
Introduction

In the theory of quantum mechanics the Hamiltonian H is typically self-
adjoint, i.e., H = H∗. The self-adjointness ensures that the spectrum of the
Hamiltonian, representing the energy spectrum of H, is real but it is not a
necessary condition. In the literature on so-called PT-symmetric quantum
mechanics (see, e.g., [BB98], [BBM99], [BBJ03], [Ben04b] and [Ben07]), it
is believed that self-adjointness is rather a mathematical requirement than
a physically established fact. Therefore, it was considered a surprise that
operators exist which are not self-adjoint in the given quantum mechanical
Hilbert space, but have real spectrum and that – if e.g. complex eigenvalues
were present – they occurred only in complex conjugate pairs.

From a mathematical point of view, however, this is no surprise at all –
provided one is familiar with the theory of self-adjoint operators in spaces
with indefinite inner product (Krein spaces). The physical structure found
to be the reason for the reality of the spectrum is PT-symmetry (space-
time reflection symmetry), which amounts to self-adjointness in some Krein
space. A Hamiltonian H is PT-symmetric if it commutes with PT, that is
PTH = HPT, compare, e.g., [Ben07] and [AT10]. Here P denotes the space
reflection (parity) operator and T the time reflection operator. P and T sat-
isfy the relations P2 = T2 = (PT)2 = I and PT = TP. If p = id/dx and x are the
momentum and position operators, then P has the effect

p 7→ −p, x 7→ −x

and T has the effect

p 7→ −p, x 7→ x, i 7→ −i,

compare, e.g., [BB98], [BBM99], [BBJ03], [Ben04b] and [Ben07].
In contrast to self-adjointness in Hilbert spaces, PT-symmetry does not

necessarily lead to a completely real spectrum. For example, the Hamilto-
nian

H := p2 + ix3
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is not symmetric in the Hilbert space L2(R) since the potential is not
real-valued. However, the Hamiltonian H is PT-symmetric in the Hilbert
space L2(R):(

PTH(PT)−1)
f (x)= (

PTHTP
)
f (x)

= (
PTHT

)
f (−x)

= (
PTH

)
f (−x)

= (
PT

)(
p2 f (−x)+ ix3 f (−x)

)
= P

(
p2 f (−x)− ix3 f (−x)

)
= p2 f (x)− i(−x)3 f (x)= H f (x), f ∈D(H),

where D(H) is the maximal domain of H. More generally, for the family of
PT-symmetric Hamiltonians (compare, e.g., [BB98] and [AT10])

Hε := p2 + x2(ix)ε, ε ∈R,

the spectrum of Hε was found to be real and positive if ε≥ 0 and partly real
and partly complex if ε < 0 (see, e.g., [DDT01a] for a proof of the reality of
the spectrum for ε ≥ 0; for ε < 0 numerical results indicate the appearance
of complex eigenvalues, see, e.g., [BB98] and [Ben04a]). More precisely, for
−1< ε< 0, there is a finite number of real positive eigenvalues and an infinite
number of complex conjugate pairs of eigenvalues, if ε ≤ −1, then there are
no real eigenvalues, see, e.g., [BB98] and [Ben04a].

During the last decade PT-symmetric models have been analysed in-
tensively, see, e.g., the review paper [Ben07] and the references therein.
Within the vast literature on PT-symmetric problems there are only some
mathematically rigorous papers, see, e.g. [DDT01b], [Shi02], [AK04], [LT04],
[Shi04], [Shi05], [Tan06], [Tan07] and [AT10]. In particular, we mention the
works of E. Caliceti, F. Cannata, S. Graffi and J. Sjöstrand (see [Cal04],
[CGS05], [CG05], [Cal05], [CCG06], [CG08] and [CCG08]), who use perturba-
tion theory for linear operators. In [Mos02], [Jap02], [AK04], [LT04], [GSZ05]
and [Tan06] Krein space methods were applied to PT-symmetric problems.
The paper by H. Langer and C. Tretter (see [LT04] and [LT06]) was the first
where Krein space methods were used to prove rigorous abstract results for
PT-symmetric problems; this approach is also crucial for this thesis.

Consider the following situation. If a self-adjoint operator A0 in a Krein
space

(
K , [·, ·]), which is also self-adjoint with respect to some Hilbert space

inner product (·, ·) on K , has an isolated real eigenvalue of definite type,
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then this eigenvalue remains real under a “sufficiently small” PT-symmetric
perturbation V (that is, V is symmetric in

(
K , [·, ·])). This theorem has been

proven for the case of bounded V in [LT04] and relies on the fact that a
uniformly positive subspace of a Krein space is stable, which is a well-known
result in the theory of Krein spaces. The theorem mentioned above can be
applied to isolated eigenvalues of PT-symmetric problems. If two simple real
eigenvalues of the same type meet, they remain real after crossing. This is
the case of self-adjoint operators in Hilbert spaces, where all eigenvalues are
of positive type. If two real eigenvalues of different type meet, they will, in
general, develop into a pair of non-real complex conjugate eigenvalues.

While the case of bounded V was treated in [LT04] (see also [LT06]), a
comparable result for the case of unbounded V has been missing. The case
of unbounded potentials has only been considered for a few special classes
or examples of operators, see, e.g., [DDT01b], [Shi02], [CG05], [Cal05] and
[CG08]. The aim of this thesis is to generalize the results of [LT04] to wide
classes of unbounded potentials, e.g., to relatively bounded and relatively
form-bounded operators. This includes a generalization of the results ob-
tained in [CG05] for a special class of Schrödinger operators with relatively
bounded complex polynomial potentials.

The main results of this thesis are stability results for the reality of the
spectrum of a family of operators Aε of the form

Aε := A0 +εV , ε ∈ [0,1];

in particular, we consider the case where Aε is self-adjoint in a Krein
space

(
K , [·, ·]) while A0 is also self-adjoint with respect to some Hilbert

space inner product (·, ·) on K . Furthermore, we give inclusions for the per-
turbed spectrum of Aε. We found different assumptions on V to prove the
respective results. More precisely, we consider the following three types of
assumptions on V ; in any case V is assumed to be symmetric in the Krein
space

(
K , [·, ·]).

(a) D(A0)⊂D(V ) and there exist constants α≥ 0, 0≤β< 1/2 such that

(1) ‖V x‖ ≤α‖x‖+β‖A0x‖, x ∈D(A0);

in this case Aε = A0 +V is defined as an operator sum.
(b) A0 and V are bounded from below in

(
K , [·, ·]), D(a0) ⊂ D(v) for the

quadratic forms a0 and v associated with A0 and V , respectively, and
there exist constants α≥ 0, 0≤β< 1/2 such that

|v�x�| ≤α‖x‖2 +β|a0�x�|, x ∈D(a0);
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in this case Aε = A0uV is defined as a form sum, which is an extension
of the operator sum.

(c) D(V )⊂D(A0) and there exist constants α≥ 0, 0≤β< 1/2 such that

|[V x, x]| ≤α‖x‖2 +β [J|A0|x, x], x ∈D(V ),

where J denotes a fundamental symmetry on K , and D(V ) is a core of
|A0|1/2; in this case Aε is the pseudo-Friedrichs extension of A0 +εV .

For example, in terms of relative boundedness properties of V with re-
spect to A0, case (a), our main results are the following. Since, by assumption,
A0 is self-adjoint in a Hilbert space, its spectrum is real. We establish the fol-
lowing conditions which guarantee the spectrum of A0 +V to be real, even
when A0 +V is not self-adjoint in a Hilbert space (compare Theorem 1.44
below):

(i) Suppose λ0 is an isolated eigenvalue of A0 of definite type with finite
multiplicity m. If

(2)
1
δ

(
α+β(

δ+|λ0|))< 1
2

,

where δ := dist
(
λ0,σ(A0)\{λ0}

)
, then σ(A1)∩Bδ/2(λ0) consists of a finite

system of isolated and real eigenvalues with total multiplicity m which
are of the same type as λ0.

(ii) The preceding result can be extended to the case when the spectrum of
A0 is discrete and consists of an infinite sequence of eigenvalues

· · · <λ0
−2 <λ0

−1 <λ0
1 <λ0

2 < ·· ·

of definite type with finite multiplicities. In this case it is necessary
that (2) holds for each eigenvalue λ0

n, n ∈ Z∗. Let δn := dist
(
λ0

n,
σ(A0)\{λ0

n}
)
, n ∈ Z∗, and suppose that (1) holds with αn ≥ 0 and βn ∈

[0,1/2), n ∈Z∗, such that

(3) γ := sup
n∈Z∗

(
1
δn

(
αn +βn

(
δn +|λ0

n|
)))<∞.

Then the spectrum of Aε is discrete and consists of real eigenvalues
which are of definite type for all ε ∈ [0,ε0], where ε0 ∈ (0,1] has to be
chosen such that ε0 < 1/(2γ).
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The preceding result can be illustrated by the following example (see Sec-
tion 3.3 below) which was first studied in [CG05]. Consider operators induced
by the differential expression

Aε =− d2

dx2 +P +ε iQ, ε ∈ [0,1],

in L2(R), where P and Q are multiplication operators by real polynomials P
and Q; P is an even polynomial of degree 2p, p ≥ 1, with lim|x|→∞ P(x) =∞,
and Q is an odd polynomial of degree 2q−1, q ≥ 1, such that p > 2q. In this
special case the assumptions of (ii) are satisfied for

A0 =− d2

dx2 +P and V = iQ;

the spectrum of A0 consists of an infinite sequence of eigenvalues λ0
1 <

λ0
2 < ·· · and the constants αn ≥ 0 and βn ∈ [0,1/2), n ∈N, in (1) can be chosen

such that (3) holds.
The results (i) and (ii) can be extended to the case where isolated compact

parts of the spectrum of A0 are considered instead of isolated eigenvalues
(see Theorem 1.46 below). Furthermore, the results remain valid for cases
(b) of relatively form-bounded operators and (c) of pseudo-Friedrichs exten-
sions.

The proof of the results (i) and (ii) relies on the fact that a uniformly posi-
tive subspace of a Krein space is stable (see [LT04, Theorem 3.1]). This stabil-
ity theorem applies to isolated eigenvalues or isolated (compact) parts of the
spectrum of the operator family Aε. In order to ensure that isolated eigen-
values or isolated parts of the spectrum of A0 remain isolated under the per-
turbation εV , it is necessary that the perturbation εV is “sufficiently small”
or, equivalently, Aε is “sufficiently close” to A0. While the “distance” between
two bounded linear operators can be defined as the norm of their difference,
the “distance” between two unbounded linear operators has to be measured
in a different way. To this end the notion of generalized convergence is used,
which amounts to convergence between the graphs of two unbounded linear
operators or, equivalently, to the convergence of the resolvent of Aε to the
resolvent of A0 in norm. The latter is guaranteed by assuming that V is rel-
atively bounded (or relatively form-bounded, respectively) with respect to A0
with relative bound (relative form-bound, respectively) less than 1.

The results achieved in this thesis are new in various aspects. In cases
(a) and (b), results were known only for very particular classes of differen-
tial operators (compare [CG05] and [CG08], respectively). For case (c) the
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results of this thesis have been shown before in [Ves72a] and [Ves72b], but
the proofs were different. In comparison to our results, [Ves72b] requires fur-
ther assumptions but shows in addition to the reality of the spectrum of the
pseudo-Friedrichs extension A1, A1 is similar to a self-adjoint operator in a
Hilbert space, compare Remark 2.52 below.

The thesis is organized as follows. In Chapter 1 the case (a) of relatively
bounded V is considered. The first section of this chapter gives a brief in-
troduction into the theory of linear operators in Krein spaces. Subsequently,
the reader is provided with fundamental definitions as well as elementary
facts for relatively bounded operators. In Section 3 we introduce the notion
of generalized convergence and we present a proof of the well-known result
that, for an arbitrary family of closed linear operators Tε, ε ∈ [0,1], in a Ba-
nach space, Tε converges to T0 in the generalized sense if and only if the
resolvent of Tε converges to the resolvent of T0 in norm. Further, we re-
call important results from perturbation theory regarding the change of the
spectrum. If a Cauchy contour Γ separates a bounded part of the spectrum
σ(T0) of T0 from the rest and Tε converges to T0 in the generalized sense,
the spectrum of Tε is likewise separated into two parts by Γ, moreover, the
isolated part enclosed by Γ changes continuously with ε. If V is A0-bounded
with A0-bound less than 1, then Aε converges to A0 in the generalized sense
and hence the above results apply to the family of operators Aε = A0 + εV .
Consequently, isolated eigenvalues or isolated parts of the spectrum of A0
remain isolated under the perturbation εV . This enables us to apply the
Krein space methods of [LT04] to establish criteria for the operator Aε to
have real spectrum consisting of isolated eigenvalues or isolated parts if this
holds for A0.

Chapter 2 extends the results of Chapter 1 to the case (b) of relatively
form-bounded perturbations. Instead of studying the usual operator sum
A0 + εV , we consider the sum A0 u εV of A0 and εV defined by means of
quadratic forms which is an extension of the operator sum A0+εV . While the
condition of relative form-boundedness itself is less restrictive than the one of
relative boundedness, relatively form-bounded operators have to be required
to be bounded from below (with respect to the respective inner product);
therefore, case (b) constitutes a different class of unbounded perturbations
compared to case (a). Nevertheless, as in case (a), relative form-boundedness
of V with respect to A0 with relative form-bound less than 1 guarantees that
Aε converges to A0 in the generalized sense. This enables us to extend the
results of Chapter 1 to the case of relatively form-bounded operators.
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At the end of the second chapter, we consider case (c) and introduce the
notion of pseudo-Friedrichs extensions. A pseudo-Friedrichs extension is an
extension of the usual operator sum which is different from the form-sum
introduced before; in particular, the domain inclusion is D(V )⊂D(A0) rather
than D(A0)⊂D(V ) (case (a)) or D(a0)⊂D(v) (case (b)). The results are not es-
sentially related to sesquilinear forms, but the techniques used in the proofs
are similar. In the context of Krein spaces, these operators have also been
studied in [Ves72a], [Ves72b] and [Ves08] where similar results were ob-
tained, but by different proofs.

In Chapter 3 we present some examples where the results of this the-
sis are applied to ordinary differential operators. In Sections 3.1 and 3.2
we study a second and a fourth order differential operator, respectively, on
a compact interval. The class of differential operators on R introduced in
[CG05] which is also covered by the results of this thesis is considered in Sec-
tion 3.3. For all these examples the results show that the spectrum of A0+V
remains real, even though A0 +V is not self-adjoint in a Hilbert space.

Notation. For an introduction to the theory of unbounded linear operators,
the following notation and basic terminology as well as for further details we
refer to [Kat95], [GGK90] and [RS80, RS75, RS79, RS78]. The domain of a
linear operator A in a Banach space X we denote by D(A), the range of A by
R(A) and the graph of A by G (A). If A is a closed linear operator, we denote
the spectrum and the resolvent set of A by σ(A) and ρ(A), respectively.


