
Chapter 2
Special Orthogonal Group SO(N)

1 Introduction

Since the exactly solvable higher-dimensional quantum systems with certain central
potentials are usually related to the real orthogonal group O(N) defined by orthog-
onal n × n matrices, we shall give a brief review of some basic properties of group
O(N) based on the monographs and textbooks [136–140]. Before proceeding to do
so, we first outline the development in order to make the reader recognize its impor-
tance in physics.

We often apply groups throughout mathematics and the sciences to capture the
internal symmetry of other structures in the form of automorphism groups. It is
well-known that the internal symmetry of the structure is usually related to an in-
variant mathematical property, and a set of transformations that preserve this kind
of property together with the operation of composition of transformations form a
group named a symmetry group.

It should be noted that Galois theory is the historical origin of the group con-
cept. He used groups to describe the symmetries of the equations satisfied by the
solutions of a polynomial equation. The solvable groups are thus named due to their
prominent role in this theory.

The concept of the Lie group named for mathematician Sophus Lie plays a very
important role in the study of differential equations and manifolds; they combine
analysis and group theory and are therefore the proper objects for describing sym-
metries of analytical structures.

An understanding of group theory is of importance in physics. For example,
groups describe the symmetries which the physical laws seem to obey. On the other
hand, physicists are very interested in group representations, especially of the Lie
groups, since these representations often point the way to the possible physical the-
ories and they play an essential role in the algebraic method for solving quantum
mechanics problems.

As a common knowledge, the study of the groups is always related to the corre-
sponding algebraic method. Up to now, the algebraic method has become the sub-
ject of interest in various fields of physics. The elegant algebraic method was first
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introduced in the context of the new matrix mechanics around 1925. Since the in-
troduction of the angular momentum in quantum mechanics, which was intimately
connected with the representations of the rotation group SO(3) associated with the
rotational invariance of central potentials, its importance was soon recognized and
the necessary formalism was developed principally by a number of pioneering sci-
entists including Weyl, Racah, Wigner and others [136, 141–144]. Until now, the
algebraic method to treat the angular momentum theory can be found in almost all
textbooks of quantum mechanics.

On the other hand, it often runs parallel to the differential equation approach due
to the great scientist Schrödinger. Pauli employed algebraic method to deal with the
hydrogen atom in 1926 [145] and Schrödinger also solved the same problem almost
at the same time [146], but their fates were quiet different. This is because the stan-
dard differential equation approach was more accessible to the physicists than the
algebraic method. As a result, the algebraic approach to determine the energy levels
of the hydrogen atom was largely forgotten and the algebraic techniques went into
abeyance for several decades. Until the middle of 1950s, the algebraic techniques
revived with the development of theories for the elementary particles since the ex-
plicit forms of the Hamiltonian for those elementary particle systems are unknown
and the physicists have to make certain assumptions on their internal symmetries.
Among various attempts to solve this difficult problem, the particle physicists exam-
ined some non-compact Lie algebras and hoped that they would provide a clue to the
classification of the elementary particles. Unfortunately, this hope did not material-
ize. Nevertheless, it is found that the Lie algebras of the compact Lie groups enable
such a classification for the elementary particles [147] and the non-compact groups
are relevant for the dynamic groups in atomic physics [148] and the non-classical
properties of quantum optical systems involving coherent and squeezed states as
well as the beam splitting and linear directional coupling devices [149–153].

It is worth pointing out that one of the reasons why the algebraic techniques
were accepted very slowly and the original group theoretical and algebraic meth-
ods proposed by Pauli [145] were neglected is undoubtedly related to the abstract
character and inherent complexity of group theory. Even though the proper under-
standing of group theory requires an intimate knowledge of the standard theory of
finite groups and of the topology and manifold theory, the basic concepts of group
theory are quite simple, specially when we present them in the context of physical
applications. Basically, we attempt to introduce them as simple as possible so that
the common reader can master the basic ideas and essence of group theory. The
detailed information on group theory can be found in the textbooks [138–140, 154].

On the other hand, during the development of algebraic method, Racah alge-
bra techniques played an important role in physics since it enables us to treat the
integration over the angular coordinates of a complex many-particle system analyti-
cally and leads to the formulas expressed in terms of the generalized CGCs, Wigner
n-j symbols, tensor spherical harmonics and/or rotation matrices. With the devel-
opment of algebraic method in the late 1950s and early 1960s, the algebraic method
proposed by Pauli was systematized and simplified greatly by using the concepts
of the Lie algebras. Up to now, the algebraic method has been widely applied to
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various fields of physics such as nuclear physics [155], field theory and particle
physics [156], atomic and molecular physics [157–160], quantum chemistry [161],
solid state physics [162], quantum optics [149, 151, 163–168] and others.

2 Abstract Groups

We now give some basic definitions about the abstract groups1 based on textbooks
by Weyl, Wybourne, Miller, Ma and others [136, 137, 139, 140, 169].

Definition A group G is a set of elements {e, f, g,h, k, . . .} together with a bi-
nary operation. This binary operation named a group multiplication is subject to the
following four requirements:

• Closure: if f,g ∈ G, then fg ∈ G too,
• Identity element: there exists an identity element e in G (a unit) such that ef =

f e = f for any f ∈ G,
• Inverses: for every f ∈ G there exists an inverse element f −1 ∈ G such that

ff −1 = f −1f = e,
• Associative law: the identity f (hk) = (f h)k is satisfied for all elements

f,h, k ∈ G.

Subgroup: a subgroup of G is a subset S ∈ G, which is itself a group under the
group multiplication defined in G, i.e., f,h ∈ S → f h ∈ S .

Homomorphism: a homomorphism of groups G and H is a mapping from a group
G into a group H, which transforms products into products, i.e., G → H.

Isomorphism: an isomorphism is a homomorphism which is one-to-one and
“onto” [169]. From the viewpoint of the abstract group theory, isomorphic groups
can be identified. In particular, isomorphic groups have identical multiplication
tables.

Representation: a representation of a group G is a homomorphism of the group
into the group of invertible operators on a certain (most often complex) Hilbert
space V (called representation space). If the representation is to be finite-
dimensional, it is sufficient to consider homomorphisms G → GL(n). The GL(n)

represents a general linear group of non-singular matrices of dimension n. Usually,
the image of the group in this homomorphism is called a representation as well.

Irreducible representation: an irreducible representation is a representation
whose representation space contains no proper subspace invariant under the op-
erators of the representation.

Commutation relation: since a Lie algebra has an underlying vector space struc-
ture we may choose a basis set {Li} (i = 1,2,3, . . . ,N) for the Lie algebra. In

1There exist two kinds of different meanings of the terminology “abstract group” during the first
half of the 20th century. The first meaning was that of a group defined by four axioms given above,
but the second one was that of a group defined by generators and commutation relations.
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general, the Lie algebra can be completely defined by specifying the commutators
of these basis elements:

[Li,Lj ] =
∑

k

cijkLk, i, j, k = 1,2,3, . . . ,N, (2.1)

in which the coefficients cijk and the elements Li are the structure constants and
the generators of the Lie algebra, respectively. It is worth noting that the set of
operators, which commute with all elements of the Lie algebra, are called Casimir
operators.

We shall constraint ourselves in the following parts to study some basic prop-
erties of the compact group SO(N) alongside the well-known compact so(n) Lie
algebra of the generalized angular momentum theory since it shall be helpful in
successive Chapters. We suggest the reader refer to the textbooks on group theory
[136–140, 144, 154, 169] or Appendices A–C for more information.

3 Orthogonal Group SO(N)

For every positive integer N , the orthogonal group O(N) is the group of N × N

orthogonal matrices A satisfying

AAT = 1, A∗ = A. (2.2)

Because the determinant of an orthogonal matrix is either 1 or −1, and so the or-
thogonal group has two components. The component containing the identity 1 is the
special orthogonal group SO(N). An N -dimensional real matrix contains N2 real
parameters. The column matrices of a real orthogonal matrix are normal and orthog-
onal to each other. There exist N real matrix constraints for the normalization and
N(N − 1)/2 real constraints for the orthogonality. Thus, the number of indepen-
dent real parameters for characterizing the elements of the groups SO(N) is equal
to N2 −[N +N(N − 1)/2] = N(N − 1)/2. The group space is a doubly-connected
closed region so that the SO(N) is a compact Lie group with rank N(N − 1)/2.

4 Tensor Representations of the Orthogonal Group SO(N)

In this section we are going to study the reduction of a tensor space of the SO(N)

and calculation of the orthonormal irreducible basis tensors [139, 140].

4.1 Tensors of the Orthogonal Group SO(N)

We begin by studying the tensors of the SO(N). For a given rank n of the SO(N),
we know that there are Nn components with a following transform,

Tc1···cn

R→ ORTc1···cn =
∑

d1···dn

Rc1d1 · · ·RcndnTd1···dn, R ∈ SO(N). (2.3)
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It is noted that only one nonvanishing component of a basis tensor is equal to 1, i.e.,

(θa1···an)b1···bn = δa1b1 · · · δanbn = (θa1)b1 · · · (θan)bn, (2.4)

OR(θa1···an) =
∑

c1···cn

(θc1···cn)Rc1a1 · · ·Rcnan, (2.5)

from which one may expand any tensor in such a way

Tb1···bn =
∑

a1···an

Ta1···an(θa1···an)b1···bn . (2.6)

The tensor space is an invariant linear space both in the SO(N) and in the permu-
tation group Sn. Since the SO(N) transformation commutes with the permutation
so that one can reduce the tensor space in the orthogonal groups SO(N) by the
projection of the Young operators, which are conveniently used to deal with the
permutation group Sn.

Note that there are several important characteristics for the tensors of the SO(N)

group:

• The real and imaginary parts of a tensor of the SO(N) transform independently
in Eq. (2.3). As a result, we need only study their real tensors.

• There is no any difference between a covariant tensor and a contra-variant ten-
sor for the SO(N) transformations. The contraction of a tensor can be achieved
between any two indices. Therefore, before projecting a Young operator, the ten-
sor space must be decomposed into a series of traceless tensor subspaces, which
remain invariant in the SO(N).

• Denote by T the traceless tensor space of rank n. After projecting a Young op-
erator, T[λ]

μ = y[λ]
μ T is a traceless tensor subspace with a given permutation sym-

metry. T[λ]
μ will become a null space if the summation of the numbers of boxes in

the first two columns of the Young pattern2 [λ] is larger than the dimension N .
• If the row number m of the Young pattern [λ] is larger than N/2, then the basis

tensor y[λ]
μ θb1···bmc··· can be changed to a dual basis tensor by a totally antisym-

metric tensor εa1···aN
,

∗[y[λ]θ ]a1···aN−mc··· = 1

m!
∑

aN−m+1···aN

εa1···aN−maN−m+1···aN

y[λ]θaN ···aN−m+1c···, (2.7)

whose inverse transformation is given by

2A Young pattern [λ] has n boxes lined up on the top and on the left, where the j th row contains
λj boxes. For instance, the Young pattern [2,1] is

.

It should be noted that the number of boxes in the upper row is not less than in the lower row, and
the number of boxes in the left column is not less than that in the right column. We suggest the
reader refer to the permutation group Sn in Appendix A for more information.
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1

(N − m)!
∑

am+1···aN

εb1···bmam+1···aN

∗[y[λ]θ ]aN ···am+1c···

= 1

m!(N − m)!
∑

a1···aN

εb1···bmam+1···aN
εaN ···am+1am···a1y[λ]θa1···amc

= (−1)N(N−1)/2y[λ]θb1···bmc···. (2.8)

After some algebraic manipulations, it is found that the correspondence be-
tween two sets of basis tensors is one-to-one and the difference between them is
only in the arranged order. Thus, a traceless tensor subspace T[λ]

μ is equivalent to

a traceless tensor subspace T[λ′]
ν , where the row number of the Young pattern [λ′]

is (N − m) < N/2,

[λ′] � [λ], λ′
i =

{
λi, i ≤ (N − m),

0, i > (N − m),
(2.9)

where m ∈ (N/2,N].
• If N = 2l, i.e., the row number l of [λ] is equal to N/2, then the Young pattern

[λ] is the same as its dual Young pattern, called the self-dual Young pattern. To
remove the phase factor (−1)N(N−1)/2 = (−1)l appearing in Eq. (2.8), we intro-
duce a factor (−i)l in Eq. (2.7),

∗[y[λ]θ ]a1···alc··· =
(−i)l

l!
∑

al+1···a2l

εa1···alal+1···a2l
y[λ]θa2l ···al+1c···, (2.10)

y[λ]θa1···alc··· =
(−i)l

l!
∑

al+1···a2l

εa1···alal+1···a2l

∗[y[λ]θ ]a2l ···al+1c···. (2.11)

Define

ψ±
a1···alc··· =

1

2

{
y[λ]θa1···alc··· ± ∗[y[λ]θ ]a1···alc···

}
. (2.12)

We observe that ψ+
a1···alc··· keeps invariant in the dual transformation so that we call

it self-dual basis tensor. On the contrary, we call ψ−
a1···alc··· the anti-self-dual basis

tensor because it changes its sign in dual transformation. For example, for even
N = 2l we may construct the self-dual and anti-self-dual basis tensors as follows:

ψ±
1···l = 1

2

{
y[1l ]θ1···l ± (−i)ly[1l ]θ(2l)···(l+1)

}
. (2.13)

Therefore, when l = N/2 the representation space T[λ]
μ can be divided to the

self-dual and the anti-self-dual tensor subspaces with the same dimension. Notice
that the combinations by the Young operators and the dual transformations (2.7)
and (2.13) are all real except that the dual transformation (2.13) with N = 4l + 2 is
complex.

In conclusion, the traceless tensor subspace T[λ]
μ corresponds to a representation

[λ] of the SO(N), where the row number l of Young pattern [λ] is less than N/2.
When l = N/2 the traceless tensor subspace T[λ]

μ can be decomposed into the self-
dual tensor subspace T[+λ]

μ and anti-self-dual tensor subspace T[−λ]
μ corresponding
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to the representation [±λ], respectively. All irreducible representations [λ] and [±λ]
are real except for [±λ] with N = 4l + 2.

As far as the orthonormal irreducible basis tensors of the SO(N), we are going
to address two problems. The first is how to decompose the standard tensor Young
tableaux into a sum of the traceless basis tensors. The second is how to combine the
basis tensors such that they are the common eigenfunctions of Hj and orthonormal
to each other. The advantage of the method based on the standard tensor Young
tableaux is that the basis tensors are known explicitly and the multiplicity of any
weight is equivalent to the number of the standard tensor Young tableaux with the
weight.

For group SO(N), the key issue for finding the orthonormal irreducible basis is
to find the common eigenstates of Hi and the highest weight state in an irreducible
representation. For odd and even N , i.e., the groups SO(2l + 1) and SO(2l), the
generators Tab of the self-representation satisfy

[Tab]cd = −i(δacδbd − δadδbc),

[Tab, Tcd ] = −i(δbcTad + δadTbc − δbdTac − δacTbd).
(2.14)

The bases Hi in the Cartan subalgebra can be written as

Hi = T(2i−1)(2i), i ∈ [1,N/2]. (2.15)

As what follows, we are going to study the irreducible basis tensors of the
SO(2l + 1) and SO(2l), respectively.

4.2 Irreducible Basis Tensors of the SO(2l + 1)

It is known that the Lie algebra of the SO(2l + 1) is Bl . The simple roots of the
SO(2l + 1) are given by [139, 140]

rν = eν − eν+1, ν ∈ [1, l − 1], rl = el, (2.16)

where rν are the longer roots with dν = 1 and rl is the shorter root with dl = 1/2.
Based on the definition of the Chevalley bases, which include 3l bases Eν,Fν , and
Hν for the generators,

Erν√
dν

→ Eν,
E−rν√

dν

→ Fν,
1

dν

l∑

i=1

(rν)iHi ≡ 1

dν

rν · H → Hν, (2.17)
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one is able to calculate the Chevalley bases of the SO(2l + 1) in the self-
representation as follows:

Hν = T(2ν−1)(2ν) − T(2ν+1)(2ν+2),

Eν = 1

2
[T(2ν)(2ν+1) − iT(2ν−1)(2ν+1) − iT(2ν)(2ν+2) − T(2ν−1)(2ν+2)],

Fν = 1

2
[T(2ν)(2ν+1) + iT(2ν−1)(2ν+1) + iT(2ν)(2ν+2) − T(2ν−1)(2ν+2)],

Hl = 2T(2l−1)(2l),

El = T(2l)(2l+1) − iT(2l−1)(2l+1),

Fl = T(2l)(2l+1) + iT(2l−1)(2l+1).

(2.18)

Note that θa are not the common eigenvectors of Hν . By generalizing the spher-
ical harmonic basis vectors for the SO(3) group, we may define the spherical har-
monic basis vectors for the self-representation of the SO(2l + 1) as follows:

φβ =

⎧
⎪⎪⎨

⎪⎪⎩

(−1)l−β+1
√

1
2 (θ2β−1 + iθ2β), β ∈ [1, l],

θ2l+1, β = l + 1,√
1
2 (θ4l−2β+3 − iθ4l−2β+4), β ∈ [l + 2,2l + 1],

(2.19)

which are orthonormal and complete. In the spherical harmonic basis vectors φβ ,
the nonvanishing matrix entries in the Chevalley bases are given by

Hνφν = φν, Hνφν+1 = −φν+1,

Hνφ2l−ν+1 = φ2l−ν+1, Hνφ2l−ν+2 = −φ2l−ν+2,

Hlφl = 2φl, Hlφl+2 = −2φl+2,

Eνφν+1 = φν, Eνφ2l−ν+2 = φ2l−ν+1,

Elφl+1 = √
2φl, Elφl+2 = √

2φl+1,

Fνφν = φν+1, Fνφ2l−ν+1 = φ2l−ν+2,

Flφl = √
2φl+1, Flφl+1 = √

2φl+2,

(2.20)

where ν ∈ [1, l − 1]. That is to say, the diagonal matrices of Hν and Hl in the
spherical harmonic basis vectors φβ are expressed as follows:

Hν = diag{0, . . . ,0︸ ︷︷ ︸
ν−1

,1,−1,0, . . . ,0︸ ︷︷ ︸
2l−2ν−1

,1,−1,0, . . . ,0︸ ︷︷ ︸
ν−1

},

Hl = diag{0, . . . ,0︸ ︷︷ ︸
l−1

,2,0,−2,0, . . . ,0︸ ︷︷ ︸
l−1

}. (2.21)

The spherical harmonic basis tensor φβ1···βn of rank n for the SO(2l+1) becomes
the direct product of n spherical harmonic basis vectors φβ1 · · ·φβn . The standard
tensor Young tableaux y[λ]

ν φβ1···βn are the common eigenstates of the Hν , but gener-
ally neither orthonormal nor traceless. The eigenvalue of Hν in the standard tensor
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Young tableaux y[λ]
ν φβ1···βn is equal to the number of the digits ν and (2l − ν + 1) in

the tableau, minus the number of (ν + 1) and (2l − ν + 2). The eigenvalue of Hl in
the standard tensor Young tableau is equal to the number of l in the tableau, minus
the number of (l +2), and then multiplied with a factor 2. The action Fν on the stan-
dard tensor Young tableau is equal to the sum of all possible tensor Young tableaux,
each of which can be obtained from the original one through replacing one filled
digit ν by the digit (ν + 1), or through replacing one filled digit (2l − ν + 1) by the
digit (2l − ν + 2). But the action of the Fl on the standard tensor Young tableau is
equal to the sum, multiplied with a factor

√
2, of all possible tensor Young tableaux,

each of which can be obtained from the original one through replacing one filled
digit l by (l + 1) or through replacing one filled (l + 1) by (l + 2). However, the
actions of Eν and El on the standard tensor Young tableau are opposite to those
of Fν and Fl . Even though the obtained tensor Young tableaux may be not stan-
dard, they can be transformed into the sum of the standard tensor Young tableaux
by symmetry.

Two standard tensor Young tableaux with different sets of filled digits are or-
thogonal to each other. For a given irreducible representation [λ] of the SO(2l + 1),
where the row number of Young pattern [λ] is not larger than l, the highest weight
state corresponds to the standard tensor Young tableau, in which each box in the
βth row is filled with the digit β because each raising operator Eν annihilates it.
The highest weight M = ∑

ν ωνMν can be calculated from (2.20) as follows:

Mν = λν − λν+1, ν ∈ [1, l), Ml = 2λl. (2.22)

The tensor representation [λ] of the SO(2l + 1) with even Ml is a single-valued rep-
resentation, while the representation with odd Ml becomes a double-valued (spinor)
representation.

The standard tensor Young tableaux y[λ]
ν φβ1···βn are generally not traceless, but

the standard tensor Young tableau with the highest weight is traceless because it
only contains φβ with β < l + 1 as shown in Eq. (2.19). For example, the tensor ba-
sis θ1θ1 is not traceless, but φ1φ1 is traceless. Since the highest weight is simple, the
highest weight state is orthogonal to any other standard tensor Young tableau in the
irreducible representation. Therefore, one is able to obtain the remaining orthonor-
mal and traceless basis tensors in the representation [λ] of the SO(2l + 1) from the
highest weight state by the lowering operators Fν based on the method of the block
weight diagram.

4.3 Irreducible Basis Tensors of the SO(2l)

The Lie algebra of the SO(2l) is Dl and its simple roots are given by

rν = eν − eν+1, ν ∈ [1, l − 1], rl = el−1 + el. (2.23)
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The lengths of all simple roots are same, dν = 1. Similarly, based on the definition of
the Chevalley bases (2.17), we find that its Chevalley bases in the self-representation
are same as those of the SO(2l + 1) except for ν = l,

Hl = T(2l−3)(2l−2) + T(2l−1)(2l),

El = 1

2
[T(2l−2)(2l−1) − iT(2l−3)(2l−1) + iT(2l−2)(2l) + T(2l−3)(2l)],

Fl = 1

2
[T(2l−2)(2l−1) + iT(2l−3)(2l−1) − iT(2l−2)(2l) + T(2l−3)(2l)].

(2.24)

Likewise, θa are not the common eigenvectors of the Hν . By generalizing the spher-
ical harmonic basis vectors for the SO(4) group, we define the spherical harmonic
basis vectors for the self-representation of the SO(2l) as follows:

φβ =
⎧
⎨

⎩
(−1)l−β

√
1
2 (θ2β−1 + iθ2β), β ∈ [1, l],

√
1
2 (θ4l−2β+1 − iθ4l−2β+2), β ∈ [l + 1,2l],

(2.25)

which are orthonormal and complete. In these basis vectors, the nonvanishing matrix
entries of the Chevalley bases are given by

Hνφν = φν, Hνφν+1 = −φν+1,

Hνφ2l−ν = φ2l−ν, Hνφ2l−ν+1 = −φ2l−ν+1,

Hlφl−1 = φl−1, Hlφl = φl,

Hlφl+1 = −φl+1, Hlφl+2 = −φl+2,

Eνφν+1 = φν, Eνφ2l−ν+1 = φ2l−ν,

Elφl+1 = φl−1, Elφl+2 = φl,

Fνφν = φν+1, Fνφ2l−ν = φ2l−ν+1,

Flφl−1 = φl+1, Flφl = φl+2,

(2.26)

where ν ∈ [1, l − 1]. As a result, the diagonal matrices of the Hν and Hl in the
spherical harmonic basis vectors φβ are calculated as:

Hν = diag{0, . . . ,0︸ ︷︷ ︸
ν−1

,1,−1,0, . . . ,0︸ ︷︷ ︸
2l−2ν−2

,1,−1,0, . . . ,0︸ ︷︷ ︸
ν−1

},

Hl = diag{0, . . . ,0︸ ︷︷ ︸
l−2

,1,1,−1,−1,0, . . . ,0︸ ︷︷ ︸
l−2

}. (2.27)

The spherical harmonic basis tensor φβ1···βn of rank n for the SO(2l) is the di-
rect product of n spherical harmonic basis vectors φβ1 · · ·φβn . The standard tensor
Young tableaux y[λ]

ν φβ1···βn are the common eigenstates of the Hν , but in general nei-
ther orthonormal nor traceless. The eigenvalue of Hν in the standard tensor Young
tableaux y[λ]

ν φβ1···βn is equal to the number of the digits ν and (2l−ν) in the tableau,
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minus the number of (ν + 1) and (2l − ν + 1). The eigenvalue of Hl in the standard
tensor Young tableau is equal to the number of the digits (l − 1) and l in the tableau,
minus the number of (l +1) and (l +2). The eigenvalues form the weight m of stan-
dard tensor Young tableau. The action of Fν on the standard tensor Young tableau
is equal to the sum of all possible tensor Young tableaux, each of which can be
obtained from the original one through replacing one filled digit (2l − ν) by the
digit (2l − ν + 1). The action of Fl on the standard tensor Young tableau is equal
to the sum of all possible tensor Young tableaux, each of which is obtained from
the original one through replacing one filled digit (l − 1) by the digit (l + 1) or
through replacing one filled l by the digit (l + 2). However, the actions of Eν and
El are opposite to those of Fν and Fl . The obtained tensor Young tableaux may be
not standard, but they can be transformed into the sum of the standard tensor Young
tableaux by symmetry.

Two standard tensor Young tableaux with different weights are orthogonal to
each other. For a given irreducible representation [λ] or [+λ] of the SO(2l), where
the row number of Young pattern [λ] is not larger than l, the highest weight state
corresponds to the standard tensor Young tableau where each box in the βth row
is filled with the digit β because every raising operator Eν annihilates it. In the
standard tensor Young tableau with the highest weight of the representation [−λ],
the box in the βth row is filled with the digit β , but the box in the lth row with
the digit (l + 1). The highest weight M = ∑

ν ωνMν is calculated from (2.20)
as

Mν = λν − λν+1, ν ∈ [1, l − 1),

Ml−1 = Ml = λl−1, λl = 0,

Ml−1 = λl−1 − λl, Ml = λl−1 + λl, for [+λ],
Ml−1 = λl−1 + λl, Ml = λl−1 − λl, for [−λ].

(2.28)

The tensor representation [λ] of the SO(2l) with even (Ml−1 + Ml) is a single-
valued representation. However, the representation with odd (Ml−1 + Ml) is a
double-valued (spinor) representation.

The standard tensor Young tableaux are generally not traceless, but the standard
tensor Young tableau with the highest weight is traceless because it only contains φβ

with β < l +2. Furthermore, l and l +1 do not appear in the tableau simultaneously
as illustrated in Eq. (2.25). Since the highest weight is simple, the highest weight
state is orthogonal to any other standard tensor Young tableau in the irreducible
representation. Hence, we can obtain the remaining orthonormal and traceless basis
tensors in the irreducible representation of the SO(2l) from the highest weight state
by the lowering operators Fν in light of the method of the block weight diagram.
The multiplicity of a weight in the representation can be easily obtained by counting
the number of the traceless tensor Young tableaux with this weight.
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4.4 Dimensions of Irreducible Tensor Representations

The dimension d[λ] of the representation [λ] of the SO(N) can be calculated by hook
rule [139, 140]. The dimension is expressed as a quotient, where the numerator and
the denominator are denoted by the symbols Y

[λ]
T and Y

[λ]
h , respectively:

d[±λ][SO(2l)] = Y
[λ]
T

2Y
[λ]
h

, when λl 
= 0,

d[λ][SO(N)] = Y
[λ]
T

2Y
[λ]
h

, others.

(2.29)

The first formula in Eq. (2.29) corresponds to the case where the row number of
the Young pattern [λ] is equal to N/2. The hook path (i, j) in the Young pattern
[λ] is defined as a path which enters the Young pattern at the rightmost of the ith
row, goes leftward in the i row, turns downward at the j column, goes downward
in the j column, and leaves from the Young pattern at the bottom of the j column.
The inverse hook path denoted by (i, j) is the same path as the hook path (i, j), but
with opposite direction. The number of boxes contained in the path (i, j), as well
as in its inverse, is the hook number hij . The Y

[λ]
h represents a tableau of the Young

pattern [λ] where the box in the j th column of the ith row is filled with the hook
number Hij . However, the Y

[λ]
T is a tableau of the Young pattern [λ] where each

box is filled with the sum of the digits which are respectively filled in the same box
of each tableau Y

[λ]
Tb

in the series. The notation Y
[λ]
T means the product of the filled

digits in it, so does the notation Y
[λ]
h . Here, the tableaux Y

[λ]
Tb

can be obtained by the
following rules:

• Y
[λ]
T0

is a tableau of the Young pattern [λ], where the box in the j th column of the
ith row is filled with the digit (N + j − i).

• Let [λ(1)] = [λ]. Starting with [λ(1)], define recursively the Young pattern [λ(b)]
by removing the first row and the first column of the Young pattern [λ(b−1)] until
[λ(b)] contains less two columns.

• If [λ(b)] contains more than one column, define Y
[λ]
Tb

as a tableau of the Young
pattern [λ] where the boxes in the first (b − 1) row and in the first (b − 1)

column are filled with 0, and the remaining part of the Young pattern is [λ(b)].
Let [λ(b)] have r rows. Fill the first r boxes along the hook path (1,1) of the
Young pattern [λ(b)], starting with the box on the rightmost, with the digits
(λ

(b)
1 −1), (λ

(b)
2 −1), . . . , (λ

(b)
r −1), box by box, and fill the first (λ

(b)
i −1) boxes

in each inverse hook path (i,1) of the Young pattern [λ(b)], i ∈ [1, r] with “−1”.
The remaining boxes are filled with 0. If several “−1” are filled in the same box,
the digits are summed. The sum of all filled digits in the pattern Y

[λ]
Tb

with b > 0
is equal to 0.
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4.5 Adjoint Representation of the SO(N)

We are going to study the adjoint representation of the SO(N) by replacing the
tensors. The N(N − 1)/2 generators Tab in the self-representation of the SO(N)

construct the complete bases of N -dimensional antisymmetric matrices. Denote Tcd

by TA for convenience, A ∈ [1,N(N − 1)/2]. Then we have

Tr(TATB) = 2δAB. (2.30)

Based on the adjoint representation Dad(G) satisfying

D(R)IBD(R)−1 =
∑

D

IDDad
DB(R), R ∈ SO(N), (2.31)

where R is an infinitesimal element, we have

RTAR−1 =
N(N−1)/2∑

B=1

TBDad
BA(R). (2.32)

The antisymmetric tensor Tab of rank 2 of the SO(N) satisfies a similar relation
in the SO(N) transformation R

(ORT )cd =
∑

ij

RciTij (R
−1)jd = (RT R−1)cd , (2.33)

where Tab like an antisymmetric matrix can be expanded by (TA)ab as follows:

Tcd =
N(N−1)/2∑

A=1

(TA)cdFA, FA = 1

2

∑

cd

(TA)dcTcd, (2.34)

where the coefficient FA is a tensor that transforms in the SO(N) transformation R

as follows:

(ORT )cd = (RT R−1)cd

=
∑

A

(RTAR−1)cdFA

=
∑

B

(TB)cd

{∑

A

Dad
BA(R)FA

}
,

(ORT )cd =
∑

B

(TB)cdORFB.

(2.35)

Thus, in terms of the adjoint representation of the SO(N) we can transform FA

in such a way

(ORF)B =
∑

A

Dad
BA(R)FA. (2.36)

The adjoint representation of the SO(N) is equal to the antisymmetric tensor
representation [1,1] of rank 2. The adjoint representation of the SO(N) for N = 3
or N > 4 is irreducible. Except for N = 2,4, the SO(N) is a simple Lie group.



26 2 Special Orthogonal Group SO(N)

4.6 Tensor Representations of the Groups O(N)

It is known that the group O(N) is a mixed Lie group with two disjoint regions
corresponding to detR = ±1. Its invariant subgroup SO(N) has a connected group
space corresponding to detR = 1. The set of elements related to the detR = −1 is
the coset of SO(N). The property of the O(N) can be characterized completely by
the SO(N) and a representative element in the coset [139, 140].

For odd N = 2l + 1, we may choose ε = −1 as the representative element in the
coset since ε is self-inverse and commutes with every element in O(2l + 1). Thus,
the representation matrix D(ε) in the irreducible representation of O(2l + 1) is a
constant matrix

D(ε) = c1, D(ε)2 = 1, c = ±1. (2.37)

Denote by R the element in SO(2l + 1) and by R′ = εR the element in the coset.
From each irreducible representation D[λ](SO(2l + 1)) one obtains two induced
irreducible representations D[λ]±(O(2l + 1)),

D[λ]±(R) = D[λ](R), D[λ]±(εR) = ±D[λ](R). (2.38)

Two representations D[λ]±(O(2l + 1)) are inequivalent because of different charac-
ters of the ε in two representations.

For even N = 2l, ε = −1 belongs to SO(2l). We may choose the representative
element in the coset to be a diagonal matrix σ , in which the diagonal entries are
1 except for σNN = −1. Even though σ 2 = 1, σ does not commute with some
elements in O(2l). Any tensor Young tableau y[λ]

ν θβ1···βn is an eigentensor of the σ

with the eigenvalue 1 or −1 depending on whether the number of filled digits N in
the tableau is even or odd. In the spherical harmonic basis tensors, σ interchanges
the filled digits l and l + 1 in the tensor Young tableau y[λ]

ν φβ1···βn . Therefore, the
representation matrix D[λ](σ ) is known.

Denote by R the element in the SO(2l) and by R′ = σR the element in the coset.
From each irreducible representation D[λ](SO(2l)), where the row number of [λ] is
less than l, we obtain two induced irreducible representations D[λ]±(O(2l)),

D[λ]±(R) = D[λ](R), D[λ]±(σR) = ±D[λ](σ )D[λ](R). (2.39)

Likewise, two representations D[λ]±(O(2l)) are inequivalent due to the different
characters of the σ in two representations.

When l = N/2 there are two inequivalent irreducible representations D[(±)λ] of
the SO(2l). Their basis tensors are given in Eq. (2.12). Since two terms in Eq. (2.12)
contain different numbers of the subscripts N , then σ changes the tensor Young
tableau in [±λ] to that in [∓λ], i.e., the representation spaces of both D[±λ](SO(2l))

correspond to an irreducible representation D[λ] of the O(2l),

D[λ](R) = D[+λ](R) ⊕ D[−λ](R), D[λ](σR) = D[λ](σ )D[λ](R), (2.40)

where the representation matrix D[λ](σ ) is calculated by interchanging the filled
digits l and (l +1) in the tensor Young tableau y[λ]

ν φβ1···βn . Two representations with
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different signs of D[λ](σ ) are equivalent since they might be related by a similarity
transformation

X =
(

1 0
0 −1

)
. (2.41)

5 � Matrix Groups

Dirac generalized the Pauli matrices to four γ matrices, which satisfy the anticom-
mutation relations. In terms of the γ matrices, Dirac established the Dirac equation
to describe the relativistic particle with spin 1/2. In the language of group theory,
Dirac found the spinor representation of the Lorentz group. In this section we first
generalize the γ matrices and find that the set of products of the γ matrices forms
the matrix group 
.

5.1 Fundamental Property of � Matrix Groups

First, let us review the property of the 
 matrix groups [88–90]. We define N ma-
trices γa , which satisfy the following anticommutation relations

{γa, γb} = γaγb + γbγa = 2δab1, a, b ∈ [1,N ]. (2.42)

That is, γ 2
a = 1 and γaγb = −γbγa for a 
= b. The set of all products of the γa

matrices, in the multiplication rule of matrices, forms a group, denoted by 
N . In a
product of γa matrices, two γb with the same subscript can be moved together and
eliminated by Eq. (2.42) so that 
N is a finite matrix group.

We choose a faithful irreducible unitary representation of the 
N as its self-
representation. It is known from Eq. (2.42) that γa is unitary and hermitian,

γ †
a = γ −1

a = γa, (2.43)

whose eigenvalue is 1 or −1.
Let

γ
(N)
ξ = γ1γ2 · · ·γN,

(
γ

(N)
ξ

)2 = (−1)N(N−1)/21. (2.44)

For odd N , since γ
(N)
ξ commutes with every γa matrix, then it is a constant

matrix according to the Schur theorem (see Appendix B):

γ
(N)
ξ =

{±1, for N = 4l + 1,

±i1, for N = 4l − 1.
(2.45)

Two groups with different γ
(4l+1)
ξ are isomorphic through a one-to-one correspon-

dence, say

γa ↔ γ ′
a, a ∈ [1,4l], γ4l+1 ↔ −γ ′

4l+1. (2.46)
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On the other hand, for a given γ
(4l+1)
ξ , the γ

(4l+1)
4l+1 can be expressed as a prod-

uct of other γa matrices. As a result, all elements both in 
4l and in 
4l+1 can be
expressed as the products of matrices γa, a ∈ [1,4l] so that they are isomorphic. In
addition, since γ

(4l−1)
ξ is equal to either i1 or −i1, 
4l−1 is isomorphic onto a group

composed of the 
4l−2 and i
4l−2,


4l+1 ≈ 
4l , 
4l−1 ≈ {
4l−2, i
4l−2}. (2.47)

5.2 Case N = 2l

• Let us calculate the order g(2l) of the 
2l . Obviously, if R ∈ 
2l , then −R ∈ 
2l ,
too. If we choose one element in each pair of elements ±R, then we obtain a set

′

2l containing g(2l)/2 elements. Denote by Sn a product of n different γa . Since
the number of different Sn contained in the set 
′

2l is equal to the combinatorics
of n among 2l, then we have

g(2l) = 2
2l∑

n=0

(
2l

n

)
= 2(1 + 1)2l = 22l+1. (2.48)

• For any element Sn ∈ 
2l except for ±1, we may find a matrix γa which is anti-
commutable with Sn. In fact, when n is even and γ appears in the product Sn, one
has γa Sn = −Snγa . However, when n is odd there exists at least one γa which
does not appear in the product Sn so that γa Sn = −Snγa . Therefore, we find that

Tr Sn = Tr(γ 2
a Sn) = −Tr(γa Snγa) = −Tr Sn = 0. (2.49)

That is to say, the character of the element S in the self-representation of the 
2l

is

ξ(S) =
{±d(2l), when S = ±1,

0, when S 
= ±1,
(2.50)

where d(2l) is the dimension of the γa . Since the self-representation of the 
2l is
irreducible, we have

2
(
d(2l)

)2 =
∑

S∈
2l

|ξ(S)|2 = g(2l) = 22l+1, d(2l) = 2l . (2.51)

Based on Eqs. (2.43) and (2.50), we have detγa = 1 for l > 1.
• Since γ

(2l)
ξ is anticommutable with every γa , one may define γ

(2l)
f by multiplying

γ
(2l)
ξ with a factor such that γ

(2l)
f satisfies Eq. (2.42), i.e.,

γ
(2l)
f = (−i)lγ

(2l)
ξ = (−i)lγ1γ2 · · ·γ2l ,

(
γ

(2l)
f

)2 = 1. (2.52)

Actually, γ
(2l)
f can also be defined as the matrix γ2l+1 in 
2l+1.
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• The matrices in the set 
′
2l are linearly independent. Otherwise, there exists a

linear relation
∑

S C(S)S = 0, S ∈ 
′
2l . By multiplying it with R−1/d(2l) and

taking the trace, one obtains any coefficient C(R) = 0. Thus, the set 
′
2l contains

22l linear independent matrices of dimension d(2l) = 2l so that they form a com-
plete set of basis matrices. Any matrix M of dimension d(2l) can be expanded by
S ∈ 
′

2l as follows:

M =
∑

S∈
′
2l

C(S)S, C(S) = 1

d(2l)
Tr(S −1M). (2.53)

• According to Eq. (2.42), the ±S form a class, while 1 and −1 form two classes,
respectively. The 
2l group contains (22l + 1) classes. Their representation is
one-dimensional. Arbitrary chosen n matrices γa correspond to 1 and the re-
maining matrices γb correspond to −1. The number of the one-dimensional non-
equivalent representations is calculated as

2l∑

n=0

(
2l

n

)
= 22l . (2.54)

The remaining irreducible representation of the 
2l must be d(2l)-dimensional,
which is faithful. The γa matrices in the representation are called the irreducible
γa matrices, which may be written as:

γ2n−1 = 1 × · · · × 1︸ ︷︷ ︸
n−1

×σ1 × σ3 × · · · × σ3︸ ︷︷ ︸
l−n

,

γ2n = 1 × · · · × 1︸ ︷︷ ︸
n−1

×σ2 × σ3 × · · · × σ3︸ ︷︷ ︸
l−n

,

γ
(2l)
f = σ3 × · · · × σ3︸ ︷︷ ︸

l

.

(2.55)

Since γ
(2l)
f is diagonal, the forms of Eq. (2.55) are called the reduced spinor

representations. Remember that the eigenvalues ±1 are arranged in the diagonal
line of the γ

(2l)
f in mixed way.

• Let us mention an equivalent theorem for the γa matrices.

Theorem 2.1 Two sets of d(2l)-dimensional matrices γa and γ̄a satisfying the anti-
commutation relation (2.42), where N = 2l, are equivalent

γ̄a = X−1γaX, a ∈ [1,2l]. (2.56)

The similarity transformation matrix X is determined up to a constant factor. If
the determinant of the matrix X is constrained to be 1, there are d(2l) choices for the
factor:

exp[−i2nπ/d(2l)], n ∈ [0, d(2l)). (2.57)
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5.3 Case N = 2l + 1

Since γ
(2l)
f and (2l) matrices γa in 
2l , a ∈ [1,2l], satisfy the antisymmetric relation

(2.42), then they can be defined to be the (2l + 1) matrices γa in 
2l+1. In this
definition, γ

(2l+1)
ξ in 
2l+1 is chosen as

γ2l+1 = γ
(2l)
f , γ

(2l+1)
ξ = γ1 · · ·γ2l+1 = il1. (2.58)

Obviously, the dimension d(2l+1) of the matrices in 
2l+1 is the same as d(2l) in 
2l ,

d(2l+1) = d(2l) = 2l . (2.59)

For odd N , the equivalent theorem must be modified because the multiplication
rule of elements in 
2l+1 includes Eq. (2.45). A similarity transformation cannot
change the sign of γ

(2l+1)
ξ , i.e., the equivalent condition for two sets of γa and γ̄a

has to include a new condition γξ = γ̄ξ , in addition to those given in Theorem 2.1.
If we take γ̄a = −(γa)

T , then we have

γ̄
(2l+1)
ξ = γ̄1 · · · γ̄2l+1 = −{γ2l+1 · · ·γ1}T

= (−1)l+1{γ (2l+1)
ξ

}T

= (−1)l+1γ
(2l+1)
ξ . (2.60)

6 Spinor Representations of the SO(N)

6.1 Covering Groups of the SO(N)

Based on a set of N irreducible unitary matrices γa satisfying the anticommutation
relation (2.42), we define

γ̄a =
N∑

i=1

Ra iγi, R ∈ SO(N). (2.61)

Since R is a real orthogonal matrix, then γ̄a satisfy

γ̄aγ̄b + γ̄bγ̄a =
∑

ij

RaiRbj {γiγj + γjγi}

= 2
∑

i

RaiRbi1

= 2δab1. (2.62)

Due to Eq. (2.42) and
∑

a R1aR2a = 0, we have
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∑

c1c2

R1c1R2c2γc1γc2 = 1

2

∑

c1 
=c2

R1c1R2c2(γc1γc2 − γc2γc1), (2.63)

γ̄1γ̄2 · · · γ̄N =
∑

c1···cN

R1 c1 · · ·RN cN
γc1 · · ·γcN

=
∑

c1···cN

R1 c1 · · ·RN cN
εc1···cN

γ1γ2 · · ·γN

= (detR)γ1γ2 · · ·γN = γ1γ2 · · ·γN . (2.64)

From Theorem 2.1, we know that γa and γ̄a are related by a unitary similarity
transformation D(R) with determinant 1,

D(R)−1γaD(R) =
N∑

i=1

Raiγi, detD(R) = 1, (2.65)

where D(R) is determined up to a constant exp[−i2nπ/d(N)], n ∈ [0, d(N)). In
terms of the definition of the group, the set of D(R) defined in Eq. (2.65) and op-
erated in the multiplication rule of matrices, forms a Lie group G′

N . There exists a
d(N)-to-one correspondence between the elements in G′

N and those in SO(N), and
the correspondence keeps invariant in the multiplication of elements. Therefore, the
G′

N is homomorphic to SO(N). Because the group space of the SO(N) is doubly-
connected, its covering group is homomorphic to it by a two-to-one correspondence.
As a result, the group space of the G′

N must fall into several disjoint pieces, where
the piece containing the identity element E forms an invariant subgroup GN of
the G′

N . The GN is a connected Lie group and becomes the covering group of the
SO(N) . Since the group space of GN is connected, based on the property of the
infinitesimal elements, a discontinuous condition can be found to pick up GN from
the G′

N .
Let R be an infinitesimal element. We may expand R and D(R) with respect to

the infinitesimal parameters ωαβ as follows

Rab = δab − i
∑

α<β

ωαβ(Tαβ)ab = δab − ωab,

D(R) = 1 − i
∑

α<β

ωαβSαβ,
(2.66)

where Tαβ are the generators in the self-representation of the SO(N) as given in
Eq. (2.14). The Sαβ are the generators in GN . From Eq. (2.65) one has

[γc, Sαβ ] =
∑

d

(Tαβ)cdγd = −i{δαcγβ − δβcγα}, (2.67)

from which we obtain

Sαβ = 1

4i
(γαγβ − γβγα). (2.68)

It is easy to prove that Sαβ is hermitian since D(R) is unitary.
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Define3

C =
{

B(N), when N = 4l + 1,

C(N), when N 
= 4l + 1.
(2.69)

Based on this, we have

C−1SαβC = −(Sαβ)T = −S∗
αβ,

C−1D(R)C = {D(R−1)}T = D(R)∗.
(2.70)

This discontinuous condition restricts the factor in D(R) such that there is a two-
to-one correspondence between ±D(R) in GN and R in SO(N) through relations
(2.65) and (2.70). That is to say, the GN is the covering group of SO(N),

SO(N) ∼ GN, (2.71)

where the GN is the fundamental spinor representation denoted by D[s](SO(N)).
Therefore, the Sαβ represent the spinor angular momentum operators [88–90]. The
irreducible tensor representation [λ] is a single-valued representation of the SO(N),
but a non-faithful representation of GN because its faithful representation is a
double-valued representation of the SO(N).

Since the products Sn span a complete set of the d(N)-dimensional matrices, this
can be decided by checking the commutation relations of the Sn with the generators
Sαβ whether there exists a non-constant matrix commutable with all Sαβ . It is found

that only γ
(N)
ξ is commutable with all Sαβ . The γ

(2l+1)
ξ is a constant matrix so

that the fundamental spinor representation D[s](SO(2l + 1)) is irreducible and self-
conjugate.

On the contrary, since γ
(2l)
ξ is not a constant matrix so that the fundamental spinor

representation D[s](SO(2l)) is reducible. By a similarity transformation X, the γ
(2l)
f

can be transferred to σ3 × 1 and D[s](SO(2l)) is reduced to the direct sum of two
irreducible representations

X−1D[s](R)X =
(

D[+s](R) 0
0 D[−s](R)

)
. (2.72)

Two representations D[±s](SO(2l)) are proved inequivalent by leading to an ab-
surdity. In fact, if Z−1D[−s](R)Z = D[+s](R) and Y = 1 ⊕ Z, then all generators
(XY)−1SαβXY are commutable with σ1 × 1, but their product is not commutable
with it,

2l (XY )−1(S12S34 · · ·S(2l−1)(2l))XY = Y−1[X−1γ
(2l)
f X]Y = σ3 × 1, (2.73)

which results in a contradiction.

3BN is the strong space-time reflection matrix and CN is the charge conjugation matrix, which are
usually used in particle physics.
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Introduce two project operators P± [139, 140],

P± = 1

2

(
1 ± γ

(2l)
f

)
, P±D[s](R) = D[s]P±,

X−1P+X =
(

1 0
0 0

)
, X−1P+D[s](R)X =

(
D[+s](R) 0

0 0

)
,

X−1P−X =
(

0 0
0 1

)
, X−1P−D[s](R)X =

(
0 0
0 D[−s](R)

)
.

(2.74)

From the following relation

(C(2l))−1γ
(2l)
f C(2l) = (−i)l(γ1)

T (γ2)
T · · · (γ2l )

T = (−1)l(γ
(2l)
f )T , (2.75)

where C(2l) and T denote the charge conjugation matrix and the transpose of the
matrix, respectively, one has

C−1D[s](R)P±C =
{

D[s](R)∗P±, when N = 4l,

D[s](R)∗P∓, when N = 4l + 2.
(2.76)

Two non-equivalent representations D[±s](R) are conjugate to each other when N =
4l +2, while they are self-conjugate when N = 4l. The dimension of the irreducible
spinor representations of the SO(N) is calculated as

d[s][SO(2l + 1)] = 2l , d[±s][SO(2l)] = 2(l−1). (2.77)

6.2 Fundamental Spinors of the SO(N)

For an SO(N) transformation R, � is called the fundamental spinor of the SO(N)

if it transforms through the fundamental spinor representation D[s](R):

(OR�)ν =
∑

μ

D[s]
νμ(R)�μ, OR� = D[s](R)�, (2.78)

where � is a column matrix with d[s] components.
The Chevalley bases Hν(S),Eν(S) and Fν(S) with respect to the spinor angular

momentum can be obtained from Eqs. (2.18) and (2.24) through replacing Tab by
Sab . In the chosen forms of γa given in Eq. (2.55), the Chevalley bases for the
SO(2l + 1) group are given by

Hν(S) = 1 × · · · × 1︸ ︷︷ ︸
ν−1

×1

2
{σ3 × 1 − 1 × σ3} × 1 × · · · × 1︸ ︷︷ ︸

l−ν−1

,

Hl(S) = 1 × · · · × 1︸ ︷︷ ︸
l−1

×σ3,

Eν(S) = 1 × · · · × 1︸ ︷︷ ︸
ν−1

×{σ+ × σ−} × 1 × · · · × 1︸ ︷︷ ︸
l−ν−1

= Fν(S)T ,

El(S) = σ3 × · · · × σ3︸ ︷︷ ︸
l−1

×σ+ = Fl(S)T ,

(2.79)
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where ν ∈ [1, l). The Chevalley bases for the SO(2l) group are the same as those
for the SO(2l + 1) except for ν = l,

Hl(S) = 1 × · · · × 1︸ ︷︷ ︸
l−2

×1

2
{σ3 × 1 + 1 × σ3},

El(S) = −1 × · · · × 1︸ ︷︷ ︸
l−2

×{σ+ × σ+} = Fl(S)T .
(2.80)

The basis spinor ξ [m] of the SO(N) can also be expressed as a direct product of
l two-dimensional basis spinors ξ(β),

ξ [m] = ξ(β1, β2, . . . , βl) = ξ(β1)ξ(β2) . . . ξ(βl), (2.81)

ξ(+) =
(

1

0

)
, ξ(−) =

(
0

1

)
. (2.82)

For even N , the fundamental spinor space can be decomposed into two subspaces by
the project operators P±, �± = P±� , corresponding to irreducible spinor represen-
tations D[±s]. The basis spinor in the representation space of D[+s] contains even
number of factors ξ(−), and that of D[−s] contains odd number of factors ξ(−). The
highest weight states ξ [M] and their highest weights M are given by

ξ(+) . . . ξ(+)︸ ︷︷ ︸
l−1

ξ(+), M = [0, . . . ,0︸ ︷︷ ︸
l−1

,1], [s] of the SO(2l + 1),

ξ(+) . . . ξ(+)︸ ︷︷ ︸
l−1

ξ(+), M = [0, . . . ,0︸ ︷︷ ︸
l−2

,0,1], [+s] of the SO(2l),

ξ(+) . . . ξ(+)︸ ︷︷ ︸
l−1

ξ(−), M = [0, . . . ,0︸ ︷︷ ︸
l−2

,1,0], [−s] of the SO(2l).

(2.83)

The remaining basis states are calculated by the applications of lowering operators
Fν(S).

6.3 Direct Products of Spinor Representations

Since the spinor representation is unitary so that we have

OR�† = �†D[s](R)−1, (2.84)

�†� = ∑
μ �∗

μ�μ = ∑
μν �∗

μδμν�ν,

OR(�†�) = �†D[s](R)−1D[s](R)� = �†�,
(2.85)

which means that �†� keeps invariant in the SO(N) transformations and is a scalar
of the SO(N). In other words, the products of �†

μ and �ν span an invariant linear
space, corresponding to the direct product representation D[s]∗ ×D[s] of the SO(N).
In the reduction of D[s]∗ ×D[s] there is an identical representation where the CGCs
are δμν . In general, one has
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OR(�†γa1 · · ·γan�) = �†D[s](R)−1γa1 · · ·γanD
[s](R)�

=
∑

c1...cn

Ra1c1 · · ·Rancn�
†γc1 · · ·γcn�, (2.86)

where �†γa1 · · ·γan� is an antisymmetric tensor of rank n of the SO(N) corre-
sponding to the Young pattern [1n] with n ≤ N . Otherwise, the respective γa can be
moved together and eliminated.

When N = 2l + 1, the γ
(2l+1)
f is a constant matrix so that the product of (N −n)

matrices γa can be changed to a product of n matrices γa . Thus, the rank n of the
tensor (2.86) is less than N/2, and the Clebsch-Gordan series is given by

[s]∗ × [s] � [s] × [s] � [0] ⊕ [1] ⊕ [12] ⊕ · · · ⊕ [1l], for SO(2l + 1). (2.87)

The matrix entries of product of γa are the CGCs. The highest weight in product
space is given by M = [0, . . . ,0,2] corresponding to representation [1l].

When N = 2l, according to the property of the project operators P±,

P+P− = P−P+ = 0, P±P± = P±, γ
(2l)
f P± = ±P±,

P∓γb1 · · ·γb2n
P± = 0, P±γb1 · · ·γb2n+1P± = 0,

(2.88)

the product of the (N −n) matrices γb can still be changed to a product of n matrices
γb . If n = l, we have

γ1γ2 · · ·γl = (−i)lγ2lγ2l−1 · · ·γl+1γ
(2l)
f ,

γ1γ2 · · ·γlP± = 1

2
{γ1γ2 · · ·γl ± (−i)lγ2lγ2l−1 · · ·γl+1}P±.

(2.89)

If N = 4l, we have

[±s]∗ × [±s] � [±s] × [±s] � [0] ⊕ [12] ⊕ [14] ⊕ · · · ⊕ [(±1)12l],
[∓s]∗ × [±s] � [∓s] × [±s] � [1] ⊕ [13] ⊕ [15] ⊕ · · · ⊕ [12l−1].

(2.90)

If N = 4l + 2, one has

[±s]∗ × [±s] � [∓s] × [±s] � [0] ⊕ [12] ⊕ [14] ⊕ · · · ⊕ [12l],
[∓]∗ × [±s] � [±s] × [±s] � [1] ⊕ [13] ⊕ [15] ⊕ · · · ⊕ [(±)12l+1].

(2.91)

The self-dual and anti-self-dual representations occur in the reduction of the
direct product [±s] × [±s], but not in the reduction of [+s] × [−s]. The high-
est weights are M = [0, . . . ,0,0,2] in the product space [+s] × [+s], M =
[0, . . . ,0,2,0] in [−s] × [−s], and M = [0, . . . ,0,1,1] in [+s] × [−s].

6.4 Spinor Representations of Higher Ranks

In the SO(3) group, D1/2 is a fundamental spinor representation. The spinor repre-
sentations Dj of higher ranks can be obtained by reducing the direct product of the
fundamental spinor representation and a tensor representation,

D1/2 × Dl � Dl+1/2 ⊕ Dl−1/2. (2.92)
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The spinor representations of higher ranks of the SO(N) can also be obtained in a
similar way.

A spinor �a1...an with the tensor indices is called a spin-tensor if it transforms in
R ∈ SO(N) as follows:

(OR�)a1···an =
∑

c1···cn

Ra1c1 · · ·RancnD
[s](R)�c1···cn . (2.93)

The tensor part of the spin-tensor can be decomposed into a direct sum of the trace-
less tensors with different ranks. Each traceless tensor subspace can be reduced by
the projection of the Young operators. Thus, the reduced subspace of the traceless
tensor part of the spin-tensor is denoted by a Young pattern [λ] or [±λ] where the
row number of [λ] is not larger than N/2. However, this subspace of the spin-tensor
corresponds to the direct product of the fundamental spinor representation [s] and
the irreducible tensor representation [λ] or [±λ], and it is still reducible. It is re-
quired to find a new restriction to pick up the irreducible subspace like the subspace
of Dl+1/2 in Eq. (2.92) for the SO(3) group. The restriction is from the so-called
trace of the second kind of the spin-tensor which keeps invariant in the SO(N)

transformations:

�a1···ai−1ai+1···an =
N∑

c=1

γc�a1···ai−1 c ai+1···an, (2.94)

and

(OR�)a1···ai−1ai+1···an

=
∑

c1···cnc′
Ra1c1 · · ·Rancn

[∑

c

γcRcc′
]
D[s](R)�c1···ci−1c

′ci+1···cn

=
∑

c1···cn

Ra1c1 · · ·RancnD
[s](R)

[∑

c′
γc′�c1···ci−1c

′ci+1···cn

]

=
∑

c1···cn

Ra1c1 · · ·RancnD
[s](R)�c1···ci−1ci+1···cn . (2.95)

The irreducible subspace of the SO(N) contained in the spin-tensor space, in
addition to the projection of a Young operator, satisfies the usual traceless conditions
of tensors and the traceless conditions of the second kind

∑

d

ψa···d···d···c = 0,
∑

d

γdψa···d···c = 0. (2.96)

The highest weight M of the irreducible representation is the highest weight in
the direct product space. The irreducible representation is denoted by [s, λ] for the
SO(2l + 1)

{ [s] × [λ] � [s, λ] ⊕ · · · ,
M = [(λ1 − λ2), . . . , (λl−1 − λl), (2λl + 1)], (2.97)
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and [±s, λ] for the SO(2l)
{ [+s] × [λ] or [+s] × [+λ] � [+s, λ] ⊕ · · · ,

M = [(λ1 − λ2), . . . , (λl−1 − λl), (λl−1 + λλ + 1)],
{ [−s] × [λ] or [−s] × [−λ] � [−s, λ] ⊕ · · · ,

M = [(λ1 − λ2), . . . , (λl−1 + λl + 1), (λl−1 − λl)],{ [+s] × [−λ] � [−s, λ1, λ2, . . . , λl−1, (λl − 1)] ⊕ · · · ,
M = [(λ1 − λ2), . . . , (λl−1 + λl), (λl−1 − λl + 1)],

{ [−s] × [+λ] � [+s, λ1, λ2, . . . , λl−1, (λl − 1)] ⊕ · · · ,
M = [(λ1 − λ2), . . . , (λl−1 − λl + 1), (λl−1 + λl)].

(2.98)

These irreducible representations [s, λ] of the SO(2l + 1) and [±s, λ] of the
SO(2l) are called the spinor representations of higher ranks. It should be noted that
the row number of the Young pattern [λ] in the spinor representation of higher rank
is not larger than l. Otherwise, the space is null.

The remaining representations in the Clebsch-Gordan series (2.97) and (2.98) are
calculated by the method of dominant weight diagram. For example, when [λ] is a
one-row Young diagram, one has

SO(2l + 1): [s] × [λ,0, . . . ,0] � [s, λ,0, . . . ,0] ⊕ [s, λ − 1,0, . . . ,0],
SO(2l): [±s] × [λ,0, . . . ,0] � [±s, λ,0, . . . ,0] ⊕ [∓s, λ − 1,0, . . . ,0], (2.99)

where [∓s, λ − 1,0, . . . ,0] appears because the factor γb in Eq. (2.96) is anticom-
mutable with γf in P±.

6.5 Dimensions of the Spinor Representations

In a similar way, the dimension of a spinor representation [s, λ] of the SO(2l +1) or
[±s, λ] of the SO(2l) can be calculated by hook rule. The dimension is expressed as
a quotient multiplied with the dimension of the fundamental spinor representation,
where the numerator and the denominator are denoted by the symbols Y

[λ]
S and Y

[λ]
h ,

respectively:

d[s,λ][SO(2l + 1)] = 2l Y
[λ]
S

Y
[λ]
h

,

d[±s,λ][SO(2l)] = 2l−1 Y
[λ]
S

Y
[λ]
h

.

(2.100)

The concepts of a hook path (i, j) and an inverse hook path i, j have been dis-
cussed above. The number of boxes contained in the hook path (i, j) is the hook
number hij of the box in the j th column of the ith row. The Y

[λ]
h is a tableau of the

Young pattern [λ] where the box in the j th column of the ith row is filled with the
hook number hij . The Y

[λ]
S is a tableau of the Young pattern [λ] where each box is
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filled with the sum of the digits which are respectively filled in the same box of each
tableau Y

[λ]
Sb

in the series. The notation Y
[λ]
S means the product of the filled digits in

it, so does the notation Y
[λ]
h . The tableaux Y

[λ]
Sb

are defined by the following rules:

• Y
[λ]
S0

is a tableau of the Young pattern [λ] where the box in the j th column of the
ith row is filled with the digit (N − 1 + j − i).

• Let [λ(1)] = [λ]. Staring with [λ(1)], we define recursively the Young pattern
[λ(b)] by removing the first row and the first column of the Young pattern [λ(b−1)]
until [λ(b)] contains less two columns.

• If [λ(b)] contains more than one column, we define Y
[λ]
Sb

as the tableau of the
Young pattern [λ] where the boxes in the first (b − 1) row and column are filled
with 0, and the remaining part of the Young pattern is [λ(b)]. Let [λ(b)] have
r rows. Fill the first r boxes along the hook path (1,1) of the Young pattern
[λ(b)], starting with the box on the rightmost, with the digits (λ

(b)
1 − 1), (λ

(b)
2 −

1), . . . , (λ
(b)
r − 1), box by box, and fill the first (λ

(b)
i − 1) boxes in each inverse

hook path (i,1) of the Young pattern [λ(b)], i ∈ [2, r] with “−1”. The remaining
boxes are filled with 0. If several “−1” are filled in the same box, the digits are
summed. The sum of all filled digits in the pattern Y

[λ]
Sb

with b > 0 is equal to 0.

7 Concluding Remarks

In this Chapter we have sketched some basic properties for the Lie group SO(N)

since it shall be very helpful in successive several Chapters. The tensor and spinor
representations of the SO(N) group, the calculation of the dimensions of irreducible
tensor and spinor representations have been addressed. The more information about
the properties of the Lie groups and Lie algebras, in particular the SO(N) group as
well as the corresponding Lie algebra may refer to textbooks [136, 138–140].
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