G, ∗) is equal to 6.

Proof. This is obvious if we assume that there is a circuit in Γ(0) (since the diameter
is at most 6, we can always reduce that circuit to one of length 12). So we may
assume that each absolute point is incident with at least two absolute lines. Also,
by assumption, there exists an absolute line L. By Lemma 1, each point on L
is absolute. Let x IL. By assumption, there exists an absolute line M Ix with
M �= L. Let y IM with y �= x. Then again, y is absolute. Let N be an absolute
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line through y distinct from M , and let z �= y be incident with N . Let P be an
absolute line through z distinct from N , and let u �= z be incident with P . Finally,
let Q �= P be an absolute line through u. By the Buekenhout–Shult one-or-all
axiom, there is a point v on Q collinear in Ω(K) with x. By Lemma 3, we have
δ(x, v) ≤ 4. Since the gonality of (G, ∗) is at least 6, we see that δ(v, x) = 4 and
the sequence (x, y, z, u, v, w), where w is collinear with both x and v in Γ(0), is an
ordinary hexagon. So the gonality of (G, ∗) is equal to 6 and its diameter is also
equal to 6. QED

By Lemma 1.5.10 (see page 21), Γ(0) is a weak generalized hexagon with thick
lines. Applying triality, the last assertion follows and the proof of the theorem is
complete. �

2.4.5 Remark. Note that the proof above implies that two points x and y of
Γ(0) are opposite if and only if they are not collinear in Ω(K) (or equivalently in
Q(7,K)).

2.4.6 Trilinear forms

To give an explicit example of a triality, we should have a convenient description
of Q(7,K), i.e., a description of Ω(K) in which the i-points play the same role as
the j-points for i, j ∈ {0, 1, 2}. This is possible by introducing a trilinear form, see
Cartan [1938]. We follow Tits [1959] for the notation.
The points of Q(7,K) can be viewed as 8-tuples (x0, x1, . . . , x7), up to a scalar
multiple, with elements in K and satisfying the relation

x0x4 + x1x5 + x2x6 + x3x7 = 0.

The philosophy of trilinear forms is that since 1-points and 2-points play the same
role as 0-points, it must be possible to label the 1-points and 2-points in the same
way as the 0-points and to introduce an algebraic operation that tells one when two
elements are incident. In fact, it is possible to do even better: let J = {0, 1, . . . , 7}
and let V be an eight-dimensional vector space over K; then there exists a trilinear
form T : V ×V ×V → K such that a pair of points (x, y) of Q(7,K) represents an
incident (0-point, 1-point)-pair in Ω(K) if and only if the linear form T (x, y, z′) is
identical zero in z′; and similarly for any cyclic permutation of the letters x, y, z.
This trilinear form has the following explicit description:

T (x, y, z) =

∣∣∣∣∣∣
x0 x1 x2
y0 y1 y2
z0 z1 z2

∣∣∣∣∣∣+
∣∣∣∣∣∣

x4 x5 x6
y4 y5 y6
z4 z5 z6

∣∣∣∣∣∣
+x3(z0y4 + z1y5 + z2y6) + x7(y0z4 + y1z5 + y2z6)
+y3(x0z4 + x1z5 + x2z6) + y7(z0x4 + z1x5 + z2x6)
+z3(y0x4 + y1x5 + y2x6) + z7(x0y4 + x1y5 + x2y6)
−x3y3z3 − x7y7z7.
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For example, in order to find the equation of the 3-space on Q(7,K) which cor-
responds to the 1-point y = (1, 0, . . . , 0), we simply plug in the value for y in
T (x, y, z) and require that the coefficients of all zi, i ∈ J , vanish. This gives us
x1 = x2 = x4 = x7 = 0.

2.4.7 Trialities that produce generalized hexagons

Now we give the formulae for all trialities which produce (thick) generalized
hexagons. Let T be the trilinear form as introduced above. Since a line of Ω
is determined by two i-points, for all i ∈ {0, 1, 2}, it is readily seen that every
permutation θ of P(0) ∪ P(1) ∪ P(2) preserving incidence (and well defined on the
types of points) induces a not necessarily type-preserving automorphism of Ω(K).
Let σ be an automorphism of K of order 1 or 3. Then the map

τσ : P(i) → P(i+1) : (xj)j∈J 	→ (xσ
j )j∈J , i = 0, 1, 2 mod 3,

clearly preserves incidence in Ω(K) (because the trilinear form T is preserved).
Moreover, the order of τσ is clearly 3. Hence τσ is a triality. We call τσ a triality
of type ( I σ), closely following Tits [1959]. There are other types, but we will not
need them. We review them briefly in Subsection 2.4.18.

2.4.8 Theorem (Tits [1959]). The geometry Γ(i) = (P(i)
abs,Labs, I ) arising from

the triality τσ is a generalized hexagon of order (|K|, |K(σ)|), where K(σ) is the
subfield of K consisting of those elements fixed by σ. Replacing σ by σ−1 produces
an isomorphic hexagon.

Proof. According to Theorem 2.4.4, it suffices to show that there is an ordinary
hexagon in Γ(0), and that there is an absolute point incident with exactly |K(σ)|+1
absolute lines.
Let ei be the 0-point with coordinates xj , j ∈ J , all zero except xi, which can be
chosen to be equal to 1. Clearly

T (ei, eτσ
i , z) ≡ 0

if and only if i �= 3, 7. The 0-points incident with eτσ
0 are those whose coordinates

satisfy x1 = x2 = x4 = x7 = 0 (this is the example at the end of Subsection 2.4.6);
so clearly the absolute points e5 and e6 are incident with eτσ

0 and hence the lines
e5e0 and e0e6 are absolute lines. Similarly, the lines e6e1, e1e4, e4e2 and e2e5 are
absolute lines. These six lines in total now clearly form an ordinary hexagon.
Using the trilinear form T again, it takes an elementary calculation to see that the
0-points (xj)j∈J incident with both eτσ

0 and e
τ2σ
0 are precisely the points satisfying

x1 = x2 = x3 = x4 = x7 = 0 (and these indeed form a plane π in PG(7,K);
this plane is denoted by πe0 in the proof of Theorem 2.4.4). Every absolute line
incident with e0 lies in π; moreover, by the proof of Theorem 2.4.4, every absolute
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point p in π, p �= e0, gives rise to an absolute line e0p. Now consider the 0-point
p with coordinates (0, 0, 0, 0, 0, k, 1, 0), k ∈ K. Its image under τσ is the 3-space in
PG(7,K) with equations ⎧⎪⎪⎨

⎪⎪⎩
0 = x2 + kσx1,
0 = x5 − kσx6,
0 = x3,
0 = x4.

This space contains p if and only if k = kσ. Noting that also the point with
coordinates (0, 0, 0, 0, 0, 1, 0, 0) of π is absolute, we see that the order of Γ(i) is
equal to (|K|, |K(σ)|).
If we replace σ by σ−1, then we interchange P(1) and P(2). The theorem now
follows directly. �

2.4.9 Definitions. Taking σ = 1, we see that over every field K there exists a
triality that produces a generalized hexagon. We call this hexagon classical, and,
more specifically, we speak of the split Cayley hexagon (over K), denoted by H(K).
The reason for that name is that this hexagon can also be constructed using a
split Cayley algebra over K, see for instance Schellekens [1962a], [1962b] (and
moreover, the corresponding simple algebraic group is also split). The hexagon
H(K) deserves the name “classical” in more than one way: on top of the reasons
already mentioned (lying on a classical polar space), it is the most important
hexagon, it is the main example, and in fact, the only example for many fields K.
The dual of H(K) is also a classical hexagon and denoted H(K)D. In the finite case,
the split Cayley hexagon over the Galois field GF(q) is denoted by H(q).
We call a generalized hexagon arising from a triality as in Theorem 2.4.8 with
σ �= 1 also a classical hexagon, or more specifically, a twisted triality hexagon, and
we denote it by T(K,K(σ), σ). Note that K is a Galois extension of degree 3 of K(σ).
The dual of T(K,K(σ), σ) is denoted by T(K(σ),K, σ) and is also called classical.
In the finite case, the field automorphism σ is — up to inverse — determined
by the field GF(q3) and hence we can unambiguously denote the unique twisted
triality hexagon over the field GF(q3) by T(q3, q), and its dual by T(q, q3). Note
that we do not follow Thas [1995] (who writes H(q3, q) for T(q3, q) and has no
special notation for the dual) in this notation in order to avoid confusion with the
Hermitian quadrangles, in particular with H(4, 64).
The representation of T(K,K(σ), σ) on Q(7,K) as above is sometimes referred to
as the standard embedding of T(K,K(σ), σ).
We now show a property of H(K) that will allow us to construct H(K) in a more
direct way on a quadric in projective 6-space.

2.4.10 Theorem (Tits [1959]). The points and lines of H(K), considered as the
geometry Γ(0) of absolute points and lines of the triality τσ with σ = 1, all lie in
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the hyperplane of PG(7,K) with equation x3 + x7 = 0. Conversely, every point of
Q(7,K) in that hyperplane belongs to H(K).

Proof. The necessary and sufficient condition for a 0-point p with coordinates
(xj)j∈J to be an absolute point is that T ((xj)j∈J , (xj)j∈J , z) vanishes. This is
equivalent to the following condition (as is easily computed by looking at the
coefficients of the zi, i ∈ J , and taking subscripts modulo 8):

{
0 = xi+4(x3 + x7), i �= 3, 7,
0 = x0x4 + x1x5 + x2x6 − x2i i = 3, 7.

The result now follows readily. �

2.4.11 Proposition. The twisted triality hexagon T(K,K(σ), σ) has an ideal sub-
hexagon isomorphic to H(K(σ)).

Proof. This follows by restricting coordinates in Ω(K) to K(σ). �

2.4.12 Remark. There is another class of hexagons closely related to the twisted
triality hexagons; we will define this class in Subsection 3.5.8 (see page 114).
The dual of the twisted triality hexagons are called in the literature the hexagons
related to the groups of type 3D4 and, in the finite case, denoted by 3D4(q) or
3D4(q3) (cf. Kantor [1986a]).

Split Cayley hexagons

2.4.13 Tits’ description of H(K)
Recall that the absolute points of a triality of type ( I id) are exactly the points of
the intersection of a hyperplane ofPG(7,K) withQ(7,K). Considering coordinates
as above, this hyperplane has equation X3 + X7 = 0. Hence substituting X7 for
X3 and deleting X7 (which amounts to the same as deleting X7 and substituting
−X3 for X3; this substitution is for historical reasons), we can identify the point
set of Γ = H(K) with the point set of the “parabolic” quadricQ(6,K) in PG(6,K)
with equation

X0X4 + X1X5 + X2X6 = X2
3 .

A tedious explicit computation (which we will not perform) shows that the Grass-
mann coordinates of the lines of H(K) satisfy the following six linear equations:

p12 = p34, p54 = p32, p20 = p35,
p65 = p30, p01 = p36, p46 = p31,

and conversely, every line on Q(6,K) whose Grassmann coordinates satisfy these
equations is a line of Γ. This gives a complete and explicit description of H(K) on
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the quadric Q(6,K). It is due to Tits [1959]. By the way, one can deduce all the
above equations from the first one by consecutively applying the following rule:
if pij = p3k is in the list, then so are p(i±4)k = p3j and pk(j±4) = p3i, where in
±4 one should choose the appropriate sign in order to obtain a number between
0 and 7.
We sometimes refer to this representation of the split Cayley hexagons as a stand-
ard embedding.

2.4.14 (Perfect) Symplectic hexagons

Now assume that the characteristic of K is 2. We first recall some properties of
the quadric Q(6,K). Let Q(6,K) have equation

X0X4 + X1X5 + X2X6 = X2
3 .

Consider the point k with coordinates (0, 0, 0, 1, 0, 0, 0). Let L be any line of
PG(6,K) through k and suppose that L contains the point with coordinates
(x0, x1, x2, 0, x4, x5, x6), xi ∈ K, i = 0, 1, 2, 4, 5, 6. A point (x0, x1, x2, �, x4, x5, x6)
of L (with � ∈ K) is contained in Q(6,K) if and only if

�2 = x0x4 + x1x5 + x2x6.

Since the characteristic of K is 2, L meets Q(6,K) in at most one point. Note
that, if K is perfect (and hence every element of K is a square in K), then L
meets Q(6,K) always in exactly one point. In any case, k is called the nucleus
of Q(6,K). Hence we may project Q(6,K) from k onto the hyperplane H with
equation X3 = 0. Let p(x0, x1, x2, x3, x4, x5, x6) be any point of Q(6,K). The set
of points of Q(6,K) collinear with p on Q(6,K) is given by the equations:{

0 = x0X4 + x4X0 + x1X5 + x5X1 + x2X6 + x6X2,
X2

3 = X0X4 + X1X5 + X2X6.

Hence the coordinates (X0, X1, X2, 0, X4, X5, X6) of the projection of these points
from k onto the hyperplane H satisfy the equation

0 = x0X4 + x4X0 + x1X5 + x5X1 + x2X6 + x6X2,

which is the equation of a hyperplane Hp of H , and clearly the correspondence
p 	→ Hp uniquely defines a symplectic polarity ρ in H . This implies that the lines of
Q(6,K) are projected onto totally isotropic lines for ρ. If K is perfect, then one can
now easily calculate that all totally isotropic lines for ρ in H are obtained in this
way. Hence for K perfect, the geometry ofQ(6,K) is isomorphic to the geometry of
the symplectic spaceW(5,K) (which is the geometry of totally isotropic subspaces
for a symplectic polarity in PG(5,K)).
Considering the standard embedding of H(K) in Q(6,K), we now see that, if K has
characteristic 2, we can represent H(K) inside the symplectic spaceW(5,K). This
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means that the points of H(K) are some points of PG(5,K), and the lines of H(K)
are some lines of PG(5,K) which are moreover totally isotropic with respect to
some symplectic polarity. Therefore we sometimes call H(K) a symplectic hexagon.
The above representation is also called a standard embedding of H(K). Hence
these geometries have two standard embeddings, and we should always make it
clear which one we mean. This will usually be achieved by the choice of the name
symplectic or split Cayley, and it is clear which embedding we associate with each
of these names.

If K is perfect, then the points of the standard embedding of the symplectic
hexagon H(K) are all points of PG(5,K). In this case, we sometimes call H(K) a
perfect symplectic hexagon.

Since the absolute lines of a triality θ incident with an absolute point p all lie in
the plane pθ ∩ pθ2 , we have the following property:

2.4.15 Theorem (Ronan [1980a]). All points of any split Cayley or twisted triality
hexagon are distance-2-regular.

Proof. By the remark preceding the theorem, we know that, for two opposite
points p and q (where p and q are not collinear in Ω(K)), the set pq is contained
in the set of points of the plane pθ ∩ pθ2 collinear in Ω(K) with q, which forms a
line. So pq is contained in a line of Ω(K) and therefore it is determined by any two
of its points. �
More exactly, for the split Cayley hexagons we can be more specific.

2.4.16 Theorem. All points of the split Cayley hexagon H(K) over any field K are
polar points.

Proof. Let H(K) be represented on the quadric Q(6,K). As in the proof of The-
orem 2.3.19, one can see easily that the perp-geometry in a point p is exactly the
projective plane on Q(6,K) containing the lines of H(K) through p. It is also read-
ily seen that for opposite points p and q, the set Γ+(p, q) (see Remark 1.9.11 on
page 43) “is” a projective plane of Q(6,K) through p, and every plane of Q(6,K)
through p and not containing lines of H(K) arises in such a way. It follows that
the span-geometry at a point p is equal to the geometry of planes and lines on
Q(6,K) through p and this is known to be a generalized quadrangle, namely one
isomorphic to W(K) (the points of W(K) corresponding to the planes through p
and the lines of W(K) to the lines through p). �
As in Corollary 2.3.20, one can now also prove:

2.4.17 Corollary. No proper full or ideal subhexagon Γ of a split Cayley hexagon
H(K) can be isomorphic to a split Cayley hexagon. �
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Later on, we will define full and ideal subhexagons of the split Cayley hexagons
over a field of characteristic 3, the so-called mixed hexagons; see Subsection 3.5.3
on page 112.

2.4.18 Polarities of PG(3,K) versus trialities of Ω(K)
We now come back to the similarity with polarities in projective 3-space PG(3,K).
There are essentially four kinds of polarities in PG(3,K) having absolute points
and lines (in PG(3,K) itself). One can distinguish the types by looking at the set
of absolute points. In Ω(K), there are four kinds of trialities having absolute points
(and they automatically have absolute lines). We give a brief survey of results due
to Tits [1959].
For a given polarity θ in PG(3,K), or for a given triality θ in Ω(K), and for a
given absolute point p, we denote the one-dimensional projective space formed
by the lines incident with p and with pθ, or incident with p, pθ and with pθ2 , by
PG(1,K)(p).

1. Pseudo-polarities in PG(3,K) are polarities for which the set of absolute
points is a proper subspace π. These only exist in characteristic 2. Suppose
π is a plane. Then the set of absolute lines is the pencil of lines in π through
the image of π. Hence the geometry of absolute points and lines can be
considered as a degenerate generalized quadrangle: “degenerate”, because it
does not contain a proper cycle (or quadrilateral in this case); “quadrangle”,
because the diameter is equal to 4, as for generalized quadrangles. For a
given absolute point p, the collineation induced on PG(1,K)(p) is either
the identity or an involution with one fixed point (an elation), according as
p = πθ or p �= πθ.

In Ω(K), there is a similar phenomenon, namely, in characteristic 3, there
are trialities which have absolute points and lines, but there is no ordinary
hexagon contained in Γ(0). More exactly, if we denote such a triality by θ,
then all absolute points are contained in a four-dimensional space PG(4,K)
which meets Q(7,K) in a degenerate quadric Q which is the projection from
some line D ofQ(7,K) of a non-degenerate conic lying in a plane ofPG(4,K)
skew to D. All points of Q are absolute. For each point p on L, every line
incident with p, with pθ and with pθ2 is absolute (the plane pθ ∩ pθ2 lies
on Q and contains D); for every other point p on Q, there is a unique
absolute line incident with p, namely, the line pp′, where p′ lies on D such that
p ∈ p′θ. Hence the geometry of absolute points and lines can be considered
here as a degenerate generalized hexagon: there are no proper cycles and the
diameter is equal to 6. For a given absolute point p, the collineation induced
on PG(1,K)(p) is either the identity or a collineation of order 3 with one
fixed point (an elation), according as p ID or p ∈ Q \D.

Note that there exist fields (necessarily of characteristic 2) such that, in
PG(3,K), there are pseudo-polarities for which the set of absolute points
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is a line, a point or the empty set; K cannot be perfect in this case. For
trialities in Ω(K′) (where K′ has charactistic 3), this has no analogue (so the
perfectness of K′ does not change the above described situation, provided
the set of absolute points is non-empty).

2. Orthogonal polarities in PG(3,K) are polarities for which the set of absolute
points is a non-degenerate ruled quadric Q(3,K) (i.e., a quadric containing
lines, hence a quadric of type D2). The set of absolute lines is precisely
the union of the two sets of generators of Q(3,K). This is clearly a weak
generalized quadrangle (denoted by Q(3,K)) which is the dual of the double
of a generalized digon. For a given absolute point p, the collineation induced
on PG(1,K)(p) is an involution with two fixed points (a homology). These
polarities do not exist in characteristic 2, but they do exist over every field
of characteristic �= 2.

In Ω(K), there is again a similar phenomenon. Indeed, for some fields K (see
below for examples), there exists a triality θ such that each absolute point
is incident with exactly two absolute lines. The geometry Γ(0) is in this case
a weak generalized hexagon which is the dual of the double of a (thick) pro-
jective plane (over K). For a given absolute point p, the collineation induced
on PG(1,K)(p) has order 3 and has two fixed points (a homology). These
trialities exist for all fields admitting such a homology in the correspond-
ing projective 1-space; in particular, the characteristic of the field is not 3.
Examples are provided by the finite fields GF(q) with q ≡ 1 modulo 3.

3. Symplectic polarities in PG(3,K) are polarities θ with the property that for
every point p, every line incident with p and with pθ is an absolute line. This
is enough to conclude that every point is an absolute point. So the set of
absolute points forms a linear subspace ofPG(3,K), namely,PG(3,K) itself.
The Grassmann coordinates of the absolute lines satisfy a linear equation
(see Subsection 2.3.18 above). For a given absolute point p, the collineation
induced on PG(1,K)(p) is always the identity. These polarities exist for all
fields K.

In Ω(K), there is a similar phenomenon. Indeed, the trialities of type ( I id)
above have the property that for every absolute point p, all lines incident with
p, pθ and pθ2 are absolute lines. Moreover, the set of absolute points is the set
of points lying in a linear subspace of PG(7,K), namely a hyperplane (see
Subsection 2.4.13 above). Also, the Grassmann coordinates of the absolute
lines satisfy a system of linear equations. For a given absolute point p, the
collineation induced on PG(1,K)(p) is always the identity. Finally, these
trialities exist for all fields K.

More similarities between the class of symplectic quadrangles and the class of
split Cayley hexagons can be found in Chapter 3 (they both contain “mixed
subpolygons”), Chapter 4 (their members admit collineations with analo-
gous properties), Chapter 5 (they behave similarly with respect to point-
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minimality and line-minimality), Chapter 6 (they share a number of combi-
natorial, geometric and algebraic characterizations), Chapter 7 (they contain
self-dual and self-polar members and the “ovoids” arising this way have sim-
ilar properties) and Chapter 9 (many similarities already mentioned have
topological analogues).

4. Unitary or Hermitian polarities in PG(3,K) are in bijective correspondence
with the involutory field automorphisms of K. For a given such involution
σ and corresponding polarity θ, the set of absolute lines through an abso-
lute point p is parametrized by the subfield of K of fixed elements under σ,
together with one extra element ∞. For a given absolute point p, the collin-
eation induced on PG(1,K)(p) is the involution arising from the semi-linear
map with identity matrix and the non-trivial involutory field automorphism
σ. These polarities exist for all fields admitting such an involution.

In Ω(K), the trialities of type ( I σ), σ �= 1, have similar properties. They
are in bijective correspondence with the class of field automorphisms σ of
order 3 in K, and K(σ) ∪ {∞} parametrizes the set of absolute lines through
an absolute point. For a given absolute point p, the collineation induced
on PG(1,K)(p) arises from the semi-linear map with identity matrix and
associated field automorphism σ. These trialities exist for all fields admitting
such an automorphism.

Note that all points of the quadrangles arising from polarities inPG(3,K) as above
are distance-2-regular, just like the points of all hexagons arising from trialities in
Ω(K); see Proposition 2.4.15.

2.5 Classical generalized octagons

There is at present no elementary geometric construction known of the classical
octagons. In the literature, one is usually referred to the construction of this geom-
etry using the Tits system (or (B, N)-pair; for these notions see Section 4.7) in
the Chevalley groups of type 2F4 (the so-called Ree groups of characterictic 2),
which was also the original construction by Tits [1960] (see also Tits [1983]).
The construction which we would like to give uses metasymplectic spaces, i.e., the
point–line geometries arising from buildings of type F4. So in fact, we should first
construct such spaces. Of course, this is beyond the scope of this book. Hence-
forth, a rigorous existence proof of the classical octagons will not be considered
in this book. But for those readers who are more or less familiar with elementary
properties of metasymplectic spaces — which are nevertheless more popular than
the classical octagons — we include the proof of the following theorem. The result
is well known, but to the best of my knowledge no proof exists in print. The result
was first announced by Tits [1960]; see also Sarli [1986]. Note, however, that I
will need some elementary results concerning polarities of Moufang quadrangles,
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in particular about ovoids (this is unavoidable since buildings of type F4 contain
Moufang quadrangles as residues, and a polarity of such a building induces a po-
larity in some of these quadrangles). I therefore advise the reader to read first the
relevant parts of Chapter 7, if necessary.

2.5.1 Definition. For a field K of positive characteristic p, we will call an endo-
morphism σ : K → K such that xσ2 = xp for all x ∈ K, a Tits endomorphism.
Note that the endomorphism x 	→ xp itself is called the Frobenius endomorphism.
So a Tits endomorphism is a square root of the Frobenius endomorphism (but in
general not unique; see the introduction of Section 7.6, page 322). We denote the
field of squares of a field K of characteristic 2 by K2.

2.5.2 Theorem (Tits (unpublished)). Let M be a metasymplectic space over some
field K, i.e., the planes of M are planes over K. Suppose M is self-polar and let
θ be a polarity. Then K has characteristic 2, it admits a Tits endomorphism σ
and the geometry O(K, σ) whose points and lines are the absolute points and lines,
respectively, with natural incidence relation, is a generalized octagon with |K|+ 1
points per line and |K|2 + 1 lines per point. �

Proof. We first define metasymplectic spaces axiomatically, then list some prop-
erties that we will use (these properties can be read off the diagram in most cases),
and then proceed to the proof of the theorem.

Definition and properties of metasymplectic spaces

A metasymplectic space M is a building (see Subsection 1.3.7) with four types
of elements, usually called points, lines, planes and hyperlines, together with a bi-
nary reflexive and symmetric incidence relation satisfying the axioms (M1) to (M4)
stated below. The term building already implies that the incidence graph is con-
nected, that no element has two or more different types and that every flag (a
flag is a set of mutual incident elements) is contained in a chamber, i.e., a flag
consisting of just four elements, one of each type.
The residue of a flag F is the geometry of elements distinct from those belonging
to F and incident with all elements of F , subject to the incidence relation inherited
from M. The type of a flag is the set of types of its elements.

(M1) The residue of any flag of type {point, line} or {plane, hyperline} is a pro-
jective plane.

(M2) The residue of any flag of type {point, plane}, {line, hyperline} or {line,
plane} is a generalized digon.

(M3) The residue of any flag of type {point, hyperline} is a generalized quadrangle.

(M4) If we call a shadow the set of points incident with a given element, then the
intersection of any two shadows is again a shadow or empty. Furthermore,
two distinct elements have distinct shadows.
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The first three axioms tell you exactly that M belongs to the diagram F4. The
last axiom is the intersection property; see Tits [1981]. In fact, we have taken this
definition in terms of points, lines, planes and hyperlines from Tits [1981].
From axiom (M4) it follows immediately that every element is determined by the
set of points incident with it. So we may identify every element with the set of
points incident with it. This way it makes sense to talk about intersections of
hyperlines, planes, etc., and to use set-theoretic symbols as ∈, ⊆, . . . .
A metasymplectic space M now has the following properties. The proofs use only
standard diagram arguments, i.e., using the axioms (M1), (M2) and (M3) combined
with incidence properties of the generalized polygons corresponding to the various
residues, or standard apartment arguments (see the first three chapters of Tits
[1974]), i.e., the mutual position of two elements can be seen in an apartment of
the corresponding building. Note that (M6) follows directly from (M1) and (M4).

(M5) Let x and y be two points ofM. Then one of the following situations occurs:

(0) x = y.

(1) There is a unique line incident with both x and y. In this case, we call
x and y collinear and we denote the unique line by xy.

(2) There is a unique hyperline incident with both x and y. In this case there
is no line incident with both x and y, and we call x and y cohyperlinear.
We denote the unique hyperline by x♦y.

(3) There is a unique point z collinear with both x and y. In this case we
call x and y almost opposite and we denote z by x �� y.

(4) There is no point collinear with both x and y. In this case we call x and
y opposite.

(M6) The intersection of two hyperlines is either empty, or a point, or a plane.

(M7) Let x be a point and h a hyperline of M. Then one of the following situa-
tions occurs:

(0) x ∈ h.

(1) There is a unique line L in h such that x is collinear with all points of
L. Every point y of h which is collinear with all points of L is cohyperco-
linear with x and x♦y contains L. Every other point z of h (i.e., every
point z of h collinear with a unique point z′ of L) is almost opposite x
and x �� z = z′ ∈ L.

(2) There is a unique point u of h cohyperlinear with x. We have h∩(x♦u) =
{u}. All points v of h collinear with u are almost opposite x and x ��
v /∈ h. All points w of h cohyperlinear with u are opposite x.

(M8) Two elements are incident if and only if the shadow of one of these elements
is contained in the shadow of the other.
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(M9) The points, lines and planes incident with a hyperline form a polar space;
in particular, the Buekenhout–Shult one-or-all axiom (see Definition 2.4.1)
and its consequences hold.

(M10) There is a principle of duality: if we replace point, line, plane, hyperline
by, respectively, hyperline, plane, line, point in the above definitions and
statements, then we obtain (mostly new) true properties.

This principle of duality is a necessary condition for the existence of polarities. A
sufficient condition is that the quadrangles which appear as a residue of a flag of
type {point, hyperline} are Suzuki quadrangles (see Subsection 3.4.6 on page 103).
We will not prove this. A proof would require the construction of such metasym-
plectic spaces and this would lead us into the theory of either Chevalley — or more
generally, algebraic — groups, or Tits buildings (cf. Tits [1974], Ronan & Tits
[1987] or Ronan [1989]). In Lemma 2 below, we give evidence for the fact that
the Suzuki quadrangles are needed in order to have a polarity.

Proof of the theorem

Suppose nowM is a metasymplectic space and θ is a polarity ofM, i.e., θ permutes
the elements of M in such a way that points are mapped to hyperlines and vice
versa, and lines are mapped to planes and vice versa; moreover θ preserves the
incidence relation and θ2 is the identity. An element of M is called absolute if it
is incident with its image under θ. We claim that there is at least one absolute
element. Indeed, let x be any point of M. We apply (M7) to h = xθ. If x ∈ xθ,
then x is an absolute point and the claim is proved. Suppose that there is a unique
line L in xθ all points of which are collinear with x. It is not so difficult to see that
Lθ is equal to the plane generated by x and L, and hence L is an absolute line.
Hence, by (M7), we may assume that there is a unique point y ∈ xθ cohyperlinear
with x. But then yθ is the unique hyperline through x meeting xθ in a point and
so y is an absolute point. The claim follows.
We put Γ equal to the geometry with point set the set of absolute points, with
line set the set of absolute lines and with natural incidence relation. Our goal is
to show that Γ is a generalized octagon. We will do so in a sequence of lemmas.

Lemma 1. Every point of an absolute line is absolute.
Proof. Let L be an absolute line and p ∈ L. Applying θ, we obtain Lθ ⊆ pθ

(using (M8)). Since L is absolute, L ⊆ Lθ. Hence p ∈ L ⊆ Lθ ⊆ pθ and so p is
absolute. QED

It is well known that metasymplectic spaces satisfy a so-called Moufang condition
(see Tits [1974], [1976a]). This implies that all generalized polygons appearing
as residues are Moufang polygons. So we may assume that the projective planes
arising as residues of flags of type {plane, hyperline} are defined over an alternative
field K, which is also known to parametrize one of the two kinds of root groups of



82 Chapter 2. Classical Polygons

the generalized quadrangles arising as residues of flags of type {point, hyperline}.
We denote byPGL2(K) the group induced on a line L ofPG(2,K) by the stabilizer
of L in the group of automorphisms of PG(2,K) generated by all elations (hence in
the so-called little projective group of PG(2,K); see Definitions 4.4.4 on page 143).

Lemma 2. There is at least one absolute point. For every absolute point p, the
residue Q(p, pθ) of the flag {p, pθ} is a Suzuki quadrangle and the absolute lines
through p form an ovoid in Q(p, pθ). Hence there are |K|2+1 absolute lines incident
with p. Also, K has characteristic 2 and admits a Tits endomorphism.
Proof. Since there is at least one absolute element, there is at least one absolute
point. Indeed, if there is no absolute point, then there must be an absolute line
(noting that an element a is absolute if and only if aθ is absolute). But Lemma 1
implies that all points on that line are absolute. Hence the claim.
So let p be an absolute point. The polarity θ clearly induces a polarity in Q(p, pθ).
By Proposition 7.2.5 (see page 308), the absolute points with respect to that
polarity form an ovoid of Q(p, pθ). But it is easily seen that these absolute points
are in fact absolute lines of M with respect to θ (if the lines of M incident with
p and pθ are called points of Q(p, pθ)). Since Q(p, pθ) is a self-polar Moufang
quadrangle, it must be either a mixed quadrangle Q(L,L′; L, L′) (for appropriate
L,L′, L and L′) or a Moufang quadrangle of type (BC −CB)2, by Theorem 7.3.2
on page 312. The group induced on a residue of a flag of type {point, plane,
hyperline} contains PGL2(K) (looking in a residue of type {plane, hyperline}).
This implies that all non-trivial root elations of Q(p, pθ) are conjugate. Hence
Q(p, pθ) cannot be a Moufang quadrangle of type (BC −CB)2, because in such a
quadrangle, elements of [U1, U3] ⊆ U2 (with the notation of Subsection 5.5.5) are
never conjugate to elements of U2 \ [U1, U3] (and the latter is non-empty!). Hence
Q(p, pθ) ∼= Q(L,L′; L, L′). Now the group induced on a residue of a flag of type
{point, plane, hyperline} is also contained in PGL2(L) (looking in a residue of
a flag of type {point, hyperline}). Hence, looking at the stabilizer of two points
in such a residue, we readily deduce that K is a (commutative) field and that
K = L = L, and consequently also L′ = L′, with L′ the image of L under a
Tits endomorphism (this follows from Theorem 7.3.2 on page 312). So Q(p, pθ) is
a Suzuki quadrangle (see Subsection 3.4.6 on page 103). The rest of the lemma
follows from Proposition 7.2.3 (page 307). QED

The next lemma shows that θ has properties entirely different from polarities in
projective spaces.

Lemma 3. If a line of M contains two absolute points, then it is an absolute line.
Also, no plane contains more than one absolute line.
Proof. Let p and q be two distinct absolute points incident with a line M . Applying
θ we see that pθ and qθ share a plane π. If p is collinear with all points of π, then
p ∈ qθ by (M7). If p is collinear with all points of a line L of π, then again by
(M7), q ∈ L and hence again q ∈ pθ. By (M9), there are no other possibilities. So
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we have shown that q ∈ pθ. Thus, M ⊆ pθ, implying p ∈ M θ. Similarly q ∈ Mθ.
Axiom (M4) implies that M ⊆ Mθ.
Let the plane π contain two absolute lines L and M . Let L and M meet in p. It is
easily seen that L, M ⊆ pθ. But this contradicts the fact that L and M represent
non-collinear points (of an ovoid) in Q(p, pθ). QED

Lemma 4. Let p and q be cohyperlinear absolute points. Then there exists a unique
absolute point x collinear with both p and q.
Proof. Suppose first that p ∈ qθ. Then q ∈ pθ and hence pθ = (p♦q) = qθ, implying
p = q, a contradiction.
Suppose now that the hyperlines pθ and p♦q have only p in common. By (M7),
q is opposite all points of pθ which are cohyperlinear with p. Since p and q are
contained in a unique hyperline, the hyperlines pθ and qθ meet in a unique point z.
By (M7), we must have z = p and hence p♦q = qθ. Hence p ∈ qθ, a contradiction
again.
So we may assume that p♦q meets pθ in a plane π. This plane π is a line of the
quadrangle Q(p, pθ) and it is therefore incident with a unique absolute point of
Q(p, pθ) with respect to the polarity induced by θ in Q(p, pθ). This point represents
an absolute line L of M incident with p. Since q is not collinear with p, the set of
points of π collinear with q is a line N distinct from L. Let {x} = L ∩N . Then x
is an absolute point (since it lies on the absolute line L) collinear with both p and
q. Since q is absolute, the previous lemma implies that qx is an absolute line.
If y is another absolute point of M collinear with both p and q, then p ∈ py I (py)θ

implies py I pθ. Similarly qy I qθ, hence y ∈ pθ ∩ qθ and consequently y = x. QED

The previous proof also shows that, if x, y, z are three absolute points with x and
y collinear, and y and z collinear, then x and z are cohyperlinear and z /∈ xθ.
Indeed, both x and z are contained in yθ.
This in turn now implies:

Lemma 5. Γ does not contain a proper pentagon.
Proof. Let x, y, z, u, v be the consecutive collinear vertices of a proper pentagon
(with x and v collinear). The point x is collinear with v ∈ uθ; it is cohyperlinear
with z ∈ uθ, hence by (M7) either v and z are collinear (a contradiction), or x ∈ uθ.
The latter contradicts our previous remark. QED

Lemma 6. Let p and q be two almost opposite absolute points. Then there exist
unique collinear absolute points x and y such that x is collinear with p and y
with q.
Proof. Since p and q are not contained in a common hyperline, the point p �� q is
not absolute and the hyperlines pθ and qθ are disjoint. Let hθ = p �� q. Since both
p and q are collinear with p �� q, the hyperline h meets both pθ and qθ in a plane,
say, πp and πq, respectively. Using the Buekenhout–Shult one-or-all axiom in pθ,
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one easily sees that there is at least one plane π in pθ containing p and sharing a
line L with πp, p /∈ L (L is uniquely determined if p /∈ πp). It follows that there is
a unique absolute line Lp through p meeting L and hence there is some absolute
point x collinear with p and lying in πp. Similarly, there is some absolute point
y collinear with q and lying in πq. Since the planes πp and πq are disjoint, the
points x and y do not coincide. Hence they are either collinear — in which case
the lemma is proved, up to uniqueness of x and y — or cohyperlinear. In the latter
case, there is a unique absolute point z collinear with both x and y by Lemma 4.
Since x, y ∈ zθ, we see that z ∈ h. By uniqueness of the hyperline through x and
y, zθ = h. Applying θ, we deduce z = p �� q, contradicting the fact that p �� q is
not absolute.

There remains to show that x and y are unique. Suppose x′ and y′ are collinear
absolute points collinear with, respectively, p and q. The point q /∈ pθ is cohyper-
linear with both x and x′ of pθ. If x �= x′, then (M7) implies that q is collinear
with all points of a line L in pθ and that the unique hyperline through q and x(x′),
namely yθ(y′θ), contains L. Thus yθ would meet pθ in a line, hence a plane and
so, applying θ, p and y would be collinear, a contradiction. QED

An almost identical argument as in the last part of the previous proof can be used
for the following lemma.

Lemma 7. Γ does not contain proper heptagons.

Proof. Let (p1, p2, . . . , p7, p8 = p1) be a heptagon with pi collinear with pi+1, for
all i modulo 7. The point p1 is collinear with the point p2 belonging to pθ

3. Hence
by (M7), it is not opposite p4 ∈ pθ

3. Since Γ does not contain proper pentagons by
Lemma 5, p1 and p4 are almost opposite (cohyperlinear would imply a pentagon
by Lemma 4). Also, p1 is cohyperlinear with p6 ∈ pθ

5 and almost opposite p5 ∈ pθ
5.

Since p4 and p6 are not collinear, (M7) implies that the unique hyperline through
p1 and p6, namely pθ

7, meets pθ
5 in at least a line, hence a plane. Therefore p5 and

p7 are collinear, a contradiction. QED

Lemma 6 says in fact that there are no proper ordinary hexagons in Γ. Indeed,
if p, x, y, q are consecutively collinear absolute points, then p is collinear with
x ∈ yθ � q, and so we deduce as in the beginning of the proof of Lemma 7
that p and q are almost opposite. This brings us back to the situation of Lemma 6.

Lemma 8. The gonality of Γ is equal to 8.

Proof. In view of previous lemmas stating that there are no proper j-gons for j ≤ 7
in Γ, we only have to exhibit a proper ordinary octagon in Γ. Let p0 be an absolute
point. Let L0 be an absolute line through p0 (existing by Lemma 2). Let p1 �= p0
be on L0. Let L1 �= L0 be an absolute line through p1. Continuing thus, we obtain
a sequence

p0 IL0 I p1 IL1 I . . . I p4 IL4,
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with p4 opposite p0; otherwise there arises an ordinary proper j-gon in Γ with
j ≤ 8. Let h be any hyperline containing L4 (for instance one can take h = pθ

4).
Since p0 is opposite p4 ∈ h, there is a unique point x ∈ h cohyperlinear with p0.
All points in h collinear with x are almost opposite p0 and there is a unique such
point p5 on L4 (unique because otherwise, by the Buekenhout–Shult one-or-all
axiom, all points of L4 are almost opposite p0, including p4, a contradiction). By
Lemma 6, there are collinear absolute points p6 and p7 collinear with, respectively,
p5 and p0. We have established an octagon p0 ⊥ p1 ⊥ . . . ⊥ p7 ⊥ p0. QED

To finish the proof of Theorem 2.5.2 we only have to prove that the diameter of
Γ is equal to 8. Note that we have shown above that, whenever a line L of M
contains a point opposite some point p (in M), then there is a (unique) point x
on L almost opposite p. In fact, this follows readily from (M7)(2).

Lemma 9. The diameter of Γ is equal to 8.
Proof. This will follow as soon as we have shown that a point and a line are always
at distance j ≤ 7 from each other in the incidence graph of Γ. This will follow if we
show that, for every line L and every point p, there is a point x on L at distance
at most 6 from p. By Lemmas 3, 4 and 6, we may assume that all points of L are
opposite p. But then we remarked above that there must be a unique point on L
almost opposite x, a contradiction. QED
The theorem is proved. �

2.5.3 Definitions. We call the generalized octagon O(K, σ) as in the statement
of the theorem the Ree–Tits octagon, for obvious reasons. Both the Ree–Tits
octagons and their duals will be called classical, but recall that the term Ree–Tits
octagon is, as a matter of convenience, reserved for O(K, σ) itself. In the finite
case, it follows from the previous theorem that the field GF(q) has even order
and q = 22e+1. In that case, the Tits endomorphism σ is an automorphism and is
determined by GF(q). The corresponding Ree–Tits octagon is therefore denoted
by O(q). We will give an explicit description of O(K, σ) in the next chapter, but
without proof, in view of the remarks we made in this section.
A special case occurs when K is a perfect field. Indeed, the corresponding Ree–
Tits octagons have nicer geometric properties which also characterize them; see
Subsection 6.9 on page 298. In that case, we call O(K, σ) a perfect Ree–Tits
octagon.
Commenting on things to come, we note that the proof of the characterization
Theorem 6.9.3 (page 300) consists of reconstructing the metasymplectic space M
for a given octagon satisfying the given axioms. The proof of the fact that there
is essentially one polarity with at least one absolute element for a given metasym-
plectic space over a field K of characteristic 2 and a given Tits endomorphism of
K can be deduced from various results of Tits [1974], [1962b], [1964]. An explicit
proof is contained in Van Maldeghem [1998].
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2.6 Table of notation for some classical polygons

We summarize part of the notation and terminology that we have introduced in this
chapter in Table 2.1. For a generalized n-gon, we display n, Γ, the corresponding
(simple) group G, its name and a reference. We denote by K any field, L any skew
field, q any prime power, ρ (or τ) an appropriate 1-quadratic (or σ-quadratic) form
on a (d + 1)-dimensional vector space over K (respectively L) (and where σ is an
anti-automorphism of order 2 of L), F denotes a cubic Galois extension of K (if
that exists), and σ′ is a non-trivial element of the corresponding Galois group.
Also, we denote by charK the characteristic of the field K. In the infinite case, it is
impossible to give all orthogonal and Hermitian quadrangles. Therefore, we have
restricted ourselves to mentioning only the finite cases.

n Γ G Name Remarks Sub-
section

3 PG(2,K) PSL3(K) Pappian plane 2.2.3
3 PG(2,L) PSL3(L) Desarguesian plane 2.2.1
4 W(K) PSp4(K) Symplectic quadrangle 2.3.17
4 Q(d,K, ρ) Orthogonal quadrangle 2.3.7
4 H(d,L, τ, σ) Hermitian quadrangle 2.3.7
4 Q(4, q) PSO5(q) Orthogonal quadrangle 2.3.12
4 Q(5, q) PSO−6 (q) Orthogonal quadrangle 2.3.12
4 H(3, q2) PSU4(q) Hermitian quadrangle 2.3.12
4 H(4, q2) PSU5(q) Hermitian quadrangle 2.3.12
6 H(K) G2(K) Split Cayley hexagon 2.4.9
6 H(K) G2(K) Symplectic hexagon charK = 2 2.4.14
6 H(K) G2(K) Perfect symplectic charK = 2 2.4.14

hexagon K perfect
6 T(F,K, σ′) 3D4(F, σ′) Twisted triality 2.4.9

hexagon
8 O(K, θ) 2F4(K, θ) Ree–Tits octagon charK = 2; 2.5.3

θ2 = 2

Table 2.1. Some classical generalized polygons with their simple groups and name.
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